Clinical question.

“In adult patients (prehospital and in-hospital) with ROSC after cardiac arrest (P), does early hemodynamic optimization (I) as opposed to standard care (C), improve outcome (O) (eg. survival)?”

Is this question addressing an intervention/therapy, prognosis or diagnosis? Intervention/therapy

State if this is a proposed new topic or revision of existing worksheet: new topic

Conflict of interest specific to this question

Do any of the authors listed above have conflict of interest disclosures relevant to this worksheet?

No

Search strategy (including electronic databases searched).

Initial search:
Pubmed search using “heart arrest” or “cardiopulmonary resuscitation” as MeSH Terms and “post resuscitation” and/or “h(a)emodynamics” and or “outcome” as textword in any field.
COCHRANE library using “heart arrest” and “cardiopulmonary resuscitation” and “post-resuscitation”; also www.clinicaltrials.gov
EMBASE search using “heart arrest” and “cardiopulmonary resuscitation” and post-resuscitation” and/or “hemodynamics” and/or “outcome”
AHA master Library using “heart arrest” and “cardiopulmonary resuscitation” and “post-resuscitation”

State inclusion and exclusion criteria

Inclusion criteria:
Human studies, animal studies, RCT’s in which the original question was adressed (i.e. protocols involving strategies to influence post-resuscitation hemodynamics or studies evaluating if hemodynamic alterations per se influence outcome)

Exclusion criteria:
Intra-arrest interventions, Resuscitation with cardiopulmonary bypass; in animal models: no true CA models (four vessel occlusion, exsanguination, hypoxia only, etc.); studies with abstract only, case reports, studies not addressing the question

Number of articles/sources meeting criteria for further review:

11
Summary of evidence

Evidence Supporting Clinical Question

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Level of evidence

A = Return of spontaneous circulation C = Survival to hospital discharge E = Other endpoint
B = Survival of event D = Intact neurological survival *Italics = Animal studies*
Evidence Neutral to Clinical question

<table>
<thead>
<tr>
<th>Good</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair</td>
<td>Gaieski 2009 B, C, D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

Level of evidence

A = Return of spontaneous circulation
B = Survival of event
C = Survival to hospital discharge
D = Intact neurological survival
E = Other endpoint
Italics = Animal studies

Evidence Opposing Clinical Question

<table>
<thead>
<tr>
<th>Good</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
</table>

Level of evidence

A = Return of spontaneous circulation
B = Survival of event
C = Survival to hospital discharge
D = Intact neurological survival
E = Other endpoint
Italics = Animal studies
REVIEWER’S FINAL COMMENTS AND ASSESSMENT OF BENEFIT / RISK:

Initial survival after OHCA has improved over the recent decades whereas secondary survival, i.e. hospital discharge (most desirably with intact neurological function) has not improved. Interestingly, this discrepancy has received only marginal attention. After the two positive hypothermia trials there seems to be more interest in this area. Besides neurological injury as a result of CA and CPR myocardial dysfunction has been recognized as a major determinant of the postresuscitation syndrome. This syndrome includes decreased cardiac output, systemic hypotension and tissue hypoperfusion. One retrospective study (LOE 3; Trzeciak 2009) demonstrated that arterial hypotension was associated with decreased survival and neurological outcome. Few animal experimental studies (LOE 5) exist that investigate the question if early hemodynamic optimization using inotropic agents improves outcome as opposed to standard care (which apparently does not exist) and demonstrated beneficial effects of some agents including dobutamine and levosimendan (Huang 2005, Huang 2005, Wang 2005, Vasquez 2004, Meyer 2002, Angelos 1994). Furthermore, no prospective human data exists. Only one study (LOE 3; Sunde 2007) could proof that when hemodynamic optimization was introduced as part of a whole bundle of interventions that outcome was improved in comparison to a historical control. This is in analogy to the data of Emanuel Rivers where a hemodynamic optimization protocol improved outcome in septic patients. One study (LOE 4; Gaieski 2009) with only few patients and only comparing historical controls used a design in analogy to the Rivers study and did not find a benefit with regard to outcome. With regard to the assessment of the benefits and risks it has to be taken into account that from a physiological point of view restoration of adequate tissue perfusion seems to make sense. This is mainly achieved by beta-adrenergic agents (epinephrine, norepinephrine, dobutamine) However, to the best of my knowledge there is no data to support that any of these drugs improves outcome in settings of hypoperfusion other than post CPR (i.e. septic or cardiogenic shock). On the contrary beta-adrenergic agents have many downside effects including, arrhythmias, increased oxygen demand, etc. In a nutshell, the available data is far too limited to derive any treatment strategy. In my opinion this is the most challenging question in the next years to come.

Acknowledgements:

Citation List

LOE 5; animal study; no industrial relation

LOE 3; Prospective interventional trial with few patients and a historical control in analogy to the Rivers sepsis study; no benefit was found for EGDT; no industry support

LOE 5; animal study; sponsored by Abbott

LOE 5; animal study; sponsored by Abbott

LOE 5; animal study; no industrial influence

LOE 3; good human study, however with historical control; hemodynamic optimization only as part of several factors to improve outcome; no industrial influence

LOE 4; large restrospective study with data from a large database showing that post CPR hypotension is associated with increased mortality rates; no industry support

LOE 5; animal study; no industry support

LOE 5; animal study; sponsored by Abbott

LOE 4; prospective study in which hemodynamic stabilization as part of other interventions improved outcome, no industrial support