Clinical question.
In adult cardiac arrest (prehospital [OHCA], in-hospital [IHCA]) (P), does the use of an escalating defibrillation protocol (I), when compared to a fixed energy protocol (C) increase outcome (e.g. return of spontaneous circulation) (O)?

Is this question addressing an intervention/therapy, prognosis or diagnosis: Therapy

State if this is a proposed new topic or revision of existing worksheet: Revision

Search strategy (including electronic databases searched).

PubMed (“heart arrest” OR “cardiopulmonary resuscitation” as MESH (headings)) AND (“electric countershock/therapy OR “electric countershock/methods” OR “electric countershock/standards” as MESH (headings)) OR (“resuscitation” as text word (all fields) AND “defibrillat* energy” as text words (all fields)) OR (“electric countershock” AND “clinical protocols” as MESH (headings)) AND (“electric countershock/therapy OR “electric countershock/methods” OR “electric countershock/standards” as MESH (headings)) OR (“resuscitation” as text word (all fields) AND “defibrillat* energy” as text words (all fields)) OR (“electric countershock” AND “clinical protocols” as MESH (headings))

EMBASE search using text words (all fields) “resuscitation” AND “defibrillat* energy”

Cochrane Library search using text words (all fields) (including Cochrane Database of Systematic Reviews and Cochrane Central Register of Controlled Trials) (“heart arrest” OR “cardiopulmonary resuscitation”) AND (“electric countershock” OR “defibrillators”)

AHA EndNote Master library “defibrill*” AND “heart arrest” as Keywords

Each of these searches was manually reviewed (title and abstract first and full article if necessary) to identify articles in which an energy protocol for defibrillation was evaluated. In addition, all citations listed in key articles were reviewed.

• State inclusion and exclusion criteria
Inclusion of cardiac arrest studies or cardiac arrest models with evaluation of defibrillation energy or serial shocks.
Exclusion of non-cardiac arrest studies (eg. cardioversion of atrial fibrillation, supraventricular tachycardia) or non-cardiac arrest animal models (eg. exsanguinations, great vessel occlusion [x], carotid artery occlusion [y], pre-arrest [z] or during arrest cooling [a],

• Number of articles/sources meeting criteria for further review:
Search strategy identified the following number of sources: PubMed 624 (5 Feb 2010), EMBASE 164 (29 Sept 2009), Cochrane Library 240 (29 Sept 2009), AHA EndNote Master library 257 (10 Sept 2008).
A total of 115 studies met criteria for further review which resulted in identification of 69 studies pertinent to the clinical question. Of these, 1 study was LOE 1 (RCT), 3 studies were LOE 2 (non-randomised, concurrent controls), 22 LOE 4 (no controls), and 43 LOE 5 (not directly related or animal studies).

Articles Identified for Further Review 116
Articles Included in Full Review 70
Human Articles 40
Animal Articles 29
Summary of evidence

Evidence Supporting Clinical Question

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stiell 2007, E(^1)</td>
<td>Heavens 1998, BCE(^7)</td>
<td>Berg 2005, E(^{12})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koster 2008, E</td>
<td>Higgins 2000, E(^{10})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Niemann 2004, E(^{8})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tang 2006, AE(^{11})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Walker, 2003 E(^{14})</td>
</tr>
<tr>
<td>2</td>
<td>Walsh 2004, E(^1)</td>
<td></td>
<td>Bardy 1988, E(^{1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clark 2001, E(^{8})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geddes 1974, E(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jones 1990, E(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lerman 1987, E(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Walcott 2002, E(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zelinka 2007, E(^8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zhang 2003, E(^{14})</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Morgan, 1984 E(^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Biphasic escalating vs Biphasic fixed
2 – Biphasic escalating (high dose) vs biphasic escalating (low dose)
3 – Biphasic escalating vs monophasic escalating
4 – Biphasic escalating vs triphasic escalating
5 – Biphasic escalating
6 – High energy biphasic escalating vs low energy biphasic fixed (one shock protocol)
7 – Monophasic escalating
8 – Biphasic and monophasic energy evaluation
9 – Monophasic energy evaluation
10 – Biphasic vs monophasic (first shock efficacy)

A = Return of spontaneous circulation
C = Survival to hospital discharge
E = Other endpoint
B = Survival of event
D = Intact neurological survival
Italics = Animal studies

Evidence Neutral to Clinical question

<table>
<thead>
<tr>
<th>Level of evidence</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stiell 2007, ABCD(^8)</td>
<td>Carpenter 2003, ABCE(^{13})</td>
<td>Bain 2001, E(^{1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freeman 2008, ACE(^{9})</td>
<td>Bardy 1995, E(^{14})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hess 2004, ABCE(^{1+})</td>
<td>Bardy 1996, E(^{1+})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hess 2008, ADE(^{1+})</td>
<td>Berg 2005, ABE(^{1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Koster 2006, E(^{1+})</td>
<td>Greene 1995, E(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kudenchuk 2006, ABCDE(^{5})</td>
<td>Leng 2000, ABE(^{1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Morrison 2005, ABCD(^8)</td>
<td>Niemann 2000a, AE(^{5})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>van Alem 2003, E(^{9})</td>
<td>Niemann 2000b, E(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walker 2009, E(^{1})</td>
<td>Niemann 2003a, AE(^{8})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reddy 1997, E(^{1+})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tang 1999, ABE(^{10})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tang 2001, ABE(^{10})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tang 2004, AE(^{4})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tang 2006, AE(^{9})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Xie 1997, ABE(^{1+})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yamaguchi 2002, E(^{4})</td>
</tr>
<tr>
<td>2</td>
<td>Gliner 1998, AE(^{1+})</td>
<td></td>
<td>Berg 2005, E(^{1})</td>
</tr>
<tr>
<td></td>
<td>Gliner 1999, AC(^{10})</td>
<td></td>
<td>Rossano 2006, C(^{14})</td>
</tr>
<tr>
<td></td>
<td>Schneider 2000, BCD(^{10})</td>
<td></td>
<td>Szili-Torok 2002, E(^{1})</td>
</tr>
<tr>
<td></td>
<td>White 2002, ABCDE(^{1+})</td>
<td></td>
<td>Zhang 2001, E(^{7})</td>
</tr>
<tr>
<td></td>
<td>White 2004, ABCE(^{11})</td>
<td></td>
<td>Zhang 2002, E(^{7})</td>
</tr>
<tr>
<td>Poor</td>
<td>Jakobsson 1989, BE</td>
<td>White 2005, ABCE\S11</td>
<td>Higgins 2004, E\S11</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poole 1997, E\S11</td>
<td>Killingsworth 2002, E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stothert 2004, E\S11</td>
<td>Niemann 2003b, E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White 1997, E\S11</td>
<td>Scheatle 1999, A§</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White 2001, ABCE\S11</td>
<td>Tang 2002, AE\S11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Walcott 1998, A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yamanouchi 1999, E\S16</td>
</tr>
</tbody>
</table>

| Level of evidence |
|-------------------|------------------|
| 1 – Biphasic escalating vs biphasic fixed |
| 2 – Biphasic escalating (high dose) vs biphasic escalating (low dose) |
| 3 – Biphasic (fixed and escalating) vs monophasic (fixed and escalating) |
| 4 – Biphasic escalating vs biphasic fixed vs monophasic escalating |
| 5 – Biphasic escalating vs monophasic escalating |
| 6 – Biphasic escalating |
| 7 – Biphasic energy evaluation |
| 8 – High energy biphasic escalating vs low energy biphasic fixed (one shock protocol) |
| 9 – Biphasic vs monophasic (first shock success) |
| 10 – Biphasic fixed vs monophasic escalating |
| 11 – Biphasic fixed |
| 12 – Escalating monophasic vs fixed monophasic |
| 13 – Monophasic escalating (high dose) vs monophasic escalating (high dose) |
| 14 – Monophasic energy evaluation |
| 15 – Biphasic (fixed and escalating) vs monophasic escalating |
| 16 – Biphasic and monophasic energy evaluation |

A = Return of spontaneous circulation
B = Survival of event
C = Survival to hospital discharge
D = Intact neurological survival
E = Other endpoint
Italics = Animal studies
Evidence Opposing Clinical Question

| Good | | | Gliner 1999, E¹ Schneider 2000, AE³ |
| Poor | Jakobsson 1989, C¹ Gascho 1979, BCE² |

1 – Escalating monophasic vs fixed monophasic
2 – Monophasic (first shock efficacy)
3 – Biphasic fixed vs monophasic escalating

A = Return of spontaneous circulation
B = Survival of event
C = Survival to hospital discharge
D = Intact neurological survival
E = Other endpoint

Italics = Animal studies

REVIEWER’S FINAL COMMENTS AND ASSESSMENT OF BENEFIT / RISK:

DISCUSSION: The advent of biphasic waveform external defibrillators lead to clinical trials comparing fixed low-energy impedance compensating biphasic external defibrillators to traditional monophasic defibrillators. Randomized and observational trials demonstrated fixed low-energy biphasic defibrillators terminated ventricular fibrillation more effectively than escalating dose monophasic defibrillators. However, it remained unclear if fixed energy biphasic defibrillation would remain superior when compared to escalating energy protocol biphasic defibrillation. The clinical question of this worksheet aims to determine whether an escalating defibrillation protocol increases survival and/or return of spontaneous circulation, given concerns about potential myocardial damage induced by higher energy shocks.

• The first clinical comparison of different biphasic energy levels and dosing regimens was conducted by Walsh et al. (Walsh 2004, 378). This was a nonrandomized study of 78 patients with either in-hospital or out-of-hospital cardiac arrest. Energy dosing regimen depended on study site with one study site using fixed energy (150-150-150J) biphasic protocol while the other site used escalating energy (100-150-200J) biphasic protocol. Among patients requiring 3 shocks for termination of ventricular fibrillation, a greater proportion successful defibrillation (defined in this study as discontinuation of ventricular fibrillation for >5 seconds) when receiving escalating dose protocol. No difference in successful defibrillation was seen for the first or second shocks. This study was limited by its nonrandomized design, violations of energy protocol in >30% of patients treated with escalating dose protocol, lack of adjustment for differences in baseline characteristics and adjunctive therapies, and lack of data regarding return of spontaneous circulation or survival to hospital discharge.

• An important clinical study was performed by Stiell et al. (Stiell 2007, 1511). This was a randomized controlled trial of 221 patients with out-of-hospital cardiac arrest due to ventricular fibrillation. The study demonstrated higher dose escalating energy protocol (200, 300, 360J) biphasic defibrillation was superior to fixed dose low energy (150-150-150J) biphasic defibrillation in converting ventricular fibrillation to an organized rhythm among patients requiring multiple shocks. However, neither return of spontaneous circulation or survival to hospital discharge were improved by higher energy escalating dose biphasic defibrillation.

• An observational analysis by Hess et al. (Hess 2008, 28) of fixed low-energy biphasic defibrillation for out-of-hospital cardiac arrest due to ventricular fibrillation suggested no loss in defibrillation efficacy with successive shocks for recurrent ventricular fibrillation. The proportion of patients with successful defibrillation, defined as termination of ventricular fibrillation for > 5 seconds, was relatively constant for successive shocks. Although the statistical analysis was robust including multiple regression analysis with generalized estimating equations to account for interrelatedness of shocks within each patient, an assessment of the statistical trend of successful defibrillation with successive shocks was not provided. Limitations include the
observational design and lack of a comparison group. Compared to the trial by Stiell et al., a higher proportion of patients were successfully defibrillated after first shock. This may represent a population more amenable to defibrillation and less likely to require higher defibrillation energies. Additionally, endpoints of interest differed between the two studies. The primary endpoint reported by Hess et al. was termination of ventricular fibrillation at 5 seconds after shock while the primary endpoint reported by Stiell et al. was the proportion of patients with organized rhythm 60 seconds after defibrillation.

- Of the large number of animal trials, only Walker et al. (Walker 2003, 73) and Niemann et al (Niemann 2004, 619) compared biphasic defibrillation of fixed dose and varying escalating dose protocols. In the study by Niemann et al., a higher proportion of swine were defibrillated with an escalating energy (15/18, 83%, 95% CI 59-96%) compared to a fixed dose protocol (5/17, 29%, 95% CI 10-56%). Additionally, nine of the 17 swine that could not be defibrillated within 3 shocks by a fixed energy biphasic waveform were successfully defibrillated with an escalating energy. The study by Walker et al. suggested escalating-dose biphasic defibrillation was more effective than fixed-dose energy in high transthoracic impedance models.

- The only human study of escalating monophasic compared to fixed monophasic defibrillation was conducted by Jacobsson et al. (Jacobsson 1989, 551). This was a retrospective study of OHCA treated with fixed high or low energy monophasic defibrillation and escalating monophasic defibrillation. A higher proportion of patients treated with fixed monophasic defibrillation at a high energy survived to discharge (n=11, 7%) compared to fixed low energy (n=3, 2%) or escalating monophasic defibrillation (n=2, 4%). No adjustment was undertaken for possible confounders in this retrospective analysis.

There is fair evidence supporting an escalating energy defibrillation algorithm in patients who fail to convert to an organized rhythm after first shock. Although no benefit in return of spontaneous circulation or survival to hospital discharge has been reported among patients receiving escalating dose defibrillation, a larger percentage convert to an organized rhythm suggesting a potential for improved survival. The lack of difference in conversion of ventricular fibrillation after first shock in the lower versus higher starting energies in the study by Stiell et al. suggests it is appropriate to start at a lower-energy to minimize potential post-defibrillation cardiac dysfunction.

Summary of Stiell 2007, 1511:
- Randomized, blinded clinical trial of a fixed lower-energy biphasic (150-150-150J) and an escalating higher-energy biphasic (200-300-360J) defibrillation protocol at 3 sites. 2002-2005. 256 assessed, 221 enrolled (26 excluded after blinded review determined asystolic at time of defibrillator shock, 7 excluded due to incomplete data, 2 traumatic arrests excluded)
- Termination of VF was achieved after first shock in 99/114 (86.8%) treated with lower-energy and 95/107 (88.8%) treated with higher-energy (p=0.81). Similar outcomes were seen for organized rhythm (defined as at least two consecutive QRS complexes separated by no more than 5 seconds) within 60 seconds after first shock, with the endpoint achieved in 38.4% with low-energy vs 36.7% with higher-energy biphasic defibrillation (p=0.92). Among patients requiring more than one shock, termination of VF was 24.7% in fixed low-energy vs 36.6% in escalating higher-energy biphasic defibrillation (absolute difference 11.9%, 95% CI 1.2 to 24.4%; NNT = 8).
- No evidence of significantly improved return of spontaneous circulation (fixed-lower energy 58/114 (50.9%) vs higher-energy biphasic 52/107 (48.6%), survival to 24 hours after arrest (fixed-lower energy 37/114 (32.5%) vs higher-energy biphasic 38/107 (35.5%), or survival to hospital discharge (fixed-lower energy 19/114 (16.7%) vs higher-energy biphasic 17/107 (15.9%).
- Despite randomization, the small sample size resulted in some unbalanced patient characteristics among treatment groups (most notably, initial rhythm of asystole in 6 patients treated with fixed dose compared to 0 patients treated with escalating dose). Analysis incorporating adjustment on baseline covariates was not conducted.

Summary of Walsh 2004, 378:
- Successful defibrillation (defined as cessation of ventricular fibrillation for >5 seconds) for episodes of ventricular fibrillation was the same after the first shock (46/79 escalating dose (58%) vs 61/95 fixed dose (64%)) and second shock (65/79 escalating dose (82%) vs 74/95 fixed dose (78%)).
- A higher proportion were successfully defibrillated with escalating dose defibrillation when three shocks were required (73/79 escalating dose (92%) vs 79/95 fixed dose (83%)) (absolute difference 9%, p = 0.029, NNT = 11).

Summary of Hess 2008, 28:
- Retrospective cohort of patients treated with fixed low-dose biphasic AED. 1996-2007, N=103. No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.
- Termination of VF (≥ 5 seconds) was observed in 93/101 (92%) after first shock with recurrence or persistence of ventricular fibrillation in 63 patients. The proportion of patients whose VF was terminated after each shock remained relatively unchanged (success after second shock 58/63 (92.1%), after third shock 37/41 (90.2%), after fourth shock 18/21 (85.7%), after five or more shocks 27/31 (87.1%).
• Although a statistical analysis of successive pairs of shocks (i.e. 1 vs 2, 2 vs 3, etc) demonstrated no difference in successful defibrillation, there was no assessment of trend.
• Refibrillation was not associated with a decrement in neurologically intact survival (OR 1.07, 95% CI 0.39-2.93, p=0.90).

REVIEWER’S CONFLICTS OF INTEREST:
Steven M. Bradley – Internist/Cardiology Fellow. No intellectual or commercial conflicts. Fellowship supported by VA HSR&D Post-MD Fellowship

Acknowledgements:
Graham Nichol for his mentorship in preparation of this worksheet.
Citation List

LOE 5 (at time of ICD), good, neutral. Lab at time of ICD, prospectively randomized non-blinded comparison of monophasic escalating (200-300-360J and fixed 360J) versus biphasic escalating (200J-300J and fixed 300J) transthoracic defibrillation for termination of VF. N=118.
First shock successful in 100% of patients treated with biphasic and >96% success for both groups treated with monophasic, thus unable to compare effect of escalating vs fixed dose energy.

LOE 5 (at time of ICD), poor, supportive. Lab at time of ICD, prospective evaluation of energy required for defibrillation after failed defibrillation attempt. N=14.
Higher energy defibrillation shocks were required for rescue defibrillation after failed defibrillation attempts.

LOE 5 (at time of ICD), good, neutral. Lab at time of ICD, prospectively randomized and blinded to two energy levels of truncated biphasic transthoracic (115J and 130J) and monophasic damped sine waveform (200J). N=30.
For each transthoracic pulse, the percent defibrillation efficacy was 97%.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (at time of ICD), good, neutral. Lab at time of ICD, prospective, randomized, blinded study comparing first shock efficacy of monophasic (200J or 360J) compared to biphasic (115 or 130J) transthoracic defibrillation. N=294.
First shock effectively terminated VF in 86/97 (89%) treated with 115J biphasic, 144/167 (86%) treated with 130J biphasic, 143/166 (86%) treated with 200J monophasic, and 80/83 (96%) treated with 360J monophasic. Differences in efficacy did not achieve statistical significance.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (pediatric), fair, neutral. OHCA, retrospective cohort, N=11. Pediatric dose shocks failed to terminate VF in 50% of children with OHCA due to VF.

LOE 5 (animal), good, neutral. Prospective randomized comparison of escalating biphasic transthoracic defibrillation at a pediatric (50-75-86J) or adult (200-300-360J) energy dosage in a piglet model. N=16
Pediatric dose less effective at termination with first shock (pediatric 4/16 vs adult 12/16, p<0.005) and second shock (pediatric 11/16 vs adult 16/16, p=0.01). All piglets achieved ROSC within 3 shock sequence. Greater myocardial damage (enzymes and EF) with adult dosages.

LOE 4, good, supportive. OHCA, retrospective cohort, BTE (fixed and escalating) vs MDS vs MTE, N=366.
Grp 1: N=105, BTE 150-150-150J or BTE, 150-200-360J; Termination VF [3sec] with 1 shock 89.5%, with <3 shocks 98.1%; Conv [60sec] with 1 shock 40%
ROSC 55.2%, Admitted 53.3%, Survival 20.0%;
Grp 2: N=193, MDS, 200-200-360J; Termination VF with 1 shock 83.9%, with <3 shocks 95.9; Conv with 1 shock 25.4%
ROSC 65.3%, Admitted 56.6%, Survival 29.5%
Grp 3: N=68, MTE, 200-200-360J; Termination VF with 1 shock 63.2%, with <3 shocks 85.3; Conv with 1 shock 26.5%
ROSC 64.7%, Admitted 61.8%, Survival 39.7
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

LOE 5 (animal), poor, supportive. Prospective study evaluating monophasic and biphasic defibrillation waveforms ranging from 7 to 100J energy. Waveform and energy applied in random order to piglets of varying size to model infant and child. N=35 Termination of VF increased with increasing energy, with biphasic achieving >80% termination of VF by 20J in infant model and 30J in child model; monophasic required 50J in infant and 70J in child to achieve similar rates.

LOE 5 (animal), good, supportive. Prospective randomized evaluation of monophasic and biphasic shocks at five energy levels (70, 100, 200, 300, and 360J) in each animal, N=13. Duration of VF 15 seconds. Defibrillation success increased as energy increased for both waveforms. Biphasic shocks achieved higher success rates compared to monophasic shocks at 70J and 100J.

LOE 4, good, neutral. OHCA, retrospective cohort, MTE vs BTE, 2000-2004 (MTE 2000-2002, BTE 2002-2004), N=485. More defibrillations required with monophasic defibrillation to achieve ROSC compared to BTE (3.5 vs 2.6, p=0.015). No difference observed in ROSC, survival to discharge, or discharge to home between MTE and BTE.

LOE 2, poor, neutral. IHCA, prospective cohort, monophasic defibrillation categorized into <80J, 81-160J, 161-240J, >241J; 1975-?, N=88. Trend toward less successful defibrillation after first shock (defined as any rhythm other than VF) when first shock energy >240J.

LOE 5 (animal), poor, supportive. Prospective evaluation of defibrillation threshold defined by energy and peak current across a range of animals of varying weight. Increasing animal weight associated with increasing defibrillation threshold as defined by energy.

LOE 4, fair, neutral. OHCA, retrospective, cohort. Biphasic fixed energy (150J) defibrillation. 1996-1998. N=100 Successful termination of VF with 1st shock 86%, within 3 shocks 97%, ROSC 58%. No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

All VF episode defibrillation (at 5 sec) with ≤3 shocks:
Monophasic 179/210 (85%, 95% CI 79-90%) vs Biphasic 128/129 (99%, 95% CI 96-100%); p<0.0001
Mean shocks per patient episode:
Monophasic 2.4±2.5 vs Biphasic 1.2±0.2; p<0.07
No difference in ROSC or survival to hospital discharge.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

LOE 5 (at time of ICD), good, neutral. Lab at time of ICD, prospective, randomized evaluation of monophasic (200J) vs biphasic (200J) transthoracic defibrillation. N=171. Termination with first shock: biphasic defibrillation 81/93 (97.6%) vs monophasic 75/88(85.2%); p=0.005
No comparison of fixed dose to escalating dose defibrillation.

LOE 4, good, supportive. OHCA, retrospective cohort, regression analysis to identify factors associate with successful rhythm conversion. 1991-1994, 436 OHCA with VF, 310 met inclusion for analysis. All treated with dampened sinusoidal waveform 200-200-360J.

Successful defibrillation and transthoracic impedance by shock number:

<table>
<thead>
<tr>
<th>Shock number</th>
<th>Defibrillation Success(5 sec)</th>
<th>TTI (Omega, mean±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79/310 (25.5)</td>
<td>84.5 (22.9)</td>
</tr>
<tr>
<td>2</td>
<td>45/187 (24.1)</td>
<td>89.0 (25.5)</td>
</tr>
<tr>
<td>3</td>
<td>25/111 (22.5)</td>
<td>90.1 (25.4)</td>
</tr>
</tbody>
</table>

Despite increasing TTI, defibrillation success remained fairly constant with escalating energy. Monophasic AED; no comparison to alternate dosing and/or biphasic waveform, thus considered case series for LOE.

Recurrence of VF in 52%; not associated with survival, but no adjusted analysis undertaken.

No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

LOE 4, good, neutral. OHCA, retrospective cohort of patients treated with fixed low-dose biphasic AED. 1996-2007, N=103.

<table>
<thead>
<tr>
<th>Shock number</th>
<th>Shock success rate[5 sec] (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93/101 (92.1%)</td>
</tr>
<tr>
<td>2</td>
<td>58/63 (92.1%)</td>
</tr>
<tr>
<td>3</td>
<td>37/41 (90.2%)</td>
</tr>
<tr>
<td>4</td>
<td>18/21 (85.7%)</td>
</tr>
<tr>
<td>≥ 5</td>
<td>27/31 (87.1%)</td>
</tr>
</tbody>
</table>

Reported no loss in shock efficacy with increasing shock number. This analysis compared shock N+1 to N, but did not evaluate for evidence of statistical trend over range of shocks. Organized rhythm at 60 sec not reported.

No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

LOE 5 (at time of ICD), good, supportive. Lab at time of ICD testing, randomized, prospective trial of monophasic (200J) compared to biphasic (130J or 200J) waveform for transthoracic defibrillation. Duration of VF=19 seconds. N=115.

First shock effectively terminated VF: Monophasic 200J - 61/68 (87.9%, 95% CI 79.9-95.8%); Biphasic 130J – 39/47 (83%, 95% CI 69.2-92.4%); Biphasic 200J – 39/39 (100%, 95% CI 91-100%). No significant difference in post-shock hemodynamic quantities.

LOE 5 (at time of ICD or EP testing), poor, neutral. Lab at time of ICD or EP testing, evaluation of biphasic (150J) waveform for transthoracic defibrillation compared to an historic control. Duration of VF=16 seconds. N=96.

Biphasic 150J successfully terminated VF in 97.4% with first shock and successive fixed dose biphasic shocks effectively terminated VF in remaining two patients.

LOE 2, poor, neutral outcomes BE, opposed outcome C. OHCA, retrospective, cohort of monophasic defibrillation of fixed energy (200J or 360J) or escalating energy (200J to 360J). Higher proportion of patients treated with fixed high energy (n=11, 7%) survived to discharge compared to low energy (n=3, 2%) or escalating (n=2, 4%). No adjustments undertaken for differences in baseline or EMS-response characteristics.

LOE 5 (animal), poor, supportive. Prospective study of defibrillation threshold with increasing duration of VF (5 to 30 sec) in an isolated rabbit heart model. Energy required for defibrillation with either waveform increased with duration of VF. Energy level required for defibrillation lower with biphasic pulse at all time points.

LOE 5 (animal), poor, neutral. Prospective evaluation of biphasic defibrillation up to 360J with adult or pediatric sized patches in a piglet model. N=10
No increase in defibrillation efficacy with higher energy shocks. Only transient myocardial dysfunction observed with higher energy shocks.

LOE 4, good, neutral. OHCA, prospective blinded randomized clinical trial of monophasic (200J -?) vs biphasic defibrillation (200J -?). Larger proportion in organized rhythm at 60 sec following biphasic (N=35, 69%) compared to following monophasic (N=31, 45%).
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

LOE 4, good, supportive. OHCA, observational study of defibrillation efficacy of first and recurrent defibrillation. In the analysis limited to the first defibrillation attempt suggested increased defibrillation efficacy with a third shock at 360J (83%; 10/12) compared to the second shock at 200J (61%; 22/36). This trend was not statistically significant and the implications of escalating dose defibrillation among patients with recurrent ventricular fibrillation were not explored.

Mismatch between AED and manual defibrillator by paramedics in 20 patients; these patients were excluded in evaluation of events related to >1 shock.
Response to first shock -
Termination of VF (5sec): monophasic N=75 (82%) vs biphasic N=65(88%) (P=0.33)
Organized rhythm (not further defined): monophasic N=24 (26%) vs biphasic N=24 (34%) (P=0.30)
Sustained ROSC: monophasic N=18 (20%) vs biphasic N=18 (24%) (P=0.51)
Subsequent shocks –
Parallelled observations for the first shock
No statistically significant differences in survival –
Monophasic: Admitted alive to hospital N=58 (73%), discharged alive N=27 (34%), discharged home N=18 (23%) Biphasic: Admitted alive to hospital N=52 (76%), discharged alive N=28 (41%), discharged home N=16 (24%)
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

Lower defibrillation thresholds with biphasic, successful defibrillation of prolonged VF that failed to terminate with monophasic shocks.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), poor, supportive. Prospective study of defibrillation threshold as defined by energy and peak current in a canine model. N=11.
Peak current defibrillation threshold constant across impedance and voltage changes. Defibrillation threshold as defined by energy increased with increasing impedance.

LOE 5 (at time of ICD), good, neutral. Lab at time of ICD, prospective, randomized evaluation of biphasic (120J) compared to monophasic (200J) transthoracic defibrillation. N=184.
First shock effective at terminating VF in 97/98 (99%) of patients receiving biphasic shock and 80/86 (93%, p=0.05) receiving monophasic.

LOE 4, poor, supportive outcome E, neutral outcome BC. IHCA, prospective, semi-randomized study of low (200 to 299J), intermediate (300-399J), or high energy (400-499J) for first shock in transthoracic defibrillation. Energy level of subsequent shocks determined by provider. Proportion of patients defibrillated after low dose (n=33, 39%) was lower than intermediate (n=36, 58%) and high dose (n=32, 56%). Defibrillation efficacy was the same for second and third shocks regardless of starting energy level.

LOE 4, good, neutral. OHCA, prospective randomized non-blinded (at EMS level) trial of monophasic escalating dose (200- 200- 360J) compared to biphasic escalating dose (120-150-200J) defibrillation. N=538.
Improved termination of VF with biphasic compared to monophasic, underpowered for survival.
Outcomes after one to three shocks:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Biphasic</th>
<th>Monophasic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organized rhythm (5 sec)</td>
<td>90/163 (55.2%)</td>
<td>66/149 (44.3%)</td>
<td>0.05</td>
</tr>
<tr>
<td>ROSC</td>
<td>61/164 (37.2%)</td>
<td>55/149 (36.9%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Survival to discharge</td>
<td>8/163 (4.9%)</td>
<td>6/147 (4.1%)</td>
<td>“NS”</td>
</tr>
</tbody>
</table>

No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

LOE 5 (animal), good, neutral. Prospective randomized non-blinded evaluation of monophasic (200-300-360J) compared to biphasic (150-150-150J) transthoracic defibrillation of a swine model of VF arrest. N=38. Duration of VF arrest 5 minutes.
Equivalent outcomes across treatment groups.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5(animal), good, neutral. Prospective, randomized, non-blinded evaluation of escalating monophasic or biphasic defibrillation (200-300-360J) on VF of 30 and 90s duration in a swine model. N=21.
No difference in outcomes (termination of VF or myocardial function post-shock) between groups.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), good, neutral. Prospective, randomized, non-blinded evaluation of escalating monophasic or biphasic defibrillation (200-300-360J) or fixed energy biphasic (150J) in a swine model. Duration of VF=5. N=68.
Equal proportions achieved ROSC.

LOE 5 (animal), poor, neutral. Retrospective cohort of changes in transthoracic impedance in swine requiring more than 3 shocks for termination of VF of 5 min duration. N=13.
No change in transthoracic impedance with successive shocks.

LOE 5 (animal), good, supportive. Prospective, randomized, evaluation of fixed energy biphasic waveform (150J) compared to escalating energy (200-300-360J) transthoracic defibrillation in a swine model. Duration of VF=1 or 5 minutes. N=35.
Successful defibrillation with ≤ 3 shocks: fixed energy 5/17 (29%, 95% CI 10-56%), escalating energy 15/18 (83%, 95% CI 59-96%). Nine of the animals that could not be defibrillated with fixed energy were successfully defibrillated when treated with escalating energy.

VF terminated with first shock in 39/44 (89%) and 100% within 3 shocks.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

LOE 5 (at time of ICD testing), good, neutral. Lab at time of ICD testing, prospectively randomized and blinded to two energy levels of truncated biphasic transthoracic (115J and 130J) and monophasic damped sine waveform (200J). N=28.
For each transthoracic pulse, the percent defibrillation efficacy was 97%. Less ECG evidence of myocardial dysfunction with biphasic compared to monophasic pulse

LOE 5 (pediatric), fair, neutral. OHCA, retrospective cohort evaluating monophasic shock energy on survival. N=57. No association between shock dose and survival.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), poor, neutral. Prospective, randomized, blinded study of transthoracic defibrillation with monophasic waveform compared to biphasic waveform in a swine model. Duration of VF=8 min. N=34.
ROSC: Biphasic waveform 7/17 (41%), monophasic waveform 1/17 (6%), p=0.04
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series in regards to LOE.

LOE 4, fair, neutral. OHCA, prospective randomized clinical trial of monophasic (both truncated exponential and damped sine) with traditional escalating dose to biphasic fixed dose defibrillation (150J). 1996-1998, four centers, N=246; analysis limited to those presenting in VF (N=115). Underpowered for survival.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Biphasic</th>
<th>Monophasic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination of VF (5sec) within 3 shocks</td>
<td>46/48 (96%)</td>
<td>49/67 (73%)</td>
<td>0.002</td>
</tr>
<tr>
<td>ROSC</td>
<td>39/48 (81%)</td>
<td>35/67 (52%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Survival to Hospital Discharge</td>
<td>16/48 (33%)</td>
<td>18/67 (27%)</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Superior termination of VF and ROSC with biphasic. No difference in survival.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

LOE 1, good, supportive outcome E, neutral outcome ABCD. OHCA, prospective, randomized, blinded, clinical trial of a fixed lower-energy biphasic (150-150-150J) and an escalating higher-energy biphasic (200-300-360J) defibrillation protocol. 2002-2005, 3 sites. N=221.

<table>
<thead>
<tr>
<th>Outcomes clustered on single or multiple shocks</th>
<th>Fixed lower-energy</th>
<th>Escalating higher-energy</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termination VF (5sec)</td>
<td>99/114 (86.8%)</td>
<td>95/107 (88.8)</td>
<td>0.81</td>
</tr>
<tr>
<td>First shock only</td>
<td>(71.2%)</td>
<td>(82.5%)</td>
<td>0.027</td>
</tr>
<tr>
<td>Multiple shocks</td>
<td>(26.7%)</td>
<td>(37.6%)</td>
<td>0.31</td>
</tr>
<tr>
<td>Organized rhythm (60sec)</td>
<td>28/112 (38.4%)</td>
<td>36/98 (36.7%)</td>
<td>0.92</td>
</tr>
<tr>
<td>First shock only</td>
<td>(24.7%)</td>
<td>(36.6%)</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Clinical Outcomes:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Fixed lower-energy</th>
<th>Escalating higher-energy</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSC</td>
<td>58/114 (50.9%)</td>
<td>52/107 (48.6%)</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Survival to discharge | 19/114 (16.7%) | 17/107 (15.9%) | 0.88
---|---|---|---
Median Cerebral Performance Category scores (IQR) | 2 (1-3) | 2(1-2) | 0.72

Superior termination of VF and return of organized rhythm among patients requiring multiple shocks, no difference among patients requiring only one shock. No difference in ROSC, survival, or neurologic recovery.

Successful termination of VF with 120J biphasic in 95/141 (67%, 95% CI: 59%–75%) and 116/141 (82%) within 3 shocks.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (at time of ICD), good, neutral. Lab at time of ICD, prospective, randomized evaluation of escalating biphasic (150-200J) compared to escalating monophasic (150-360J) transthoracic defibrillation after failed internal shocks.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), good, neutral. Prospective randomized trial of escalating dose monophasic (200-300-360J) vs fixed dose biphasic (150-150-150J) defibrillation of two different durations of VF (4 minute and 7 minute) in a pig model. N=20.
No difference in ROSC or survival, less myocardial dysfunction with biphasic.
No comparison of fixed dose to escalating dose biphasic defibrillation.

No difference in ROSC or survival, less myocardial dysfunction with biphasic.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), poor, neutral. Prospective study of energy-reducing electrodes to deliver 50J biphasic shocks to piglet model of varying weights. Termination of VF and ROSC occurred in all animals evaluated.
No comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), good, neutral. Prospective, randomized evaluation of fixed-energy low-capacitance biphasic (150J or 200J) and high-capacitance biphasic (200J or 360J) defibrillation in a pig model. Duration VF = 7 min. N=20.
Low-capacitance biphasic waveform resulted in termination of VF and survival in all samples and was associated with less myocardial dysfunction.

LOE 5 (animal), good, supportive. Prospective randomized factorial design testing single shock vs 3-shock protocol and fixed dose biphasic (150-150-150J) vs escalating dose biphasic (200-300-360J) defibrillation in a pig model. N=44.
Single shock protocol increased survival from 64% to 100% (95% CI of difference 19% to 58%, p=0.004).
Between-group comparisons of 3-shock protocol demonstrated better survival with escalating dose biphasic defibrillation (91% vs 36%, p=0.024).
No comparison of fixed dose to escalating dose biphasic defibrillation.

Return of organized rhythm after first shock was higher with biphasic (35/51, 69%) than with monophasic (31/69, 45%) (RR 1.53, 95% CI 1.11-2.10).

No formal evaluation of multiple shocks.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered a case series in regards to LOE.

LOE 5 (animal), poor, neutral. Prospective evaluation of monophasic defibrillation compared to two waveforms of biphasic defibrillation to determine defibrillation thresholds for these waveforms in a dog model. Duration of VF 15 sec and 5 min. Lower defibrillation thresholds observed for biphasic waveforms. The difference in defibrillation thresholds was larger with longer duration of VF as the thresholds remained statistically unchanged for biphasic waveforms, but increased for monophasic waveforms.

LOE 5 (animal), poor, supportive. Prospective study of biphasic defibrillation thresholds for electrically induced and spontaneous VF secondary to ischemia in dog and pig models. Ischemia induced VF has higher defibrillation thresholds than electrically induced VF.

LOE 5 (animal), good, supportive. Prospective randomized comparison of different waveform and energy protocols in a swine model. Biphasic energy protocols were as follows: fixed low dose (150-150-150J), escalating high dose (200-300-360J), escalating low dose (120-150-200J) and escalating dose ("low"-"high"-"high").

No difference in shock efficacy noted for low impedance. With higher impedance, escalating high dose more effective at terminating VF within 3 shocks (OR 3.6, 95% CI 2.3-5.4 when compared to next best of "low"-"high"-"high" whose delivered energy was 184J in the low setting).

LOE 4, good, neutral. Observational cohort of out-of-hospital cardiac arrest requiring multiple shocks. In patients for whom 200J shock failed to terminate VF (n=61), 40% (N=2, 95% CI 5-85%) were terminated with a second shock of 200J compared to 70% (N=39, 95% CI 56-81%) converted with a second shock of 300J.

LOE 2, fair, supportive. OHCA, prospective pseudo-randomized (site) non-blinded evaluation of fixed dose biphasic (150-150-150J) vs escalating dose biphasic (100-150-200J) defibrillation. 2002-2003, N=78 (40 fixed dose vs 38 escalating dose) with 224 episodes of VF (107 fixed dose vs 117 escalating dose). Analysis post-exclusion of energy violations (12 fixed dose and 39 escalating dose).

Termination VF (5sec):

<table>
<thead>
<tr>
<th>Shock</th>
<th>Escalating dose (N=79)</th>
<th>Fixed dose (N=95)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46 (58%)</td>
<td>61 (64%)</td>
<td>"NS"</td>
</tr>
<tr>
<td>2</td>
<td>65 (82%)</td>
<td>74 (78%)</td>
<td>"NS"</td>
</tr>
<tr>
<td>3</td>
<td>73 (92%)</td>
<td>79 (83%)</td>
<td>0.029</td>
</tr>
</tbody>
</table>

First shock effectively terminated VF in 7/10 (70%) with termination of 42/51 (82%) total episodes of VF.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

Survival reported as comparable to that observed in previous studies with escalating higher dose monophasic defibrillation; comparison group not defined.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

Although refibrillation occurred frequently (61%), it was not associated with ROSC, survival to discharge, or neurologically intact survival.
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

No association observed between patient weight and successful defibrillation (defined as 5 sec post-shock rhythm non-shockable).
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

No association between transthoracic impedance and successful defibrillation (defined as non-shockable rhythm at 5 sec).
No comparison of fixed dose to escalating dose biphasic defibrillation, thus considered case series for LOE.

LOE 5 (animal), good, neutral. Prospective randomized non-blinded evaluation of 3 levels of defibrillation energy (2, 10, or 20J) on post-defibrillation myocardial function. Duration of VF = 10 minutes. N=15
All animals had ROSC with single shock. Increased energy associated with decreased myocardial function post-shock.
No evaluation of multiple shocks or comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), good, neutral. Prospective randomized non-blinded evaluation of myocardial ischemia on post-shock dysfunction with varying energy levels (0.4 and 0.7J) in a isolated rat heart model. Duration VF = 10 to 15 min. N=50.
Post-shock myocardial dysfunction only observed in ischemic rat heart model.
No evaluation of multiple shocks or comparison of fixed dose to escalating dose biphasic defibrillation.

LOE 5 (animal), poor, neutral. Prospective evaluation of transthoracic defibrillation thresholds with monophasic or biphasic waveform in a swine model. Duration of VF=10 sec or 1 minute. N=12
Lower defibrillation thresholds with biphasic waveform. No difference in thresholds within waveforms for different durations of VF arrest.

LOE 5 (resistive load model), poor, supportive. Prospective study of five different defibrillator electrical properties when discharged into resistive loads of 50, 90, and 130 Omega. Current amplitude lower than expected when discharged into larger resistive loads despite impedance compensating defibrillators.

LOE 5 (animal), good, neutral. Prospective randomized non-blinded pig model evaluation of monophasic versus biphasic shocks on normal hearts and hearts with halothane induced LV dysfunction. Biphasic superior to monophasic in termination of VF at 5 sec.
No comparison of fixed dose to escalating dose biphasic defibrillation.
 LOE 5 (animal), fair, supportive. Prospective evaluation of biphasic defibrillation success (termination of VF at 5sec) and weight in a pig model. N=22.
 For low energy shocks, success of defibrillation was associated with weight, but all shocks higher energy shocks (>150J) terminated VF regardless of weight.

 LOE 5 (animal), poor, supportive. Prospective randomized evaluation comparing biphasic and triphasic defibrillation pulses of very low energy (range 50-100-150J) in a pig model. N=14
 Increasing shock efficacy with increasing energy. Shocks provided in random order, thus unclear impact of order of energy in series. Triphasic shocks more effective throughout energies tested.