ICare-ACS (Improving Care Processes for Patients With Suspected Acute Coronary Syndrome)
A Study of Cross-System Implementation of a National Clinical Pathway

BACKGROUND: Efforts to safely reduce length of stay for emergency department patients with symptoms suggestive of acute coronary syndrome (ACS) have had mixed success. Few system-wide efforts affecting multiple hospital emergency departments have ever been evaluated. We evaluated the effectiveness of a nationwide implementation of clinical pathways for potential ACS in disparate hospitals.

METHODS: This was a multicenter pragmatic stepped-wedge before-and-after trial in 7 New Zealand acute care hospitals with 31,332 patients investigated for suspected ACS with serial troponin measurements. The implementation was a clinical pathway for the assessment of patients with suspected ACS that included a clinical pathway document in paper or electronic format, structured risk stratification, specified time points for electrocardiographic and serial troponin testing within 3 hours of arrival, and directions for combining risk stratification and electrocardiographic and troponin testing in an accelerated diagnostic protocol. Implementation was monitored for >4 months and compared with usual care over the preceding 6 months. The main outcome measure was the odds of discharge within 6 hours of presentation.

RESULTS: There were 11,529 participants in the preimplementation phase (range, 284–3465) and 19,803 in the postimplementation phase (range, 395–5039). Overall, the mean 6-hour discharge rate increased from 8.3% (range, 2.7%–37.7%) to 18.4% (6.8%–43.8%). The odds of being discharged within 6 hours increased after clinical pathway implementation. The odds ratio was 2.4 (95% confidence interval, 2.3–2.6). In patients without ACS, the median length of hospital stays decreased by 2.9 hours (95% confidence interval, 2.4–3.4). For patients discharged within 6 hours, there was no change in 30-day major adverse cardiac event rates (0.52% versus 0.44%; P=0.96). In these patients, no adverse event occurred when clinical pathways were correctly followed.

CONCLUSIONS: Implementation of clinical pathways for suspected ACS reduced the length of stay and increased the proportions of patients safely discharged within 6 hours.

The full author list is available on page XX.

*Drs Than and Pickering contributed equally.

Correspondence to: Martin Than, MBBS, Emergency Department, Christchurch Public Hospital, 1 Riccarton Avenue, Private Bag 4710, Christchurch 8140, New Zealand. E-mail martinthan@xtra.co.nz

Sources of Funding, see page XXX

Key Words: acute coronary syndrome ■ clinical protocols ■ critical pathways ■ emergency service, hospital ■ troponin

© 2017 American Heart Association, Inc.
Clinical Perspective

What Is New?

- This is the first study assessing the impact of clinical pathways for emergency department evaluation of possible acute coronary syndrome that is part of a nationwide implementation.
- Participating hospitals used either contemporary or high-sensitivity troponin assays and accelerated diagnostic protocols using either the TIMI (Thrombolysis in Myocardial Infarction) score or the Emergency Department Assessment of Chest pain Score. Increased rates of safe early discharge occurred regardless of the clinical troponin or risk assessment tool used.
- Implementation of clinical pathways more than doubled the odds of 6-hour discharge without changing the 30-day major adverse cardiac event rate.

What Are the Clinical Implications?

- The emergency department evaluation of patients with acute coronary syndrome is common and uses a lot of health resources. Clinical pathways safely decrease length of stay, allowing health resource to be used for other patients.
- Pathways can be successfully implemented across a variety of hospital settings regardless of the troponin assay in use.

Emergency department (ED) clinicians are cautious of discharging patients with possible acute coronary syndrome (ACS). The observation and investigation of such patients are major health-system burdens. Clinical guidelines and clinical pathways are increasingly being used in these situations in which clinical uncertainty may lead to inappropriate or unnecessary investigation.

Clinical guidelines “are statements that include recommendations intended to optimize patient care”; they are based on “evidence and an assessment of the benefits and harms of alternative care options.” Clinical pathways are the translation of clinical practice guidelines to provide a plan of care suitable for a local health system and its structure. They take into account factors such as resource availability and consensus of local subject matter experts. Clinical pathways are structured, multidisciplinary inventory of actions that meet any of the following criteria: (1) are used to channel the translation of guidelines or evidence into local practices, (2) detail the steps in a course of treatment or care, (3) have a time frame or criteria-based progression (ie, steps are taken if or when designated criteria are met), or (4) aim to standardize care for a specific clinical problem or outcome. Clinical pathways have been shown to reduce complications, decrease length of stay, and reduce hospital costs.

In the context of possible ACS, clinical pathways can provide prompts for important alternative diagnoses (thromboembolism, aortic dissection, etc) and facilitate urgent treatment when indicated (eg, in ST-segment–elevation myocardial infarction). In addition, they can provide direction for combining risk stratification and early blood sampling for quick, safe hospital discharge for low-risk patients. This component of the clinical pathway has been referred to as an accelerated diagnostic protocol (ADP).

An ADP combines troponin results, structured scoring of clinical variables, and the electrocardiographic interpretation to identify patients at low risk of acute myocardial infarction. It enables faster diagnostic decisions in these patients by using early blood-sampling time points to “accelerate” progress to the next step in clinical management (eg, admission, additional testing, discharge) as would otherwise have occurred with a longer serial troponin testing protocol.

Prospective observational trials of ADPs have identified approximately one third of patients with ED-suspected ACS as at low risk (<1%) of major adverse cardiac events (MACEs). Randomized implementation trials of clinical pathways incorporating ADPs at Christchurch Hospital (Christchurch, NZ) demonstrated that early safe discharge rates could be improved (from 11.0% to 32.3%). Immediate and successful implementation of clinical pathways incorporating an ADP at Christchurch Hospital prompted the New Zealand Ministry of Health to mandate that all hospitals implement similar clinical pathways for possible ACS.

We evaluated the safety and effectiveness of adopting clinical pathways for possible ACS in 7 diverse New Zealand hospitals. We hypothesized that introducing clinical pathways would increase the proportion of patients safely discharged home within 6 hours of presentation to an ED.

METHODS

The data will not be made available to other researchers for purposes of reproducing the results or replicating the procedure because there is no ethics body approval to share the patient-level data. Analytical methods and materials are already shared in this article.

Participants

We used a multicenter, pragmatic, stepped-wedge before-and-after implementation study of all adults presenting to 7 EDs with symptoms of suspected ACS, where the attending clinicians ordered serial cardiac troponin measurements to investigate for possible acute myocardial infarction. Adult patients (age ≥18 years) were included if they had at least 2 troponin measurements in hospital within 24 hours of
presentation (the first in the ED). Only the first presentation for each patient was included in the analysis.

Setting
The study was conducted in a convenience sample of 7 acute care hospitals selected because of varied size and population demographics (Table I in the online-only Data Supplement). Physicians ranged from interns to specialists in emergency, cardiology, and internal medicine. Hospitals were included if they intended to implement a clinical pathway by September 1, 2015, and were excluded if they had a preexisting clinical pathway for possible ACS. There were no restrictions on which troponin assays could be used. All sites used the >99th percentile as the threshold to report a troponin result as positive. Four hospitals used Roche Diagnostics high-sensitivity troponin T assay (also known as the fifth-generation troponin T assay; 99th percentile, 26 ng/L); 1 hospital used the Abbott ARCHITECT high-sensitivity troponin I assay (99th percentile, 26 ng/L); and 2 hospitals used a Siemens Ultra troponin I assay (99th percentile, 40 ng/L).

Design
The intervention at each hospital was a clinical pathway incorporating an ADP for the assessment of patients with suspected ACS in the ED. The study design was a pragmatic stepped-wedge before-and-after implementation trial (Figure 1) of clinical pathways. It was pragmatic because it did not specify the components of the clinical pathway but rather required stakeholder participation to define the intervention at each site. This allowed autonomy and adaptation of the clinical pathway to integrate into local real-life care. A stepped-wedge design was implemented with each site beginning the intervention one after another until all sites had adopted the intervention. A stepped-wedge design was chosen because a sequential rollout allowed later hospitals to benefit from the earlier experiences in how to manage practice changes and because this allowed rollout over a broader calendar period to help mitigate any potential seasonal enrollment or outcome effects. After the intervention implementation, all sites continued to use the implemented clinical pathways until the last hospital had at least 4 months of intervention exposure. One-month intervals between individual hospital start dates were planned, but sites could adjust start dates if necessitated by local service delivery issues. We used a recognized model for improvement called Plan-Do-Study-Act designed by the Institute of Health Improvement. This was used to apply lessons learned from the implementation process at 1 hospital to other hospitals.

Control Phase (Usual Care Before Implementation)
The control period covered 6 months of usual care before the clinical pathway implementation date (Figure 1). The control arm involved the preexisting local standard practice for the assessment of patients with possible ACS. This included recording an ECG, vital signs, patient history, examination, and serial troponin measurement.

Intervention Phase
In early 2014, the New Zealand Ministry of Health instructed all hospitals to implement a clinical pathway, incorporating an ADP, for the assessment of patients with possible ACS. Pathways were required to have 4 core components (Table 1) based on the Society of Cardiovascular Patient Care Chest Pain Accreditation tool (cycle IV) (http://www.sscp.org/services/cpc.aspx) and adopted by the American College of Cardiology and the American Heart Association Mission: Lifeline program. The tool is not prescriptive beyond requiring implementation of each core component but focuses on engaging hospitals in a cross-system, multidisciplinary, all-inclusive improvement process. The intervention involved integrating core components and adapting existing practice into a clinical pathway. The exact format of each pathway component and the ADP used were decided at each hospital (Table 2). Participating sites were presented with evidence on published ADPs and chose which ADP they would use. ADPs required troponin measurement on arrival and then at 1, 2, or 3 hours to determine eligibility for early discharge. ADPs that were considered were the 2-Hour Accelerated Diagnostic Protocol to Assess Patients With Chest Pain Symptoms Using Contemporary Troponins as the Only Biomarker (ADAPT)19,24; Emergency Department Assessment of Chest Pain Score (EDACS)15,17,18; History, ECG, Age, Risk Factors, and Troponin (HEART)11,19; the High Sensitivity Cardiac Troponin T Assay for Rapid Rule-Out of AMI (TRAPID-AMI)20,21; and the new Vancouver Chest Pain Rule.13

Before implementation, there were meetings involving the first author and representatives from each stakeholder group (including but not limited to the ED, cardiology, general medicine physicians and nurses, hospital management, diagnostic laboratory directors, cardiac technicians, and hospital data analysts). The Kotter 8-step model for change management was used by stakeholders to plan and facilitate implementation at each site. Clinical and management leaders were identified throughout local health systems and remained in

Table 1. Mandatory Components of Clinical Pathways

- A written clinical pathway document in paper or electronic format for the assessment of possible acute coronary syndrome in the emergency department.
- A structured and reproducible process of acute coronary syndrome risk stratification (eg, a clinical score/algorithm).
- Recommended sampling time points for performing cardiac troponin and electrocardiographic testing (eg, on arrival and at other specified time points).
- Guidance about how to combine clinical risk stratification and electrocardiographic and troponin testing with structured patient management (including incorporation of an accelerated diagnostic protocol).
Participants were identified from the electronic laboratory database at each site, and their National Health Index identifier was used to identify relevant health records for each participant. The National Health Index identifier is a unique identifier of every individual who used any health service in New Zealand. It links the admissions, hospital blood measurements, and hospital or community mortality events of every person presenting to a New Zealand hospital. Participant length of ED stay, readmissions, MACEs, and deaths within 30 days of the index presentation were extracted from hospital data warehouses and from the New Zealand national death registry. We conducted case reviews that included pathway compliance for patients who were discharged within 6 hours if they were coded as having a MACE or death within 30 days of the index admission. This was done by the lead clinician at each site and the lead investigator (M.T.) by contacting the local hospital clinicians and, if possible, the patient’s primary care doctor or the patient to determine the exact MACE.

Statistical Analysis
The primary outcome between the control and intervention arms was compared with a Cochran-Mantel-Haenszel test for stratified data and expressed as an odds ratio. This test treated each site independently. We quantified heterogeneity with the I^2 statistic, which reflects the proportion of variation in point estimates among studies beyond that expected by chance. Comparisons of length of hospital stay were by the Mann-Whitney test. All statistical calculations were performed in R 3.2.4. Analysis was by intention to treat. The study received ethics approval from the Southern Health and Disabilities Ethics Committee (14/STH/102, regional institutional review board). Individual informed consent was not required for this planned change of standard care.

RESULTS
Nine sites planned to participate; 2 withdrew before data collection because of an inability to implement a communication throughout the study. This model was used in all participating sites except for 1 hospital (hospital 7) where there was a locally organized change management process.

Outcomes
Primary Outcome
The primary outcome was the proportion of patients discharged home within 6 hours of ED arrival.

Secondary Outcomes
Discharge safety was assessed by determining the presence of any MACEs during 30 days. MACEs were identified through coding and were defined as death, cardiac arrest, (International Classification of Diseases, 10th Revision [ICD-10] codes I46.0, 46.1, 46.9), emergency revascularization procedure, cardiogenic shock (R57.0), ventricular arrhythmia (I47.2), ventricular fibrillation (I49.0), high-degree atrioventricular block needing intervention (I44.2), or acute myocardial infarction (I21.0, 21.1, 21.2, 21.3, 21.4, 21.9, 22.0, 22.1, 22.8, 22.9). Additional secondary outcomes included the proportion of patients discharged within 6 hours who had a MACE within 30 days and length of stay in hospital of patients without ACS. To assess the accuracy of this methodology to identify MACES, we conducted an internal audit of 1192 patients from a separate local research cohort in whom there was robust blinded adjudication of MACE outcomes. We measured the proportion of agreement between adjudicated and ICD-10–coded outcomes and further assessed for bias (McNemar test) and interobserver agreement (k statistic).

Data Collection
The data collection process was preplanned and developed before the study began. All study data were recorded electronically as per routine care. Clinicians responsible for patient care were not familiarized with the data collection or analysis methods. Participants were identified from the electronic laboratory database at each site, and their National Health Index identifier was used to identify relevant health records for each participant. The National Health Index identifier is a unique identifier of every individual who used any health service in New Zealand. It links the admissions, hospital blood measurements, and hospital or community mortality events of every person presenting to a New Zealand hospital. Participant length of ED stay, readmissions, MACEs, and deaths within 30 days of the index presentation were extracted from hospital data warehouses and from the New Zealand national death registry. We conducted case reviews that included pathway compliance for patients who were discharged within 6 hours if they were coded as having a MACE or death within 30 days of the index admission. This was done by the lead clinician at each site and the lead investigator (M.T.) by contacting the local hospital clinicians and, if possible, the patient’s primary care doctor or the patient to determine the exact MACE.

Statistical Analysis
The primary outcome between the control and intervention arms was compared with a Cochran-Mantel-Haenszel test for stratified data and expressed as an odds ratio. This test treated each site independently. We quantified heterogeneity with the I^2 statistic, which reflects the proportion of variation in point estimates among studies beyond that expected by chance. Comparisons of length of hospital stay were by the Mann-Whitney test. All statistical calculations were performed in R 3.2.4. Analysis was by intention to treat. The study received ethics approval from the Southern Health and Disabilities Ethics Committee (14/STH/102, regional institutional review board). Individual informed consent was not required for this planned change of standard care.

RESULTS
Nine sites planned to participate; 2 withdrew before data collection because of an inability to implement a
clinical pathway within the required time frame, leaving a total of 7 enrolling sites. The first site implemented its clinical pathway on October 7, 2014, and the last on August 1, 2015. There were small deviations from the planned 1-month interval startup process resulting from local clinical, safety, and logistical issues (Figure 1 in the online-only Data Supplement).

Each ADP classified patients as not low risk and not eligible for early discharge if there was a positive troponin result or an ischemic ECG or if the risk assessment score exceeded a prespecified threshold. Two sites chose a modified Thrombolysis in Myocardial Infarction score (2-Hour Accelerated Diagnostic Protocol to Assess Patients With Chest Pain Symptoms Using Contemporary Troponins as the Only Biomarker) and 5 chose the Emergency Department Assessment of Chest Pain Score (Table 2; the online-only Data Supplement gives the completed pathways).

Across all hospitals, in the 6 months before implementation of the clinical pathway, 11,529 patients had 2 troponins measured within 24 hours (1922 per month). Of these, 46.5% were female (range, 42.3%–49.2%), and the mean age was 65.1 years (SD, 16.4 years; Table 3). After implementation (mean study duration, 10.6 months; range, 5–15.8 months), 19,803 patients had 2 troponins measurements within 24 hours (1886 per month). Of these, 45.6% were female (range, 41.8%–47.9%), and the mean age was 65.8 years (SD, 16.1 years; Table 3). No change in 30-day MACE rates between before and after implementation was observed (13.6% versus 12.9% respectively; P=0.29).

Primary Outcome

The proportion of study patients discharged within 6 hours increased in every hospital (Table 4), with an overall change from 8.3% to 18.4%. The absolute increase at individual hospitals ranged from 1.7% to 28.4%. The odds of being discharged within 6 hours more than doubled after the introduction of the framework (odds ratio, 2.4; 95% confidence interval, 2.3–2.6; P<0.001; Figure 2). There was high heterogeneity between the odds ratios of sites (I²=97%).

Secondary Outcomes

Hospital Length of Stay

The hospital length of stay for patients without ACS was shorter after intervention (P<0.001; Figure 3), with a median reduction in hospital length of stay of 2.9 hours (95% confidence interval, 2.4–3.4). There was a small decrease in length of hospital stay for all patients at each hospital (Table 5).

Safety

Intention-to-treat analysis found no differences in 30-day MACE rates before and after intervention between the cohorts of patients discharged within 6 hours (P=0.96). In the control cohort, 5 of 962 (0.52%) discharged within 6 hours had a 30-day MACE (1 non–ST-segment–elevation myocardial infarction and 4 all-cause deaths unrelated to ACS; Table 2) compared with 16 of 3632 patients (0.44%) in the intervention cohort (8 non–ST-segment–elevation myocardial infarctions, 1 ST-segment–elevation myocardial infarction, 1 stable ventricular tachycardia, 1 asystolic pause requiring permanent pacemaker insertion, and 5 all-cause deaths). Case review revealed that 14 of the 16 postintervention discharges involved a deviation from the local clinical pathway (12 had a positive troponin and 2 had risk scores identifying them as not low risk). The remaining 2 cases were incorrectly coded as readmission non–ST-segment–elevation myocardial infarction (both had returned the next day as planned after clinical pathway guidance for stress testing, one of which was positive; Table II in the online-only Data Supplement).

Outcome Assessment Methodology Audit

In a cohort of 1192 patients investigated for possible ACS, there was 98% agreement between adjudicated MACEs and ICD-10–coded MACEs. The interrater agreement was very high (κ=0.91; 95% confidence interval, 0.85–0.97), and there was no evidence of any systematic bias (P=0.19).

Table 3. Demographics and 30-Day MACE Prevalence

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Before Implementation</th>
<th>After Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>n (%), n (%)</td>
</tr>
<tr>
<td>1</td>
<td>1495</td>
<td>677 (45.3)</td>
</tr>
<tr>
<td>2</td>
<td>844</td>
<td>378 (44.8)</td>
</tr>
<tr>
<td>3</td>
<td>2820</td>
<td>1366 (48.4)</td>
</tr>
<tr>
<td>4</td>
<td>1266</td>
<td>555 (43.8)</td>
</tr>
<tr>
<td>5</td>
<td>284</td>
<td>120 (42.3)</td>
</tr>
<tr>
<td>6</td>
<td>1355</td>
<td>667 (49.2)</td>
</tr>
<tr>
<td>7</td>
<td>3465</td>
<td>1597 (46.1)</td>
</tr>
</tbody>
</table>

MACE indicates major adverse cardiac event.
DISCUSSION

Principal Findings
This study demonstrates that a clinical pathway incorporating an ADP for possible ACS can be safely implemented in diverse EDs over a brief time interval. This suggests that the adoption of similar clinical pathways may be possible in other countries. After implementation at each hospital, a greater proportion of patients were discharged within 6 hours without compromising safety. Furthermore, the reduction in length of stay of the intervention cohort could equate to thousands of hours of clinician time and improved bed availability and could potentially make resources available for other patients.

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Length of Stay, h</th>
<th>MACE in 30 d, n</th>
<th>No MACE in 30 d, n</th>
<th>Proportion <6 h, %</th>
<th>MACE in 30 d, n</th>
<th>No MACE in 30 d, n</th>
<th>Proportion <6 h, %</th>
<th>Absolute Difference (95% CI), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>6</td>
<td>176</td>
<td>1230</td>
<td>759</td>
<td>3518</td>
<td>9.1</td>
<td>(7.5 to 10.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>1</td>
<td>88</td>
<td>6.0</td>
<td>5</td>
<td>754</td>
<td>15.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>>6</td>
<td>92</td>
<td>434</td>
<td>186</td>
<td>791</td>
<td>6.1</td>
<td>(2.0 to 10.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>4</td>
<td>314</td>
<td>37.7</td>
<td>4</td>
<td>757</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>>6</td>
<td>417</td>
<td>2325</td>
<td>649</td>
<td>4103</td>
<td>9.1</td>
<td>(8.0 to 10.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>0</td>
<td>78</td>
<td>2.7</td>
<td>4</td>
<td>637</td>
<td>11.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>>6</td>
<td>179</td>
<td>962</td>
<td>288</td>
<td>1143</td>
<td>28.4</td>
<td>(25.8 to 31.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>0</td>
<td>125</td>
<td>9.9</td>
<td>2</td>
<td>887</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>>6</td>
<td>39</td>
<td>142</td>
<td>53</td>
<td>188</td>
<td>2.7</td>
<td>(−5.0 to 10.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>0</td>
<td>103</td>
<td>36.3</td>
<td>1</td>
<td>153</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>>6</td>
<td>144</td>
<td>1138</td>
<td>164</td>
<td>1399</td>
<td>7.3</td>
<td>(5.3 to 9.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>0</td>
<td>73</td>
<td>5.4</td>
<td>0</td>
<td>227</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>>6</td>
<td>511</td>
<td>2778</td>
<td>447</td>
<td>2481</td>
<td>1.7</td>
<td>(0.4 to 2.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>0</td>
<td>176</td>
<td>5.1</td>
<td>0</td>
<td>207</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>>6</td>
<td>1558</td>
<td>9009</td>
<td>2546</td>
<td>13623</td>
<td>10.1</td>
<td>(9.3 to 10.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤6</td>
<td>5</td>
<td>957</td>
<td>8.3</td>
<td>16</td>
<td>3622</td>
<td>18.4</td>
<td></td>
</tr>
</tbody>
</table>

CI indicates confidence interval; and MACE, major adverse cardiac event.

Figure 2. Forest plot of the odds ratio (OR) for early discharge for each hospital.
An OR >1 indicates increased odds of being discharged within 6 hours. CI indicates confidence interval.
The strengths of this study include its reach across a country with hospitals of varying sizes and service provisions, which collectively have a total annual ED attendance of 369,000, representing approximately a third of all New Zealand ED attendances. In addition, despite large variations in rates of early discharge between hospitals before implementation, each hospital showed increased rates of early discharge after implementation. The prospective stepped-wedge design reduced potential bias from seasonal variations.

Another strength was that a specific troponin assay or risk assessment process was not specified. This increases the probability of duplicating these results in different geographic locations. Three different cardiac troponin assays were used, and it does not appear that the assay affected the outcome. Of the 4 hospitals that used the high-sensitivity troponin T assay (hospitals 1, 2, 4, and 5), the absolute increase in percentage discharged early ranged from the low end (2.7%) to the highest percentage (28.4%). This suggests that other factors such as the ADP and clinical pathway implementation process may also influence the final effectiveness.

The principal study weaknesses are that hospitals did not record which patients were being investigated for ACS, so serial troponin measurements were used to capture the population of interest and ICD-10 coding to quantify clinical outcomes. Reassuringly, an audit found that adjudicated diagnosis of MACEs corresponded to the ICD-10 codes used to define MACEs in this trial in 98% of cases. Second, there were insufficient hospitals in the study to identify factors associated with greater or less improvement. The dates of implementation were purposely varied to mitigate for seasonal variations in ED presentations and disease prevalence. Nevertheless, some of the differences between hospitals may be the result of differences in when the implementation began. For example, 1 hospital (hospital 3) began implementation a week before Christmas, a time when many staff members take summer vacations in New Zealand. This could have hampered implementation; however, this hospital still had a good change results. All hospitals with 1 exception (hospital 7) designed and implemented their local pathway only after a formal planning meeting of all local stakeholders led by the first author that used the Kotter change management tool. That hospital demonstrated the smallest increase in early discharge rate. Although we acknowledge that this is anecdotal, we believe that the efficacy and uptake of the pathway depend crucially on early and broad engagement of all stakeholders, clinician engagement with prior evidence, and the appointment of local leaders to monitor and foster implementation. Third, we were unable to ascertain whether there were any deaths or follow-up admissions to hospitals outside of New Zealand. This is likely to be a very small number and is unlikely to affect the overall study conclusions. Finally, a formal economic analysis was not done. It is hard to estimate a precise financial impact of implementation; however, a median reduction of 2.9 hours in length of stay for patients without ACS should be beneficial to reducing the common and important issue of ED overcrowding.

We note that after implementation in 4 hospitals there was an apparent decrease in the number of patients tested, and in 3 hospitals there was an increase in the
number of patients tested (Table III in the online-only Data Supplement).

New Zealand is the first country to implement clinical pathways for hospital assessment of possible ACS as a function of national policy. There is limited existing national health system–level research in this field. One large randomized stepped-wedge intervention study of the History, ECG, Age, Risk Factors, and Troponin score in 9 hospitals in the Netherlands involving 3666 patients demonstrated that the pathway was noninferior to usual care for safety and was cost-effective, but it demonstrated no improvement in early discharge because of a 41% nonadherence to the score recommendation. In Australia, an ADP similar to that in hospitals 3 and 6 has been implemented and assessed in the state of Queensland. In that study, there was a reduction in mean hospital and mean ED lengths of stay and an absolute reduction in hospital admission rate of 13.3%.

Meaning of the Study
Regardless of hospital setting and circumstances, introducing clinical pathways for patients with possible ACS led to a safe increase in early discharge rates and reduced length of stay in hospital for patients without ACS. This has the potential to reduce the use of hospital resources and provides rapid reassurance to many patients who presented to EDs with symptoms consistent with ACS. Currently, most ED patients in developed countries with symptoms of suspected ACS are discharged without an ACS-related diagnosis. Investigating these individuals places a significant burden on acute care hospital services. Our findings suggest that ≈6600 more patients in New Zealand could be discharged home within 6 hours after national implementation of these pathways, a 10.1% absolute increase. This finding suggests that globally many millions of patients with chest pain could be discharged early, thus releasing health resources for the care of other patients.

The 6-hour timeframe was used as our primary outcome because in New Zealand there is a national health target that requires 95% of patients to be admitted or discharged from the ED within 6 hours. This target was put in place to address overcrowding and to improve patient flow in hospitals, in keeping with similar initiatives in Australia and the United Kingdom. We estimate that, after implementation of clinical pathways across all the acute care hospitals in New Zealand, patients would spend a total of ≈165,000 hours less in hospital per annum. Lastly, there are unmeasured emotional, social, and economic benefits because patients receive quick reassurance that they are not having a heart attack and can return earlier to their families and normal life activities, including work.

Conclusions
The implementation of hospital clinical pathways to assess patients with suspected ACS safely reduced length of hospital stay while increasing the rate of safe discharge within 6 hours.

Sources of Funding
Funding was provided by a grant from the Health Research Council of New Zealand (HRC 14/711).

Disclosures
Dr Than reports grants and personal fees from Abbott and Alere, grants from Beckman, and personal fees from Roche. Dr Cullen reports honorarium from Alere, Abbott Diagnostics, Beckman Coulter, and Siemens. Dr Jaffe reports personal fees from Beckman–Coulter, Alere, ET Healthcare, Abbott, Sphingotec, Becton Dickinson, Siemens, and Novartis. Dr Parsonage reports grants from Abbott, Roche, and Beckman. Dr Peacock reports grants from Abbott, Roche, Beckman, and Siemens. Dr Troughton reports grants from Roche. The other authors report no conflicts.

Authors
Martin P. Than, MBBS; John W. Pickering, PhD; Jeremy M. Dryden, MBChB; Sally J. Lord, MBBS; S. Andrew Aitken, MBChB; Sally J. Aldous, MBBS; Kate E. Allan, MBChB; Michael W. Ardagh, MBChB; John W.N. Bonning, MBChB; Rosie Calender, MBChB; Laura R.E. Chapman, MBBS; Jonathan P. Christiansen, MBChB; Andre P.J. Cronhout, MBChB; Louise Cullen, MBBS; Joanne M. Deely, PhD; Gerard P. Devlin, MBChB; Katherine A. Ferrier, MBChB; Christopher M. Florkowski, MBBS; Christopher M.A. Frampton, PhD; Peter M. George, MBBS; Gregory J. Hamilton, PhD; Allan S. Jaffe, MD; Andrew J. Kerr, MBChB; G. Luke Larkin, MD; Richard M. Makower, MBBS; Timothy J.E. Matthews, MBChB; William A. Parsonage, MBBS; W. Frank Peacock, MD; Bradley F. Peckler, MD; Nicholaas C. van Pelt, MBChB; Louise Poynton, MBChB; A. Mark Richards, MBChB, PhD, DSc; Anthony G. Scott, MBChB; Mark B. Simmonds, MBChB; David Smyth, MBBS; Oliver P. Thomas, MBBS; Andrew C.Y. To, MBChB; Stephen A. Du Toit, MBChB; Richard W. Troughton, MBChB, PhD; Kim M. Yates, MBChB; on behalf of the ICare-ACS Implementation Group.

Affiliations
Emergency Department (M.P.T., J.W.P., M.W.A., R.C., J.M.D., O.P.T., J.M.D.) and Department of Cardiology (S.J.A., D.S., R.W.T.), Christchurch Hospital, New Zealand. Department of Medicine, Christchurch Heart Institute, University of Otago, New Zealand (J.W.P., C.M.A.F., P.M.G., A.M.R., R.W.T.). Department of Cardiology (N.C.V.P.), Middlemore Hospital, Auckland, New Zealand. Department of Epidemiology and Medical Statistics, University of Notre Dame, Sydney Campus, New South Wales, Australia (S.J.L.). National Health and Medical Research Council Clinical Trials Centre, University
REFERENCES

ICare-ACS (Improving Care Processes for Patients With Suspected Acute Coronary Syndrome): A Study of Cross-System Implementation of a National Clinical Pathway
on behalf of the ICare-ACS Implementation Group

Circulation. published online November 14, 2017;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2017/11/10/CIRCULATIONAHA.117.031984

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2017/11/10/CIRCULATIONAHA.117.031984.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Improving Care processes for patients with suspected Acute Coronary Syndrome (ICare-ACS): A study of cross-system implementation of a national clinical pathway

Table S1: Demographics characteristics of patients attending included hospitals

<table>
<thead>
<tr>
<th>Hospital</th>
<th>ED attendance</th>
<th>Total people in DHB</th>
<th>Female (%)</th>
<th>Age ≥65 years (%)</th>
<th>Ethnicity: European (%)</th>
<th>Ethnicity: Maori (%)</th>
<th>Ethnicity: Pacific peoples (%)</th>
<th>Ethnicity: Asian (%)</th>
<th>Ethnicity: New Zealander (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68,383</td>
<td>359,310</td>
<td>51.3</td>
<td>14.8</td>
<td>76.9</td>
<td>21.7</td>
<td>3.9</td>
<td>7.3</td>
<td>1.7</td>
</tr>
<tr>
<td>2</td>
<td>44,470</td>
<td>138,378</td>
<td>51.4</td>
<td>13.3</td>
<td>74.8</td>
<td>16.2</td>
<td>9.2</td>
<td>10.0</td>
<td>1.7</td>
</tr>
<tr>
<td>3</td>
<td>49,600</td>
<td>525,555</td>
<td>51.5</td>
<td>13.0</td>
<td>71.4</td>
<td>9.3</td>
<td>8.0</td>
<td>18.3</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>52,146</td>
<td>283,704</td>
<td>51.9</td>
<td>12.0</td>
<td>76.3</td>
<td>10.7</td>
<td>8.4</td>
<td>12.2</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>15,841</td>
<td>41,112</td>
<td>51.5</td>
<td>19.1</td>
<td>88.4</td>
<td>16.1</td>
<td>2.7</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>6</td>
<td>41,482</td>
<td>525,555</td>
<td>51.5</td>
<td>13.0</td>
<td>71.4</td>
<td>9.3</td>
<td>8.0</td>
<td>18.3</td>
<td>1.4</td>
</tr>
<tr>
<td>7</td>
<td>96,764</td>
<td>469,293</td>
<td>51.4</td>
<td>10.7</td>
<td>48.0</td>
<td>15.5</td>
<td>23.8</td>
<td>23.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

*2015. The rest of the data is from the 2013 census

DHB: District Health Board

Note: In the census data people can choose more than one ethnicity, hence percentages are greater than 100%.
Table S2: Details from review of cases of apparent Major Adverse Cardiac Event following early discharge

<table>
<thead>
<tr>
<th>Hospital (number)</th>
<th>Age/Sex</th>
<th>Days after index presentation</th>
<th>Coding</th>
<th>Event type (cause)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-ACS events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>87F</td>
<td>16</td>
<td>Death</td>
<td>Non-cardiac death (Respiratory)</td>
<td>Admitted 10 days after index admission with COPD. Died 16 days later following respiratory arrest during bronchoscopy for investigation of recent onset stridor.</td>
</tr>
<tr>
<td>2</td>
<td>75F</td>
<td>25</td>
<td>Death</td>
<td>Non-cardiac death (Cancer)</td>
<td>Admitted 4 days after index admission with complications of metastatic lung cancer. Died in hospital 3 weeks later.</td>
</tr>
<tr>
<td>2</td>
<td>69F</td>
<td>26</td>
<td>Death</td>
<td>Non-cardiac death</td>
<td>End stage chronic obstructive pulmonary disease and chronic lymphocytic leukaemia.</td>
</tr>
<tr>
<td>2</td>
<td>78F</td>
<td>15</td>
<td>Death</td>
<td>Cardiac - non ACS</td>
<td>Known non-ischaemic cardiomyopathy with very poor left ventricular function (normal coronary arteries on angiogram).</td>
</tr>
<tr>
<td>ACS-events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>79M</td>
<td>23</td>
<td>NSTEMI</td>
<td>NSTEMI</td>
<td></td>
</tr>
<tr>
<td>Post-ADP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-ACS-events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>77F</td>
<td>27</td>
<td>Death</td>
<td>Non-cardiac (Stroke)</td>
<td>Breach of pathway (raised troponin)</td>
</tr>
<tr>
<td>5</td>
<td>51F</td>
<td>1</td>
<td>NSTEMI</td>
<td>Non-cardiac (incorrect coding)</td>
<td>No breach of pathway. NSTEMI was a miscoding of a planned attendance at a cardiology clinic the next day for exercise stress testing (which was normal).</td>
</tr>
<tr>
<td>3</td>
<td>79F</td>
<td>2</td>
<td>Death</td>
<td>Non-cardiac (AAA)</td>
<td>Breach of pathway (raised troponins)</td>
</tr>
<tr>
<td>ACS-events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>84M</td>
<td>1</td>
<td>Ventricular Tachycardia</td>
<td>Cardiac stable Arrhythmia</td>
<td>Breach of pathway (raised troponins)</td>
</tr>
<tr>
<td>4</td>
<td>83M</td>
<td>9</td>
<td>Cardiac Arrest</td>
<td>Asystolic pause</td>
<td>Breach of pathway (raised score)</td>
</tr>
<tr>
<td>4</td>
<td>81M</td>
<td>10</td>
<td>NSTEMI</td>
<td>NSTEMI</td>
<td>Breach of pathway (raised score)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>48M</td>
<td>Index</td>
<td>NSTEMI</td>
<td>NSTEMI</td>
<td>Breach of pathway (self-discharged against medical and pathway advice on his index presentation). Subsequently returned and worked up.</td>
</tr>
<tr>
<td>1</td>
<td>56M</td>
<td>3</td>
<td>STEMI</td>
<td>STEMI</td>
<td>Breach of pathway (raised troponin)</td>
</tr>
<tr>
<td>1</td>
<td>91M</td>
<td>2</td>
<td>NSTEMI & Ventricular Tachycardia</td>
<td>NSTEMI & Ventricular Tachycardia</td>
<td>Breach of pathway (raised troponins). Patient already on the waiting list for TAVI</td>
</tr>
<tr>
<td>1</td>
<td>66M</td>
<td>28</td>
<td>NSTEMI</td>
<td>NSTEMI</td>
<td>Breach of pathway (raised troponin)</td>
</tr>
<tr>
<td>2</td>
<td>63F</td>
<td>25</td>
<td>NSTEMI</td>
<td>NSTEMI</td>
<td>Breach of pathway (raised troponins)</td>
</tr>
<tr>
<td>3</td>
<td>75F</td>
<td>0</td>
<td>NSTEMI</td>
<td>Possible NSTEMI</td>
<td>Breach of pathway (raised troponins) Presented with breathlessness, known End Stage Renal Failure and awaiting dialysis that morning. Transferred directly to renal unit at same hospital. Troponins done because apparently had chest pain the day before. TIMI score=not low-risk</td>
</tr>
<tr>
<td>3</td>
<td>73F</td>
<td>1</td>
<td>Death</td>
<td>Cardiac death (STEMI)</td>
<td>Breach of pathway (raised troponins) Not initially investigated for ACS. Presented to hospital in morning with 3 day history of nausea and vomiting, no chest/thoracic pain. Diagnosed with UTI (positive urine result). Returned same afternoon with different symptoms of thoracic back pain and ST elevation MI on ECG. TnI request was retrospectively added – had not been ordered during morning presentation.</td>
</tr>
<tr>
<td>3</td>
<td>54F</td>
<td>2</td>
<td>NSTEMI</td>
<td>Unstable angina</td>
<td>Followed pathway as intended. Longstanding history of chest pain thought to be likely esophageal pain. TIMI-ve TnI = <15ng/L x2. Next day underwent planned Exercise Treadmill Test which was positive</td>
</tr>
<tr>
<td>2</td>
<td>79M</td>
<td>1</td>
<td>Death</td>
<td>Cause unknown</td>
<td>Breach of pathway (raised troponins)</td>
</tr>
<tr>
<td>2</td>
<td>94F</td>
<td>25</td>
<td>Death</td>
<td>Cause unknown</td>
<td>Breach of pathway (raised troponins)</td>
</tr>
</tbody>
</table>
Table S3. Annualised rate of testing (number of patients with two troponins within 24-hours per year) before and after clinical pathway implementation by hospital

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Pre-implementation</th>
<th>Post-implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2990</td>
<td>4085</td>
</tr>
<tr>
<td>2</td>
<td>1688</td>
<td>1551</td>
</tr>
<tr>
<td>3</td>
<td>5640</td>
<td>5221</td>
</tr>
<tr>
<td>4</td>
<td>2532</td>
<td>2447</td>
</tr>
<tr>
<td>5</td>
<td>568</td>
<td>440</td>
</tr>
<tr>
<td>6</td>
<td>2710</td>
<td>3300</td>
</tr>
<tr>
<td>7</td>
<td>6930</td>
<td>7528</td>
</tr>
</tbody>
</table>
Figure S1: Implementation. Data collected for 6 months before the ADP and a minimum of 4 months post the implementation of the ADP.
ONLY use this pathway if Cardiac Ischaemia is suspected cause of chest pain.

If Cardiac Ischaemia is suspected cause of chest pain:

- Triage appropriately
 - ECG within 10 minutes of arrival
 - STEMI suspected

- Full set of observations.
 - Troponin and set of bloods as indicated

- Consider other possible serious diagnosis.
 - Aortic dissection
 - PE
 - Pancreatitis

- Screen for possible ‘red flags’:
 - On-going chest pain likely to be cardiac.
 - History strongly suggestive of crescendo angina.
 - Haemodynamically unstable.
 - Ischemic changes on ECG not know to be old.
 - Positive Troponin.

- Screen for low risk profile using EDACS score (See next page for scores).

LOW RISK

<table>
<thead>
<tr>
<th>EDACS <16 (and no red flags)</th>
<th>CDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED observation patient if no other reason/requirement for admission. If alternative requirement then refer to that appropriate speciality.</td>
<td></td>
</tr>
<tr>
<td>Disposition: Patient suitable for discharge if:</td>
<td></td>
</tr>
<tr>
<td>- 0 - 2 hour trop not greater than upper limit of reference range given on results system ie negative</td>
<td></td>
</tr>
<tr>
<td>- no new ischemia on ECG and</td>
<td></td>
</tr>
<tr>
<td>- no red flags</td>
<td></td>
</tr>
<tr>
<td>Acute coronary syndrome is very unlikely in this patient group. ETT and further cardiology opinion is unlikely to be of benefit. Give discharge advice letter.</td>
<td></td>
</tr>
</tbody>
</table>

MED RISK

<table>
<thead>
<tr>
<th>EDACS >16 (and no red flags)</th>
<th>Modified TIMI <4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admit to: APU</td>
<td></td>
</tr>
<tr>
<td>ED doctor to discuss with Cardiology Reg both doctors named on referral (for adult and feedback purposes).</td>
<td></td>
</tr>
<tr>
<td>ED registered nurse to lodge request for bed under Cardiology consultant on APU.</td>
<td></td>
</tr>
<tr>
<td>Transfer patient to APU (no nurse escort required).</td>
<td></td>
</tr>
<tr>
<td>Drug chart for paracetamol and GTN completed.</td>
<td></td>
</tr>
</tbody>
</table>

HIGH RISK

<table>
<thead>
<tr>
<th>EDACS >16 (and no red flags)</th>
<th>Modified TIMI >4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admit to: Cardiology Ward (CCU).</td>
<td></td>
</tr>
<tr>
<td>ED doctor to refer patient to cardiology registrar.</td>
<td></td>
</tr>
<tr>
<td>ED registered nurse to lodge request for bed under on call cardiology team.</td>
<td></td>
</tr>
<tr>
<td>Transfer patient to ward (no nurse escort required).</td>
<td></td>
</tr>
<tr>
<td>Patient for review and clerking on ward by cardiology team.</td>
<td></td>
</tr>
<tr>
<td>Further testing eg. stress test (ETT) or angiogram to be decided by cardiologist.</td>
<td></td>
</tr>
<tr>
<td>Drug chart for paracetamol and GTN completed (asprin already administered).</td>
<td></td>
</tr>
</tbody>
</table>
EMERGENCY DEPARTMENT ACCELERATED CHEST PAIN PATHWAY

STEMI CRITERIA
- 1mm ST elevation in ≥ 2 limb leads
- 2mm ST elevation in ≥ 2 precordial leads
- Old LBBB with either of the below if two anatomically adjacent leads:
 - ≥ 1mm ST elevation where QRS complex is predominantly positive
 - ≥ 1mm ST elevation where QRS complex is predominantly negative

Risk assessment
- NSTE MI / unstable angina

Emergency Department Assessment of Chest-Pain score (EDACS)

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Individual scores:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Age</td>
<td></td>
</tr>
<tr>
<td>18-45 = +2</td>
<td></td>
</tr>
<tr>
<td>51-55 = +6</td>
<td></td>
</tr>
<tr>
<td>61-65 = +10</td>
<td></td>
</tr>
<tr>
<td>71-75 = +14</td>
<td></td>
</tr>
<tr>
<td>81-85 = +18</td>
<td></td>
</tr>
<tr>
<td>46-50 = +4</td>
<td></td>
</tr>
<tr>
<td>56-60 = +8</td>
<td></td>
</tr>
<tr>
<td>66-70 = +12</td>
<td></td>
</tr>
<tr>
<td>76-80 = +16</td>
<td></td>
</tr>
<tr>
<td>86+ = +20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Risk factors - Age related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 51+ (go to C. Symptoms)</td>
</tr>
<tr>
<td>Age 18-50 with NEITHER set of risk factors = 0</td>
</tr>
<tr>
<td>Age 18-50 with EITHER set of risk factors = +4</td>
</tr>
<tr>
<td>- Family history premature CAD (ie. Previous AMI, CABG or PCI in men age <55 years or women age < 65 years) (max =4)</td>
</tr>
</tbody>
</table>

OR ≥ 3 or the following 4 risk factors
- Diastolic hypertension
- Diabetes
- Hypertension
- Current smoker

<table>
<thead>
<tr>
<th>C. Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diaphoresis (in association with pain*) = +3</td>
</tr>
<tr>
<td>Pain* occurs or worsened with inspiration (pleuritic) = -4</td>
</tr>
<tr>
<td>Pain* radiates to arm or shoulder = +5</td>
</tr>
<tr>
<td>Pain* reproduced by palpation = -6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D. Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male = +6</td>
</tr>
<tr>
<td>Female = 0</td>
</tr>
</tbody>
</table>

*Pain that caused presentation to hospital NB: may be a negative score

Modified Thrombolysis in Myocardial Infarction score (Modified TIMI)

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Score ONE for every positive response</th>
<th>Score ZERO for any negative or ‘unknown response</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Age</td>
<td>≥ 65 years = +1</td>
<td></td>
</tr>
<tr>
<td>B. ≥ 3 of the following 5 CAD risk factors = +1, < 3 risk factors =0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history: i.e., at age less than 55 years of age: (max =1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angina, MI, sudden cardiac death without obvious cause</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dislipidaemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Known CAD (stenosis ≥ 50%): = +1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eg. a positive investigation or procedure for CAD including: PCI, stent, positive angiogram, positive exercise tolerance test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. ASA (ie. Acetylsalicylic Acid / Asprin) use in past 7 days = +1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Single GP / ambulance dose not included)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Recent severe angina (eg. ≥ 2 events in last 24 hours) = +1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Score =

Form completed by: ____________________________ Date: ____________________________
Accelerated chest pain pathway

Chest pain

Cardiac Ischaemia suspected cause of pain

YES

Exit pathway

NO

ECG Screen for STEMI

Initial hs-TnT

YES

Exit pathway

Fast-track to cardiology

NO

Clear alternative diagnosis?

YES

Exit pathway

Manage appropriately

NO

Red flags:

Crescendo Angina
Haemodynamic instability
Ischaemic changes on ECG not known to be old
Positive hs-TnT (not known to be chronically raised)
Recent cardiology review/assessment (within 30 days)

YES

Exit pathway

Refer cardiology

NO

Chronically raised hs-TnT
Impaired renal function

YES

Exit pathway

Individualise management

NO

Low Risk and No Red Flags
Consider admission to short stay facility
- no telemetry required
- hs-TnT at 2 hours
If 0 hour hs-TnT >6 hours after onset of pain and negative, then proceed without another hs-TnT

YES

0 and 2 hour hs-TnT negative
AND no new ischaemia on ECG
AND no red flags

Discharge patient

Discharge advice
GP if not seen within past 6 months

NO

Not Low Risk
Refer cardiology / General Medicine

Further assessment and management
CHEST PAIN PATHWAY

For all patients presenting with possible Ischaemic Heart Disease
This does NOT constitute a full clinical admission note

<table>
<thead>
<tr>
<th>Date:</th>
<th>Time:</th>
<th>Dr:</th>
<th>Sign:</th>
<th>Contact:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ EM Patient</td>
<td>☐ GP referral: General Medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ ECG Viewed Describe: __

All patients to remain monitored in ED at least until first Troponin result available (decision guide page 2)

RED FLAGS

☐ STEMI on ECG → STOP! → Move to resus → Reperfusion call

☐ Arrhythmia
☐ Hx suggestive of unstable / crescendo Angina
☐ Change in mental state
☐ Systolic BP < 90
☐ Hypoxia SPO2 < 90% O/A
☐ Other:
☐ Ischaemic △ on ECG
☐ Heart rate < 40 or > 130

☐ No Red flags

☐ Any Red Flags present → Clinician decision:

☐ Continue Pathway
☐ Exit Pathway

☐ Intervention if any: __

☐ mTIMI score completed in Éclair for all patients

Use information below to complete scoring in Éclair

Cardiac risk factors:

☐ Known IHD e.g. positive investigation or procedure for CAD including PCI, positive angiogram, positive ETT
☐ Family Hx IHD e.g. MI, Angina or sudden cardiac death < 55
☐ Hypertension
☐ Diabetes

Ethnicity:

☐ High risk ethnicity e.g. Maori, Pacific, or Indo-Asian (Fijian-Indian, Sri-Lankan, Afghani, Bangladeshi, Nepalese, Pakistani, Tibetan)

Aspirin use:

☐ Use in last 7 days Single GP / ambulance dose not included
☐ Recent severe angina > 1 Event in the past 24 hrs

Angina:

☐ Diaphoresis

Symptoms:

☐ Pleuritic
☐ Radiates to arm / shoulder / neck / jaw

☐ Reproducible with pressure

Screen for other serious diagnoses e.g. PE, Dissection, Pneumonia, Pancreatitis

Bloods:

☐ Cardiac profile sent
☐ Please send

CXR:

☐ Requested

Treatment:

☐ Aspirin
☐ GTN
☐ Other:

ED Pathway:

☐ Initiate Chest Pain Treatment Pathway on Whiteboard this records the time for audit purposes

All patients remain monitored in ED at least until first Troponin result available - follow instructions on page 2
MONITORING DECISION GUIDE

At any time:
- ECG acute changes
- Troponin positive

Continue telemetry & Admit General Medicine

<table>
<thead>
<tr>
<th>mTIMI 0</th>
<th>mTIMI 1-3</th>
<th>mTIMI > 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ First Troponin negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ ECG no acute changes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ No clinical concern requiring admission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- REMOVE telemetry unless other indication
- Continue telemetry

Indication: _____________________

REMAIN IN ED

- 2 hr Troponin to be done at: _______

- 2 hr Trop negative
- 2 hr ECG no acute changes
- CXR reviewed

Does the patient need further investigation for ACS?

Discuss with SMO - consider ethnicity

- No: Manage accordingly
- Yes: Continue

ADMIT GENERAL MEDICINE can go to ADU
START A-D PLANNER

- 6 hr Troponin to be done at: _______ (6hrs after first or worst pain)

- 6 hr Trop negative
- 6 hr ECG no acute changes
- CXR reviewed

discontinue telemetry unless clinical indication

Is this patient suitable for ETT within 3 working days?

- Yes → Arrange ETT (Same day if possible). Follow instructions page 3 and 4
 Gen Med to review the patient post ETT

- No → Discuss with General Medicine ext 4954 follow up plan

Usual inpatient care

If at any time:
- ECG acute change
- Troponin positive

restart / continue telemetry
ETT FOLLOW-UP PROCESS

For patients with mTimi score = 0 and suitable for discharge

ETT ADU slots available: Monday – Friday only: • 08:00 • 08:45 • 09:30

Is a Same Day ETT slot available?

Emergency Medicine clinician contacts ‘Cardiac Procedures Phone’ on 021 246 4085

☐ Same day ETT available at: _____________
☐ Same day ETT NOT available

Emergency Medicine clinician:

☐ Make verbal booking by telephone
☐ Call Gen Med Reg: ext 4954
 • Report that ETT booked same day
 • Request Gen Med SMO name:
 Dr _____________________________
☐ Complete ETT request through Concerto
 • See page 4 how to fill in request
 • Note use 4954 as contact number on request
☐ Refer patient to Gen Med on Whiteboard

Emergency Medicine clinician:

☐ Call Gen Med Reg: ext 4954
 • Report that ETT not available same day
 • Gen Med Reg
 • Assigns ETT slot within 3 working days*
 • Provides Gen Med SMO name:
 Dr _____________________________
☐ Complete ETT request through Concerto
 • See page 4 how to fill in request
 • Note use 4954 as contact number on request
☐ Emergency Medicine to prepare EDS see below

Patient transferred to ADU waiting room

General Medicine RMO:

• Signs on at earliest convenience
• Reviews patient after ETT

General Medical RMO:

• Provide ETT appointment within 3 working days
 Check for free slots via diagnosis column on daily list
 Date: ___________ Time slot: ___________
• Identify General Medical SMO team:
 Dr _____________________________
• Enter details (including the team for review) on the Daily Admissions List on both:
 ☐ Day of referral
 To count post take numbers
 ☐ Day of the booked ETT
 To document expected admissions

Patient discharged and returns to ADU on day of booked ETT

Emergency Medicine prepares EDS:

☐ Record follow up details in notes and EDS See link to Chest Pain EDS proforma
☐ Provide ETT information pamphlet Document ETT time & date on the pamphlet
 Withhold rate limiting drugs on day of ETT

* If ETT slot is not available within 3 days: ED to request urgent Outpatient ETT with GM f/u or Admit patient to wait for ETT

= Yes = No

CHEST PAIN PATHWAY
CHEST PAIN PATHWAY

For all patients presenting with possible Ischaemic Heart Disease
This does NOT constitute a full clinical admission note

Date: [] EM Patient [] GP referral: General Medicine

[] ECG Viewed Describe: __
All patients to remain monitored in ED at least until first Troponin result available (decision guide page 2)

[] STEMI on ECG → STOP! → Move to resus → Reperfusion call

[] Arrhythmia [] Change in mental state [] Hypoxia SPO2 < 90% O2/A
[] Hx suggestive of unstable / crescendo Angina [] Systolic BP < 90 [] Other:
[] Ischaemic △ on ECG [] Heart rate < 40 or > 130

[] No Red flags
→ Continue pathway

[] Any Red Flags present → Clinician decision:
[] Continue Pathway [] Exit Pathway
→ Intervention if any: ______________________________________

[] mTIMI score completed in Éclair for all patients
Use information below to complete scoring in Éclair

Cardiac risk factors:
[] Known IHD [] Family Hx IHD [] Hypertension [] Diabetes
e.g. positive investigation or procedure for CAD including PCI, positive angiogram, positive ETT
e.g. MI, Angina or sudden cardiac death < 55
[] Dyslipidemia [] Current Smoker

Ethnicity: [] High risk ethnicity
e.g. Maori, Pacific, or Indo-Asian (Fijian-Indian, Sri-Lankan, Afghani, Bangladeshi, Nepalese, Pakistani, Tibetan)

Aspirin use: [] Use in last 7 days
Single GP / ambulance dose not included
[] Angina:
[] Recent severe angina > 1 Event in the past 24 hrs
[] Symptoms:
[] Diaphoresis
[] Pain:
[] Pleuritic [] Radiates to arm / shoulder / neck / jaw [] Reproducible with pressure

Screen for other serious diagnoses e.g. PE, Dissection, Pneumonia, Pancreatitis

Bloods: [] Cardiac profile sent [] Please send
CXR: [] Requested
Treatment: [] Aspirin [] GTN [] Other:
ED Pathway: [] Initiate Chest Pain Treatment Pathway on Whiteboard this records the time for audit purposes

All patients remain monitored in ED at least until first Troponin result available - follow instructions on page 2
MONITORING DECISION GUIDE

At any time:
- ECG acute changes
- Troponin positive
 } Continue telemetry & Admit General Medicine

☐ mTIMI 0
- First Troponin negative
- ECG no acute changes
- REMOVE telemetry unless other indication
- Continue telemetry
 Indication: ___________________

REMAIN IN ED

2 hr Troponin to be done at: _______
- 2 hr Trop negative
- 2 hr ECG no acute changes
- CXR reviewed

☐ mTIMI 1-3
- First Troponin negative
 Or 6 hr Trop if > 6 hrs since pain
- ECG no acute changes
- REMOVE telemetry unless other indication
- Continue telemetry
 Indication: ___________________

ADMIT GENERAL MEDICINE can go to ADCU

6 hr Troponin to be done at: _______ (6hrs after first or worst pain)
- 6 hr Trop negative
- 6 hr ECG no acute changes
- CXR reviewed
 } discontinue telemetry unless clinical indication

Usual inpatient care

☐ START A-D PLANNER
- If at any time:
 ECG acute change
 Troponin positive
 } restart / continue telemetry

Does the patient need further investigation for ACS?
Discuss with SMO - consider ethnicity
- No: Manage accordingly
- Yes: Continue

Is this patient suitable for ETT within 3 working days?
- No → Call General Medicine ext. 7762 for alternative plan
- Yes → Same day ETT preferred option if available
 → Call ‘Cardiac Procedures Phone’ on ext. 6309 to enquire if same day ETT is available
 → Request the ETT Follow instructions page 3 and 4
ETT FOLLOW - UP PROCESS

For patients with mTimi score = 0 and suitable for discharge

ETT ADU slots available: Monday / Thursday / Friday only: 08:15 - 09:00

SAME DAY ETT

Monday - Friday

Contact ‘Cardiac Procedures phone’ on ext: to enquire if a same day slots is available

NOTE the Gen Med Reg does not have access to this information

☐ Same day ETT available at: ____________

☐ Same day ETT NOT available

ETT REQUEST - EM Clinician

☐ Make verbal booking by telephone

☐ Complete ETT request through Concerto
 • See page 4 how to fill in request
 • Use as contact number
 • All ETT’s followed up by the Heynike team

☐ Call Gen Med Reg: ext:
 • Report that ETT booked same day

☐ Refer patient to Gen Med on Whiteboard

☐ Provide patient pamphlet to read

ETT DATE AND TIME SLOT - Gen Med Reg

☐ Call Gen Med Reg: ext:
 • Assigns ETT slot within 3 working days*
 • Check for free slots via return column on the Daily List: Mon / Thurs / Fri

 Date: __________ Time slot: ______

 • Enter details on the ‘Daily Admissions List’ on day of the booked ETT
 to document expected admissions

 *If no slot is available within 3 days:
 • Request urgent Outpatient ETT with GM follow up or
 • Admit patient to wait for ETT

☐ Same day ETT available at: ____________

ETT & FOLLOW UP - Gen Med Reg

☐ Enter details on ‘Daily Admissions list’ under the Heynike team

☐ Patient transferred to Cardiology waiting room, via ADCU reception

Heynike Med Reg
• Signs on at earliest convenience
• Reviews patient after ETT

ETT REQUEST - EM Clinician

☐ Complete ETT request through Concerto
 • See page 4 how to fill in request
 • Use as contact number on request
 • All ETT’s are followed up by the Heynike team

DISCHARGE - EM Clinician

☐ EM Clinician Prepares EDS
 • Provide ETT information pamphlet
 • Document ETT date and time
 • Withhold rate limiting drugs on the day of ETT
 • Patient returns to TRIAGE on day of booked
 ETT 15 minutes before the appointment time

The EDS proforma (link from EDS) is already pre-populated with all this information
Accelerated Chest Pain Pathway

Does the patient have a suspected acute coronary syndrome?

YES
NO

Does the patient have a STEMI?

YES

STEMI PATHWAY

- EDACS score greater than or equal to 16
- ongoing pain
- elevation of first troponin over Upper Limit of Normal (99% centile)
- dynamic ST change
- haemodynamic compromise, syncope or VT

NO

YES

Admit

- At a 3-hour interval for highly sensitive troponin I is acceptable as long as the 2nd troponin is six hours after last pain
- A single negative troponin is sufficient to rule out AMI if last ischaemic symptoms >6h earlier
- SMO review further investigations/management
- If meets definition for NSTEACS follow NSTEACS pathway

NO

Can return for ETT next 72 hours

- No contraindications to ETT, as per ETT referral form
- Physically able to exercise

NO

YES

Repeat troponin/ECG at 3h. A single negative troponin is sufficient to rule out AMI if last symptoms >6h earlier.

If ANY Troponin rise, especially greater than 50% of baseline/3 ng/L or ECG change refer General Medicine

If no Troponin change and no ECG change

- YOU HAVE REASONABLY RULED OUT AMI IN A LOW RISK PATIENT.
- Consider consenting patient, for GP follow up, rather than ETT, after considering risk/benefit with patient (SMO only, refer to reference material about risk)
- Book ETT via Monitored ward clerk
- Fax ETT referral to 6695
- Provide with written advice sheet and time for ETT
- Discharge home with advice sheet

Refer to SMART EM Stress Testing Summary for information to consent patient away for GP follow-up if not wanting ETT