Cell therapy is an exciting option for repairing the injured heart, one that has attracted considerable interest over the past 15 years. Consensus exists that the injection/infusion or tissue-based implantation of various cell types may exert therapeutic effects, and there is general agreement that additional molecular, translational, and clinical studies are required to define the optimal cell source, method of delivery, and underlying mechanism(s) of action.

One of the remaining questions in this field pertains to cardiomyocyte turnover under normal and diseased conditions and its contribution to the beneficial effects of cell therapy. Although results published in the literature have not been consistent, we believe that the time is ripe to formulate a consensus for many of the pertinent questions.

It is important to emphasize that the focus of this consensus statement is on cardiomyocyte renewal; it is not on cell therapy in general. Although we touch on some aspects of therapeutic strategies based on delivery of exogenous cells, our intent here is to define areas of agreement and areas requiring further elucidation related to the regenerative potential of the myocardium itself.

We have included references to the scientific literature throughout the document. Although it is impossible for us to include all publications in this expansive field, representative studies that corroborate statements herein have been cited.

**CENTRAL QUESTIONS**

1. Definition of cardiomyocyte renewal.

   In this consensus statement, the term cardiomyocyte renewal is defined as the ability to replace lost cardiomyocytes by new ones. It is distinct from the turnover of cardiac proteins or the generation of polyploid cardiomyocytes (ie, those harboring >2 sets of chromosomes), either by nuclear division giving rise to multinucleation or by duplication of DNA without nuclear division resulting in polyploid nuclei.

2. Naturally occurring cardiomyocyte renewal and proliferation.

   A. During normal mammalian development

      i. Growth of the heart during embryonic and fetal development involves an absolute increase in the number of cardiomyocytes and is brought about by differentiation of precursor cells and by division of relatively immature cardiomyocytes.

      ii. The rodent heart continues to grow by means of cardiomyocyte proliferation (hyperplastic growth) in the early postnatal period. During a brief postnatal window of 7 days in rodents, myocardial injury induces a regenerative response, resulting in replacement of lost cardiomyocytes by new ones. Fate-mapping studies suggest that this type of myocardial regeneration is mediated primarily by cardiomyocyte

---

**Correspondence to:** Thomas Eschenhagen, MD, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246 Hamburg, Germany, or Joseph A. Hill, Division of Cardiology, Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390. E-mail teschenhagen@uke.de or joseph.hill@utsouthwestern.edu

© 2017 American Heart Association, Inc.
proliferation. It remains unclear whether this regenerative window exists in large animals or in humans.

iii. Although cardiomyocytes appear to continue to renew throughout life, the quantitatively dominant mechanism of growth in the mammalian postnatal heart is an increase in cardiomyocyte size (reviewed by Heineke and Molkentin).

iv. In the healthy, uninjured adult human and murine heart, the total number of cardiomyocytes remains essentially stable, and cardiomyocyte turnover is currently estimated at 0.5% to 2% per year in both species.

B. After cardiac injury in adult mammals

i. Cardiomyocyte renewal rates may be higher after injury than under normal conditions.

ii. The experimental determination of cardiomyocyte turnover after cardiac injury can be challenging owing to inflammation, proliferation of stromal and vascular cells, and scar formation.

C. After heart or bone marrow transplantation (chimerism)

i. Sex-mismatched heart transplantation in patients with end-stage heart failure or sex-mismatched bone marrow transplantation provides opportunities to ascertain experimentally cardiomyocyte renewal deriving from extracardiac sources.

ii. Although data are not completely consistent, the preponderance of studies suggest that the level of cardiomyocyte chimerism after sex-mismatched transplantation is <1% and may arise at least partially from fusion events.

iii. Insufficient data are available to determine the time course within which such chimerism develops.


There is no infallible means of tracking cell renewal in any organ system. However, in preclinical models of cardiomyocyte renewal (e.g., mouse and fish), genetic fate-mapping studies provide the strongest level of scientific evidence. Critical biological issues such as promoter fidelity, leakiness, and sensitivity, inefficient reporter expression (Cre recombinase activity), and cellular fusion or transfer of reporter proteins are relevant and must be considered in the interpretation of the findings. Furthermore, appropriate control studies are essential to assess for deleterious consequences of haploinsufficiency that could result from genetic manipulation of an endogenous gene locus.

A. Cardiomyocyte proliferation

i. The majority of studies suggest that cardiomyocyte renewal in the uninjured adult heart derives from a modest level of pre-existing cardiomyocyte mitosis. Support for this interpretation derives from experiments in zebrafish, newts, and other species in which cardiomyocyte renewal occurs more robustly than in mammals.

B. Resident stem/progenitor cells

i. Resident stem/progenitor cells contribute to multiple cell types within the ventricle, including cardiomyocytes. However, in terms of adult myocardial homeostasis in mice, current evidence suggests that their contribution under basal conditions or after cardiac injury is low (estimates in rodents based on genetic fate-mapping experiments suggest a rate of <0.01% per year).

C. Extracardiac stem/progenitor cells

i. The contribution of extracardiac stem or progenitor cells to cardiomyocyte renewal has been studied largely with chimeric mice, in which the bone marrow is genetically labeled, and in parabiotic mice, in which the circulation of a genetically labeled mouse is experimentally linked to another unlabeled mouse. Cell fusion and transdifferentiation events have been evaluated with genetic lineage tracing, and the findings are largely concordant. In humans, the role of extracardiac stem/progenitor cells in cardiomyocyte renewal has been studied by sex-mismatched heart and bone marrow transplantation.

ii. Homing of extracardiac bone marrow-derived cells to the uninjured heart is a rare event of uncertain physiological relevance.

iii. Extracardiac bone marrow-derived cells enter the injured heart at a higher rate. The majority of these cells are of hematopoietic origin.

iv. A small fraction of cardiomyocytes within injured rodent hearts carry the genetically determined label of bone marrow cells (estimates in rodents based on genetic fate-mapping experiments suggest a rate of <0.2% to 2%). Most studies suggest that the majority of these cells originate from cell fusion and <1% derive from transdifferentiation (estimates in rodents based on genetic fate-mapping experiments suggest a rate of <0.002% in total).

4. Therapeutic manipulation of cardiomyocyte renewal.

i. Most studies suggest that the infusion, injection, or tissue-based implantation of cells of various origins confers therapeutic benefits to the injured heart.
ii. Cell-based therapies may affect endogenous cardiomyocyte renewal or directly generate new cardiomyocytes from the transplanted cells.

iii. The degree of new cardiomyocyte formation depends on the cell type and on the retention and survival of those cells within the heart. Retention of unselected bone marrow cells in the heart is low (a study in patients determined a rate of <3% for unselected bone marrow cells and ≈10-fold higher with CD34+ cells 1 hour after coronary infusion\(^ {24}\)). It may be higher after cell injection into the myocardium.\(^ {25}\)

Coinjection of scaffolding materials and use of tissue engineering approaches may increase this rate.\(^ {26}\)

iv. The degree of engraftment and differentiation of transplanted cells into cardiomyocytes does not appear to match the extent of functional improvement, suggesting that other mechanisms account for at least part of the beneficial effects of cell therapy.\(^ {27}\)

v. Mechanisms of benefit of cellular transplantation experiments remain obscure but may involve paracrine actions, including exosome-derived effects on preexisting cardiac tissue,\(^ {28,29}\) as well as cell-specific post-translational protein modifications.\(^ {30}\)

vi. Transplantation of cardiomyocytes derived from pluripotent stem cells can generate new myocardium that beats in synchrony with the host myocardium and may contribute to systolic force generation, although the extent of this contribution has not been precisely determined.

A. Bone marrow–derived cells

i. Prevailing evidence suggests that unfractiated bone marrow–derived cells do not become cardiomyocytes when infused or injected into the heart.\(^ {31–33}\)

ii. Fractionated bone marrow populations consisting of c-kit\(^ +\) cells or mesenchymal stem cells may confer structural or functional benefits primarily by indirect biological activities that may promote cardiomyocyte renewal.\(^ {34–36}\)

iii. Initial studies with bone marrow–derived mesenchymal cells are promising,\(^ {37}\) and phase 3 trials are underway.

iv. Evidence for the ultimate fate of mesenchymal cells after infusion or injection into the heart is inconsistent, but some studies report that unmanipulated mesenchymal cells can transdifferentiate into cardiomyocytes at low rates.\(^ {38,39}\)

B. Cardiac-derived stem/progenitor cells

i. Most experiments have been performed with c-kit\(^ +\) cells, cardiosphere-derived cells, or Sca1\(^ +\) cells isolated from heart biopsies and cultured in vitro.

ii. These cells can emerge as cells expressing cardiomyocyte markers when cultured in vitro under specific conditions, and they can also express some cardiomyocyte markers in vivo.\(^ {40,41}\) Coculturing cardiac c-kit\(^ +\) cells with mesenchymal stem cells enhances their lineage commitment toward a cardiac myocyte fate.\(^ {42}\)

iii. The degree of functional improvement after in vivo delivery of cardiac-derived stem/progenitor cells cannot be explained solely by new cardiomyocyte formation from transplanted cells, which is very low.\(^ {53,44}\)

iv. Genetic or ex vivo manipulation of transplanted cardiac-derived stem/progenitor cells enhances engraftment and structural and functional recovery of uninjured myocardium in preclinical animal models.\(^ {45,46}\)

C. Pluripotent cells

i. Pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells) proliferate in an undifferentiated state indefinitely and on exposure to specific culture conditions can differentiate into almost all cell types of the organism, including cardiomyocytes.

ii. The efficiency of differentiation of pluripotent stem cells into immature cardiomyocytes in vitro can exceed 80%.\(^ {47–51}\)

iii. Undifferentiated pluripotent stem cells can form teratomas when injected into the heart of immunocompromised organisms.\(^ {52}\)

iv. Pluripotent stem cell–derived cardiomyocytes successfully engraft, generating new myocardium when injected into the injured or uninjured heart of immunosuppressed animals.\(^ {53–58}\) Long-term engraftment (>3 months) of these cells has not been studied.

v. Pluripotent stem cell–derived cardiomyocytes can couple electrically with host cardiomyocytes, beating in synchrony, although evidence for proarrhythmic effects has been reported.\(^ {54,58}\)

vi. Although direct force generation deriving from the injected myocytes may explain some of the functional improvement, it is not clear whether the degree of emergence of new myocardium entirely accounts for the

* M.S. expressed concerns regarding use of the term new myocardium in this sentence.
degree of contractile improvement; paracrine signaling events may contribute as well.

D. Stimulation of endogenous cardiomyocyte proliferation
i. The normal turnover of cardiomyocytes can be stimulated as a therapeutic strategy to achieve regeneration.

ii. Endogenous cardiomyocyte proliferation can be enhanced by manipulation of cell cycle regulators, by growth factors acting through cell surface receptors, or through the transfer of nucleic acids acting intracellularly.

5. Important questions remaining to be answered
A. Identify mechanisms of endogenous cardiomyocyte renewal in mammals as a target for therapy, including mechanisms of cardiomyocyte proliferation and characterization of populations of proliferative cardiomyocytes.

B. Define the relative roles of progenitor cell differentiation versus cardiomyocyte proliferation in regenerating the injured myocardium.

C. Unveil mechanism(s) of benefit deriving from cell-based therapy, including the contribution of new cardiomyocytes, angiogenesis, anti-inflammatory actions, antifibrotic actions, antiapoptotic actions, or other effects.

D. Define the paracrine mechanisms or host immune response signals that mediate many of the beneficial effects of cell therapy.

E. Improve the efficiency of cell therapy with regard to modes of delivery, enhancement of engraftment, and differentiation.

F. Explore new therapeutic options that provide the same beneficial effects as cellular transplantation through exosomes, selected paracrine factors, or induction of the innate and adaptive sterile immune responses in the heart.

G. Define the risk/benefit aspects for genetically modified stem cells, pluripotent stem cell–based therapies, and cell combination strategies.

SOURCES OF FUNDING
Work by Dr Bolli was supported by grants from the National Institutes of Health (NIH; HL-113530 and HL-78825). Research in Dr Braun’s laboratory was funded mainly by the Max Planck Society, Deutsche Forschungsgemeinschaft, German Bundesministerium für Bildung und Forschung ERA-CVD, Deutsches Zentrum für Herz- und Kreislaufforschung, Deutsches Zentrum für Lungenforschung, and Foundation Leducq (Cardiostemnet). The work of Dr Eschenhagen in this field was supported by research grants from the German Center for Cardiovascular Research, German Ministry of Research and Education, European Research Council (ERC-AG IndivuHeart), German Research Foundation (Es 88/12-1), British Heart Foundation (Regenerative Medicine Center), and European Union (EU FP7 Biodesign). Work by Dr Field was supported by a grant from the NIH (HL132927). Work by Dr Freischmann was supported by grants from Deutsche Forschungsgemeinschaft (FL 2767/2-2 and Research Training Group 1873). Work by Dr Giacca was supported by grants from the Leducq Foundation Transatlantic Network of Excellence (14CVD04) and Italian Ministry of Health (RF-2011-02348164). Work by Dr Hare was funded by grants from the NIH/National Heart, Lung, and Blood Institute (R01 HL107110, 1R01HL134558-01, 4R01HL084275-10, and 5R01HL116899-04); National Heart, Lung, and Blood Institute (HHSN268201600012I); the NIH CCTRN (4UM1HL113460-05); NIH/National Cancer Institute (5R01CA136387-07); and Marcus Foundation, Inc (grants 2164 and 2248). Work by Dr Lee was funded by grants from the NIH (HL119230 and HL117986) and a Leducq Foundation Transatlantic Network of Excellence (14CVD04). Work by Dr Marbán was supported by grants from the NIH (R01HL124074-01), Department of Defense (PR150620), and California Institute for Regenerative Medicine (RB4-06215). Work by Dr Martin was supported by grants from the NIH (DE 023177, HL 127717, HL 130804, and HL 118761), Vivian L. Smith Foundation, and LeDucq Foundation Transatlantic Networks of Excellence in Cardiovascular Research Award (14CVD01). Work by Dr Murry was supported by grants from the NIH (P01HL094374, P01GM081619, and R01HL12836) and a grant from the Fondation Leducq Transatlantic Network of Excellence. Work by Dr Riley was supported by grants from the British Heart Foundation (RG/13/9/30269 and CH/11/1/28798) and BHF Oxbridge Regenerative Medicine Center (RM/13/3/30159). Work by Dr Sadek was supported by grants from the NIH (R01HL115275 and R01HL131778), National Aeronautics and Space Administration (NNX-15AE06G), American Heart Association (16EIA27740034), and Cancer Prevention and Research Institute of Texas (RP160520). Work by Dr Sussman was supported by grants from the NIH (R01HL115275 and R01HL131778), National Institutes of Health Lung, and Blood Institute (R01HL117163, 4P01HL085577, and R01HL122525) and an award from the Fondation Leducq. Work by Dr Hill was supported by grants from the NIH (HL-120732, HL-126012, HL-128215), American Heart Association (14FRN20510023, 14FRN20670003), Fondation Leducq (11CVD04), and Cancer Prevention and Research Institute of Texas (RP110468P3). Work by Dr Houser was supported by a grant from the NIH (HL33921).

DISCLOSURES
Dr Eschenhagen is cofounder of EHT-Technologies GmbH, a company providing instrumentation for the generation of engineered heart tissue. Dr Freischmann is a stockholder in Axiogenesis. Dr Frisén is cofounder of and has significant ownership in Spatial Transcriptomics AB. Dr Hare is a stockholder in Vestion, Inc, Heart Genomics, Biscayne Pharma, and Longeveron, LLC. Dr Lee is a consultant to Mesoblast and founder of ProteoThera. Dr Marbán has significant ownership in Capricor. Dr Murry is a scientific founder and equity holder.
in BEAT Biotherapeutics. Dr Riley a cofounder of OxStem Cardio, an Oxford University spinoff that seeks to exploit therapeutic strategies stimulating endogenous repair in cardiovascular regenerative medicine. Dr Ruiz-Lozano is a shareholder of RegenCor Inc. Dr Sussman is cofounder and chief scientific officer for Cardiocrine Inc and holds a significant interest in the company. The other authors report no conflicts.

**AFFILIATIONS**

From Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany (T.E.); DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (T.E.) and partner site Rhein/Main, Bad Nauheim, Germany (T.B.); Institute of Molecular Cardiology, University of Louisville, Louisville, KY (R.B.); Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (T.B.); Department of Internal Medicine II, University of Giessen, Germany (T.B.); German Center for Lung Research (DZHK), Giessen/Marburg Bad Nauheim, Bad Nauheim, Germany (T.B.); Kranert Institute of Cardiology and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis (L.J.F.); Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany (B.K.F.); Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden (J.F.M.); International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy (M.G.); Donald Soffer Endowed Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (J.F.M.); Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, College of Medicine, Houston, TX (J.F.M.); Department of Cardiology, Institute of Physiology, University of Bonn, Germany (T.E.); Institute of Molecular Cardiology, Hamburg/Kiel/Lübeck, Hamburg, Germany (T.E.); University of Bonn, Germany (T.E.); Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany (T.E.); Institute of Molecular Cardiology, Hamburg/Kiel/Lübeck, Hamburg, Germany (T.E.) and partner site Rhein/Main, Bad Nauheim, Germany (T.E.); Institute of Molecular Cardiology, Hamburg/Kiel/Lübeck, Hamburg, Germany (T.E.) and partner site Rhein/Main, Bad Nauheim, Germany (T.E.); Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany (T.E.); Institute of Molecular Cardiology, Hamburg/Kiel/Lübeck, Hamburg, Germany (T.E.) and partner site Rhein/Main, Bad Nauheim, Germany (T.E.); Institute of Molecular Cardiology, Hamburg/Kiel/Lübeck, Hamburg, Germany (T.E.) and partner site Rhein/Main, Bad Nauheim, Germany (T.E.);

**FOOTNOTES**

Eschenhagen et al


29. Jason SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, Lee JC, Doran RM, Nikitin AY, Fleischmann BK, Kotlikoff M. c-kit+ Precur-


33. Keith MC, Boll R. “String theory” of c-kit+pos cardiac cells: a new para-


38. Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, Bernstein I, Zheng Y, Murry CE. Generating highly-purified cardiac and en-

39. Nussbaumb J, Minami E, Laflamme MA, Varela D, Carrabba M, Bolli R. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myo-


41. Jiang KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Ent-


44. Palpant NJ, Pabon L, Friedman CE, Roberts M, Hadland B, Zaunbrecher RJ, Bernstein I, Zheng Y, Murry CE. Generating highly-purified cardiac and en-

45. Nussbaumb J, Minami E, Laflamme MA, Varela D, Carrabba M, Bolli R. Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myo-

Cardiomyocyte Regeneration: A Consensus Statement


60. Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96:110–118. doi: 10.1161/01.RES.0000152326.91223.4F.

Cardiomyocyte Regeneration: A Consensus Statement


Circulation. published online July 6, 2017;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2017/07/06/CIRCULATIONAHA.117.029343

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/