Exercise Training and Atrial Fibrillation:
Further Evidence for the Importance of Lifestyle Change

Running title: Elliott et al.; Exercise training and AF

Adrian D. Elliott, PhD; Rajiv Mahajan, MD, PhD; Rajeev K. Pathak, MBBS, PhD;
Dennis H. Lau, MBBS, PhD; Prashanthan Sanders, MBBS, PhD

Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute,
University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia

Address for Correspondence:
Prashanthan Sanders, MBBS, PhD
Centre for Heart Rhythm Disorders
Department of Cardiology
Royal Adelaide Hospital
Adelaide, 5000, Australia
Tel: +61882222723
Fax: +61882222722
E-mail: prash.sanders@adelaide.edu.au

Journal Subject Terms: Atrial Fibrillation; Arrhythmias; Cardiovascular Disease; Exercise; Lifestyle

Key words: Editorial; exercise physiology; exercise training; atrial fibrillation
Atrial fibrillation (AF) is the most common clinical arrhythmia with a global burden that has increased progressively, contributing to rising hospitalizations and substantial healthcare demands. Although aging is an important contributor to the rising AF prevalence, key mechanistic promoters of AF include modifiable risk factors such as obesity, hypertension, diabetes mellitus and obstructive sleep apnea.

Exercise training and physical activity improves the management of hypertension and diabetes, assists in weight management and improves cardiac structure and function. Surprisingly, despite these favorable modifications of arrhythmogenic risk factors, greater physical activity only modestly reduces incident AF rates. At the extreme end of the exercise spectrum, endurance athletes who engage in the greatest volume of exercise training, encounter a risk of AF that rises significantly. Cohort studies provide estimates of AF risk in the endurance athlete population that range from a two- to seven-fold elevation in incident AF risk. Until recently, the AF and exercise story has stopped here; that physically active individuals experience a small reduction in risk but doing too much increases arrhythmia risk considerably, consistent with a classic J-shaped phenomenon. Perhaps in part due to these findings and a misguided fear of promoting arrhythmias, there is a scarcity of data regarding the effects of exercise training in patients with non-permanent AF.

In the current issue of Circulation, Malmo et al. provide the results of their randomized controlled trial, in which they compared a popular form of high-intensity exercise, aerobic interval training (AIT), with a control group who were not prescribed exercise. The authors’ randomised 51 AF patients referred for catheter ablation, to exercise or no-exercise over 12 weeks, and recorded AF burden from implantable loop recorders as the primary study outcome. Notably, the authors demonstrate a significant reduction in AF burden in the exercise group,
where the mean time in AF declined from 8.1 to 4.8%, with no significant change in the control group. Of the exercise group, 38% of patients experienced a decline in their arrhythmia burden compared to only 20% of the control group. Increased AF burden was more common in the control patients (64%) than in the exercise group (12%). Importantly, patients in the exercise group experienced fewer and less severe symptoms following the intervention, with no concomitant change in the control group. Compared to controls, patients randomised to exercise also increased their peak oxygen consumption (VO₂peak), cardiac function and quality of life, whilst improving body mass index and blood lipids.

These are important and timely findings that are consistent with data from our group showing that gains in cardiorespiratory fitness are associated with significant abatement of arrhythmia burden both with and without rhythm control strategies. In our cohort of over 300 symptomatic, overweight and obese AF patients, each 1-MET incremental gain in fitness corresponded to a 9% reduction in AF recurrence over a 4-year follow-up. Taken together, these two studies provide empirical support for exercise training and physical activity as a key element in the treatment of patients with AF. Importantly for those who remain concerned about potential arrhythmogenic effects of exercise, there is no evidence to suggest that exercise training within current guidelines exacerbates AF. This should not be surprising given the large differences in the dose of exercise engaged in by an AF patient compared to that practiced by the endurance athletes in which AF risk appears to be higher.

We commend the authors on their study, although there are several subtle points that should be raised to place these findings into context. Firstly, as highlighted in their discussion, patients randomized in this study were typically healthy with mild risk factor prevalence. As such, exercise training only modestly reduced BMI and had no significant impact on blood
pressure, MRI-derived left atrial size or inflammation, all of which are independent arrhythmogenic risk factors. In comparison, we showed that long-term improvements in fitness resulted in significantly reduced blood pressure, inflammation and left atrial size, whilst also improving blood lipid status and glycemic control. The majority of these risk factors were higher at baseline in our patients compared to those enrolled in the Malmo et al study. On the one hand, it is likely that the benefits of exercise may be understated within this reasonably healthy cohort, given its positive effect on risk factor profile. On the other hand, it is encouraging that exercise exerts anti-arrhythmic benefits in the absence of large changes in other risk factors, thus suggesting an independent effect. Secondly, this study included only a 12-week intervention with 4-week follow-up period. Despite the favorable findings over this duration, it cannot be ascertained whether prescribing exercise training presents an effective long-term strategy in the treatment of AF.

Previous studies including lifestyle interventions with weight loss have shown clinically significant benefits in AF patients over a longer-term follow-up. This leaves open the question of whether supervised exercise training and its benefits can be maintained similarly beyond the 16-week period. In the post HF-ACTION era, there has been increasing skepticism regarding the efficacy of supervised exercise training as an achievable long-term strategy for the management of cardiovascular disease. In the HF-ACTION trial, initial gains from supervised exercise training over 3-months were diluted by a lack of adherence following the supervised intervention, thus resulting in only modest benefits at final follow-up. Future studies in patients with AF require longer-term interventions and follow-up as well as alternative strategies for maintaining appropriate activity levels and exercise habits outside of the clinic.

The study of Malmo et al also provides some mechanistic insight into the benefit of
exercise training for patients with AF. These findings show that exercise reduces AF burden in the absence of significant changes in left atrial size, blood pressure, and inflammation. Although BMI and blood lipids were modestly improved, the primary mechanism(s) driving the benefit of exercise may not be apparent from these measures alone and instead may come from direct effects on autonomic factors and/or intrinsic electrophysiological measures that require invasive procedures for assessment. In animal and human studies, AF risk factors such as hypertension\(^1\)\(^6\) and obesity\(^1\)\(^7\) are associated with atrial remodeling, characterised by conduction slowing, low atrial voltages and increased interstitial fibrosis. A key question that remains to be answered is whether exercise training can independently reverse atrial remodeling or whether its effects are mediated via other pathways.

If exercise is to be accepted into the management strategy for patients with symptomatic AF, can we optimize the prescription? In this study, patients underwent AIT, in which they engage in four 4-minute bouts of high-intensity (commonly 85-95% peak heart rate) aerobic exercise, each interspersed by 3-minutes of active recovery. Previous studies from this center have shown the benefits of this form of exercise, for heart failure\(^1\)\(^8\) and metabolic syndrome\(^1\)\(^9\). In our clinic, we prescribe exercise up to 85% of peak heart rate for a total duration of 200 minutes per week, a strategy that leads to greater AF freedom in those who make significant gains in cardiorespiratory fitness\(^1\)\(^2\). In the absence of comparative data of training modalities for AF patients, current recommendations should focus on prescribing forms of aerobic exercise that patients enjoy and are most likely to adhere to, rather than being overly specific. However, the current evidence supports the efficacy of aerobic exercise activities up to, or close to, peak heart rate if appropriate and achievable to the patient (\textbf{Figure 1}). Further studies will hopefully contribute to defining the optimal aerobic exercise ‘dose’ for patients with AF and also
establishing the role of resistance training within the exercise prescription.

Although the current study contributes long overdue data regarding exercise training in patients with AF, we should also be mindful of the patients who did not meet the enrolment criteria in this study. Malmo et al enrolled 51 patients from 313 screened for inclusion. Approximately 40% met the inclusion criteria of symptomatic, non-permanent AF referred for first AF ablation, thus leaving 188 patients (60%) excluded. Previous studies have shown the benefits of exercise training on cardiorespiratory fitness and quality of life for those patients with permanent AF. However, we are left to postulate on whether exercise can provide specific benefits to the patients who are not candidates for AF ablation or who are undergoing repeat AF ablation. These patients likely include those with a more advanced atrial substrate adding complexity to the arrhythmia management.

For those undergoing initial catheter ablation, we have also shown that weight-loss and aggressive risk factor management prior to initial catheter ablation leads to a significant reduction in AF recurrences over a 3 to 4 year follow-up period, when compared with usual care controls. This raises the prospect that exercise training prescribed within the peri-ablation period, may offer similar benefits by reducing long-term post-ablation arrhythmia recurrences, thus improving patient outcomes whilst simultaneously reducing healthcare demands and exposure to multiple procedures. Although this question is not addressed in the current study, future RCT’s are warranted to provide data regarding how exercise training may modulate ablation outcomes.

The results from this study require confirmation by larger trials with longer follow-up. However, this study presents an exciting development for the treatment of AF and adds to the rising wave of evidence showing that in many patients, lifestyle change, including weight
management and exercise alongside risk factor management, provides an effective front-line strategy to reduce AF symptoms and provide a potent anti-arrhythmic benefit. We encourage clinicians to promote exercise, amongst other lifestyle modifications, to their patients in a bid (i) to dampen the burden of AF and its associated symptoms, and (ii) to decrease the heavy reliance on pharmaceutical and/or interventional strategies for arrhythmia management.

Funding Sources: Dr Mahajan is supported by the Leo J. Mahar Lectureship from the University of Adelaide and by an Early Career Fellowship jointly funded by the National Health and Medical Research Council of Australia and the National Heart Foundation of Australia. Dr Pathak is supported by an Early Career Fellowship funded by the National Health and Medical Research Council of Australia. Dr Lau is supported by a Robert J. Craig Lectureship from the University of Adelaide. Dr Sanders is supported by a Practitioner Fellowship from the National Health and Medical Research Council of Australia and by the National Heart Foundation of Australia.

Conflict of Interest Disclosures: Dr Sanders reports having served on the advisory board of Biosense-Webster, Medtronic, CathRx and St Jude Medical. Dr Sanders reports having received lecture and/or consulting fees from Biosense-Webster, Medtronic, St Jude Medical, and Boston Scientific. Dr Sanders reports having received research funding from Medtronic, St Jude Medical, Boston Scientific, Biotronik and Sorin.

References:

7. Drea N, Wolk A, Jensen-Urstad M, Larsson SC. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. *Heart*. 2014;100:1037-1042.

Figure Legend:

Figure 1. Overview of existing knowledge regarding exercise training and atrial fibrillation.
Benefits of Exercise Training in AF

- **Frequency:** 3-5 days/wk
- **Intensity:** ≤95% peak HR
- **Time:** 120 to 200 Min/Wk
- **Type:** Aerobic Exercise +/- Resistance Training

Short-Term (<6 months)
- Reduced AF Burden
- Reduced Symptom Severity
 (Malmo et al., 2015)

Long-Term (>4 years)
- Increased AF freedom
- Reduced Symptom Severity
 (Pathak et al., 2015)

Potential Mechanisms
- Reversed atrial remodeling
- Weight loss
- Improved BP control
- Improved glycemic control
- Reduced Inflammation
- Improved autonomic tone
Exercise Training and Atrial Fibrillation: Further Evidence for the Importance of Lifestyle Change
Adrian D. Elliott, Rajiv Mahajan, Rajeev K. Pathak, Dennis H. Lau and Prashanthan Sanders

Circulation, published online January 5, 2016;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2016/01/04/CIRCULATIONAHA.115.020800

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/