
A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions

Developed in Collaboration With the American College of Emergency Physicians

PCI WRITING COMMITTEE*
Glenn N. Levine, MD, FACC, FAHA, Chair†
Eric R. Bates, MD, FACC, FAHA, FSCAI, Vice Chair*†
James C. Blankenship, MD, FACC, FAHA, FSCAI, Vice Chair*‡
Steven R. Bailey, MD, FACC, FSCAI*‡
John A. Bittl, MD, FACC†
Bojan Cercek, MD, FACC, FAHA†
Charles E. Chambers, MD, FACC, FSCAI†
Stephen G. Ellis, MD, FACC*†
Robert A. Guyton, MD, FACC§
Steven M. Hollenberg, MD, FACC*†
Umesh N. Khot, MD, FACC*†
Richard A. Lange, MD, FACC, FAHA†
Laura Mauri, MD, MSc, FACC, FSCAI*†
Roxana Mehran, MD, FACC, FAHA, FSCAI*†
Issam D. Moussa, MD, FACC, FAHA, FSCAI†
Debabrata Mukherjee, MD, FACC, FAHA, FSCAI†
Henry H. Ting, MD, FACC, FAHA†

STEMI WRITING COMMITTEE*
Patrick T. O’Gara, MD, FACC, FAHA, Chair†
Frederick G. Kushner, MD, FACC, FAHA, FSCAI, Vice Chair†
Ralph G. Brindis, MD, MPH, MACC, FSCAI, FAHA$§
Donald E. Casey, Jr, MD, MPH, MBA, FAHA∥
Mina K. Chung, MD, FACC, FAHA*†
James A. de Lemos, MD, FACC*†
Deborah B. Diercks, MD, MS†
James C. Fang, MD, FACC, FAHA*†
Barry A. Franklin, PhD, FAHA†
Christopher B. Granger, MD, FACC, FAHA*†
Harlan M. Kruxholz, MD, SM, FACC, FAHA*†
Jane A. Linderbaum, MS, CNP-BC†
David A. Morrow, MD, MPH, FACC, FAHA*†
L. Kristin Newby, MD, H, MHS, FACC, FAHA*†
Joseph P. Ornato, MD, FACC, FAHA, FACP, FACEP*†
Narith Ou, PharmD†
Martha J. Radford, MD, FACC, FAHA†
Jacqueline E. Tamis-Holland, MD, FACC, FSCAI†
Carl L. Tommaso, MD, FACC, FAHA, MScAI†
Cynthia M. Tracy, MD, FACC, FAHA†
Y. Joseph Woo, MD, FACC, FAHA†
David X. Zhao, MD, FACC*†
ACC/AHA TASK FORCE MEMBERS

Jonathan L. Halperin, MD, FACC, FAHA, Chair
Glenn N. Levine, MD, FACC, FAHA, Chair-Elect
Jeffrey L. Anderson, MD, FACC, FAHA, Immediate Past Chair

Nancy M. Albert, PhD, RN, FAHA
Sana M. Al-Khatib, MD, MHS, FACC, FAHA
Kim K. Birtcher, PharmD, MS, AACC
Biykem Bozkurt, MD, PhD, FACC, FAHA
Ralph G. Brindis, MD, MPH, MACC
Joaquin E. Cigarroa, MD, FACC
Lesley H. Curtis, PhD, FAHA
Lee A. Fleisher, MD, FACC, FAHA
Federico Gentile, MD, FACC
Samuel Gidding, MD, FAHA
Mark A. Hlatky, MD, FACC
John Ikonomidis, MD, PhD, FAHA
Jose Joglar, MD, FACC, FAHA
Richard J. Kovacs, MD, FACC, FAHA
E. Magnus Ohman, MD, FACC
Susan J. Pressler, PhD, RN, FAHA
Frank W. Sellke, MD, FACC, FAHA
Win-Kuang Shen, MD, FACC, FAHA
Duminda N. Wijeysundera, MD, PhD

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendixes 1 and 2 for detailed information.

†ACC/AHA Representative.
§SCAI Representative.
¶ACC/AHA Task Force on Clinical Practice Guidelines Liaison.
‖ACP Representative.
¶Former Task Force member; current member during the writing effort.

This document was approved by the American College of Cardiology Board of Trustees and Executive Committee, the American Heart Association Science Advisory and Coordinating Committee, and the Society of Cardiovascular Angiography and Interventions in September 2015, and the American Heart Association Executive Committee in October 2015.

The online-only Comprehensive RWI Data Supplement table is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000336/-/DC1.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000336/-/DC2.

This article has been copublished in *Journal of the American College of Cardiology* and *Catheterization and Cardiovascular Interventions*.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.acc.org), the American Heart Association (my.americanheart.org), and the Society for Cardiovascular Angiography and Interventions (www.scai.org). A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright
Levine GN, et al.
2015 ACC/AHA/SCAI Focused Update on Primary PCI

Permissions Request Form” appears on the right side of the page.

(Circulation. 2015;000:000–000.)

© 2015 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Society for Cardiovascular Angiography and Interventions.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0000000000000336
Table of Contents

Preamble .. 5
1. Introduction ... 8
 1.1. Methodology and Evidence Review .. 8
 1.2. Organization of the GWC .. 8
 1.3. Review and Approval .. 8
2. Culprit Artery–Only Versus Multivessel PCI .. 9
3. Aspiration Thrombectomy .. 10
Appendix 1. Author Relationships With Industry and Other Entities (Relevant) ... 13
Appendix 2. Author Relationships With Industry and Other Entities (Relevant) ... 16
 Appendix 3. Reviewer Relationships With Industry and Other Entities (Relevant)—2015 Focused Update on
 Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction (Combined
 Peer Reviewers From 2011 PCI and 2013 STEMI Guidelines) ... 20
References ... 26
Preamble

To ensure that guidelines reflect current knowledge, available treatment options, and optimum medical care, existing clinical practice guideline recommendations are modified and new recommendations are added in response to new data, medications or devices. To keep pace with evolving evidence, the American College of Cardiology (ACC) / American Heart Association (AHA) Task Force on Clinical Practice Guidelines (“Task Force”) has issued this focused update to revise guideline recommendations on the basis of recently published data. This update is not based on a complete literature review from the date of previous guideline publications, but it has been subject to rigorous, multilevel review and approval, similar to the full guidelines. For specific focused update criteria and additional methodological details, please see the ACC/AHA guideline methodology manual (1).

Modernization

In response to published reports from the Institute of Medicine (2,3) and ACC/AHA mandates (4-7), processes have changed leading to adoption of a “knowledge byte” format. This entails delineation of recommendations addressing specific clinical questions, followed by concise text, with hyperlinks to supportive evidence. This approach better accommodates time constraints on busy clinicians, facilitates easier access to recommendations via electronic search engines and other evolving technology (e.g., smart phone apps), and supports the evolution of guidelines as “living documents” that can be dynamically updated as needed.

Intended Use

Practice guidelines provide recommendations applicable to patients with or at risk of developing cardiovascular disease. The focus is on medical practice in the United States, but guidelines developed in collaboration with other organizations may have a broader target. Although guidelines may inform regulatory or payer decisions, they are intended to improve quality of care in the interest of patients.

Class of Recommendation and Level of Evidence

The Class of Recommendation (COR) and Level of Evidence (LOE) are derived independently of one another according to established criteria. The COR indicates the strength of recommendation, encompassing the estimated magnitude and certainty of benefit of a clinical action in proportion to risk. The LOE rates the quality of scientific evidence supporting the intervention on the basis of the type, quantity, and consistency of data from clinical trials and other sources (Table 1) (1,7,8).

Relationships With Industry and Other Entities

The ACC and AHA sponsor the guidelines without commercial support, and members volunteer their time. The Task Force zealously avoids actual, potential, or perceived conflicts of interest that might arise through
relationships with industry or other entities (RWI). All Guideline Writing Committee (GWC) members and reviewers are required to disclose current industry relationships or personal interests from 12 months before initiation of the writing effort. Management of RWI involves selecting a balanced GWC and assuring that the chair and a majority of committee members have no relevant RWI (Appendixes 1 and 2). Members are restricted with regard to writing or voting on sections to which their RWI apply. For transparency, members’ comprehensive disclosure information is available online (http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000336/-/DC1). Comprehensive disclosure information for the Task Force is available at http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/guidelines-and-documents-task-forces. The Task Force strives to avoid bias by selecting experts from a broad array of backgrounds representing different geographic regions, sexes, ethnicities, intellectual perspectives/biases, and scopes of clinical practice, and by inviting organizations and professional societies with related interests and expertise to participate as partners or collaborators.

Related Issues

For additional information pertaining to the methodology for grading evidence, assessment of benefit and harm, shared decision making between the patient and clinician, structure of evidence tables and summaries, standardized terminology for articulating recommendations, organizational involvement, peer review, and policies for periodic assessment and updating of guideline documents, we encourage readers to consult the ACC/AHA guideline methodology manual (1).

The recommendations in this focused update represent the official policy of the ACC and AHA until superseded by published addenda, statements of clarification, focused updates, or revised full-text guidelines. To ensure that guidelines remain current, new data are reviewed biannually to determine whether recommendations should be modified. In general, full revisions are posted in 5-year cycles (1).

Jonathan L. Halperin, MD, FACC, FAHA
Chair, ACC/AHA Task Force on Clinical Practice Guidelines
Table 1. Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care* (Updated August 2015)

<table>
<thead>
<tr>
<th>CLASS (STRENGTH) OF RECOMMENDATION</th>
<th>LEVEL (QUALITY) OF EVIDENCE‡</th>
</tr>
</thead>
</table>
| **CLASS I (STRONG)**
Benefit >> Risk
Suggested phrases for writing recommendations:
- Is recommended
- Is indicated/useful/effective/beneficial
- Should be performed/administered/other
- Comparative-Effectiveness Phrases†:
 - Treatment/strategy A is recommended/indicated in preference to treatment B
 - Treatment A should be chosen over treatment B | **LEVEL A**
High-quality evidence‡ from more than 1 RCT
Meta-analyses of high-quality RCTs
One or more RCTs corroborated by high-quality registry studies |
| **CLASS IIa (MODERATE)**
Benefit >> Risk
Suggested phrases for writing recommendations:
- Is reasonable
- Can be useful/effective/beneficial
- Comparative-Effectiveness Phrases†:
 - Treatment/strategy A is probably recommended/indicated in preference to treatment B
 - It is reasonable to choose treatment A over treatment B | **LEVEL B-R**
(Randomized)
Moderate-quality evidence‡ from 1 or more RCTs
Meta-analyses of moderate-quality RCTs |
| **CLASS IIb (WEAK)**
Benefit ≥ Risk
Suggested phrases for writing recommendations:
- May/might be reasonable
- May/might be considered
- Usefulness/effectiveness is unknown/unclear/uncertain or not well established | **LEVEL B-NR**
(Nonrandomized)
Moderate-quality evidence‡ from 1 or more well-designed, well-executed nonrandomized studies, observational studies, or registry studies
Meta-analyses of such studies |
| **CLASS III: No Benefit (MODERATE)**
Benefit = Risk
(Generally, LOE A or B use only)
Suggested phrases for writing recommendations:
- Is not recommended
- Is not indicated/useful/effective/beneficial
- Should not be performed/administered/other | **LEVEL C-LD**
(Limited Data)
Randomized or nonrandomized observational or registry studies with limitations of design or execution
Meta-analyses of such studies
Physiological or mechanistic studies in human subjects |
| **CLASS III: Harm (STRONG)**
Risk > Benefit
Suggested phrases for writing recommendations:
- Potentially harmful
- Causes harm
- Associated with excess morbidity/mortality
- Should not be performed/administered/other | **LEVEL C-EO**
(Expert Opinion)
Consensus of expert opinion based on clinical experience |

COR and LOE are determined independently (any COR may be paired with any LOE).
A recommendation with LOE C does not imply that the recommendation is weak. Many important clinical questions addressed in guidelines do not lend themselves to clinical trials. Although RCTs are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.
* The outcome or result of the intervention should be specified (an improved clinical outcome or increased diagnostic accuracy or incremental prognostic information).
† For comparative-effectiveness recommendations (COR I and IIa; LOE A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.
‡ The method of assessing quality is evolving, including the application of standardized, widely used, and preferably validated evidence grading tools; and for systematic reviews, the incorporation of an Evidence Review Committee.
COR indicates Class of Recommendation; EO, expert opinion; LD, limited data; LOE, Level of Evidence; NR, nonrandomized; R, randomized; and RCT, randomized controlled trial.
1. Introduction

The scope of this focused update is limited to considerations relevant to multivessel percutaneous coronary intervention (PCI) and thrombus aspiration in patients with ST-elevation myocardial infarction (STEMI) undergoing primary PCI.

1.1. Methodology and Evidence Review

Clinical trials presented at the major cardiology organizations’ 2013 to 2015 annual scientific meetings and other selected reports published in a peer-reviewed format through August 2015 were reviewed by the 2011 PCI and 2013 STEMI GWCs and the Task Force to identify trials and other key data that might affect guideline recommendations. The information considered important enough to prompt updated recommendations is included in evidence tables in the Online Data Supplement (http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000336/-/DC2).

Consult the full-text versions of the 2011 PCI and 2013 STEMI guidelines (9,10) for recommendations in clinical areas not addressed in the focused update. The individual recommendations in this focused update will be incorporated into future revisions or updates of the full-text guidelines.

1.2. Organization of the GWC

For this focused update, representative members of the 2011 PCI and 2013 STEMI GWCs were invited to participate. Members were required to disclose all RWI relevant to the topics under consideration. The entire membership of both GWCs voted on the revised recommendations and text. The latter group was composed of experts representing cardiovascular medicine, interventional cardiology, electrophysiology, heart failure, cardiac surgery, emergency medicine, internal medicine, cardiac rehabilitation, nursing, and pharmacy. The GWC included representatives from the ACC, AHA, American College of Physicians, American College of Emergency Physicians, and Society for Cardiovascular Angiography and Interventions (SCAI).

1.3. Review and Approval

This document was reviewed predominantly by the prior reviewers from the respective 2011 and 2013 guidelines. These included 8 official reviewers jointly nominated by the ACC and AHA, 4 official/organizational reviewers nominated by SCAI, and 25 individual content reviewers. Reviewers’ RWI information was distributed to the GWC and is published in this document (Appendix 3).

This document was approved for publication by the governing bodies of the ACC, the AHA, and the SCAI and was endorsed by the (TBD).
2. Culprit Artery–Only Versus Multivessel PCI

(See Section 5.2.2.2 of 2011 PCI guideline and Section 4.1.1 of 2013 STEMI guideline for additional recommendations.)

<table>
<thead>
<tr>
<th>2013 Recommendation</th>
<th>2015 Focused Update Recommendation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class III: Harm</td>
<td>PCI of a noninfarct artery may be considered in selected patients with STEMI and multivessel disease who are hemodynamically stable, either at the time of primary PCI or as a planned staged procedure (11-24). (Level of Evidence: B-R)</td>
<td>Modified recommendation (changed class from “III: Harm” to “IIb” and expanded time frame in which multivessel PCI could be performed).</td>
</tr>
</tbody>
</table>

Class IIb

PCI should not be performed in a noninfarct artery at the time of primary PCI in patients with STEMI who are hemodynamically stable (11-13). *(Level of Evidence: B)*

PCI indicates percutaneous coronary intervention; and STEMI, ST-elevation myocardial infarction.

Approximately 50% of patients with STEMI have multivessel disease (25,26). PCI options for patients with STEMI and multivessel disease include: 1) culprit artery–only primary PCI, with PCI of nonculprit arteries only for spontaneous ischemia or intermediate- or high-risk findings on predischarge noninvasive testing; 2) multivessel PCI at the time of primary PCI; or 3) culprit artery–only primary PCI followed by staged PCI of nonculprit arteries. Observational studies, randomized controlled trials (RCTs), and meta-analyses comparing culprit artery–only PCI with multivessel PCI have reported conflicting results (11,12,14-24,27,28), likely because of differing inclusion criteria, study protocols, timing of multivessel PCI, statistical heterogeneity, and variable endpoints (Data Supplement).

Previous clinical practice guidelines recommended against PCI of nonculprit artery stenoses at the time of primary PCI in hemodynamically stable patients with STEMI (9,10). Planning for routine, staged PCI of noninfarct artery stenoses on the basis of the initial angiographic findings was not addressed in these previous guidelines, and noninfarct artery PCI was considered only in the limited context of spontaneous ischemia or high-risk findings on predischarge noninvasive testing. The earlier recommendations were based in part on safety concerns, which included increased risks for procedural complications, longer procedural time, contrast nephropathy, and stent thrombosis in a prothrombotic and proinflammatory state (9,10), and in part on the findings from many observational studies and meta-analyses of trends toward or statistically significant worse outcomes in those who underwent multivessel primary PCI (12-16,21-23).

Four RCTs have since suggested that a strategy of multivessel PCI, either at the time of primary PCI or as a planned, staged procedure, may be beneficial and safe in selected patients with STEMI (17,18,24,27) (Data Supplement). In the PRAMI (Preventive Angioplasty in Acute Myocardial Infarction) trial (n=465) (24), the composite primary outcome of cardiac death, nonfatal myocardial infarction (MI), or refractory angina occurred in 21 patients (9%) treated with multivessel primary PCI, compared with 53 patients (22%) treated with culprit artery–only PCI (HR: 0.35; 95% CI: 0.21 to 0.58; p<0.001). In the CvLPRIT (Complete Versus Culprit-Lesion...
Only Primary PCI trial (18), 296 patients were randomized to culprit artery–only or multivessel PCI during the index hospitalization (72% underwent multivessel primary PCI). The composite primary outcome of death, reinfarction, heart failure, and ischemia-driven revascularization at 12 months occurred in 15 patients (10%) who underwent multivessel PCI, compared with 31 patients (21%) receiving culprit artery–only PCI (HR: 0.49; 95% CI: 0.24 to 0.84; p=0.009). In the DANAMI 3 PRIMULTI (Third Danish Study of Optimal Acute Treatment of Patients with ST-segment Elevation Myocardial Infarction) trial (17), the composite primary outcome of all-cause death, nonfatal MI, or ischemia-driven revascularization of nonculprit artery disease occurred in 40 of 314 patients (13%) who underwent multivessel staged PCI guided by angiography and fractional flow reserve before discharge, versus 68 of 313 patients (22%) treated with culprit artery–only PCI (HR: 0.56; 95% CI: 0.38 to 0.83; p=0.004). In the PRAGUE-13 (Primary Angioplasty in Patients Transferred From General Community Hospitals to Specialized PTCA Units With or Without Emergency Thrombolysis) trial (27), 214 patients with STEMI were randomized to staged (3 to 40 days after the index procedure) revascularization of all \(\geq 70\% \) diameter stenosis noninfarct lesions or culprit-only PCI. Preliminary results at 38 months’ mean follow-up showed no between-group differences in the composite primary endpoint of all-cause death, nonfatal MI, and stroke.

On the basis of these findings (17,18,24,27), the prior Class III (Harm) recommendation with regard to multivessel primary PCI in hemodynamically stable patients with STEMI has been upgraded and modified to a Class IIb recommendation to include consideration of multivessel PCI, either at the time of primary PCI or as a planned, staged procedure. The writing committee emphasizes that this change should not be interpreted as endorsing the routine performance of multivessel PCI in all patients with STEMI and multivessel disease. Rather, when considering the indications for and timing of multivessel PCI, physicians should integrate clinical data, lesion severity/complexity, and risk of contrast nephropathy to determine the optimal strategy.

The preceding discussion and recommendations apply to the strategy of routine PCI of noninfarct related arteries in hemodynamically stable patients. Recommendations in the 2013 STEMI guideline with regard to PCI of a non–infarct-related artery at a time separate from primary PCI in patients who have spontaneous symptoms and myocardial ischemia or who have intermediate- or high-risk findings on noninvasive testing (Section 6.3 of that guideline) remain operative.

Although several observational studies (19,20) and a network meta-analysis (13) have suggested that multivessel staged PCI may be associated with better outcome than multivessel primary PCI, there are insufficient observational data and no randomized data at this time to inform a recommendation with regard to the optimal timing of nonculprit vessel PCI. Additional trial data that will help further clarify this issue are awaited. Issues related to the optimal method of evaluating nonculprit lesions (e.g., percent diameter stenosis, fractional flow reserve) are beyond the scope of this focused update.

3. Aspiration Thrombectomy

(See Section 5.5.2 of the 2011 PCI guideline and Section 4.2 of the 2013 STEMI guideline for additional recommendations.)
2011/2013 Recommendation	2015 Focused Update Recommendations	Comments
Class IIa
Manual aspiration thrombectomy is reasonable for patients undergoing primary PCI (29-32). *(Level of Evidence: B)* | **Class IIb**
The usefulness of selective and bailout aspiration thrombectomy in patients undergoing primary PCI is not well established (33-37). *(Level of Evidence: C-LD)* | Modified recommendation (Class changed from “IIa” to “IIb” for selective and bailout aspiration thrombectomy before PCI).

Class III: No Benefit
Routine aspiration thrombectomy before primary PCI is not useful (33-37). *(Level of Evidence: A)* | New recommendation (“Class III: No Benefit” added for *routine* aspiration thrombectomy before PCI).

PCI indicates percutaneous coronary intervention; and LD, limited data.

The 2011 PCI and 2013 STEMI guidelines’ (9,10) Class IIa recommendation for aspiration thrombectomy before primary PCI was based on the results of 2 RCTs (29,31,32) and 1 meta-analysis (30) and was driven in large measure by the results of TAPAS (Thrombus Aspiration During Primary Percutaneous Coronary Intervention in Acute Myocardial Infarction Study), a single-center study that randomized 1,071 patients with STEMI to aspiration thrombectomy before primary PCI or primary PCI only (29,32). Three multicenter trials, 2 of which enrolled significantly more patients than prior aspiration thrombectomy trials, have prompted reevaluation of this recommendation. In the INFUSE-AMI (Intracoronary Abciximab and Aspiration Thrombectomy in Patients With Large Anterior Myocardial Infarction) trial (37) of 452 patients with anterior STEMI due to proximal or mid-left anterior descending occlusion, infarct size was not reduced by aspiration thrombectomy before primary PCI. The TASTE (Thrombus Aspiration During ST-Segment Elevation Myocardial Infarction) trial (n=7,244) incorporated a unique design that allowed randomization within an existing national registry, resulting in enrollment of a remarkably high proportion of eligible patients (34,36). No significant 30-day or 1-year differences were found between the group that received aspiration thrombectomy before primary PCI and the group that received primary PCI only with regard to death, reinfarction, stent thrombosis, target lesion revascularization, or a composite of major adverse cardiac events. The TOTAL (Trial of Routine Aspiration Thrombectomy With PCI Versus PCI Alone in Patients With STEMI) trial randomized 10,732 patients with STEMI to aspiration thrombectomy before primary PCI or primary PCI only (35). Bailout thrombectomy was performed in 7.1% of the primary PCI–only group, whereas the rate of crossover from aspiration thrombectomy before primary PCI to primary PCI only was 4.6%. There were no differences between the 2 treatment groups, either in the primary composite endpoint of cardiovascular death, recurrent MI, cardiogenic shock, or New York Heart Association class IV heart failure at 180 days, or in the individual components of the primary endpoint, stent thrombosis, or target-vessel revascularization. There was a small but statistically significant increase in the rate of stroke in the aspiration thrombectomy group. An updated meta-analysis that included these 3 trials among a total of 17 trials (n=20,960) found no significant reduction in death, reinfarction, or stent thrombosis with routine aspiration thrombectomy.
Aspiration thrombectomy was associated with a small but nonsignificant increase in the risk of stroke (33).

Several previous studies have found that higher thrombus burden in patients with STEMI is independently associated with higher risks of distal embolization, no-reflow phenomenon, transmural myocardial necrosis, major adverse cardiac events, stent thrombosis, and death (38-42). However, subgroup analyses from the TASTE and TOTAL trials did not suggest relative benefit from aspiration thrombectomy before primary PCI in patients with higher thrombus burden or in patients with initial Thrombolysis in Myocardial Infarction (TIMI) flow grade 0-1 or left anterior descending artery / anterior infarction (34,35).

On the basis of the results of these studies, the prior Class IIa recommendation for aspiration thrombectomy has been changed. Routine aspiration thrombectomy before primary PCI is now not recommended (Class III: No Benefit, LOE A). There are insufficient data to assess the potential benefit of a strategy of selective or bailout aspiration thrombectomy (Class IIb, LOE C-LD). “Bailout” aspiration thrombectomy is defined as thrombectomy that was initially unplanned but was later used during the procedure because of unsatisfactory initial result or procedural complication, analogous to the definition of “bailout” glycoprotein IIb/IIIa use.

It should be noted that the preceding recommendations and text apply only to aspiration thrombectomy; no clinical benefit for routine rheolytic thrombectomy has been demonstrated in patients with STEMI undergoing primary PCI (30,43,44).
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction (Percutaneous Coronary Intervention Writing Committee) (November 2014)

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employer/Title</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glenn N. Levine, Chair</td>
<td>Baylor College of Medicine—Professor of Medicine; Director, Cardiac Care Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eric R. Bates, Vice Chair</td>
<td>University of Michigan—Professor of Medicine</td>
<td>• Merck</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>James C. Blankenship, Vice Chair</td>
<td>Geisinger Medical Center—Director of Cardiology and Cardiac Catheterization Laboratories</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Abbott Vascular†</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Steven R. Bailey</td>
<td>University of Texas Medical Center—Professor of Medicine and Radiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John A. Bittl</td>
<td>Munroe Heart—Intervention Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bojan Cercek</td>
<td>Cedars-Sinai Medical Center—Director, Coronary Care Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles E. Chambers</td>
<td>Penn State Milton S. Hershey Medical Center—Professor of Medicine and Radiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen G. Ellis</td>
<td>Cleveland Clinic Foundation—Section Head, Invasive and Interventional Cardiology</td>
<td>• Abbott</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Robert A. Guyton</td>
<td>Emory Clinic, Inc.—Professor and Chief, Division of Cardiothoracic Surgery</td>
<td>• Medtronic†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Steven M. Hollenberg</td>
<td>Cooper Medical School of Rowan University—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Committee Member</td>
<td>Employer/Title</td>
<td>Consultant</td>
<td>Speakers Bureau</td>
<td>Ownership/Bureau or Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational or Other Financial Benefit</td>
<td>Expert Witness</td>
<td>Voting Recusals by Section*</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td>----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Umesh N. Khot</td>
<td>Cleveland Clinic—Vice Chairman, Department of Cardiovascular Medicine</td>
<td>AstraZeneca</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard A. Lange</td>
<td>Texas Tech University Health Sciences Center El Paso—President</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Laura Mauri</td>
<td>Brigham & Women’s Hospital—Associate Professor of Medicine, Harvard Medical School</td>
<td>Medtronic†, St. Jude Medical</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Abbott‡, Boston Scientific‡, Bristol-Myers Squibb‡, Cordis‡, Medtronic Cardiovascular‡, Sanofi-aventis‡</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Roxana Mehran</td>
<td>Columbia University Medical Center—Associate Professor of Medicine; Director, Data Coordinating Analysis Center</td>
<td>Abbott Vascular, Boston Scientific, Janssen (Johnson & Johnson)‡, Merck, Sanofi-aventis‡</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>BMS/Sanofi-aventis‡, Regado, STENTYS‡</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Issam D. Moussa</td>
<td>University of Central Florida College of Medicine—Professor of Medicine; First Coast Cardiovascular Institute—Chief Medical Officer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Debabrata Mukherjee</td>
<td>Texas Tech University—Chief, Cardiovascular Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Henry H. Ting</td>
<td>New York—Presbyterian Hospital, The University Hospital of Columbia and Cornell—Senior Vice President and Chief Quality Officer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Levine GN, et al.
2015 ACC/AHA/SCAI Focused Update on Primary PCI

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \(\geq 5\% \) of the voting stock or share of the business entity, or ownership of \(\geq 5,000 \) of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACC/AHA, a person has a relevant relationship IF: a) the relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) the company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) the person or a member of the person’s household has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the document.

*Writing group members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply.
†No financial benefit.
‡Significant relationship.

ACC indicates American College of Cardiology; AHA, American Heart Association; and SCAI, Society for Cardiovascular Angiography and Interventions.
Appendix 2. Author Relationships With Industry and Other Entities (Relevant)—2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction (ST-Elevation Myocardial Infarction Writing Committee) (February 2014)

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick T. O’Gara, Chair</td>
<td>Harvard Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Frederick G. Kushner, Vice Chair</td>
<td>Tulane University School of Medicine—Clinical Professor of Medicine; Heart Clinic of Louisiana—Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ralph G. Brindis</td>
<td>UCSF Philip R. Lee Institute for Health Policy Studies—Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donald E. Casey, Jr.</td>
<td>Thomas Jefferson College of Population Health—Adjunct Faculty; Alvarez & Marsal IPO4Health—Principal and Founder</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mina K. Chung</td>
<td>Cleveland Clinic Foundation—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Biosense Webster‡</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Boston Scientific‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Medtronic‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• St. Jude‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>James A. de Lemos</td>
<td>UT Southwestern Medical Center—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott Diagnostics†</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Abbott Diagnostics‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deborah B. Diercks</td>
<td>UT Southwestern Medical Center—Audre and Bernard Rapoport Distinguished Chair in Clinical Care and Research; Department of Emergency Medicine—</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*Voting recusals by section: 1 = Heart Failure, 2 = Acute Coronary Syndromes, 3 = Determination of Infarct Viability, 4 = Long-term Management of Acute Myocardial Infarction.
<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>James C. Fang</td>
<td>University of Utah—Cardiovascular Division</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Barry A. Franklin</td>
<td>William Beaumont Hospital—Director, Cardiac Rehabilitation and Exercise Laboratories</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher B. Granger</td>
<td>Duke Clinical Research Institute—Director, Cardiac Care Unit; Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Medtronic Foundation†</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Harlan M. Krumholz</td>
<td>Yale University School of Medicine—Professor of Epidemiology and Public Health</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Johnson & Johnson†</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Jane A. Linderbaum</td>
<td>Mayo Clinic—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David A. Morrow</td>
<td>Harvard Medical School—Professor of Medicine</td>
<td>• Abbott</td>
<td>None</td>
<td>None</td>
<td>• Abbott†</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>L. Kristin Newby</td>
<td>Duke University Medical Center, Division of Cardiology—Professor of Medicine</td>
<td>• Philips</td>
<td>None</td>
<td>None</td>
<td>• Merck†</td>
<td>None</td>
<td>None</td>
<td>2 and 3</td>
</tr>
<tr>
<td>Joseph P. Ornato</td>
<td>Department of Emergency Medicine Virginia Commonwealth University—Professor and Chairman</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Narith Ou</td>
<td>Mayo Clinic—Pharmacotherapy Coordinator, Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Martha J. Radford</td>
<td>NYU Langone Medical Center—Chief Quality</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Committee Member</td>
<td>Employment</td>
<td>Consultant</td>
<td>Speakers Bureau</td>
<td>Ownership/Partnership/Principal</td>
<td>Personal Research</td>
<td>Institutional, Organizational or Other Financial Benefit</td>
<td>Expert Witness</td>
<td>Voting Recusals by Section*</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Jacqueline E. Tamis-Holland</td>
<td>Mount Sinai Saint Luke’s Hospital and The Icahn School of Medicine—Program Director, Interventional Cardiology Fellowship Program</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Carl L. Tommaso</td>
<td>Skokie Hospital—Director of Catheterization Laboratory; NorthShore University HealthSystems—Partner</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cynthia M. Tracy</td>
<td>George Washington University Medical Center—Associate Director, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Y. Joseph Woo</td>
<td>Stanford University—Professor and Chair, Cardiothoracic Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David X. Zhao</td>
<td>Wake Forest Baptist Health—Professor of Medicine, Heart and Vascular Center of Excellence Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>St. Jude‡, Medtronic‡</td>
<td>None</td>
<td>2 and 3</td>
</tr>
</tbody>
</table>

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$5,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACC/AHA, a person has a relevant relationship IF: a) the relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) the company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) the person or a member of the person’s household has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the document.
Dr. Deborah D. Ascheim was not eligible to continue on the writing committee due to her employment by Capricor Therapeutics effective August 2015.

*Writing group members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply.
†Significant relationship.
‡No financial benefit.

ACC indicates American College of Cardiology; AHA, American Heart Association; NYU, New York University; UCSF, University of California San Francisco; and UT, Utah.
Appendix 3. Reviewer Relationships With Industry and Other Entities (Relevant)—2015 Focused Update on Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction (Combined Peer Reviewers From 2011 PCI and 2013 STEMI Guidelines)

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliott M. Antman</td>
<td>Official Reviewer—AHA</td>
<td>Harvard Medical School—Professor of Medicine, Associate Dean for Clinical and Translational Research</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Deepak L. Bhatt</td>
<td>Official Reviewer—AHA</td>
<td>Harvard Medical School—Professor; Interventional Cardiovascular Programs—Executive Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Bristol-Myers Squibb* • Ischemix* • Medtronic* • St. Jude Medical</td>
<td>• Regado Biosciences† None</td>
</tr>
<tr>
<td>Christopher P. Cannon</td>
<td>Official Reviewer—AHA</td>
<td>Harvard Medical School—Professor of Medicine; Brigham and Women’s Hospital—Senior Investigator, TIMI Study Group, Cardiovascular Division</td>
<td>• Bristol-Myers Squibb • Merck • Regeneron/Sanofi-aventis*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joaquin E. Cigarroa</td>
<td>Official Reviewer—ACC/AHA Task Force on Clinical Practice Guidelines</td>
<td>Oregon Health & Science University—Clinical Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>George Dangas</td>
<td>Official Reviewer—ACC Board of Trustees</td>
<td>Icahn School of Medicine—Professor of Cardiology and Vascular Surgery; Mount Sinai Medical Center—Director, Cardiovascular Innovation</td>
<td>• Abbott • Biosensors • Boston Scientific • Johnson & Johnson* • Merck • Osprey Medical*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott • Medtronic • Osprey</td>
<td>None</td>
</tr>
</tbody>
</table>
Levine GN, et al.
2015 ACC/AHA/SCAI Focused Update on Primary PCI

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles J. Davidson</td>
<td>Official Reviewer—SCAI</td>
<td>Northwestern University Feinberg School of Medicine—Professor of Medicine, Director of Cardiac Catheterization Lab</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Baxter International†</td>
<td>None</td>
</tr>
</tbody>
</table>
| Kirk N. Garratt | Official Reviewer—SCAI | Hofstra University Medical School—Associate Chair of Quality and Research; Professor of Medicine | • Abbott
• Boston Scientific
• The Medicines Company
• Daiichi-Sankyo/Eli Lilly
• AstraZeneca | None | • LifeCuff Technologies
• Global Delivery Systems | None | • Boston Scientific | None |
| Steven L. Goldberg | Official Reviewer—SCAI | University of Washington Medical Center—Cath Lab Director | • Terumo† | None | None | None | None | None |
| G. B. John Mancini | Official Reviewer—ACC Board of Governors | Vancouver Hospital Research Pavilion—Professor of Medicine | • Merck
• Sanofi-aventis/Regeneron | None | None | None | None | None |
| Jonathan M. Tobis | Official Reviewer—SCAI | University of California Los Angeles—Professor of Medicine and Cardiology | • St. Jude Medical | None | None | None | None | None |
| Jeffrey L. Anderson | Content Reviewer—ACC/AHA Task Force on Clinical Practice Guidelines | Intermountain Medical Center—Associate Chief of Cardiology | None | None | None | None | None | None |
| Thomas M. Bashore | Content Reviewer | Duke University—Professor of Medicine | None | None | None | None | None | None |
| James A. Burke | Content Reviewer—ACC | Lehigh Valley Heart Specialists—Associate | None | None | None | None | None | None |
Levine GN, et al.
2015 ACC/AHA/SCAI Focused Update on Primary PCI

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey J. Cavendish</td>
<td>Intervventional Scientific Council</td>
<td>Chief, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott</td>
<td>None</td>
</tr>
<tr>
<td>Gregory J. Dehmer</td>
<td>Content Reviewer—ACC Prevention of Cardiovascular Disease Committee</td>
<td>Texas A&M College of Medicine—Professor of Medicine; Scott & White Healthcare</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John S. Douglas, Jr.</td>
<td>Content Reviewer</td>
<td>Emory University Hospital—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John P. Erwin III</td>
<td>Content Reviewer—ACC/AHA Task Force on Performance Measures</td>
<td>Texas A&M College of Medicine—Associate Professor; Scott & White Healthcare—Vice-Chair of the Department of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>T. Bruce Ferguson</td>
<td>Content Reviewer—ACC Surgeons’ Scientific Council</td>
<td>East Carolina Institute Brody School of Medicine—Professor of Surgery and Physiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Anthony Gershlick</td>
<td>Content Reviewer</td>
<td>University Hospitals of Leicester, Department of Cardiology</td>
<td>• Abbott</td>
<td>• Abbott</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jonathan L. Halperin</td>
<td>Content Reviewer—ACC/AHA Task Force on Clinical</td>
<td>Mt. Sinai Medical—Professor of Medicine</td>
<td>• Bayer Healthcare</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Levine GN, et al.
2015 ACC/AHA/SCAI Focused Update on Primary PCI

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
</table>
| Howard C. Herrmann | Content Reviewer | University of Pennsylvania Perelman School of Medicine—Professor of Medicine, Director of Interventional Cardiology Program | • Siemens Medical
• Medtronic | None | None | None | None | None |
| Morton J. Kern | Content Reviewer | University of California Irvine—Professor of Medicine, Associate Chief of the Division of Cardiology | • Acist Medical
• Merit Medical* | None | None | None | None | None |
| Fred M. Kosumoto | Content Reviewer | Mayo Clinic—Director, Pacing and Electrophysiology Service | None | None | None | None | None | None |
| David J. Maron | Content Reviewer | Stanford University School of Medicine—Professor of Medicine and Emergency Medicine | None | None | None | None | None | None |
| Douglass A. Morrison | Content Reviewer | University of Arizona—Professor of Medicine; Southern Arizona VA Health Care System—Cardiac Catheterization Laboratories, Director | None | None | None | None | None | None |
| Manesh R. Patel | Content Reviewer—ACC Appropriate Use Criteria | Duke University Medical Center—Associate Professor of Medicine | • Bayer Healthcare*
• Janssen Pharmaceuticals* | None | None | • Johnson & Johnson* | None | None |
| M. Eugene Sherman | Content Reviewer—ACC Board of Governors | Aurora Denver Cardiology | None | None | None | None | • Bristol-Myers Squibb*
• Hospira* | None | None |
Levine GN, et al.
2015 ACC/AHA/SCAI Focused Update on Primary PCI

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
</table>
| Daniel I. Simon | Content Reviewer | University Hospitals Case Medical Center—Professor of Cardiovascular Research | • Cordis/Johnson & Johnson*
• Janssen Pharmaceuticals/Johnson & Johnson
• Medtronic Vascular
• Merck | • Abbott | None | None | None | None |
| Richard W. Snyder | Content Reviewer—ACC Board of Governors | HeartPlace | None | None | None | None |
| William A. Tansey III | Content Reviewer | Summit Medical Group—Cardiologist | None | None | None | None |
| David D. Waters | Content Reviewer | San Francisco General Hospital—Chief, Division of Cardiology | None | None | None | None |
| Patrick L. Whitlow | Content Reviewer | Cleveland Clinic Foundation—Director, Interventional Cardiology | None | None | None | • Abbott
• Medtronic* |
| David O. Williams | Content Reviewer | Harvard Medical School—Professor of Medicine; Brigham and Women’s Hospital | None | None | None | None |
| Clyde W. Yancy | Content Reviewer—ACC/AHA Task Force on Practice Guidelines | Northwestern University Feinberg School of Medicine—Vice Dean for Diversity and Inclusion, Chief of Medicine-Cardiology, Professor | None | None | None | None |
| Yerem Yeghiazarians | Content Reviewer | University of California San Francisco—Associate Professor | None | None | None | None |
This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant to this document. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$5,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACC/AHA, a person has a relevant relationship IF: a) the relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) the company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) the person or a member of the person’s household has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the document.

*Significant relationship.
†No financial benefit.

ACC indicates American College of Cardiology; AHA, American Heart Association; HF, heart failure; SCAI, Society for Cardiovascular Angiography and Interventions; STEMI, ST-elevation myocardial infarction; PCI, percutaneous coronary interventions; TIMI, Thrombolysis In Myocardial Infarction; and VA, Veteran’s Affairs.
References

Circulation. published online October 21, 2015;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2015/10/20/CIR.0000000000000336.citation

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2015/10/20/CIR.0000000000000336.DC1
http://circ.ahajournals.org/content/suppl/2015/10/20/CIR.0000000000000336.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Data Supplement 1-A. Observational Studies Comparing Culprit Artery-Only Revascularization Versus Multivessel PCI (Section 2)

<table>
<thead>
<tr>
<th>Study Acronym</th>
<th>Author</th>
<th>Year</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Primary Endpoint and Results</th>
<th>Relevant 2nd Endpoint (if any); Study Limitations; Adverse Events and Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iqbal MB, et al., 2014 (1)</td>
<td>25371542</td>
<td>Aim: To investigate mortality for COR vs. MV PCI at the time of PPCI for patients presenting with STEMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Study type: Observation. Used multivariate analysis and propensity matching | Size: 3984 (MV PCI at time of PPCI=555; COR=3429) | Inclusion criteria:
- STEMI and PPCI
- MVD defined as ≥50% stenosis in ≥2 epicardial coronary arteries |
| Exclusion criteria:
- LM >50% stenosis
- Cardiogenic shock | 1st endpoint: 1-y mortality
- Total study population: 7.4% (COR) vs.10.1% (MV) (p=0.031)
- Adjusted HR Total population: 0.65 (95% CI: 0.47-0.91; p=0.011)
- Propensity matched cohort: 164/2418 (6.8%) vs. 41/403 (10.2%) , p=0.059
- Adjusted propensity matched cohort HR: 0.64 (95% CI: 0.45-0.90; p=0.010) |
| Inverse probability treatment weighted analyses also confirmed COR as an independent predictor for reduced in-hospital MACE (odds ratio, 0.38; 95% CI, 0.15–0.96; p=0.040) and survival at 1 year (hazard ratio, 0.44; 95% CI, 0.21–0.93; p=0.033). |
| Santos AR, et al., 2014 (2) | 24502933 | Aim: To assess the impact of a MV PCI at the time of PPCI on in-hospital morbidity and mortality in patients with STEMI undergoing PCI |
| Study type: Observation: Portuguese Society of Cardiology's Registry of Acute Coronary Syndromes (ACS) | Size: 257 (MV PCI at time of PPCI 77 vs. COR 180) | Inclusion criteria:
- STEMI
- Enrolled in Portuguese Society of Cardiology Registry
- MVD defined as ≥50% |
| Exclusion criteria:
- Staged MV PCI
- History of prior CABG | 1st endpoint : In-hospital mortality
- COR vs. MV PCI at time of PPCI:
- In-hospital Mortality: 14/180 (7.8%) vs. 2/177 (2.6%), p=NS
- Adjusted mortality OR: 12.92, 95% CI 0.67-248.4, p=0.09 |
| Jeger R, et al., 2014 (3) | 24461983 | Aim: To assess whether MV PCI at time of PPCI vs. COR in patients with STEMI and MVD influences 1-y outcome |
| Study type: Observation: Swiss Nationwide Acute Myocardial Infarction in Switzerland Plus Registry (AMIS) | 1st endpoint: 1-y all-cause mortality
- MV PCI 12442 (2.7%) vs COR: 40/1467 (2.7%), p>0.99 |
| Inclusion criteria:
- STEMI or new LBBB
- MVD defined as ≥50% in ≥2 different major epicardial coronary arteries and/or involving the LM
- Written informed consent to enroll | MACCE at 1 y (all-cause death, re-MI, any cardiac re-intervention, re-hospitalization due to any cardiovascular diagnosis, and CVA); Adjusted OR for MV PCI vs COR=0.69, 95% CI 0.51–0.93, p=0.017 |
<table>
<thead>
<tr>
<th>Size: 1909 (MV PCI at time of PPCI 442 vs. COR 1467)</th>
<th>Exclusion criteria: • Absence of follow-up data</th>
<th>1° endpoint: Mortality at 30 d and 2 y COR vs. staged MV PCI • 30-d mortality: adjusted HR: 2.81 (95% CI: 1.34-5.89; p=0.006) • 2-y mortality: adjusted HR: 1.93 (95% CI: 1.35-2.74; p=0.0002)</th>
<th>• Study looked at timing of MV PCI and showed that staged MV PCI was associated with better outcomes than either COR or MV PCI at the time of PPCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manari A, et al., 2014 (4) 24403174</td>
<td>Inclusion criteria: • STEMI and MVD enrolled in REAL registry</td>
<td>MV PCI at time of PPCI vs. staged MV PCI: • 30-d mortality adjusted HR: 2.58 (95% CI: 1.06-6.26; p=0.03) • 2-y adjusted HR: 1.08 (95% CI: 0.64-1.82; p=0.76)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria: • N/A</td>
<td>COR vs. MV PCI at time of PPCI • 2-y unadjusted mortality:127/706 (18.0%) vs. 26/367 (7.1%), p=0.0002</td>
<td></td>
</tr>
<tr>
<td>SIZE: 2061 (MV PCI at time of PPCI 367, Staged MV PCI within 60 d 988, COR 706)</td>
<td>Inclusion criteria: • STEMI</td>
<td>Jaguszewski M, et al., 2013 (5) 24384288</td>
<td></td>
</tr>
<tr>
<td>Exclusion criteria: • N/A</td>
<td>1° endpoint: In-hospital mortality</td>
<td>Study type: Observational: Swiss Nationwide Acute Myocardial Infarction in Switzerland Plus Registry (AMIS)</td>
<td></td>
</tr>
<tr>
<td>Aim: To examine the differences in cardiac outcomes for patients with STEMI and MVD as a function of whether they underwent COR or MV PCI, either at the time of PPCI or as a staged procedure.</td>
<td>MV PCI at time of PPCI vs. COR: • 81/1108 (7.3%) vs. 168/3833 (4.4%), p<0.001 • Low risk pts: 2.0% vs. 2.0% (p=1.00) • High risk pts: 22.2% vs. 21.7% (p=1.00)</td>
<td>Size: 4941 (MV PCI at time of PPCI-1108 vs. COR-3833)</td>
<td></td>
</tr>
<tr>
<td>Study type: Observational retrospective: REAL registry</td>
<td>1° endpoint: In-hospital mortality MV PCI at time of PPCI vs. COR: • 6/419 (1.4%) vs. 72/2118 (3.4%), p=0.03 • In-hospital mortality adjusted OR: 0.48 (95% CI: 0.21-1.13; p=0.73)</td>
<td>Inclusion criteria: • STEMI • MVD: stenosis ≥50% in at least two of three major coronary arteries and/or involving the LM (in pts with prior CABG)</td>
<td></td>
</tr>
<tr>
<td>Size: 2061 (MV PCI at time of PPCI 367, Staged MV PCI within 60 d 988, COR 706)</td>
<td>Exclusion criteria: • N/A</td>
<td>Exclusion criteria: • N/A</td>
<td></td>
</tr>
<tr>
<td>Aim: To compare the outcomes with MV PCI at the time of PPCI with COR</td>
<td>Study type: Observational: Euro Heart Survey Registry with STEMI</td>
<td>Bauer T, et al., 2013 (6) 22192297</td>
<td></td>
</tr>
<tr>
<td>Study type: Observational: Swiss Nationwide Acute Myocardial Infarction in Switzerland Plus Registry (AMIS)</td>
<td>Inclusion criteria: • Hemodynamically stable patients with ACS • MVD defined as ≥2 vessels with ≥70% stenosis • Undergoing PCI</td>
<td>Size: 2537 (MV PCI during a single procedure 419 vs. COR 2118)</td>
<td></td>
</tr>
<tr>
<td>Size: 2537 (MV PCI during a single procedure 419 vs. COR 2118)</td>
<td>Exclusion criteria: • N/A</td>
<td>1° endpoint: In-hospital mortality MV PCI during single procedure vs. COR: • 6/419 (1.4%) vs. 72/2118 (3.4%), p=0.03 • In-hospital mortality adjusted OR: 0.48 (95% CI: 0.21-1.13; p=0.73)</td>
<td></td>
</tr>
<tr>
<td>Aim: To assess the impact of MV PCI at time of PPCI vs COR in pts with STEMI and MVD</td>
<td>Inclusion criteria: • Patients with STEMI included in Euro-transfer registry • MVD on cath</td>
<td>Dziewierz A, et al., 2010 (7) 20643243</td>
<td></td>
</tr>
<tr>
<td>Study type: Observational: Euro-Transfer Registry</td>
<td>Exclusion criteria: • N/A</td>
<td>1° endpoint: 1-y mortality MV PCI at time of PPCI vs. COR • 11/70 (15.7%) vs. 57/707 (8.1%), p=0.043 • Adjusted OR: 2.04 (95% CI: 0.89-4.66; p=0.09)</td>
<td></td>
</tr>
<tr>
<td>Size: 1809 (MV PCI at time of PPCI 442 vs. COR 1467)</td>
<td>• Non-fatal MI: higher with MV PCI (8.8% vs. 1.6%, p<0.0001) • 30-d mortality: 12.9% vs. 5.9% (p=0.039) • Adjusted 30-d mortality: OR: 2.42 (95% CI: 0.96-6.06; p=0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Title</td>
<td>Size: MV PCI at time of PPCI 70 vs. COR 707</td>
<td>Aim: To evaluate the 90-d outcomes for MV PCI performed at the time of PPCI</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>APEX-AMI</td>
<td>Toma M, et al., 2010 (8)</td>
<td>2201</td>
<td>To evaluate the 90-d outcomes for MV PCI performed at the time of PPCI</td>
</tr>
<tr>
<td>Hannan EL, et al., 2010 (9)</td>
<td>To examine the differences in in-hospital and longer-term mortality for patients with STEMI and MVD as a function of whether they underwent COR or MV PCI, either at the time of PPCI or as a staged procedure</td>
<td>4,024</td>
<td>Study type: Observational; NY State Registry</td>
</tr>
<tr>
<td>Cavender MA et al., 2013</td>
<td>To examine the outcomes of patients</td>
<td></td>
<td>Inclusion criteria:</td>
</tr>
</tbody>
</table>

© 2015 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Society for Cardiovascular Angiography and Interventions.
<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Design</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 (10)</td>
<td>with STEMI undergoing MV PCI at time of PPCI vs. patients undergoing COR</td>
<td>Observational: NCDR Registry</td>
<td>STEMI treated with PCI</td>
<td>PCI of LM, Staged PCI in hospital, Recent thrombolitics</td>
<td>MV PCI at time of PPCI vs. COR: In hospital mortality: 246/3134 (7.85%) vs. 132/25802 (5.12%), p<0.01; Patients without shock: 3.26% vs. 2.53% (p=0.09); Adjusted mortality: OR=1.23 (95% CI: 0.94-1.61; p=1.23); Patients with shock: 36.49% vs. 27.77% (p≤0.01); Adjusted mortality: OR=1.54 (95% CI: 1.22-1.95; p<0.01)</td>
</tr>
<tr>
<td>Varani E, et al., 2008 (11)</td>
<td>Aim: To examine a strategy of COR vs. MV-PCI on clinical outcomes in a cohort of patients with STEMI treated with PPCI and compare the outcomes of MVD patients according to the type of revascularization (MV PCI at the time of PPCI vs. staged MV PCI vs. COR)</td>
<td>Observational: single center</td>
<td>Ongoing symptoms within 24 h, STEMI, MVD (≥2 major epicardial coronary arteries or their major branches with stenosis ≥70%)</td>
<td>PCI for acute occlusion after angiography</td>
<td>Endpoints: Death from any cause and any revascularization. Time point not specified. In-hospital mortality for COR vs. MV PCI at time of PPCI: 8/156 (5.1%) vs. 12/147 (8.2%), p<0.05</td>
</tr>
<tr>
<td>Qarawani D, et al., 2008 (12)</td>
<td>Aim: To compare outcomes with two strategies used for treating MVD and acute MI</td>
<td>Observational: Single center</td>
<td>Prolonged >30 min ischemic chest pain, Symptom onset <12 h, STEMI, MVD defined as >70% stenosis of ≥2 epicardial coronary arteries or their major branches</td>
<td>Cardiogenic shock, LM ≥50%</td>
<td>1° endpoint: In-hospital MACE (re-ischemia, re-MI, acute CHF and mortality) MV PCI vs. COR: 16.7% vs. 52%, p=0.0001. Adjusted OR for In-hospital MACE: 14.68, 95% CI: 3.03–71.12, p=0.001</td>
</tr>
<tr>
<td>Corpus RA, et al., 2004 (13)</td>
<td>Aim: To compare outcomes between an aggressive MV PCI strategy either at time of PPCI or before hospital discharge and COR</td>
<td>Observational: Single Center</td>
<td>STEMI, Symptom onset ≤ 12 h, MVD defined as ≥70% stenosis of ≥2 epicardial coronary arteries or their major branches</td>
<td>PCI of vein graft or LM</td>
<td>1° endpoint: Numerous endpoints at 1 year MV PCI (either at time of PPCI or staged) vs COR: Death 11% vs 12 %, p=0.82 Re-infarction: 13.0% vs 2.8%, p<0.001 Revascularization: 25% vs 15%, p=0.007 MACE: 40% vs 28%, p=0.006</td>
</tr>
</tbody>
</table>
Data Supplement 1-B. RCTs Comparing Culprit Artery-Only Revascularization Versus Multivessel PCI (Section 2)

<table>
<thead>
<tr>
<th>Study Acronym</th>
<th>Author</th>
<th>Year</th>
<th>Aim of Study; Study Type; Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Primary Endpoint and Results</th>
<th>Relevant 2° Endpoint (if any); Study Limitations; Adverse Events and Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANAMI 3-PRIMULTI</td>
<td>Engstro T, et al., 2015 (15) (Not yet in PubMed)</td>
<td>Aim: To determine whether staged angiographic or FFR guided revasc in STEMI patients with MVD reduces the primary endpoint of all cause death, reinfarction and repeat revascularisation compared with COR</td>
<td>Study type: Randomized</td>
<td>Size: 627 (314 staged MV PCI; 313 COR)</td>
<td>Intervention: Complete inhospital revasc with staged MV PCI for lesions >90% and staged FFR-guided MV PCI for lesions of 50-90% severity(n=314)</td>
<td>1° endpoint: MACE at 12 mo (Death, MI, ischemia-driven revasc of non-IRA lesions) 40/314 (13%) patients treated with staged MV PCI vs 68 of 313 (22%) patients treated with COR, p=0.004; (HR 0.56, 95% CI 0.38-0.83, p=0.001)</td>
<td>• 12-mo mortality: 15/314 (5%) vs. 11/313 (4%) • This study used FFR guidance for lesions of 50%-90% severity. • Benefit was driven by a significant reduction in ischemia-driven revascularization; death and MI rates were similar</td>
</tr>
<tr>
<td>CvLPRIT</td>
<td>Gershlick AH, et al., 2015 (16)</td>
<td>Aim: To compare differences in outcome for patients with STEMI and MVD randomized to MV PCI or COR</td>
<td>Study type: Randomized</td>
<td>Size: 296 (MV PCI=150; COR=146)</td>
<td>Intervention: MV PCI either at time of PPCI or as a staged in-hospital procedure (n=150)</td>
<td>1° endpoint: Composite of death, re-MI, CHF and ischemia-driven revasc at 12 mo MV PCI vs. COR 10.0% vs. 21.2% (HR: 0.45; 95% CI: 0.24-0.84; p=0.009)</td>
<td>• 65% of pts underwent MV PCI at time of PPCI • Benefit was driven by sum of individual endpoints; no statistically significant difference in outcome in individual components of primary endpoint • Total 12-mo mortality: 4/150 (2.7%) vs. 10/146 (6.9%) (HR: 0.38; 95% CI: 0.12-1.20; p=0.09)</td>
</tr>
<tr>
<td>Study Title</td>
<td>Study Type</td>
<td>Size</td>
<td>Inclusion Criteria</td>
<td>Exclusion Criteria</td>
<td>Intervention</td>
<td>Comparator</td>
<td>1st Endpoint</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PRAINI</td>
<td>Randomized</td>
<td>465</td>
<td>STEMI (incl LBBB), Successful PPCI, MVD with ≥50% stenosis in ≥1 other artery suitable for PCI</td>
<td>Shock, Prior CABG, LM or ostia of both LAD and circumflex with >50% stenosis, CTO of non-IRA</td>
<td>MV PCI at the time of PPCI (n=234)</td>
<td>COR with ischemia guided approach to non-culprit artery disease (n=231)</td>
<td>MACE: (death from cardiac causes, nonfatal MI, or refractory angina). Results assessed after mean f/u of 23 mo MV PCI at the time of PPCI vs. COR 9.0% vs. 22.9%, (HR 0.35, 95% CI 0.21–0.58, <0.001)</td>
</tr>
<tr>
<td>Dambrink JH, et al., 2010 (18)</td>
<td>Randomized</td>
<td>121</td>
<td>STEMI patients undergoing successful PPCI, MVD, with ≥1 additional major artery or branch, with ≥50% disease and at least 2.5 mm diameter</td>
<td>Urgent indication for additional revasc, >80 y, CTO of non IRA, Prior CABG, LM ≥50 %, Restenotic lesions in non-IRA, Chronic atrial fibrillation, Limited life expectancy, Other factors that made complete follow-up unlikely.</td>
<td>PPCI and elective (within 3 wk) FFR guided management of non IRA disease (n=80)</td>
<td>COR with conservative ischemia-guided management of non IRA (n=41)</td>
<td>EF at 6 mo FFR guided staged PCI vs. COR and ischemia-guided approach: EF 59± 9% vs. 57± 9%, p=0.362 MACE at 6 mo: 21% vs. 22%, p=0.929 MACE at 3 years: 35.4% vs 35.0%, p=0.96 Death or MI at 3 years: 20.3% vs 0%, p=0.002 Death at 3 years: 2/80 vs. 0/41</td>
</tr>
<tr>
<td>Study Type</td>
<td>Aim</td>
<td>Inclusion Criteria</td>
<td>Exclusion Criteria</td>
<td>Intervention</td>
<td>1st Endpoint</td>
<td>Comparator</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>--------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Randomized</td>
<td>To compare long-term outcomes of three different strategies during PPCI in patients with STEMI and MVD: COR vs. staged MV PCI vs. MV PCI at the time of PPCI</td>
<td>Chest pain within 12 h; STEMI</td>
<td>Cardiogenic shock; LM ≥50%; Prior CABG; Severe valvular heart disease; Unsuccessful PPCI</td>
<td>PPCI plus staged MV PCI: 65; MV PCI at the time of PPCI (n=65)</td>
<td>MACE at mean f/u 2.5 y: (death, re-MI, re-hospitalization for ACS and repeat coronary revascularization)</td>
<td>COR (n=84)</td>
<td>• There were no differences in outcomes for staged MV PCI vs. MV PCI at time of PPCI but small number of enrolled patients • Mortality for MV PCI vs COR: 10/130 (7.7%) vs. 13/84 (15.5%)</td>
</tr>
<tr>
<td>Randomized</td>
<td>To evaluate the efficacy of a complete revascularization strategy at the time of PPCI on reducing repeat revascularizations in follow-up</td>
<td>Ischemic CP and STEMI; MVD on angiogram technically amenable to PCI</td>
<td>Lesion in bypass grafts; Prior PCI or stent in segment with disease; Thrombolysis within past wk; Shock; LM disease; Intention to treat more than 1 lesion; Calcified or tortuous vessels with lesions; side branch >2 mm</td>
<td>MV PCI at time of PPCI (n=52)</td>
<td>Any repeat revasc at 1 y</td>
<td>COR then PCI of other vessels at operators discretion (n=17)</td>
<td>• Very small study; Unbalanced randomization • 12-mo mortality: 1/52 (1.9%) vs. 0/17 (0%); p=0.754</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; BRAVE-2, Beyond 12 hours Repertusion Alternative Evaluation trial; C, coronary; CAD, coronary artery disease; Cath, catheterization; CHF, congestive heart failure; CI, confidence interval; Contra, contraindications; COR, culprit artery-only (or infarct related artery-only) PCI; CR, complete revascularizations; CTO, chronic total occlusion; CV, cardiovascular; CVA, stroke; EF, ejection fraction; FFR, Fractional Flow Reserve; flu, follow up; Fx, fibrinolysis; gp, group; HR, hazard ratio; IR, incomplete revascularization; IRA, infarct related artery; LAD, left anterior descending artery; LBBB, left bundle branch block; LM, left main; LV, left ventricle; MACE, major adverse cardiac events; MI, myocardial infarction; MVD, multivessel disease; MV PCI, multivessel PCI; NY, New York; Occ, occlusion; OR, odds ratio; PA, pulmonary artery; PCI, percutaneous coronary intervention; PCWP, pulmonary-capillary wedge pressure; POBA, balloon angioplasty; PPCI, primary PCI; pts., patients; RCT, randomized control trial; re-MI, recurrent MI; RCT; randomized controlled trial; revasc, revascularization; RR, relative risk; SK, streptokinase; SPECT, single-photon emission computed tomography; STE, ST elevation; STEMI, STE elevation myocardial infarction; sx, symptoms; TH, thrombocytopenia; TIA, transient ischemic attack; TIMI, thrombolysis in myocardial infarction; tPA, tissue plasminogen activator; TVR, target vessel revascularization; tx, treatment; and VSD, ventricular septal defect.
Data Supplement 2. RCTs for Aspiration Thrombectomy (Section 3)

<table>
<thead>
<tr>
<th>Study Acronym</th>
<th>Author</th>
<th>Aim</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Primary Endpoint and Results</th>
<th>Relevant 2nd Endpoint (if any); Study Limitations; Adverse Events and Summary</th>
</tr>
</thead>
</table>
| **TOTAL** | Jolly SS, et al., 2015 (21) 25853743 | **Aim:** To assess whether thrombus aspiration reduces MACE in patients with STEMI | **Study type:** Randomized | 10,732 (thrombectomy 5372, PCI alone 5360); | **Inclusion criteria:**
 - Symptoms of myocardial ischemia lasting for ≥ 30 min
 - Definite ECG changes indicating STEMI
 - Patients referred for primary PCI
 - Randomized within 12 h of symptom onset and prior to diagnostic angiography
 Exclusion criteria:
 - Prior CABG
 - Life expectancy <6 mo due to non-cardiac condition
 - Treatment with fibrinolytic therapy for qualifying index STEMI event | **Intervention:** Thrombus aspiration before PCI (5033)
 Comparator: PCI alone (5030) | **1st endpoint:** Composite of CV death, re-MI, cardiogenic shock, NYHA heart failure within 180 d
 Thrombectomy vs PCI alone: 6.9% vs. 7.0% (HR: 0.99; 95% CI: 0.85-1.15; p=0.86)
 Safety endpoint: Stroke within 30 d: thrombectomy 0.7% vs. 0.3% PCI alone (HR: 2.06; 95% CI: 1.13-3.75; p=0.02)
 CV death: thrombectomy 3.1% vs. 3.5% PCI alone (HR: 0.90; 95% CI 0.73-1.12; p=0.34).
 Primary outcome + stent thrombosis +TVR: thrombectomy 9.9% vs. 9.8% PCI alone, (HR: 1.00; 95% CI: 0.89-1.14; p=0.95).
 Summary:
 - No group differences with respect to re-MI, shock, NYHA heart failure, stent thrombosis, TVR, major bleeding, net clinical benefit (primary efficacy outcome or stroke).
 - No differences in rate of primary outcome in pre-specified subgroups, including extent of thrombus burden.
 - Improved ST resolution and lower rates of distal embolization with thrombectomy
 - Bailout thrombectomy rate 7.1% among patients randomized to PCI alone.
 - No or possible thrombus present (TIMI thrombus grade 0-1) in 6.7% thrombectomy patients, 8.1% PCI-alone patients. |
| **TASTE** | Lagerqvist B, et al., 2014 (22) 25176395 | **Aim:** To assess if thrombus aspiration reduces mortality in STEMI pts at 1 y in the TASTE study | **Study type:** Randomized | 7244 (3621 thrombectomy, 3623 PCI alone) | **Inclusion criteria:**
 - Chest pain, at least for 30 min, onset of sx to admission <24 h
 - STEMI or LBBB
 Exclusion criteria:
 - Need for CABG
 - Previous randomization in TASTE trial | **Intervention:** Thrombus aspiration before PCI (3621)
 Comparator: PCI only (3623) | **1st endpoint:** N/A (previously reported in TASTE) | **Events at 1 year flu:**
 - Death from any cause 6.3% vs. 5.6% (HR: 0.94; 95% CI: 0.78-1.15; p=0.57),
 - Rehospitalization for MI 2.7% vs. 2.7% (HR: 0.97; 95% CI: 0.73-1.28; p=0.81), stent thrombosis 0.7% vs. 0.9% (HR: 0.84; 95% CI: 0.50-1.40; p=0.51)
 - Incidence of composite of death, rehospitalization for MI, or stent thrombosis: 8.0% v. 8.5% (HR: 0.94; 95% CI: 0.81-1.11; p=0.48).
 - Outcome events were recorded on the
<table>
<thead>
<tr>
<th>TASTE</th>
<th>Frobert O et al., 2013 (23) [23991656]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim:</td>
<td>To assess if thrombus aspiration reduces mortality in STEMI pts.</td>
</tr>
<tr>
<td>Study type:</td>
<td>Randomized</td>
</tr>
<tr>
<td>Size:</td>
<td>7244 (3621 thrombectomy, 3623 PCI alone)</td>
</tr>
</tbody>
</table>
| **Inclusion criteria:** | - Chest pain, at least for 30 min
- Onset of sx to admission<24 h
- STEMI or LBBB |
| **Intervention:** | Thrombus aspiration before PCI (3621) |
| **Comparator:** | PCI only (3623) |
| **1st endpoint:** | All-cause mortality at 30 d
Thrombus aspiration vs PCI only:
- 2.8% vs 3.0%; HR: 0.94; 95% CI: 0.72-1.22; p=0.63
- Rate of rehospitalization for recurrent MI at 30 d: HR:0.61; 95% CI:0.34-1.07; p=0.09 |
| **Exclusion criteria:** | - Need for CABG
- Previous randomization in TASTE trial |
| **INFUSE-AMI** | Stone GW, et al., 2012 (24) [22447998] |
| **Aim:** | To evaluate reduction of infarct size by IC abciximab, manual aspiration thrombectomy or both (with bivalirudin anticoagulation) |
| **Study type:** | Randomized, 2x2 factorial design |
| **Size:** | 353 with evaluable MRI in thrombectomy arms (thrombectomy=174; no thrombectomy=179) |
| **Inclusion criteria:** | - STEMI >30 min and ≥1 mm
- PPCI sx-onset-to-device time of ≤5 h |
| **Intervention:** | Thrombectomy (174) |
| **Comparator:** | No thrombectomy (179) |
| **1st endpoint:** | Infarct size at 30 d as assessed by cardiac MRI
Thrombectomy vs no thrombectomy: Infarct size 17.0% vs 17.3% (p=0.51) |
| **Exclusion criteria:** | - Prior MI, CABG, or LAD stent
- Shock or CPR
- Prior lytic or IIb/IIIa inhibitor for the present admission |
| **EXPIRA** | Sardella G, et al., 2009 (25) [19161878] |
| **Aim:** | To determine the effects of manual thrombectomy device on myocardial perfusion and infarct size assessed by CE-MRI |
| **Study type:** | Randomized |
| **Size:** | 175 |
| **Inclusion criteria:** | - 1st STEMI <9 h from sx onset
- Infarct-related artery ≥2.5 mm in diameter
- Thrombus score ≥3
- TIMI flow grade ≤1 |
| **Intervention:** | Manual thrombectomy-PCI (88) |
| **Comparator:** | PCI alone (87) |
| **1st endpoint:** | Occurrence of final myocardial blush grade ≥2
Manual thrombectomy vs PCI alone 88% vs. 60%; p=0.001 |
| **Exclusion criteria:** | - Cardiogenic shock, 3 vessel/ left main disease, TIMI >0-1, TS <3, contra to GPIIb/IIIa |
| | basis of registry data and were not systematically adjudicated (ascertainment of outcome events may have been less accurate than a RCT). Results cannot necessarily be extrapolated to very high-risk pts who would not have been eligible for inclusion. |
TAPAS
Vlaar PJ, et al., 2008 (26)
18539223

Aim: To determine cardiac death or reinfarction rate at 1y
Study type: Randomized
Size: 1071

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Intervention:</th>
<th>1st endpoint:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI sx >30 min</td>
<td>Thrombus aspiration (535); 1 y f/u (530)</td>
<td>Combined cardiac death or non-fatal re-MI at 1y; Thrombus aspiration vs. PCI alone: 5.6% vs. 9.9% [HR: 1.81; 95% CI: 1.16-2.84; p=0.009]</td>
</tr>
<tr>
<td>Time from sx onset <12 h, STE >0.1mV in ≥2 leads</td>
<td>Comparator: PCI (536); 1 y f/u PCI (530)</td>
<td></td>
</tr>
</tbody>
</table>

Exclusion criteria:
- Rescue PCI after thrombolysis
- Known concomitant disease with life expectancy <6 mo

Intervention:
- Thrombus aspiration (535); 1 y f/u (530)
- Comparator: PCI (536); 1 y f/u PCI (530)

1° endpoint: Combined cardiac death or non-fatal re-MI at 1y;
Thrombus aspiration vs. PCI alone: 5.6% vs. 9.9% [HR: 1.81; 95% CI: 1.16-2.84; p=0.009]

- 1 y cardiac death: Thrombus aspiration vs. PCI: 3.6% vs. 6.7% [HR: 1.93; 95% CI: 1.11-3.37; p=0.02]
- Limited power to assess clinical outcome. No systematic measurement of infarct size or LVF performed.

Svilaas T, et al., 2008 (27)
18256391

Aim: To assess whether manual thrombus aspiration is superior to conventional treatment during primary PCI
Study type: Randomized
Size: 1071

<table>
<thead>
<tr>
<th>Inclusion criteria:</th>
<th>Intervention:</th>
<th>1st endpoint:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI sx >30 min</td>
<td>Thrombus aspiration (535)</td>
<td>Post procedure myocardial blush grade of 0 (no myocardial blush) or 1 (minimal myocardial blush or contrast density). Thrombus aspiration vs. PCI alone: 17.1% vs. 26.3% [RR: 0.65; 95% CI: 0.51-0.83; p<0.001]</td>
</tr>
<tr>
<td>Time from sx onset <12</td>
<td>Comparator: PCI alone (536)</td>
<td></td>
</tr>
<tr>
<td>STE >0.1 mV in ≥2 leads</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exclusion criteria:
- Rescue PCI after thrombolysis
- Known concomitant disease with life expectancy <6 mo

Intervention:
- Thrombus aspiration (535)
- Comparator: PCI alone (536)

1° endpoint: Post procedure myocardial blush grade of 0 (no myocardial blush) or 1 (minimal myocardial blush or contrast density).
Thrombus aspiration vs. PCI alone: 17.1% vs. 26.3% [RR: 0.65; 95% CI: 0.51-0.83; p<0.001]

- Major bleeding: 3.8% vs. 3.4%, RR: 1.11; 95% CI: 0.60-2.08; p=0.11
- Target vessel revascularization: 4.5% vs. 5.8%, RR: 0.77; 95% CI: 0.46-1.30; p=0.34
- Reinfarction: 0.8% vs. 1.9%, RR: 0.40; 95% CI: 0.13-1.27; p=0.11
- Death: 2.1% vs. 4.0%, RR: 0.52; 95% CI: 0.26-1.07; p=0.07
- MACE: 6.8% vs. 9.4%, RR: 0.72; 95% CI: 0.48-1.08; p=0.12
- Single-center study using surrogate endpoints (myocardial blush grade and ECG variables); performed randomization prior to coronary angiography (selection bias since some patients did not undergo PCI/received alternative therapy)

CABG indicates coronary artery bypass graft; CE-MRI, contrast enhanced MRI; CI, confidence interval; cMRI, cardiac magnetic resonance imaging; Contra, contraindications; CrCl, creatinine clearance; CV, cardiovascular; ECG, electrocardiogram; EM, Export Medtronic; GP2B/3A, glycoprotein IIb/IIIa; Hgb, hemoglobin; Hosp., hospitalization; HR, hazard ratio; IC, intracoronary; ITT, intention-to-treat; LVF, Left ventricular function; MACE, major adverse cardiac events; MACCE, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; MVO, microvascular obstruction; NYHA, New York Heart Association; OR, odds ratio; PCI, percutaneous coronary intervention; PL, platelet count; RCT, randomized controlled trial; RR, relative risk; STEMI, ST-elevation myocardial infarction; STR, ST-segment resolution; SVG, Saphenous venous graft; TIMI, Thrombolysis In Myocardial Infarction; TS, thrombus score; and TVR, target vessel revascularization.
References

© 2015 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Society for Cardiovascular Angiography and Interventions.

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employer/Title</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glenn N. Levine (Chair)</td>
<td>Baylor College of Medicine—Professor of Medicine; Director, Cardiac Care Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Defendant, ECG interpretation, 2014</td>
</tr>
<tr>
<td>Eric R. Bates (Vice Chair)</td>
<td>University of Michigan—Professor of Medicine</td>
<td>• AstraZeneca • Daiichi-Sankyo • Eli Lilly • Merck • Sanofi-aventis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• ABIM • AHA* • Harvard Clinical Research Institute (DSMB)</td>
<td>None</td>
</tr>
<tr>
<td>James C. Blankenship (Vice Chair)</td>
<td>Geisinger Medical Center—Director, Cardiology and Cardiac Catheterization Laboratories</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Abbott Vascular* • Abiomed* • AstraZeneca* • Boston Scientific* • Regado Biosciences* • Tryton Medical* • Volcano*</td>
<td>• AMA Relative Value Update Committee* • SCAI*</td>
<td>None</td>
</tr>
<tr>
<td>Steven R. Bailey</td>
<td>University of Texas Medical Center—Professor of Medicine and Radiology</td>
<td>• Biotronix (DSMB)</td>
<td>None</td>
<td>None</td>
<td>• Edwards—PARTNER II trial</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John A. Bittl</td>
<td>Munroe Heart—Interventional Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Bojan Cercek</td>
<td>Cedars-Sinai Medical Center—Director, Coronary Care Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles E. Chambers</td>
<td>Penn State Milton S. Hershey Medical Center—Professor of Medicine and Radiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen G. Ellis</td>
<td>Cleveland Clinic Foundation—Section Head, Invasive and Interventional Cardiology</td>
<td>• Abbott • Boston Scientific • Medtronic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Guyton</td>
<td>Emory Clinic, Inc.—</td>
<td>• Medtronic†</td>
<td>None</td>
<td>None</td>
<td>• NIH*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Role</td>
<td>Research Funding</td>
<td>Grant Support 1</td>
<td>Grant Support 2</td>
<td>Grant Support 3</td>
<td>Grant Support 4</td>
<td>Grant Support 5</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Steven M. Hollenberg</td>
<td>Cooper University Hospital—Director, Coronary Care Unit</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Umesh N. Khot</td>
<td>Cleveland Clinic—Vice Chairman, Robert and Suzanne Tomsich Department of Cardiovascular Medicine</td>
<td>• AstraZeneca</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Richard A. Lange</td>
<td>Texas Tech University Health Sciences Center El Paso—President; Paul L. Foster School of Medicine, Dean</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Laura Mauri</td>
<td>Brigham & Women’s Hospital—Associate Professor of Medicine, Harvard Medical School</td>
<td>• Biotronik</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Roxana Mehran</td>
<td>Columbia University Medical Center—Associate Professor of Medicine; Director, Data Coordinating Analysis Center</td>
<td>• Abbott Vascular</td>
<td>None</td>
<td>None</td>
<td>• Bristol-Myers Squibb/Sanofi-aventis†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Issam D. Moussa</td>
<td>Mayo Clinic—Chair,</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

© 2015 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Society for Cardiovascular Angiography and Interventions.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>ACC</th>
<th>AHA</th>
<th>NHLBI</th>
<th>SCAI</th>
<th>ABIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debabrata Mukherjee</td>
<td>Texas Tech University—Chief, Cardiovascular</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• ACC</td>
</tr>
<tr>
<td></td>
<td>Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henry H. Ting</td>
<td>Mayo Clinic—Professor of Medicine; Assistant</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Dean for Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table represents all relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$5,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/relationships-with-industry-policy for definitions of disclosure categories or additional information about the ACC/AHA Disclosure Policy for Writing Committees.

*No financial benefit.
†Significant relationship.

ABIM indicates American Board of Internal Medicine; ACC, American College of Cardiology; AHA, American Heart Association; AMA, American Medical Association; CathPCI, catheterization and/or percutaneous intervention; DSMB, data safety monitoring board; ECG, electrocardiogram; NCDR, National Cardiovascular Data Registry; NHLBI, National Heart, Lung, and Blood Institute; NIH, National Institutes of Health; PARTNER II trial, Placement of Aortic Transcatheter Valves; and SCAI, Society for Cardiovascular Angiography and Interventions.
Committee Member Relationships with Industry and Other Entities (Comprehensive)—2015 ACC/AHA/SCAI Focused Update on Primary Percutaneous Coronary Intervention for Patients With ST-Elevation Myocardial Infarction (ST-Elevation Myocardial Infarction Writing Committee) (February 2014)

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick T. O’Gara (Chair)</td>
<td>Harvard Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Lantheus Medical Imaging (DSMB) • NIH Steering Committee Co-Chair*</td>
<td>None</td>
</tr>
<tr>
<td>Frederick G. Kushner (Vice Chair)</td>
<td>Tulane University School of Medicine—Clinical Professor of Medicine; Heart Clinic of Louisiana—Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• FDA Science Board† • Defendant, use of clopidogrel (for BMS), 2014 • Defendant, 2014</td>
<td>None</td>
</tr>
<tr>
<td>Deborah D. Ascheim‡</td>
<td>Capricor Therapeutics, Inc.—Chief Medical Officer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ralph G. Brindis</td>
<td>UCSF Phillip R. Lee Institute for Health Policy—Clinical Professor of Medicine • Ivivi Health Sciences • Volcano Corp.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• California State Elective PCI Project Advisory Board (DSMB)† • C-PORT Elective RCT (DSMB)† • DAPT Trial Advisory Board (DSMB)† • FDA Cardiovascular Device Panel • State of California OSHPD (DSMB)†</td>
<td>None</td>
</tr>
<tr>
<td>Donald E. Casey, Jr.</td>
<td>Thomas Jefferson College of Population Health—Adjunct Faculty; Alvarez & Marsal IPO4Health—Principal and Founder</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mina K. Chung</td>
<td>Cleveland Clinic • ACCF</td>
<td>None</td>
<td>• Jones & • AliveCor†</td>
<td>• Amarin (DSMB)†</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

© 2015 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Society for Cardiovascular Angiography and Interventions.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Position</th>
<th>Financial Disclosures</th>
<th>Bartlett authorship royalties</th>
<th>NIH/NHLBI</th>
<th>Clinical Authorship Royalties</th>
<th>Other Clinical Authorship Royalties</th>
<th>Authorship Royalties</th>
<th>Editorial Board Royalties</th>
<th>Committee Memberships</th>
</tr>
</thead>
<tbody>
<tr>
<td>James A. de Lemos</td>
<td>UT Southwestern Medical School—Professor of Medicine</td>
<td>• Abbott Diagnostics
• Amgen
• Diadexus
• Janssen Pharmaceuticals
• Novo Nordisc
• Roche Diagnostics†
• St. Jude Medical†</td>
<td>None</td>
<td>NIH†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Deborah B. Diercks</td>
<td>UT Southwestern Medical Center—Audre and Bernard Rapoport Distinguished Chair in Clinical Care and Research; Department of Emergency Medicine—Professor and Chair</td>
<td>• Daiichi-Sankyo
• Janssen Pharmaceuticals
• Novartis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James C. Fang</td>
<td>University of Utah—Cardiovascular Division</td>
<td>• Abiomed
• Boston Scientific
• Maquet</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barry A. Franklin</td>
<td>William Beaumont Hospital—Director, Cardiac Rehabilitation and Exercise Laboratories</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher B.</td>
<td>Duke Clinical Research</td>
<td>• AstraZeneca</td>
<td>None</td>
<td>NIH†</td>
<td>None</td>
<td>AstraZeneca*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Title</td>
<td>Sponsors</td>
<td>Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Granger | Institute—Director, Cardiac Care Unit; Professor of Medicine | • Boehringer Ingelheim
• Bristol-Myers Squibb*
• Daiichi-Sankyo
• Eli Lilly
• GlaxoSmithKline
• Hoffman LaRoche
• Janssen Pharmaceuticals
• Pfizer
• Ross Medical
• Salix Pharmaceuticals
• Sanofi-aventis
• Takeda
• The Medicines Company | • Bayer*
• Boehringer Ingelheim*
• Bristol-Myers Squibb*
• Daiichi-Sankyo*
• GlaxoSmithKline*
• Janssen Pharmaceuticals*
• Medtronic Foundation*
• Merck*
• Pfizer*
• Sanofi-aventis*
• Takeda*
• Committee (telemetry and monitoring equipment purchases)*
• Site research for clinical trials* | None |
| Harlan M. Krumholz | Yale University School of Medicine—Professor of Epidemiology and Public Health | None | None |
| | | • Institute for Healthcare Improvement Scientific Advisory Group Premier*
• UnitedHealth Cardiac Scientific Advisory Board*
• VHA, Inc. * | • AHRQ*
• Catherine and Patrick Weldon Donaghue Medical Research Foundation
• Johnson & Johnson*
• Medtronic*
• National Cancer Institute*
• NHLBI*
• Robert Wood Johnson Foundation*
• The Commonwealth Fund*
• U.S. FDA, medical
• ABIM
• AHA editor*
• ImageCOR†
• Massachusetts Medical Society–Editor*
• PCORI Board of Governors† | None |
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Roles</th>
<th>Grants/Institutions</th>
<th>Device Post-Market Surveillance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane A. Linderbaum</td>
<td>Mayo Clinic—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David A. Morrow</td>
<td>Harvard Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>L. Kristin Newby</td>
<td>Duke University Medical Center, Division of Cardiology—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joseph P. Ornato</td>
<td>Department of Emergency Medicine Virginia Commonwealth University—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Device post-market surveillance refers to financial relationships with device manufacturers and suppliers.
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Roles and Responsibilities</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narith Ou</td>
<td>Mayo Clinic—Pharmacotherapy Coordinator, Cardiology</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Martha J. Radford</td>
<td>NYU Langone Medical Center—Chief Quality Officer; NYU School of Medicine—Professor of Medicine (Cardiology)</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jacqueline E. Tamis-Holland</td>
<td>Mount Sinai Saint Luke's Hospital and The Icahn School of Medicine—Program Director, Interventional Cardiology Fellowship Program</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Carl L. Tommaso</td>
<td>Skokie Hospital—Director of Catheterization Laboratory; NorthShore University HealthSystems—Partner</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cynthia M. Tracy</td>
<td>George Washington University Medical Center—Associate Director, Division of Cardiology</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Y. Joseph Woo</td>
<td>Stanford University—Professor and Chair, Cardiothoracic Surgery</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David X. Zhao</td>
<td>Wake Forest Baptist</td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

© 2015 by the American College of Cardiology Foundation, the American Heart Association, Inc., and the Society for Cardiovascular Angiography and Interventions.
This table represents all relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$5,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to http://www.acc.org/guidelines/about-guidelines-and-clinical-documents/relationships-with-industry-policy for definitions of disclosure categories or additional information about the ACC/AHA Disclosure Policy for Writing Committees.

*Significant relationship.
†No financial benefit.
‡Dr. Deborah D. Ascheim accepted a position at Capricor Therapeutics in August 2015, after the writing effort was completed. In accordance with ACC/AHA policy, she recused herself from the final voting process.

AHRQ indicates Agency for Healthcare Research and Quality; ABIM indicates American Board of Internal Medicine; ACC indicates American College of Cardiology; AHA, American Heart Association; DSMB, Data Safety Monitoring Board; HRS, Heart Rhythm Society; ISCHEMIA, International Study of Comparative Health Effectiveness with Medical and Invasive Approaches; NYU, New York University; NHLBI, National Heart, Lung, and Blood Institute; NIH, National Institutes of Health; PARTNER II trial, Placement of Aortic Transcatheter Valves; PCORI, Patient-Centered Outcomes Research Institute; SCAI, Society for Cardiovascular Angiography and Interventions; UCSF, University of California San Francisco; U.S. Food and Drug Administration; and UT, University of Texas.