Studying the Life Course Health Consequences of Childhood Adversity:
Challenges and Opportunities

Running title: Howe et al.; Studying life course adversity

Laura D. Howe, PhD¹,²; Kate Tilling, PhD¹,²; Debbie A. Lawlor, MD, PhD¹,²

¹MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom;
²School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom

Address for Correspondence:
Debbie A. Lawlor, MD, PhD
MRC Integrative Epidemiology Unit at the University of Bristol
Oakfield House, Oakfield Grove
Bristol, BS6 7SJ, United Kingdom
Tel: +44-117-3310096
Fax: +44-0117-9287325
E-mail: d.a.lawlor@bristol.ac.uk

Journal Subject Code: Etiology:[8] Epidemiology

Key words: Inequalities, Adversity, Life course, Editorial
The adverse health consequences of low socioeconomic position (SEP) are well documented1,2, including several studies that have examined when in the life course socio-economic differences in health emerge and how inequalities change with age.3-7 The findings from these life course studies can shed light on the underlying pathways to disease inequalities, and the degree to which these may differ across health outcomes. Aside from SEP, the physical health consequences of other forms of adversity are less well studied (although a considerable body of evidence exists for mental health (e.g.8,9)). The study by Su et al in this issue of Circulation10 therefore makes a valuable contribution to the literature. The authors use data from 394 participants from the Georgia Stress and Heart Study to investigate the cardiovascular consequences of reported adverse child experiences (ACEs), specifically: childhood abuse (emotional, physical and sexual), childhood neglect (emotional and physical), and growing up with household dysfunction (substance abuse, mental illness, domestic violence, criminal household member, and parental marital discord). The study has repeated measurements of blood pressure obtained in a standardised way. The authors showed that retrospective report of the number of ACEs experienced up to 18 years were not related to mean blood pressure in childhood (younger than 10 years of age) or change in blood pressure from childhood to early adulthood, but that those who reported a greater number of ACEs had a more rapid age-related increase in systolic and diastolic blood pressure from their mid- to late-20s, such that by age 38 those who reported 4 or more ACEs compared with those reporting none had 9.3mmHg and 7.6mmHg higher systolic and diastolic blood pressure, respectively. The authors demonstrated that in their data, the association between ACEs and blood pressure were similar in males and females and across two ethnic groups (African Americans and European Americans), and remained after adjustment for childhood SEP and health behaviours. Whilst this study is an important step forwards for the...
understanding of how adversity might influence cardiovascular health, there are several
important challenges to this type of research that need to be addressed by future studies.

1. Defining adversity

Su et al. create a summary score of the number of ACEs, an approach that has become
widespread in research into ACEs.11 Using a summary variable, such as this, acknowledges that
ACEs tend to co-occur and that experiencing multiple forms of adversity has greater adverse
health effects than experiencing only one ACE.12 The approach also increases statistical power
when, as is the case in this study, some forms of adversity are relatively infrequent. However, a
count of the number of ACEs makes the implicit assumption that each form of adversity has the
same direction and magnitude of association with the health outcome. The summary score also
prevents the examination of interactions between forms of adversity other than assuming an
overall additive interaction. Examining each ACE separately, as well as interactions between
them, would enable more detailed aetiological understanding and provide clearer policy
guidance. To do this, a much larger sample size would be needed than in the present study.

A further issue related to the definition of adversity that cannot be addressed by the
present study is timing. The health consequences of adversity may differ depending on the stage
of childhood in which they are experienced; Su et al. had a single retrospective measure of ACE
in childhood rather than prospective repeated assessments and so were unable to examine this
question. However, it is important for future larger studies to consider the role of timing. This
will bring its own challenges, since careful modelling is required to assess the associations
between a repeatedly measured exposure and a repeatedly measured outcome.13

2. Establishing causality

As with all observational studies, correlation cannot be assumed to be causation. Studying the
role of adversity on health is challenging, as adverse experiences tend to cluster together with each other and often with low SEP12, and so isolating the influence of any one factor is difficult. The use of the composite score of ACEs by Su et al., and by others in this field, precludes examination of whether associations between any given ACE and health outcomes are confounded by other forms of adversity, and hence reduces the strength of causal inference that can be drawn from the results. Su et al. attempted to address confounding by SEP in their analysis by multiple regression modelling, but the use of a single measure of SEP from a single time point is unlikely to completely remove confounding. Using repeated measures of SEP may help, since repeated measures data are more likely to capture the true underlying level than any single measurement, but even then, residual confounding may persist. Other statistical techniques to improve control for confounding14 (e.g. propensity scores), particularly where both confounders and exposures are repeatedly measured (e.g. marginal structural models15) may also be a useful addition to studies of the life course health consequences of ACEs.

These methods, however, still make the unfeasible assumption of no unmeasured confounders. Instrumental variables analysis16, 17 has a long history in the social sciences as a tool for dealing with unmeasured confounding. In the study of the health effects of ACEs, it may be possible to identify instrumental variables for some forms of adversity, e.g. policy changes in the compulsory school-leaving age could be used as an instrumental variable for parental education, and local labour market shocks could be exploited as an instrumental variable for parental unemployment. Where instrumental variable methods and other causal analysis techniques are not possible, important strategies for improving inference will include replication in large independent studies, ideally using cross-cohort comparisons in settings with different confounding structures18, as well as triangulation of research findings from alternative
methodological approaches with different underlying assumptions.

3. Assessment of mediation pathways

In the current study, Su et al. demonstrated that the associations they observed remained after adjustment for childhood SEP and self-reported physical activity, smoking, and use of illicit drugs during childhood. The authors refer to possible mediation by these characteristics in the discussion section of their paper, though do not explicitly mention mediation in their methods or analysis. This may be because the life course period that these characteristics covered overlapped with that of the exposure and hence they could be conceptualised as either potential confounders or mediators. Whilst prevention of ACEs is the optimal policy solution, trying to unpick a path through which different ACEs might impact future health could be important in deciding how best to minimise any potential future adverse health outcomes of ACEs that are experienced. However, such analyses are plagued with methodological difficulties. Measurement error is known to cause considerable bias in mediation analyses\(^{19}\), and self-reported measures of physical activity such as the one used in this study are likely to suffer from differential misclassification.

Longitudinal data can help to address problems with non-differential measurement error, but greater use of objective measures of health behaviours such as accelerometers to assess physical activity and cotinine to assess smoking is the key to addressing differential error. Where there are instrumental variables that are robustly related to exposures and mediators, this may help to improve the strength of inference from mediation studies.\(^{20}\)

4. Loss to follow-up

A key challenge of longitudinal studies is loss to follow-up, which is often greatest in the most vulnerable groups and which can result in biased estimates of the association between social exposures and health.\(^{21}\) The multi-level modelling approach taken by Su et al. minimises the
impact of loss to follow-up in the blood pressure data, since all participants with at least one blood pressure measurement can be included in the analysis under a missing at random assumption. Such approaches are to be recommended within life course study designs, although sensitivity analyses around the assumption of missing at random are suggested. However, only participants who completed the ACE questionnaire at the follow-up, when participants were aged 19-30 years, were included in this study. The Georgia Stress and Heart study is complex, with participants originally recruited from 65.5% of 13,850 children (N = 9,072 calculated by us from the statement that 65.5% had complete data in22) on whom complete family history data were obtained in 1989. A random subsample (stratified by ethnicity, gender and family history of essential hypertension) were selected for further longitudinal assessment, although the exact number selected is difficult to ascertain from the references to previous descriptions of the study provided. Two recent publications using this cohort looking at different associations with blood pressure trajectories included 745 and 663 participants22, 23, compared with the 394 included here. Thus it appears that there was considerable missing data for the ACE questionnaire and/or loss to follow-up at the 19-30 year follow-up. Information on how those who did not have ACE data compared to those who did would help to understand how robust and generalizable the current findings are.

Conclusions and ways forward

The study by Su et al. highlights important inequalities, with large differences in blood pressure between people who experienced several ACEs and those who did not experience any. The use of longitudinal blood pressure data in this study demonstrates that the associations between ACEs and blood pressure do not emerge until adulthood; this longitudinal approach is a strength, and highlights the value in taking a life course perspective in the study of social influences on
health. Such studies present several challenges, and we have outlined our thoughts on how these challenges might be overcome in future studies. Childhood adversity is an extremely important issue that should be a focus of public policy regardless of its causal effects on health. However, understanding the health consequences of adversity can contribute to the evidence base for demonstrating the importance of preventing adversity, and analysis of mediating pathways can also help us to identify ways in which we might intervene in order to prevent the harmful health consequences of adversity.

Funding Sources: Research reported in this publication was supported by the National Institute On Aging of the National Institutes of Health under Award Number R01AG048835 and by the UK Economic and Social Research Council (ES/M010317/1). LDH is supported by a UK Medical Research Council postdoctoral fellowship (G1002375) and all three authors work in a Unit that receives funding from the UK Medical Research Council (MC_UU_12013/5 and MC_UU_12013/9). DAL is a UK National Institute of Health Senior Investigator (NF-SI-0611-10196).

Conflict of Interest Disclosures: None.

References:

Studying the Life Course Health Consequences of Childhood Adversity: Challenges and Opportunities
Laura D. Howe, Kate Tilling and Debbie A. Lawlor

Circulation. Published online April 9, 2015;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2015/04/09/CIRCULATIONAHA.115.016251

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/