A Prospective Randomized Trial of Moderately Strenuous Aerobic Exercise After an Implantable Cardioverter Defibrillator (ICD)

Running title: Doughtery et al.; Exercise After an ICD

Cynthia M. Dougherty, RN, ARNP, PhD1,2; Robb W. Glenny, MD3; Robert L. Burr, PhD1; Gayle L. Flo, ARNP, MN4; Peter J. Kudenchuk, MD2

1Biobehavioral Nursing and Health Systems, University of Washington School of Nursing, Seattle, WA; 2Dept of Medicine, Division of Cardiology, Arrhythmia Services, University of Washington School of Medicine, Seattle, WA; 3Depts of Medicine and Physiology and Biophysics, Division of Pulmonary and Critical Care, University of Washington School of Medicine, Seattle, WA; 4Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN

Address for Correspondence:
Cynthia M. Dougherty, RN, ARNP, PhD
Biobehavioral Nursing and Health Systems
University of Washington School of Nursing
1959 NE Pacific Street, HSB T615A
Box 357266
Seattle, WA 98195
Tel: 206-221-7927
Fax: 206-543-4771
E-mail: cindyd@uw.edu

Abstract

Background—Despite its salutary effects on health, aerobic exercise is often avoided after receipt of an implantable cardioverter-defibrillator (ICD) because of fears that exercise may provoke acute arrhythmias. We prospectively evaluated the effects of a home aerobic exercise training and maintenance program (EX) on aerobic performance, ICD shocks and hospitalizations exclusively in ICD recipients.

Methods and Results—One hundred sixty (124 men, 36 women) were randomized who had an ICD for primary (43%) or secondary (57%) prevention to EX or usual care (UC). The primary outcome was peak oxygen consumption (peakVO$_2$), measured with cardiopulmonary exercise testing at baseline, 8 and 24 weeks. EX consisted of 8 weeks of home walking 1 hour/day, 5 days/week at 60-80% of heart rate reserve, followed by 16 weeks of maintenance home walking for 150 minutes/week. Adherence to EX was determined from exercise logs, ambulatory HR recordings of exercise, and weekly telephone contacts. UC received no exercise directives and were monitored by monthly telephone contact. Adverse events were identified by ICD interrogations, patient reports and medical records. ICD recipients averaged 55±12 years and mean ejection fraction of 40.6±15.7, all were taking beta blocker medications. EX significantly increased peakVO$_2$/ml/kg/min (EX 26.7±7.0; UC 23.9±6.6, p=0.002) at 8 weeks, which persisted during maintenance exercise at 24 weeks (EX 26.9±7.7; UC 23.4±6.0, p<0.001). ICD shocks were infrequent (EX=4 vs UC=8), with no differences in hospitalizations or deaths between groups.

Conclusions—Prescribed home exercise is safe and significantly improves cardiovascular performance in ICD recipients without causing shocks or hospitalizations.

Clinical Trial Registration Information—ClinicalTrials.gov. Identifier: NCT 00522340.

Key words: implanted cardioverter defibrillator, exercise, sudden cardiac arrest, hospitalization, exercise test
Background

Patients with heart failure, documented ventricular arrhythmias and other high-risk conditions rely on implantable cardioverter defibrillators (ICDs) to protect them from arrhythmic death. Approximately 1 million Americans have an ICD, with 100,000-150,000 new implants annually. Behavioral changes after an ICD implant occur in about half of participants, including the avoidance of daily household activities, sexual activity, and moderately intense exercise in an effort to prevent ICD shocks. Such behavior not only fails to prevent ICD shocks but is likely to result in a cycle of decreased activity, increased shock anxiety, poor acceptance of the ICD, and decreased quality of life. Clinical guidelines have not been developed to standardize the approach to exercise testing and prescription for this population. Nor is it known, whether the amount of exercise required to improve aerobic fitness and QOL outcomes is safely achievable in the home environment, without a concomitant increase in ICD shocks. Conversely, by improving physical function and overall quality of life (QOL), exercise has the potential to mitigate stress, reduce hospitalizations and outpatient visits, with the associated costs related to recurrent arrhythmias and ICD shocks. Interventions such as exercise that increase parasympathetic tone can afford protection against sudden cardiac arrest. The purpose of this randomized clinical trial was to determine the safety and efficacy of moderately strenuous aerobic exercise training followed by aerobic exercise maintenance administered in the home setting after an ICD.

Methods

Setting and Population

The study was coordinated at the University of Washington School of Nursing, with the exercise
intervention taking place in the community and home setting. Participants were recruited from ten outpatient settings throughout the Puget Sound region between 2007-2012. One hundred sixty ICD recipients were randomized into the study. Participants with single or dual chamber ICDs were eligible for inclusion in the study if they met the following criteria: 1) ICD implantation for either primary or secondary prevention of sudden cardiac arrest, 2) English-proficient and provided informed consent, 3) taking beta blocker medication, and 4) willingness to complete the exercise program and all follow-ups. Participants were ineligible for participation in the study if any of the following exclusion criteria were present: 1) clinical co-morbidities that impaired cognitive and/or physical functioning, 2) Short BLESSED score >6 representing cognitive dysfunction\(^8\), 3) age < 21 years, 4) AUDIT-C score ≥ 4 for alcohol use indicating excessive alcohol consumption\(^9\), 5) unstable angina, myocardial infarction, ICD shock, or heart surgery within the previous 3 months, 6) concurrent participation in an exercise program ≥ 60 minutes/5 days/week, 7) cardiac rhythm other than normal sinus rhythm, pacemaker dependence, or a cardiac resynchronization therapy (CRT-D) device, or 8) sustained ventricular arrhythmias at baseline cardiopulmonary exercise testing (CPET).

Research Design

Eligible ICD recipients were randomized to an aerobic exercise intervention (EX) or to usual care (UC), stratified by left ventricular ejection fraction (LVEF) ≤ 0.35 or >0.35 and Charlson co-morbidity score ≤ 2.0 or > 2.0\(^{10}\). The design, outcome measures and exercise testing protocol were previously described\(^{11-12}\). The trial was approved by the Institutional Review Board at the University of Washington and all participants provided written informed consent. An independent data and safety monitoring board provided oversight of the procedures, protocol, and adverse events.
Intervention

After randomization, all underwent CPET with the identical exercise protocol repeated at 8 and 24 weeks after enrollment. Trial entry required a respiratory exchange ratio of ≥ 1.0 during baseline testing. The EX intervention included 2 phases: 1) an 8-week aerobic training component followed by, 2) a 16-week aerobic maintenance component, using principles for conducting exercise in cardiac populations13. Exercise sessions began with five minutes of lower extremity stretching, followed by walking at a pace until the target heart rate (HR) was reached and maintained for 1 hour. A five minute cool-down consisting of lower extremity stretching and slower paced walking concluded each session. UC was requested not to start a new exercise program or change their exercise patterns for the duration of the study.

Aerobic Training (1 hour/day x 5 days/week x 8 weeks)

The aerobic training phase used the results of the baseline CPET to derive individualized HR targets for each week of the program as follows: Week 1-2, 60-65\% of heart rate reserve (HRR), Week 3-4, 70-75\% of HRR, and Week 5-8, 80-85\% of HRR using the Karvonen14 formula. The target HR during home exercise was tailored to fall below the ICD rate threshold for tachycardia detection by at least 20 bpm. Polar HR monitors (RS400, Polar Electro USATM, Lake Success, NY), programmed for individual participants, recorded and saved all HR data from exercise sessions and were returned bimonthly for evaluation and replacement. An exercise log in conjunction with a pedometer, Borg scale, and the Polar HR monitor, recorded each exercise session that included pre-, mid-, and post-exercise heart rates.

Aerobic Maintenance (150 minutes/week x 16 weeks)

After completing 8 weeks of aerobic training, participants completed another CPET and then continued home walking at 80\% of HRR for a minimum of 150 minutes/week, or approximately
half of the duration of aerobic training in any configuration of their choice. Adherence to the EX protocol during the training and maintenance phases was monitored by weekly phone contacts with a study nurse, HR monitoring, and exercise logs. UC patients received no exercise directives and were monitored for health concerns and amount of exercise in monthly phone contact.

Data Collection and Outcomes

The primary outcome was peak oxygen consumption (peakVO₂) after 8 weeks. Additionally we were interested in determining if gains made during aerobic training would be sustained over 16 weeks when the exercise duration was reduced by 50%. Secondarily, we documented the effects of exercise on ICD therapies, hospitalizations, and musculoskeletal complaints. Baseline characteristics were obtained at study entry from self-reports and medical records. CPET, ICD interrogations, and reports of hospitalizations were taken at: 1) baseline study entry, 2) 8 weeks later (completion of the aerobic training), and 3) 24 weeks from baseline (completion of the aerobic maintenance).

PeakVO₂ representing the largest amount of oxygen used during dynamic exercise involving large muscle mass, was measured by CPET [Viasys VMX series 229, Sensor Medics, San Diego] using a symptom-limited modified Balke protocol15 with continuous ECG and oxygen saturation monitoring and automated blood pressure measurement. ICD detection algorithms were suspended during CPET. Expired gases were analyzed breath-by-breath using a metabolic exercise system. Inspiratory flow, expiratory oxygen and carbon dioxide concentrations, oxygen consumption and CO₂ production were calculated using standard formulas. PeakVO₂ was determined as the average value observed over the last 10 seconds of exercise. Anaerobic threshold was determined by computerized algorithms using the V-slope
method (separation in VC02-VO2 L/min slopes)\(^1\) and was independently verified by an
investigator blinded to study assignment. Maximum HR, anaerobic threshold HR, and HR where
arrhythmias occurred were used for making exercise prescriptions. Other important outcomes
using the CPET included: *Exercise time:* Total number of minutes:seconds spent in treadmill
exercise not including the cool-down stage, *Oxygen consumption at the AT (VO\(_2\)@ AT):* Oxygen
consumption noted at the time anaerobic threshold (AT). This value usually occurs at about 40% to
60% of VO\(_2\)max. *Time at anaerobic threshold (AT):* Total minutes:seconds when the AT was
reached, *Oxygen pulse (VO\(_2\)/HR):* Volume of oxygen taken up by pulmonary blood during an
individual heart beat, an estimate of stroke volume, *Anaerobic threshold (AT):* Theoretical
physiologic point at which muscles add in anaerobic metabolism as an energy source, *Metabolic
Equivalents (METS):* amount of oxygen consumed while sitting at rest and is equal to 3.5
ml/kg/min.

Safety during exercise was monitored by: 1) occurrence of ventricular arrhythmias and
ICD therapies [shocks and anti-tachycardia (ATP) pacing] during exercise, and 2) exercise
associated and/or cardiac related hospitalizations or deaths. The incidence of ventricular
arrhythmias and/or receipt of ICD therapies were obtained from ICD interrogations performed at
baseline, 4 (EX group only), 8, and 24 weeks, or anytime an ICD therapy was reported or
suspected. ICD interrogations were saved electronically and reviewed by two investigators
blinded to study group assignment, from which the cause for any ICD therapy was determined
and classified (ventricular fibrillation, ventricular tachycardia, atrial fibrillation, supraventricular
arrhythmias). Any ICD therapy occurring during or within 1 hour of completing exercise was
defined as being related to the EX intervention. The DSMB adjudicated the cause of ICD shocks
as related or not related to the exercise intervention. Hospitalizations were obtained from self-
report and verified by written medical records. Safety outcomes in the study were described and tabulated.

Statistical Analysis

All analyses were conducted on the basis of intention-to-treat. Chi Square or \(t \) tests were used to test for baseline equivalence in demographic and outcome measures. Regression imputations for all missing data were simulated for both groups, with no statistically significant changes in outcomes being discovered at any time point. Differences in CPET measurements from baseline to 8 and 24 weeks were compared by group using repeated measures analysis of variance (ANOVA) controlling for age, body mass index, gender, Charlson score, EF%, and ICD reason (primary vs. secondary)\(^{17} \). Safety outcomes were analyzed using descriptive statistics and \(t \) tests. Statistical significance was defined as a 2-tailed alpha level \(< 0.05 \). SPSS version 17.0 (SPSS Inc, Chicago, IL) was used for the analysis. It was determined that a sample size of 160 patients provided 80% power to detect the between-group differences in cardiopulmonary outcomes, assuming a 2 ml/kg/min improvement in peakVO\(_2\) between treatment groups at 8 weeks and a 30% drop-out rate.

Results

Study Participants

Over a five-year period, 3366 participants were screened for trial eligibility. Of these, 160 (124 men and 36 women) were enrolled and randomized. The attrition rates in the EX and UC groups were comparable at 8 weeks (8% vs 7%, respectively) and 24 weeks (12% vs 10%), (**Figure 1**). Patient characteristics are provided in **Table 1**, who averaged 55±12.2 years of age (\(p=0.20 \)) and a mean LVEF of 0.41±15.7 (\(p=0.12 \)); 69 of whom (43%) had ischemic heart disease, 48 (30%)
had a non-ischemic dilated cardiomyopathy, and the remaining a variety of other cardiac diagnoses. ICDs were indicated for primary prevention in 68 (43%), and in 92 (57%) for secondary prevention, and on average had an ICD implanted 3.0±3.7 years (p=0.82) before entering the study. Demographic characteristics were comparable between the two groups. Approximately half of the persons screened for the study were not eligible for participation due to other concomitant co-morbid diseases. These characteristics made the prospect of exercise impractical or infeasible regardless of its potential benefits.

Primary Outcome

Baseline CPET measures did not significantly differ between EX and UC groups. Aerobic exercise training for 8 weeks resulted in a statistically significant increase in the mean peakVO₂ by 2.8 ml/kg/min (p<0.001) when compared to usual care (Table 2). In addition, significant improvements were observed at 8 weeks in the EX group in their exercise time, VO₂ at anaerobic threshold (AT), oxygen pulse and metabolic equivalents (METS), without accompanying changes in achieved maximum HR. After completing the aerobic training phase and continuing the maintenance phase for an additional 16 weeks, all measures of cardiopulmonary function, were sustained or continued to improve in the EX group. In contrast the UC group had no significant change or insignificant reductions in efficacy outcomes throughout the 24 week study period. Recipients of an ICD for secondary prevention had higher absolute levels of cardiopulmonary performance at baseline, the initial reason for getting the ICD did not impact improvements in efficacy outcomes.

Exercise Adherence

Adherence to the exercise intervention as prescribed was defined as walking for 80% or more of the total minutes prescribed/week. Table 3A-B displays the participant duration, frequency, and
intensity of the two phases of the exercise intervention. During both aerobic training and maintenance periods exercise adherence was high, achieving >75% of prescribed goals. Conversely, exercise performance within the target HR zone was infrequently achieved during the training period (17.5%) and fell to only about half this proportion (8.7%) during the maintenance phase. On average, exercise participants received 14/17 planned monitoring phone calls by the study nurse, each phone call lasted 12:11±3:15 minutes. The total time spent in telephone monitoring for each participant averaged 3:21±1:12 hours over the entire course of the trial. Two participants in each group withdrew from the study because of inconvenience or depression. During aerobic conditioning over 8 weeks, those who were at least 80% adherent with the prescribed exercise program achieved statistically significantly higher peak VO₂ (27.7±7.0 vs 24.3±6.7, p=0.03) and associated exercise outcomes (Exercise Time, VO₂ at AT, Time at AT, O₂ Pulse, and METS), when compared to those who were < 80% adherent. These results carried over into the aerobic maintenance phase as well. Maximum HR was essentially unchanged throughout the exercise period between adherent and non-adherent groups.

Safety

There were no deaths and no sudden cardiac arrests associated with aerobic training or maintenance. Though the overall number of events was small, there were no statistically significant differences between EX and UC in the frequency of ICD shocks or ATP therapies, although patients in the UC group tended to receive more shocks, while the EX group had more ATP therapies (Table 4). In only one instance was an ICD therapy (ATP) temporally associated with exercise. In the 6 month follow-up period, 3.5% in EX [95% CI (0.7-10.1%)] and 5.3% [95% CI (1.5-12.9%)] in UC received an ICD shock.

The overall frequency of hospitalizations did not differ between treatment groups,
N=11/group, EX [95% CI (5.0-19.4%)] and UC [95% CI(5.6-21.3%)]. Patients in the UC group had a non-significant higher number of cardiac or ICD shock-related hospitalizations than the EX group. There were 5 minor musculoskeletal complaints, one complaint of neuropathy and one accident-related injury (patient was struck by an automobile while walking) in the EX group. One patient in the UC group experienced two falls and an ankle fracture that were related to alcohol consumption.

Discussion

This is the first large randomized clinical trial evaluating the safety and efficacy of aerobic exercise training and maintenance in an exclusively ICD population conducted entirely in the home setting. Aerobic exercise that was strenuous enough to confer cardiopulmonary benefits was implemented without a concomitant increase in arrhythmias, ICD therapies, or hospitalizations. The magnitude of this improvement in peak\(V_{O_2}\) in the EX group (2.8 ml/kg/min) was clinically meaningful, similar to previous reports in HF-ACTION, that patients could discern better physical function and less energy expenditure when performing activities of daily living\(^{18}\). Overall adherence with the exercise prescription was high, and significant improvements were noted in training effects despite the relative low percentage who were able to exercise within the target heart rate range during both training and maintenance periods. This was likely related to the requirement that all patients must be taking beta blocker medication at study entry. Arguably the decline in the proportion of time patients exercised within their targeted heart range during the maintenance phase of the program might be taken to suggest a somewhat less vigorous exercise effort than during their training portion. However, that their continued motivation to exercise remained high is reflected in the absence of differences in the total time devoted to this activity during both periods. Notably, aerobic training effects were
sustained after the aerobic maintenance phase even when the exercise duration had been reduced by 50%.

When this study was initiated in 2007, there were very limited data available about the safety and efficacy of performing aerobic exercise in persons with an ICD, with only two completed randomized trials19-20, involving 68 patients who exercised in supervised cardiac rehabilitation (CR). Extending over the last decade, there have been nine total studies of exercise training in persons with an ICD, primarily in those with HF21, 3 of which used a randomized design that included 1008 patients19,20,22. Of these three, Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION), showed that peakVO\textsubscript{2} was improved with supervised and home exercise by 1.7ml/kg (4%), a non significant improvement over usual care23. However, this level of cardiopulmonary improvement was associated with a significant improvement in QOL, physical limitations, and symptoms18. Of the nine studies, 5 have reported improved peakVO\textsubscript{2} ranging from 0.6-2.7 ml/kg/min with exercise training, primarily in supervised cardiac rehabilitation settings. None of these trials included follow-up in a maintenance phase or exercise conducted at home. Within these 9 trials, ICD shock rates occurred during exercise from 2.3-12.5% and as high as 20%, in the follow-up period21.

There are several notable strengths of the current trial. First, we conducted all exercise in the home setting and found significant effects on peakVO\textsubscript{2} without compromising safety. Participants exercised at a moderate-strenuous level enough to gain aerobic benefits with only one ATP therapy and no ICD shocks occurring during exercise itself. This overall ICD shock rate in the EX group (3.5%) fell within the range of reported ICD shocks rates previously described in the supervised exercise settings21. In our 6 month follow-up period we had no reported deaths and the same number of hospitalizations in each group, compared to HF-
ACTION which reported 67% hospitalization or death over 2.2 years of follow-up22, patients of whom had HF with lower EF%.

A second strength of the current study is its high proportion of enrolled secondary prevention patients who had previously known arrhythmias, as compared to other studies of exercise in patients with ICDs who primarily have HF. This study was not a trial of exercise in HF patients. Patients with an ICD for secondary prevention are known to have a higher rate of ICD shocks, both with or without exercise24. At the time the study was conducted, results of the PREPARE25 and MADIT-RIT26 trials pertaining to ICD programming were not published or commonly incorporated into clinical practice. Thus, ICD programming algorithms to reduce ICD shock rates did not contribute to the low percentage of ICD therapies in our study group.

A third strength of the study are the noted sustained benefits from aerobic training into the maintenance phase when the amount of exercise was reduced by 50%. When given more freedom to choose when and how long to exercise, many reached 100\% adherence or exceeded the prescribed amount of exercise in aerobic maintenance. Finally, adherence to both aerobic training and maintenance phases was high (78\%), with a third in aerobic training and two-thirds in aerobic maintenance achieving 100\% adherence. Our participants were coached to exercise by phone. Compared to exercise programs in supervised outpatient settings, those that are at least in part carried out at home are more feasible, reduce transportation costs, improve adherence, and enhance long term exercise maintenance27.

The limitations of this study include the restricted enrollment criteria that excluded those with CRT-D devices, not in sinus rhythm, and with pacemaker dependence. The results apply to those with an ICD who have similar characteristics to those who enrolled. Noted improvements were seen in the primary outcome of cardiopulmonary function with a low percentage of patients...
consistently reaching their target HR. This may have contributed to a lower rate of ICD therapies. The requirement to achieve a symptom-limited baseline CPET using the treadmill may have limited some individuals from participating who had gait or balance abnormalities. Our exercise prescription and monitoring equipment were designed for walking, and did not offer the possibility of bicycling, swimming, or other forms of aerobic exercise. The weight limit of our CPET equipment limited morbidly obese individuals from participation. Finally, the number of safety-related events in this trial were small. The absence of differences in these events between treatment groups, in the context of large confidence intervals, are judiciously interpreted. However, the low frequency of adverse events, without a signal of potential harm in the exercise group, suggests that the exercise prescription and the home setting in which it was conducted, does not pose a major risk to patients. We attribute the low percentage of ICD therapies (shocks and ATPs) in the study to a possible combination of factors including: 1) the carefully planned exercise testing protocol and individualized exercise prescriptions that took into account both ICD programming parameters and maximal HR, 2) meticulous monitoring procedures used during home exercise to detect problems, 3) use of beta blockers in all study participants, and 4) the requirement to be in normal sinus rhythm at study entry.

In conclusion, our results demonstrate that moderately strenuous aerobic exercise performed at home significantly improved cardiovascular performance during exercise training that was sustained even with a reduction in exercise duration during the maintenance phase, all without compromise to safety in persons with an ICD. These observations should help dispel concerns by providers and patients alike about the benefits and safety of moderately strenuous exercise after an ICD. Having an ICD should not relegate persons to lifelong sedentary activity because of fear of recurrent arrhythmias or ICD shocks.
Acknowledgments: We wish to acknowledge all staff in the cardiopulmonary exercise lab who carefully and safely participated in exercise testing; institutions participating in recruitment, and all patients who exercised and provided data to the study.

Funding Sources: This study was supported by the National Institutes of Health, National Heart, Lung, and Blood Institute, 5R01 HL084550-01A2 (Dr. Dougherty, PI)

Conflict of Interest Disclosures: None.

References:

9. Bush K, Kivlahan DR, McDonell MB, Fihn SD, Bradley KA. The AUDIT Alcohol

Table 1. Baseline Demographic and Clinical Characteristics.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Total (N=160)</th>
<th>Exercise (N=84)</th>
<th>Usual Care (N=76)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – years (mean±SD)</td>
<td>54.9±12.2</td>
<td>56.1±12.1</td>
<td>53.6±12.2</td>
<td>0.20</td>
</tr>
<tr>
<td>Gender – N (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>Male</td>
<td>124 (77.5)</td>
<td>67 (79.8)</td>
<td>57 (75.0)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>36 (22.5)</td>
<td>17 (20.2)</td>
<td>19 (25.0)</td>
<td></td>
</tr>
<tr>
<td>Ethnicity - N (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>Caucasian</td>
<td>135 (84.4)</td>
<td>74 (88.1)</td>
<td>61 (80.3)</td>
<td></td>
</tr>
<tr>
<td>Black/African</td>
<td>11 (6.9)</td>
<td>6 (7.1)</td>
<td>5 (6.6)</td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>8 (5.0)</td>
<td>2 (2.4)</td>
<td>6 (7.9)</td>
<td></td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>3 (1.9)</td>
<td>0</td>
<td>3 (3.9)</td>
<td></td>
</tr>
<tr>
<td>American Indian/Alaskan</td>
<td>3 (1.9)</td>
<td>2 (2.4)</td>
<td>1 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Education - N (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>High school or less</td>
<td>31 (19.4)</td>
<td>14 (16.7)</td>
<td>17 (22.4)</td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>102 (63.8)</td>
<td>52 (61.9)</td>
<td>50 (65.8)</td>
<td></td>
</tr>
<tr>
<td>Graduate/Professional</td>
<td>27 (16.9)</td>
<td>18 (21.4)</td>
<td>9 (11.8)</td>
<td></td>
</tr>
<tr>
<td>Employment - N (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Full-time/Part-time</td>
<td>81 (50.6)</td>
<td>40 (47.6)</td>
<td>41 (54.0)</td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>41 (25.6)</td>
<td>20 (23.8)</td>
<td>21 (27.6)</td>
<td></td>
</tr>
<tr>
<td>Disabled, unemployed</td>
<td>38 (23.8)</td>
<td>24 (28.6)</td>
<td>14 (18.4)</td>
<td></td>
</tr>
<tr>
<td>Household Income ($) - N (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td><$10,000-49,999</td>
<td>70 (43.8)</td>
<td>35 (41.7)</td>
<td>35 (46.1)</td>
<td></td>
</tr>
<tr>
<td>$50,000->90,000</td>
<td>90 (56.3)</td>
<td>48 (57.2)</td>
<td>41 (54.0)</td>
<td></td>
</tr>
<tr>
<td>Clinical Characteristics</td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>Reason for ICD - N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>68 (42.5)</td>
<td>38 (45.2)</td>
<td>30 (39.5)</td>
<td></td>
</tr>
<tr>
<td>Secondary (Prior VT or VF)</td>
<td>92 (57.5)</td>
<td>46 (54.8)</td>
<td>46 (60.5)</td>
<td></td>
</tr>
<tr>
<td>Ejection Fraction (%)</td>
<td>40.6±15.7</td>
<td>38.7±14.8</td>
<td>42.6±16.5</td>
<td>0.12</td>
</tr>
<tr>
<td>Charlson Comorbidity Index (mean±SD)</td>
<td>1.51±1.23</td>
<td>1.58±1.14</td>
<td>1.43±1.33</td>
<td>0.45</td>
</tr>
<tr>
<td>Body mass index (mean±SD)</td>
<td>29.6±5.3</td>
<td>29.3±5.2</td>
<td>29.9±5.4</td>
<td>0.48</td>
</tr>
<tr>
<td>Short Blessed Score (mean±SD)</td>
<td>1.54±2.24</td>
<td>1.85±2.61</td>
<td>1.21±1.70</td>
<td>0.26</td>
</tr>
<tr>
<td>Audit-C Score (mean±SD)</td>
<td>1.96±1.86</td>
<td>1.98±1.90</td>
<td>1.94±1.84</td>
<td>0.99</td>
</tr>
<tr>
<td>Years Since ICD Implant (mean±SD)</td>
<td>3.04±3.68</td>
<td>3.11±4.06</td>
<td>2.97±3.24</td>
<td>0.82</td>
</tr>
<tr>
<td>Diabetes Mellitus - N (%)</td>
<td>36 (22.5)</td>
<td>15 (17.9)</td>
<td>21 (27.6)</td>
<td>0.10</td>
</tr>
<tr>
<td>Hx of Myocardial Infarction - N (%)</td>
<td>65 (40.6)</td>
<td>35 (41.7)</td>
<td>30 (39.5)</td>
<td>0.45</td>
</tr>
<tr>
<td>Cardiac Diagnosis – N (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.44</td>
</tr>
<tr>
<td>Ischemic Cardiomyopathy</td>
<td>69 (43.1)</td>
<td>37 (44.0)</td>
<td>32(42.1)</td>
<td></td>
</tr>
<tr>
<td>Idiopathic Dilated Cardiomyopathy</td>
<td>48 (30.0)</td>
<td>27 (32.1)</td>
<td>21 (27.6)</td>
<td></td>
</tr>
<tr>
<td>Arrhythmogenic RV Dysplasia</td>
<td>2 (1.3)</td>
<td>1 (1.2)</td>
<td>1 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Hypertrophic Cardiomyopathy</td>
<td>12 (7.5)</td>
<td>6 (7.1)</td>
<td>6 (7.9)</td>
<td></td>
</tr>
<tr>
<td>Myxomatous Mitral Valve Disease</td>
<td>2 (1.3)</td>
<td>0</td>
<td>2 (2.6)</td>
<td></td>
</tr>
<tr>
<td>Long QT Syndrome</td>
<td>2 (1.3)</td>
<td>1 (1.2)</td>
<td>1 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Repaired Congenital Heart Disease</td>
<td>3 (1.9)</td>
<td>2 (2.4)</td>
<td>1 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Marfan Syndrome</td>
<td>1 (0.6)</td>
<td>1 (1.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Eosinophilic Myocardiitis</td>
<td>1 (0.6)</td>
<td>1 (1.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ventricular Tachycardia or VF arrest</td>
<td>19 (12.0)</td>
<td>7 (8.4)</td>
<td>12 (15.7)</td>
<td></td>
</tr>
<tr>
<td>Sarcoid</td>
<td>1 (0.6)</td>
<td>1 (1.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Drug Type – N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta Blocker</td>
<td>160 (100)</td>
<td>84 (100)</td>
<td>76 (100)</td>
<td>0.99</td>
</tr>
<tr>
<td>ACE Inhibitor</td>
<td>90 (56.3)</td>
<td>51 (60.7)</td>
<td>39 (51.3)</td>
<td>0.15</td>
</tr>
<tr>
<td>Digoxin</td>
<td>29 (18.1)</td>
<td>18 (21.4)</td>
<td>11 (14.5)</td>
<td>0.18</td>
</tr>
<tr>
<td>Diuretic</td>
<td>75 (46.9)</td>
<td>38 (45.2)</td>
<td>37 (48.7)</td>
<td>0.39</td>
</tr>
<tr>
<td>Anti-Arrhythmic</td>
<td>14 (8.8)</td>
<td>11 (13.1)</td>
<td>3 (3.9)</td>
<td>0.04</td>
</tr>
<tr>
<td>Calcium Channel Blocker</td>
<td>8 (5.0)</td>
<td>4 (4.8)</td>
<td>4 (5.3)</td>
<td>0.58</td>
</tr>
<tr>
<td>Angiotensin Receptor Blocker</td>
<td>30 (18.8)</td>
<td>13 (15.5)</td>
<td>17 (22.4)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

p test for interval level variables and Chi Square for categorical level variables.
Table 2. Baseline, 8, 24 weeks. Repeated Measures Analysis of Variance Group x Time Comparisons.

<table>
<thead>
<tr>
<th>Primary Outcomes</th>
<th>Baseline</th>
<th>8 weeks</th>
<th>F: baseline to 8 weeks</th>
<th>p</th>
<th>24 weeks</th>
<th>F: baseline to 24 weeks</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak VO₂ (mg/kg/min)</td>
<td>EX</td>
<td>24.6±5.7</td>
<td>26.7±7.0</td>
<td>9.88</td>
<td>0.002</td>
<td>26.9±7.7</td>
<td>9.85</td>
</tr>
<tr>
<td>(min:sec)</td>
<td>UC</td>
<td>23.5±5.8</td>
<td>23.9±6.6</td>
<td></td>
<td></td>
<td>23.4±6.0</td>
<td></td>
</tr>
<tr>
<td>Exercise Time (min:sec)</td>
<td>EX</td>
<td>14:28±5:13</td>
<td>16:04±6:17</td>
<td>11.61</td>
<td>0.001</td>
<td>16:27±6:36</td>
<td>11.54</td>
</tr>
<tr>
<td>VO₂@AT (mg/kg/min)</td>
<td>EX</td>
<td>20.5±5.3</td>
<td>22.5±6.2</td>
<td>6.94</td>
<td>0.009</td>
<td>23.0±6.8</td>
<td>6.92</td>
</tr>
<tr>
<td>UC</td>
<td>19.5±5.1</td>
<td>20.0±5.5</td>
<td></td>
<td></td>
<td>19.8±5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time@AT (min:sec)</td>
<td>EX</td>
<td>11:01±4:18</td>
<td>12:42±5:21</td>
<td>11.04</td>
<td>0.001</td>
<td>13:16±5:45</td>
<td>11.21</td>
</tr>
<tr>
<td>UC</td>
<td>10:20±4:03</td>
<td>10:47±4:11</td>
<td></td>
<td></td>
<td>10:38±4:03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ Pulse (VO₂/HR)</td>
<td>EX</td>
<td>17.2±4.8</td>
<td>18.5±5.2</td>
<td>3.20</td>
<td>0.07</td>
<td>18.7±5.5</td>
<td>3.80</td>
</tr>
<tr>
<td>UC</td>
<td>16.7±4.6</td>
<td>17.1±5.0</td>
<td></td>
<td></td>
<td>16.8±4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max Heart Rate (BPM)</td>
<td>EX</td>
<td>129.8±21.5</td>
<td>130.1±20.5</td>
<td>0.24</td>
<td>0.62</td>
<td>129.8±21.0</td>
<td>0.25</td>
</tr>
<tr>
<td>UC</td>
<td>132.4±18.9</td>
<td>131.3±21.6</td>
<td></td>
<td></td>
<td>131.4±21.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METS</td>
<td>EX</td>
<td>6.97±1.67</td>
<td>7.57±2.04</td>
<td>8.11</td>
<td>0.005</td>
<td>7.64±2.26</td>
<td>7.48</td>
</tr>
<tr>
<td>UC</td>
<td>6.69±1.64</td>
<td>6.77±1.97</td>
<td></td>
<td></td>
<td>6.67±1.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* F statistic for the group x time differences
EX=Exercise group, UC=Usual care group
AT=anaerobic threshold.
Table 3A. Intervention Participation: 8-week aerobic training phase

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>Range</th>
<th>Percent of Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of walks per week*</td>
<td>3.8 ± 1.46</td>
<td>.13 - 5.88</td>
<td>76.0</td>
</tr>
<tr>
<td>Goal: 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutes walked per week</td>
<td>234.2 ± 96.2</td>
<td>6.88 - 395.7</td>
<td>78.1</td>
</tr>
<tr>
<td>Goal: 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Minutes walked</td>
<td>1873.1 ± 769.1</td>
<td>55 - 3166</td>
<td>78.0</td>
</tr>
<tr>
<td>Goal: 2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Minutes walked at or above THR*</td>
<td>418.8 ± 418.4</td>
<td>0 - 1833</td>
<td>17.5</td>
</tr>
<tr>
<td>Goal: 2400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Goals were based on walking 300 minutes/week at a minimum of 60 minutes/session

THR = target heart rate zone

Table 3B: Intervention Participation: 16-week aerobic maintenance phase

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>Range</th>
<th>Percent of Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of walks per week +</td>
<td>2.4 ± 1.6</td>
<td>0 - 6.0</td>
<td>74.8</td>
</tr>
<tr>
<td>Goal: > 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutes walked per week</td>
<td>117.0 ± 86.3</td>
<td>0 349</td>
<td>78.0</td>
</tr>
<tr>
<td>Goal: 150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total minutes walked</td>
<td>1872.2 ± 1380.8</td>
<td>0 - 5594</td>
<td>78.0</td>
</tr>
<tr>
<td>Goal: 2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Minutes walked at or above THR</td>
<td>209.2 ± 367.5</td>
<td>0 - 1841</td>
<td>8.7</td>
</tr>
<tr>
<td>Goal: 2400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Goals were based on walking 150 minutes/week at a minimum of 30 minutes/session

THR = target heart rate zone
Table 4. ICD Therapies (Shocks and ATPs) and Hospitalizations over 6 months

<table>
<thead>
<tr>
<th>ICD Shocks</th>
<th>Exercise</th>
<th>Usual Care</th>
<th>ATP Therapy</th>
<th>Exercise</th>
<th>Usual Care</th>
<th>Hospitalizations</th>
<th>Exercise</th>
<th>Usual Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated with exercise</td>
<td>0</td>
<td>0</td>
<td>Associated with exercise</td>
<td>1</td>
<td>0</td>
<td>Associated with exercise</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total ICD Shocks</td>
<td>4</td>
<td>8</td>
<td>Total ATP therapies</td>
<td>7</td>
<td>2</td>
<td>Total # hospitalizations</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total individuals shocked</td>
<td>3</td>
<td>4</td>
<td>Total individuals with ATP</td>
<td>4</td>
<td>2</td>
<td>Total individuals hospitalized</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>% of total</td>
<td>3.5%</td>
<td>5.3%</td>
<td>% of total</td>
<td>4.7%</td>
<td>2.6%</td>
<td>% of total</td>
<td>10.7%</td>
<td>11.8%</td>
</tr>
<tr>
<td>Lower CI</td>
<td>0.7%</td>
<td>1.5%</td>
<td>Lower CI</td>
<td>1.3%</td>
<td>0.3%</td>
<td>Lower CI</td>
<td>5.0%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Upper CI</td>
<td>10.1%</td>
<td>12.9%</td>
<td>Upper CI</td>
<td>11.7%</td>
<td>9.2%</td>
<td>Upper CI</td>
<td>19.4%</td>
<td>21.3%</td>
</tr>
<tr>
<td>Appropriate Shocks</td>
<td>2</td>
<td>5</td>
<td>Appropriate ATP</td>
<td>7</td>
<td>2</td>
<td>-Reason: ICD shock</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Inappropriate Shocks</td>
<td>2</td>
<td>3</td>
<td>Inappropriate ATP</td>
<td>0</td>
<td>0</td>
<td>-Reason: HF exacerbation</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-Reason: PCI</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-Reason: Other*</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

*Other hospitalization reasons EX group: urinary tract infection, ICD lead or generator change (2), gastrointestinal bleed, upper respiratory infection, pilonidal cyst, chest pain (2), ventricular tachycardia, acute renal failure, esophagitis.

Other hospitalization reasons UC group: ICD lead or generator change (3), ulcerative colitis, chest pain, asthma, fall with fractured ankle.

ATP=anti-tachycardia pacing
HF=heart failure
PCI=percutaneous coronary intervention
CI=95% confidence interval
Figure Legend:

Figure 1. Screening, Randomization, and Follow-up of Study Participants. Abbreviations:
MI=myocardial infarction. ICD=implantable cardioverter defibrillator. MSK=musculoskeletal.
CAD=coronary artery disease. CPET=cardiopulmonary exercise test.
HF=heart failure. LVAD=left ventricular assist device.
A Prospective Randomized Trial of Moderately Strenuous Aerobic Exercise After an Implantable Cardioverter Defibrillator (ICD)
Cynthia M. Dougherty, Robb W. Glenny, Robert L. Burr, Gayle L. Flo and Peter J. Kudenchuk

Circulation. published online March 19, 2015;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2015/03/19/CIRCULATIONAHA.114.014444

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2016/04/11/CIRCULATIONAHA.114.014444.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Estudio prospectivo aleatorizado de ejercicio aeróbico moderadamente intenso luego de un cardiodesfibrilador implantable

Cynthia M. Dougherty, RN, ARNP, PhD; Robb W. Glenny, MD; Robert L. Burr, PhD; Gayle L. Flo, RN, ARNP; Peter J. Kudenchuk, MD

Antecedentes—Más allá de sus efectos beneficiosos sobre la salud, el ejercicio aeróbico generalmente se evita luego de recibir un cardiodesfibrilador implantable (CDI) debido al temor de que el ejercicio provoque arritmias agudas. Evaluamos prospectivamente los efectos de una práctica de ejercicios aeróbicos en el hogar y programa de mantenimiento (EX) sobre el rendimiento aeróbico, descargas del CDI y hospitalizaciones exclusivamente en receptores de CDI.

Métodos y Resultados—En total, 160 pacientes (124 hombres y 36 mujeres) fueron aleatoriamente asignados, quienes tenían un CDI por prevención primaria (43%) o secundaria (57%) para EX o atención habitual (AH). El resultado principal fue el consumo máximo de oxígeno, medido con prueba de esfuerzo cardiopulmonar a nivel basal y a las 8 y 24 semanas. EX consistió en 8 semanas de caminata en el hogar durante 1 h/d, 5 d/semana en 60% a 80% de frecuencia cardíaca de reserva, seguido de 16 semanas de caminata de mantenimiento en el hogar durante 150 min/semana. La adherencia a EX fue determinada a partir de registros de ejercicios, registros de frecuencia cardíaca ambulatoria en ejercicio, y contactos telefónicos semanales. Los pacientes asignados a AH no recibieron directivas de ejercicios y fueron controlados mediante contacto telefónico mensual. Los eventos adversos fueron identificados mediante interrogaciones de CDI, informes de los pacientes e historias clínicas. Los receptores de CDI promediaban 55 ± 12 años y una fracción de eyección promedio de 40,6 ± 12,7; todos estaban tomando medicación β-bloqueante. El EX aumentó significativamente el consumo máximo de oxígeno (EX, 26,7 ± 7,0 mL/kg por minuto; AH, 23,9 ± 6,6 mL/kg por minuto; \(P = 0,002 \)) a las 8 semanas, que se mantuvo durante el ejercicio de mantenimiento a las 24 semanas (EX, 26,9 ± 7,7 mL/kg por minuto; AH, 23,4 ± 6,0 mL/kg por minuto; \(P < 0,001 \)). Las descargas de CDI fueron infrecuentes (EX = 4 versus AH = 8), sin diferencias en hospitalizaciones o muertes entre los grupos.

Conclusiones—La prescripción de ejercicios en el hogar es segura y mejora significativamente el rendimiento cardiovascular en receptores de CDI sin causar descargas u hospitalizaciones.

Palabras clave: arritmias, cardíacas ❄ cardiodesfibriladores, implantables ❄ ejercicio ❄ paro cardiaco ❄ frecuencia cardíaca

Los pacientes con insuficiencia cardíaca, arritmias ventriculares documentadas u otras afecciones de alto riesgo dependen de cardiodesfibriladores implantables (CDI) para protegerlos de muerte arrítmica. Aproximadamente 1 millón de norteamericanos tienen un CDI, con 100 000 a 150 000 nuevos implantes anualmente.1 Los cambios de conductas luego de un implante de CDI se presentan en aproximadamente la mitad de los participantes, incluso evitar las actividades diarias del hogar, actividad sexual y ejercicios moderadamente intensos con el fin de evitar descargas de CDI.2 Dicha conducta no solamente no evita las descargas de CDI sino que probablemente resulte en un ciclo de disminución de la actividad, aumento de la ansiedad de descargas, mala aceptación del CDI y disminución de la calidad de vida.3,4 No se han desarrollado las pautas clínicas para estandarizar el enfoque para la prueba de esfuerzo y la prescripción para esta población, y tampoco se sabe si la cantidad de ejercicio requerido para mejorar el estado físico aeróbico y los resultados de calidad de vida se puede llevar a cabo de manera segura en el entorno del hogar sin un aumento concomitante en las descargas de CDI. Por el contrario, al mejorar la función física y la calidad de vida en general, el ejercicio tiene el potencial para mitigar el estrés y

Véase la Perspectiva Clínica en la página 9

1 Recibido el 21 de noviembre de 2014; aceptado el 12 de marzo de 2015.
Biobehavioral Nursing and Health Systems (C.M.D., R.L.B.), Division of Cardiology, Arrhythmia Services, Department of Medicine (C.M.D., P.J.K.), Division of Pulmonary and Critical Care, Departments of Medicine and Physiology and Biophysics (R.W.G.), University of Washington Seattle; and Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN (G.L.F.).
Remitir correspondencia a Cynthia M. Dougherty, RN, ARNP, PhD, Biobehavioral Nursing and Health Systems, University of Washington School of Nursing, 1559 NE Pacific St, HSB T615A, Box 357266, Seattle, WA 98195, correo electrónico cindyd@uw.edu
© 2015 American Heart Association, Inc.
Circulation está disponible en http://circ.ahajournals.org

DOI: 10.1161/CIRCULATIONAHA.114.014444
reducir las hospitalizaciones y las visitas ambulatorias, con los costos asociados relacionados con arritmias recurrentes y descargas de CDI.1 Las intervenciones tales como el ejercicio que aumenta el tono parasimpático6,7 pueden proporcionar protección contra paro cardíaco súbito. El propósito de este ensayo clínico aleatorizado fue determinar la seguridad y eficacia de la práctica de ejercicios aeróbicos moderadamente intensos seguido de mantenimiento de ejercicios aeróbicos administrados en el entorno del hogar luego de un CDI.

Métodos

Entorno y población
El estudio fue coordinado en la Facultad de Enfermería de la Universidad de Washington, con la intervención del ejercicio que tuvo lugar en la comunidad y el entorno hogareño. Los participantes fueron reclutados de 10 ámbitos ambulatorios en la región de Puget Sound entre 2007 y 2012. Un total de 160 receptores de CDI fueron aleatoriamente asignados en el estudio. Los participantes con CDI de cámara única o doble eran seleccionados para su inclusión en el estudio si cumplían con los siguientes criterios: 1) implante de CDI para prevención primaria o secundaria de paro cardíaco súbito; 2) dominio de inglés y proporcionar consentimiento por escrito; 3) tomando β-bloqueantes y 4) disponibilidad para completar el programa de ejercicios y todos los seguimientos. Los participantes no eran elegidos para participar en el estudio si se presentaba alguno de los siguientes criterios de exclusión: 1) comorbilidades clínicas que alteraran la función cognitiva o física; 2) puntuación de lista corta de Blessed > 6 representando disfunción cognitiva6; 3) edad < 21 años; 4) puntuación del Test de Identificación de Trastornos por Consumo de Alcohol ≥ 4 para consumo de alcohol indicando consumo excesivo de alcohol7; 5) angina inestable, infarto de miocardio, descarga de CDI o cirugía cardíaca dentro de los 3 meses previos; 6) participación concomitante en un programa de ejercicios ≥ 60 min/5 días por semana; 7) frecuencia cardíaca diferente de la frecuencia sinusal normal, dependencia de marcapasos o un dispositivo de terapia de resincronización cardíaca; u 8) arritmias ventriculares continuas en pruebas de esfuerzo cardiopulmonar basal.

Diseño de la investigación
Aquellos con CDI seleccionados fueron aleatoriamente asignados a una intervención de ejercicios aeróbicos (EX) o a atención habitual (AH), estratificados por fracción de eje ventricular izquierda ≤ 0,35 o > 0,35 y puntuación de comorbilidad de Charlson ≤ 2,0 o > 2,0.10 El diseño, las medidas de los resultados y el protocolo de la prueba de esfuerzo fueron previamente descritos.11,12 El estudio fue aprobado por el comité de revisión institucional de la Universidad de Washington, y todos los participantes dieron su consentimiento por escrito. Un comité independiente de control de datos y seguridad proporcionó supervisión de los procedimientos, protocolo y eventos adversos.

Intervención
Luego de la asignación aleatoria, todos fueron sometidos a prueba de esfuerzo cardiopulmonar (CPET, cardiopulmonary exercise test) con idéntico protocolo de ejercicios repetido a las 8 y 24 semanas luego de la inscripción. El ingreso en el estudio requería un promedio de intercambio respiratorio ≥ 1,0 durante la prueba basal. La intervención de EX incluía 2 fases, un componente de ejercitación aeróbica de 8 semanas seguido de un componente de mantenimiento aeróbico de 16 semanas, usando principios para dirigir ejercicios en poblaciones cardiacas.13 Las sesiones de ejercicios comenzaban con 5 minutos de estiramiento de extremidades inferiores, seguidos de una caminata a un ritmo hasta que se alcanzara la frecuencia cardíaca (FC) deseada y se mantuviera durante 1 hora. Una relajación de 5 minutos que consistía en un estiramiento de las extremidades inferiores y una caminata a paso más lento concluían cada sesión. Se les solicitaba a los pacientes en el grupo AH que no comenzaran con un nuevo programa de ejercicios ni cambianaran sus patrones de ejercicios durante la duración del estudio.

Entrenamiento aeróbico (1 h/d × 5 d/semana × 8 semanas)
La fase de entrenamiento aeróbico usó los resultados de la CPET basal para derivar objetivos de FC individualizados para cada semana del programa de la siguiente manera: 1) semana 1 a 2, 60% a 65% FC de reserva; 2) semana 3 a 4, 70% a 75% FC de reserva; y 3) semana 5 a 8, 80% a 85% FC de reserva usando la fórmula de Karvonen14. La FC deseada durante el ejercicio en el hogar fue adaptada por debajo del umbral del ritmo del CDI para detección de taquicardia en por lo menos 20 lpm. Los monitores de FC Polar (RS400; Polar Electro USA, Lake Success, NY), programados para determinados participantes, registraron y grabaron todos los datos de FC de las sesiones de ejercicios y eran regresados bimestralmente para evaluación y reemplazo. Un registro de ejercicios junto con un podómetro, escala de Borg y el monitor de FC Polar, grababan cada sesión de ejercicios que incluía FC previas al ejercicio, durante el ejercicio y luego del ejercicio.

Mantenimiento aeróbico (150 min/semana × 16 semanas)
Luego de completar 8 semanas de entrenamiento aeróbico, los participantes completaron otra CPET y luego continuaron con la caminata en el hogar en 80% de FC de reserva durante un mínimo de 150 min/semana, o aproximadamente la mitad de la duración del entrenamiento aeróbico en cualquier configuración de su elección. La adherencia al protocolo del EX durante las fases de entrenamiento y mantenimiento fue monitorizada por contactos telefónicos semanales con un enfermero del estudio, control de FC y registros de ejercicios. Los pacientes de AH no recibieron directivas de ejercicios y se les controló problemas de salud y cantidad de ejercicios en contacto telefónico mensual.

Recopilación de datos y resultados
El resultado principal fue el consumo máximo de oxígeno (Vo2 pico) luego de 8 semanas. Adicionalmente estuvimos interesados en determinar si los logros hechos durante el entrenamiento aeróbico se mantendrían a las 16 semanas, cuando la duración del ejercicio era reducida en 50%. En segundo lugar, documentamos los efectos del ejercicio en terapias de CDI, hospitalizaciones y síntomas musculosqueléticos. Las características basales se obtuvieron al ingreso en el estudio mediante autoinformes e historias clínicas hechas por los médicos. La CPET, las interrogaciones de CDI e informes de hospitalizaciones se tomaron del nivel basal en el ingreso al estudio, 8 semanas después (al completarse el entrenamiento aeróbico) y 24 semanas desde el nivel basal (al completarse el mantenimiento aeróbico).

El Vo2 pico que representa la mayor cantidad de oxígeno usada durante el ejercicio dinámico que compromete masa muscular grande, fue medido por CPET (Viasys VMax series 229; Sensor Medics, San Diego, CA) usando un protocolo15 de Balke modificado limitado a síntomas con ECG continuo y control de saturación de oxígeno y medición automatizada de presión arterial. Los algoritmos de detección de CDI fueron suspendidos durante la CPET. Los gases espirados fueron analizados, respiración por respiración usando un sistema de...
ejercicio metabólico. El flujo inspiratorio, oxígeno espiratorio y las concentraciones de dióxido de carbono, consumo de oxígeno y producción de CO₂ se calcularon usando fórmulas estándar. El VO₂ pico fue determinado como el valor promedio observado en los últimos 10 segundos de ejercicio. El umbral anaeróbico fue determinado mediante algoritmos computarizados usando el método de V-slope (separación en VCO₂ y VO₂, por litro por inclinaciones de minutos)14 y fue independientemente verificada por un investigador que no conocía la asignación del estudio. La FC máxima, la FC del umbral anaeróbico y las FC donde se presentaban arritmias fueron usadas para hacer prescripciones de ejercicios. Otros resultados importantes que usaron la CPET incluyeron las mediciones aquí descritas. El tiempo de ejercicio se calculaba como la cantidad total de minutos-segundos que se pasaban en el ejercicio en la cinta sin incluir la etapa de relajación. El consumo de oxígeno en el umbral anaeróbico (UA) era el consumo de oxígeno observado al momento del UA. Este valor generalmente se presenta en ≈40% a 60% del VO₂ máximo. El tiempo en UA incluía minutos: segundos totales cuando se alcanzaba el UA. El empuje de oxígeno (VO₂/FC) se calculó como volumen de oxígeno tomado por sangre pulmonar durante un determinado latido cardíaco, un estimado del volumen de eyeción. El UA fue el punto fisiológico teórico en el cual los músculos se agregan al metabolismo anaeróbico como una fuente de energía. Por último, los equivalentes metabólicos fueron calculados como la cantidad de oxígeno consumido mientras se está sentado en reposo y es igual a 3,5 mL/kg por minuto.

La seguridad durante el ejercicio fue controlada por la presentación de arritmias ventriculares y terapias de CDI (descargas y estimulación antitauquircardia [ATP]) durante el ejercicio y hospitalizaciones o muertes asociadas con el ejercicio o relacionadas con el aspecto cardíaco. La incidencia de arritmias ventriculares o recepción de terapias de CDI se obtuvieron de interrogaclones de CDI realizadas en etapa basal y 4 (grupo EX solamente), 8 y 24 semanas o cualquier etapa en que se informaba o sospechaba una terapia de CDI. Las interrogaclones de CDI se grabaron de manera electrónica y fueron revisadas por 2 investigadores que no conocían la asignación del grupo de estudio, donde la causa para cualquier terapia de CDI estaba determinada y clasificada (fibrilación ventricular, taquircardia ventricular, fibrilación auricular y arritmias supraventriculares). Cualquier terapia de CDI que se presentara durante o dentro de 1 hora de completarse el ejercicio estaba definida como relacionada con la intervención de EX. El comité de control de datos y de seguridad adjudicó la causa de descargas de CDI como relacionada o no relacionada con la intervención del ejercicio. Las hospitalizaciones se obtuvieron de autoinformes y se verificaron mediante historias clínicas escritas por los médicos. Los resultados de seguridad en el estudio se describieron y tabularon.

Análisis estadístico
Todos los análisis se condujeron según intención de tratar. Las pruebas de χ² o t fueron usadas para evaluar equivalencia basal en medidas demográficas y de resultados. Las imputaciones de regresión para todos los datos faltantes fueron simuladas para ambos grupos, sin cambios estadísticamente significativos en resultados descubier- tos en cualquier etapa. Las diferencias en las mediciones de CPET desde el nivel basal a las 8 y 24 semanas fueron comparadas por grupo usando ANOVA con medidas repetidas controlando por edad, índice de masa corporal, sexo, puntuación de Charlson, porcentaje de fracción de eyeción y razón de CDI (primaria comparada con secundaria).15 Los resultados de seguridad fueron analizados mediante el uso de estadística descriptiva y pruebas t. La importancia estadística se definió como un nivel de α bilateral ≤ 0,05. Se usó SPSS versión 17,0 (SPSS Inc, Chicago, IL) para el análisis. Se determinó que un tamaño de muestra de 160 pacientes proporcionaba 80% de poder estadístico para detectar las diferencias entre grupos en resultados cardiopulmonares, suponiendo una mejora de 2 mL/kg por minuto en VO₂ pico entre los grupos de tratamiento a las 8 semanas y un 30% de índice de abandono.

Resultados

Participants del estudio
En un periodo de 5 años, se evaluaron 3366 participantes para su selección en el estudio. De estos, 160 (124 hombres y 36 mujeres) fueron inscriptos y asignados aleatoriamente. Los índices de desgaste en los grupos EX y AH fueron comparables a las 8 semanas (8% versus 7%, respectivamente) y 24 semanas (12% versus 10%; Figura). Los pacientes promediaban 55,0 ± 12,2 años de edad (P = 0,20) con un LVEF promedio de 0,4 ± 15,7 (P = 0,12); 69 (43%) presentaban cardiopatía isquémica, 48 (30%) presentaban miocardiopatía dilatada no isquémica, y los restantes presentaban una variedad de otros diagnósticos específicos. Los CDI estaban indicados para prevención primaria en 68 (43%) y en 92 (57%) para prevención secundaria; en promedio, a los pacientes se les había implantado un CDI 3,0 ± 3,7 años (P = 0,82) antes de su ingreso en el estudio. Las características demográficas fueron comparables entre los 2 grupos (ver Tabla 1 para las características de todos los pacientes). Aproximadamente la mitad de los pacientes evaluados para el estudio no fueron seleccionados para participar debido a otras enfermedades concomitantes como hipertensión arterial, obesidad, entre otros. Estas características hicieron que la posibilidad de la intervención fuera imposible o poco factible más allá de sus beneficios potenciales.

Resultado principal
Las mediciones basales de CPET no difirieron significativamente entre los grupos EX y AH. La práctica de ejercicios aeróbicos durante 8 semanas resultó en un aumento estadísticamente significativo en el VO₂ máximo promedio en 2,8 mL/kg por minuto (P < 0,001) cuando se lo comparó con AH (Tabla 2). Además, se observaron mejoras significativas a las 8 semanas en el grupo EX en su tiempo de ejercicio, VO₂ en UA, empuje de oxígeno y equivalentes metabólicos, sin cambios que acompañaran en la FC máxima alcanzada. Luego de completar la fase de ejercicios aeróbicos y de continuar con la fase de mantenimiento durante 16 semanas más, todas las mediciones de función cardiopulmonar se mantuvieron o continuaron mejorando en el grupo EX. En cambio, el grupo AH no presentó cambios significativos o reducciones insignificantes en los resultados de eficacia durante el periodo de estudio de 24 semanas. Aquellos con un CDI para prevención secundaria presentaron niveles absolutos más altos de rendimiento cardiopulmonar a nivel basal; el motivo inicial para tener el CDI no tuvo impacto sobre las mejoras en resultados de eficacia.

Adherencia al ejercicio
La adherencia a la intervención de ejercicios según lo prescrito estaba definida como caminar durante ≥ 80% de los minutos totales prescritos por semana. La tabla 3 muestra la duración, frecuencia e intensidad de los participantes de las 2 fases de la intervención de ejercicios. Tanto durante el perio-
El ejercicio aeróbico como durante el período de mantenimiento, la adherencia al ejercicio fue alta, alcanzando > 75% de los objetivos prescriptos. Por el contrario, el rendimiento del ejercicio dentro de la zona de FC deseada fue con poca frecuencia alcanzado durante el período de práctica (17,5%) y descendió a sólo aproximadamente la mitad de esta proporción (8,7%) durante la fase de mantenimiento. En promedio, los participantes del ejercicio recibieron 14 de 17 llamados telefónicos de supervisión programados por enfermeros del estudio, y cada llamado telefónico duró 12.11 ± 3.15 minutos. El tiempo total que se pasó en supervisión telefónica para cada participante promedió 3.21 ± 1.12 horas durante todo el curso del estudio. Dos participantes de cada grupo abandonaron el estudio debido a inconvenientes o depresión. Durante el acondicionamiento aeróbico de 8 semanas, aquellos que fueron por lo menos 80% adherentes con el programa de ejercicios prescriptos alcanzaron mayores Vo2 máximos (27,7 ± 7,0 vs 24,3 ± 6,7; P = 0,03) y resultados asociados de ejercicios (tiempo de ejercicios, Vo2 en UA, tiempo en UA, empuje de O2 y equivalente metabólico) estadísticamente significativos cuando se los comparó con aquellos que fueron < 80% adherentes. Estos resultados también se trasladaron a la fase de mantenimiento aeróbico. La FC máxima se mantuvo esencialmente sin cambios a lo largo del período de ejercicios entre los grupos adherentes y los no adherentes.

Seguridad

No hubo muertes ni paros cardíacos súbitos asociados con ejercicio aeróbico o mantenimiento aeróbico. Aunque la cantidad global de eventos fue pequeña, no hubo diferencias estadísticamente significativas entre EX y AH en la frecuencia de descargas de CDI o terapias de ATP, aunque los pacientes en...
el grupo de AH mostraron tendencia a recibir más descargas, mientras que el grupo EX tuvo más terapias de ATP (Tabla 4). Solamente en 1 caso la terapia de CDI (ATP) estuvo temporalmente asociada con ejercicio. En el período de seguimiento de 6 meses, 3,5% en EX (intervalo de confianza de 95%, 0,7–10,1%) y 5,3% (intervalo de confianza de 95%, 1,5–12,9%) en AH recibió una descarga de CDI.

La frecuencia global de hospitalizaciones no difirió entre los grupos de tratamiento (N = 11 por grupo; EX, intervalo de confianza de 95% 5,0–19,4% y AH, intervalo de confianza de 95% 5,6–21,3%). Los pacientes del grupo AH presentaron un mayor número no significativo de hospitalizaciones cardiacas o relacionadas con descargas de CDI que el grupo EX. Hubo 5 síntomas musculoesqueléticos menores, 1 síntoma de neuropatía y 1 lesión relacionada con accidente (el paciente fue atropellado por un automóvil mientras caminaba) en el
grupo EX. Un paciente en el grupo AH experimentó 2 caídas y una fractura de tobillo que estuvieron relacionadas con consumo de alcohol.

Discusión

Este es el primer ensayo clínico amplio, aleatorizado que evalúa la seguridad y eficacia de la práctica y mantenimiento de ejercicio aeróbico en una población excluyendo de CDI conducido totalmente en el entorno del hogar. Los ejercicios aeróbicos que fueron lo suficientemente intensos como para otorgar beneficios cardipulmonares se implementaron sin un aumento concomitante en arritmias, terapias de CDI u hospitalizaciones. La magnitud de esta mejoría en V̇O₂ pico en el grupo EX (2,8 mL/kg por minuto) fue clínicamente significativa, similar a informes previos en el estudio Insuficiencia Cardíaca: Un Estudio Controlado que Investiga Resultados de Práctica de Ejercicios (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training [HF-ACTION]), donde los pacientes pudieron apreciar una mejor función física y menos gasto de energía cuando realizaban actividades de la vida cotidiana.18 La adherencia general con la prescripción del ejercicio fue alta, y se observaron mejoras significativas en los efectos de la práctica más allá del porcentaje relativamente bajo que pudo hacer ejercicios dentro del rango de FC deseado durante los períodos de práctica y de mantenimiento. Esto estuvo probablemente relacionado con el requerimiento que todos los pacientes debían estar tomando β-bloqueantes al ingreso en el estudio. Posiblemente la disminución en la proporción del tiempo en que los pacientes ejercitaron durante su período de práctica y de mantenimiento del programa podría considerarse que sugiere ejercicios con menor esfuerzo que durante su período de práctica. Sin embargo, el hecho de que su motivación continúa para ejercitar se mantuvo alta se refleja en la ausencia de diferencias en el tiempo total dedicado a esta actividad durante ambos periodos. Cabe destacar que los efectos de la práctica aeróbica se mantuvieron luego de la fase de mantenimiento aeróbico aun cuando la duración del ejercicio había sido reducida en 50%.

Cuando se inició este estudio en 2007, había datos disponibles muy limitados en cuanto a la seguridad y eficacia de practicar ejercicios aeróbicos en personas con un CDI, con solamente 2 estudios aleatorizados completos,19,20 con 68 pacientes que se ejercitaron en rehabilitación cardíaca supervisada. Durante la última década, ha habido 9 estudios en total de práctica de ejercicios en personas con CDI, principalmente en aquellos con IC,21 de los cuales usaron un diseño aleatorizado que incluyó 1008 pacientes.19,20,22 De estos 3, HF-ACTION demostró que el V̇O₂ pico mejoraba con ejercicio supervisado y en el hogar en 1,7 mL/kg (4%), una mejoría no significativa en AH.21 Sin embargo, este nivel de mejoría cardipulmonar estaba asociado con una significativa mejoría en la calidad de vida, limitaciones físicas y síntomas.18 De los 9 estudios, 5 han informado mejor V̇O₂ pico que oscila entre 0,6 y 2,7 mL/kg por minuto con práctica de ejercicio, principalmente en ámbitos de rehabilitación cardíaca supervisada. Ninguno de estos estudios incluyó seguimiento en una fase de mantenimiento o ejercicios realizados en el hogar. Dentro de estos estudios, los índices de descargas de CDI se presentaron durante el ejercicio de 2,3% a 12,5% y tanto como 20,0% en el periodo de seguimiento.21

Hay varias fortalezas notables en el presente estudio. En primer lugar, realizamos todos los ejercicios en el ámbito del hogar y hallamos efectos significativos en V̇O₂ pico sin comprometer la seguridad. Los participantes se ejercitaron en un nivel moderado-intenso, suficiente como para obtener beneficios aeróbicos con solamente 1 terapia de ATP y sin que se

Tabla 2. Medidas repetidas grupo ANOVA x comparaciones de tiempo a nivel basal y a las 8 y 24 semanas

<table>
<thead>
<tr>
<th>Resultados principales (promedio ±DE)</th>
<th>Basal</th>
<th>8 Semanas</th>
<th>F: Basal hasta 8 semanas*</th>
<th>Valor P</th>
<th>24 semanas</th>
<th>F: Basal hasta 24 semanas*</th>
<th>Valor P</th>
</tr>
</thead>
<tbody>
<tr>
<td>V̇O₂ pico, mg/kg por min</td>
<td>EX</td>
<td>24.6 ± 5.7</td>
<td>26.7 ± 7.0</td>
<td>9.88</td>
<td>0.002</td>
<td>26.9 ± 7.7</td>
<td>9.85</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>23.5 ± 5.8</td>
<td>23.9 ± 6.6</td>
<td></td>
<td></td>
<td>23.4 ± 6.0</td>
<td></td>
</tr>
<tr>
<td>Tiempo de ejercicio, min:s</td>
<td>EX</td>
<td>14:28 ± 5:13</td>
<td>16:04 ± 6:17</td>
<td>11.61</td>
<td>0.001</td>
<td>16:27 ± 6:36</td>
<td>11.54</td>
</tr>
<tr>
<td>VO₂@UA, mg/kg por min</td>
<td>EX</td>
<td>20.5 ± 5.3</td>
<td>22.5 ± 6.2</td>
<td>6.94</td>
<td>0.009</td>
<td>23.0 ± 6.8</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>19.5 ± 5.1</td>
<td>20.0 ± 5.5</td>
<td></td>
<td></td>
<td>19.8 ± 5.8</td>
<td></td>
</tr>
<tr>
<td>Tiempo@UA, min:s</td>
<td>EX</td>
<td>11:01 ± 4:18</td>
<td>12:42 ± 5:21</td>
<td>11.04</td>
<td>0.001</td>
<td>13:16 ± 5:45</td>
<td>11.21</td>
</tr>
<tr>
<td>Empujes de O₂, V̇O₂/FC</td>
<td>EX</td>
<td>17.2 ± 4.8</td>
<td>18.5 ± 5.2</td>
<td>3.20</td>
<td>0.07</td>
<td>18.7 ± 5.5</td>
<td>3.80</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>16.7 ± 4.6</td>
<td>17.1 ± 5.0</td>
<td></td>
<td></td>
<td>16.8 ± 4.9</td>
<td></td>
</tr>
<tr>
<td>Frecuencia cardíaca máxima, bpm</td>
<td>EX</td>
<td>129.8 ± 21.5</td>
<td>130.1 ± 20.5</td>
<td>0.24</td>
<td>0.62</td>
<td>129.8 ± 21.0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>132.4 ± 18.9</td>
<td>131.3 ± 21.6</td>
<td></td>
<td></td>
<td>131.4 ± 21.5</td>
<td></td>
</tr>
<tr>
<td>METS</td>
<td>EX</td>
<td>6.97 ± 1.67</td>
<td>7.57 ± 2.04</td>
<td>8.11</td>
<td>0.005</td>
<td>7.64 ± 2.26</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>AH</td>
<td>6.69 ± 1.64</td>
<td>6.77 ± 1.97</td>
<td></td>
<td></td>
<td>6.67 ± 1.82</td>
<td></td>
</tr>
</tbody>
</table>

*AH indica grupo de atención habitual; EX, grupo de ejercicio; FC, frecuencia cardíaca; lpm, latidos por minuto; METS, equivalentes metabólicos; UA umbral anaeróbico y V̇O₂, consumo de oxígeno.

*Los datos incluyen la estadística F para el grupo x diferencias de tiempo.
presentaran descargas de CDI durante el ejercicio en sí. Este índice general de descargas de CDI en el grupo EX (3,5%) estuvo dentro del rango de índices de descargas de CDI informadas descriptas previamente en los ámbitos de ejercicios supervisados.22 En nuestro período de seguimiento de 6 meses, no se informaron muertes y tuvimos la misma cantidad de hospitalizaciones en cada grupo comparado con HF-ACTION, que informó índices de 67% de hospitalizaciones o muertes en 2.2 años de seguimiento.23 Estos pacientes tenían IC con fracción de eyecación inferior.

Una segunda fortaleza del presente estudio es su alta porción de pacientes inscriptos de prevención secundaria que tenían arritmias previamente conocidas, en comparación con otros estudios de ejercicios en pacientes con CDI que principalmente tienen IC. Este estudio no fue un ensayo clínico de ejercicios en pacientes con IC. Se sabe que los pacientes con un CDI para prevención secundaria presentan un más alto índice de descargas de CDI, con o sin ejercicio.24 Al momento en el que el estudio se realizó, los resultados del estudio de Evaluación de Parámetros de Prevención Primaria25 y el Estudio Multicéntrico de Implante de Desfibrilador Automático: Reducir la Terapia Inadecuada26 que están relacionados con la programación de CDI no fueron publicados ni comúnmente incorporados en la práctica clínica. En consecuencia, los algoritmos de programación de CDI para reducir índices de descargas de CDI no contribuyeron con el bajo porcentaje de terapias de CDI en nuestro grupo de estudio.

Una tercera fortaleza del estudio puede apreciarse en los beneficios continuos observados de la práctica aeróbica en la fase de mantenimiento cuando la cantidad de ejercicios se redujo en 50%. Cuando se les dio más libertad para elegir cuándo y durante cuánto tiempo realizar ejercicios, muchos alcanzaron una adherencia del 100% o excedieron la cantidad prescrita de ejercicio en mantenimiento aeróbico. Por último, la adherencia a las fases de práctica aeróbica y de mantenimiento aeróbico fue alta (78%), con un tercio en práctica aeróbica y dos tercios en mantenimiento aeróbico alcanzando una adherencia del 100%. Nuestros participantes fueron preparados para realizarlo telefónicamente. Comparados con programas de ejercicios en entornos ambulatorios supervisados, aquellos que se llevan a cabo al menos parcialmente en el hogar son más viables, reducen costos de transporte, mejoran la adherencia y estimulan el mantenimiento del ejercicio a largo plazo.27

Las limitaciones del presente estudio incluyen los restrin- gidos criterios para la inscripción que excluían a aquellos con dispositivos de terapia de resincronización cardíaca, no en ritmo sinusal y con dependencia de marcapasos. Los resultados aplican a aquellos con un CDI que tienen características similares a los que fueron inscriptos. Se observaron mejoras notables en el resultado principal de la función cardiopulmonar, con un bajo porcentaje de pacientes que constantemente alcanzaron su FC deseada. Esto pudo haber contribuido con un índice inferior de terapias de CDI. El requerimiento para alcanzar una CPET basal limitada a los síntomas usando la cinta de correr pudo haber limitado a algunas personas para participar que pudieran tener anormalidades en la marcha o en el equilibrio. Nuestra prescripción de ejercicios y equipo de supervisión estaban diseñados para caminar y no ofrecían la posibilidad de hacer ciclismo, natación u otras formas de ejercicio aeróbico. El límite de peso de nuestro equipamiento de CPET limitó la participación de individuos con obesidad mórbida. Por último, la cantidad de eventos relacionados con seguridad en este estudio fue pequeña. La ausencia de diferencias en estos eventos entre grupos de tratamiento, en el contexto de grandes intervalos de confianza, se interpreta criteriosamente. Sin embargo, la baja frecuencia de eventos adversos, sin una señal de daño potencial en el grupo de ejercicios, sugiere que la prescripción del ejercicio y el ámbito del hogar en el cual se realizó no representan un riesgo importante para los pacientes. Atribuimos el bajo porcentaje de terapias de CDI (descargas y ATP) en el estudio a una posible combinación de factores, incluyendo los siguientes: 1) el protocolo de prueba de esfuerzo cuidadosamente programado y prescripciones de ejercicio individualizadas que consideraban tanto los parámetros de programación de CDI como la FC máxima, 2) procedimientos meticulosos de supervisión utilizados durante el ejercicio en el hogar para detectar problemas, 3) el uso de β-bloqueantes en todos los participantes del estudio y 4) el requerimiento de estar en ritmo sinusal normal al ingreso en el estudio.

En conclusión, nuestros resultados demuestran que el ejercicio aeróbico moderadamente intenso realizado en el hogar

Tabla 3. Participación de intervención

<table>
<thead>
<tr>
<th>Variable</th>
<th>Promedio ±DE</th>
<th>Rango</th>
<th>Porcentaje del objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase de práctica aeróbica de 8 semanas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. de caminatas por semana, objetivo: 5*</td>
<td>3,80 ± 1,46</td>
<td>0,13–5,88</td>
<td>76,0</td>
</tr>
<tr>
<td>Mín caminados por semana, objetivo: 300</td>
<td>234,20 ± 96,20</td>
<td>6,88–395,70</td>
<td>78,1</td>
</tr>
<tr>
<td>Mín totales caminados, objetivo: 2400</td>
<td>1873,10 ± 769,10</td>
<td>55,00–3166,00</td>
<td>78,0</td>
</tr>
<tr>
<td>Mín totales caminados en la FCD o superior, objetivo: 2400*</td>
<td>418,80 ± 418,40</td>
<td>0,00–1833,00</td>
<td>17,5</td>
</tr>
<tr>
<td>Fase de mantenimiento aeróbico de 16 semanas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. de caminatas por semana, objetivo: >1†</td>
<td>2,40 ± 1,60</td>
<td>0,00–6,00</td>
<td>74,8</td>
</tr>
<tr>
<td>Mín caminados por semana, objetivo: 150</td>
<td>117,00 ± 86,30</td>
<td>0,00–349,00</td>
<td>78,0</td>
</tr>
<tr>
<td>Minutos totales caminados, objetivo: 2400</td>
<td>1872,20 ± 1380,80</td>
<td>0,00–5594,00</td>
<td>78,0</td>
</tr>
<tr>
<td>Mín totales caminados en la FCD o superior, objetivo: 2400</td>
<td>209,20 ± 367,50</td>
<td>0,00–1841,00</td>
<td>8,7</td>
</tr>
</tbody>
</table>

FCD indica zona de frecuencia cardíaca deseada
*Los objetivos se basaron en caminatas de 300 min/semana con un mínimo de 60 min por sesión.
†Los objetivos se basaron en caminatas de 150 min/semana con un mínimo de 30 min por sesión.
Tabla 4. Terapias de CDI (Descargas y ATP) y hospitalizaciones en 6 meses

<table>
<thead>
<tr>
<th>Ejercicio</th>
<th>Atención habitual</th>
<th>Hospitalizaciones</th>
<th>Descargas de CDI</th>
<th>Terapia de ATP</th>
<th>Atención habitual</th>
<th>Ejercicio</th>
<th>Atención habitual</th>
<th>Descargas totales de CDI</th>
<th>Total de individuos con descargas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asociado con ejercicio</td>
<td>0</td>
<td>0</td>
<td>Asociado con ejercicio</td>
<td>1</td>
<td>0</td>
<td>Asociado con ejercicio</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>% del total</td>
<td>3,5%</td>
<td>5,3%</td>
<td>% del total</td>
<td>4,7%</td>
<td>2,6%</td>
<td>% del total</td>
<td>10,7%</td>
<td>11,8%</td>
<td>Ic inferior</td>
</tr>
<tr>
<td>% del total</td>
<td>10,1%</td>
<td>12,9%</td>
<td>Ic superior</td>
<td>11,7%</td>
<td>9,2%</td>
<td>Ic superior</td>
<td>19,4%</td>
<td>21,3%</td>
<td>Ic superior</td>
</tr>
<tr>
<td>ATP adecuada</td>
<td>7</td>
<td>2</td>
<td>Razón: exacerbación de ICP</td>
<td>0</td>
<td>0</td>
<td>Razón: Otras*</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ATP inadecuada</td>
<td>0</td>
<td>0</td>
<td>Razón: ICP</td>
<td>0</td>
<td>1</td>
<td>Razón: Otras*</td>
<td>0</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>

ATP indica estimulación antitaquicardia; | Descargas totales de CDI | Total de individuos con descargas |

*Otras razones de hospitalización en el grupo EX incluyeron infección del tracto urinario, cambio de carga o generador de CDI (n = 2), hemorragia gastrointestinal, infección respiratoria superior, quiste pilonidal, dolor torácico (n = 2), taquicardia ventricular, insuficiencia renal aguda y esofagitis. Otras razones de hospitalización en el grupo de AH incluyeron cambio de carga o generador de CDI (n = 3), colitis ulcerosa, dolor torácico, asma y caída con fractura de tobillo.

mejoró significativamente el rendimiento cardiovascular durante la práctica de ejercicios que se mantuvo aun con una reducción en la duración de ejercicios durante la fase de mantenimiento, todo sin comprometer la seguridad en personas con un CDI. Estas observaciones deberían ayudar a disipar inquietudes que compartan profesionales de la salud y pacientes sobre los beneficios y seguridad del ejercicio moderadamente intenso luego de un CDI. El hecho de tener un CDI no debe relegar a las personas a una actividad sedentaria de por vida debido al temor a arritmias recurrentes o descargas de CDI.

Agradecimientos
Agradecemos a todo el personal del laboratorio de ejercicios cardíopulmonares que participó cuidadosamente y de manera segura en la prueba de esfuerzo, como así también a las instituciones que participaron en el reclutamiento, y todos los pacientes que se ejercitaron y proporcionaron datos al estudio.

Fuentes de financiación
Este estudio fue financiado por la subvención de National Institutes of Health, National Heart, Lung, and Blood Institute 5R01 HL084550-01A2 (para C.M.D.).

Declaraciones
Ninguna.

Bibliografía

PERSPECTIVA CLÍNICA

Generalmente se evita el ejercicio aeróbico luego de recibir un implante de cardioesfibrilador (CDI) debido a los temores de que el ejercicio provoque arritmias agudas y descargas de CDI. Evaluamos prospectivamente los efectos de un programa de práctica y mantenimiento de ejercicios aeróbicos en el hogar sobre el rendimiento aeróbico, descargas de CDI y hospitalizaciones exclusivamente en receptores de CDI. El acondicionamiento aeróbico consistió en ejercicio aeróbico moderado a intenso (caminar en el hogar 5 h/semana × 8 semanas en 60% a 80% de frecuencia cardíaca de reserva), seguido de mantenimiento aeróbico (caminar en el hogar durante 150 min/semana × 16 semanas en 80% de frecuencia cardíaca de reserva). Se halló que el ejercicio era seguro y no causaba ninguna descarga de CDI ni hospitalizaciones y que era efectivo para mejorar el rendimiento aeróbico máximo. El ejercicio aeróbico fue supervisado usando monitores de FC, capacitación telefónica a cargo de un enfermero, podómetros, registros de ejercicios y la escala de Borg. Es necesario actualizar las pautas clínicas para incluir parámetros de pruebas de esfuerzo y prescripciones para pacientes con CDI. Los hallazgos deben ayudar a disipar inquietudes que comparten profesionales de la salud y pacientes sobre los beneficios y seguridad del ejercicio moderadamente intenso luego de un CDI. El hecho de tener un CDI no debe relegar a las personas a una actividad sedentaria de por vida debido al temor a arritmias recurrentes o descargas de CDI.