Dysfunction in the βII Spectrin-Dependent Cytoskeleton Underlies Human Arrhythmia

Running title: Smith et al.; Cytoskeletal defects in arrhythmia

Sakima A. Smith, MD1,2; Amy C. Sturm, CGC1,3; Jerry Curran, PhD1,4; Crystal F. Kline, PhD1,4; Sean C. Little, PhD1,4; Ingrid M. Bonilla, PhD1,5; Victor P. Long, PharmD1,5; Michael Makara, BS1,4; Iuliiia Polina, PhD1,4; Langston D. Hughes1,4; Tyler R. Webb1,4; Zhiyi Wei, PhD6,7; Patrick Wright, BS1,4; Niels Voigt, MD8; Deepak Bhakta, PhD9,10; Katherine G. Spoonamore, PhD9,10; Chuansheng Zhang, PhD11; Raul Weiss, MD1,2; Philip F. Binkley, MD1,2; Paul M. Janssen, PhD1,3,4; Ahmet Kilitc, MD1,12; Robert S. Higgins, MD1,12; Mingzhai Sun, PhD1,12; Jianjie Ma, PhD1,12; Dobromir Dobrev, MD8; Mingjie Zhang, PhD6; Cynthia A. Carnes, PhD, PharmD1,5; Matteo Vatta, MD9,10; Matthew N. Rasband, PhD11; Thomas J. Hund, PhD1,13; Peter J. Mohler, PhD1,2,4

1Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH; 2Dept of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; 3Dept of Internal Medicine, Division of Human Genetics, The Ohio State University Wexner Medical Center, Columbus, OH; 4Dept of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH; 5College of Pharmacy, The Ohio State University, Columbus, OH; 6Division of Life Science & Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong; 7Dept of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China; 8Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; 9Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN; 10Dept of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN; 11Dept of Neuroscience, Baylor College of Medicine, Houston, TX; 12Dept of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH; 13Dept of Biomedical Engineering, College of Engineering, The Ohio State University; Columbus, OH

Address for Correspondence:
Peter J. Mohler, PhD
Dorothy M. Davis Heart and Lung Research Institute
473 W. 12th Avenue, DHLRI 110G
Columbus OH 43210
Tel: 614-292-5019
Fax: 614-247-7799
E-mail: peter.mohler@osumc.edu

Journal Subject Codes: Basic science research:[132] Arrhythmias - basic studies, Basic science research:[130] Animal models of human disease
Abstract

Background—The cardiac cytoskeleton plays key roles in maintaining myocyte structural integrity in health and disease. In fact, human mutations in cardiac cytoskeletal elements are tightly linked with cardiac pathologies including myopathies, aortopathies, and dystrophies. Conversely, the link between cytoskeletal protein dysfunction in cardiac electrical activity is not well understood, and often overlooked in the cardiac arrhythmia field.

Methods and Results—Here, we uncover a new mechanism for the regulation of cardiac membrane excitability. We report that βII spectrin, an actin-associated molecule, is essential for the post-translational targeting and localization of critical membrane proteins in heart. βII spectrin recruits ankyrin-B to the cardiac dyad, and a novel human mutation in the ankyrin-B gene disrupts the ankyrin-B/βII spectrin interaction leading to severe human arrhythmia phenotypes. Mice lacking cardiac βII spectrin display lethal arrhythmias, aberrant electrical and calcium handling phenotypes, and abnormal expression/localization of cardiac membrane proteins. Mechanistically, βII spectrin regulates the localization of cytoskeletal and plasma membrane/sarcoplasmic reticulum protein complexes that include the Na/Ca exchanger, RyR2, ankyrin-B, actin, and αII spectrin. Finally, we observe accelerated heart failure phenotypes in βII spectrin-deficient mice.

Conclusions—Our findings identify βII spectrin as critical for normal myocyte electrical activity, link this molecule to human disease, and provide new insight into the mechanisms underlying cardiac myocyte biology.

Key words: protein trafficking arrhythmia, cytoskeleton, arrhythmia (heart rhythm disorders), cytoskeletal dynamics, cardiovascular physiology, catecholaminergic polymorphic ventricular tachycardia
Introduction

Life for the vertebrate requires sustained and rhythmic beating of the heart for delivery of oxygen and nutrients to the brain and other organs. The vertebrate cardiomyocyte has evolved elegant membrane regulatory pathways to maintain efficient excitation-contraction coupling at baseline or in the face of acute and chronic stress. Central to this membrane regulation is the cardiac cytoskeleton. In the heart, the cytoskeletal network is comprised of a highly ordered array of structural and accessory proteins spanning from the plasma membrane to the nucleus.

Over the past two decades, the cardiac cytoskeleton has emerged as a central governing factor in the control of cardiac membrane integrity, and dysfunction in cytoskeleton and cytoskeletal-associated proteins has been directly linked with a host of human cardiac pathologies, most notably cardiac myopathies and dystrophies. In fact, human mutations in cardiac cytoskeletal or cytoskeletal-associated genes that alter myocyte signal transduction, myocardial mechanics, and force transmission are now directly linked with dilated cardiomyopathy, muscular dystrophy, and arrhythmogenic cardiomyopathy.\(^1\)-\(^4\)

In contrast to myopathy and dystrophy fields, the role of the cytoskeleton in normal cardiac electrical function is not well resolved. Further, until the past decade, human arrhythmia mechanisms were primarily limited to mutations in cardiac ion channels.\(^5\) However, while literally hundreds of human variants in cardiac Na\(^+\), K\(^+\), and Ca\(^{2+}\) channel alpha- and beta-subunits have been linked with sinus node disease, atrial fibrillation, conduction disease, and ventricular fibrillation, a second class of human arrhythmias has emerged due to mutations in ion channel-associated proteins including \(\alpha\)-syntrophin, ankyrin-G, caveolin-3, FGF12, and ankyrin-B.\(^6\) Mechanistically, dysfunction in these proteins is linked with diverse cellular pathologies including defects in channel synthesis and membrane targeting, channel gating, and channel
post-translational modifications. While this information has been important for new disease
diagnosis and fundamental cardiac cell biology, there remain large cohorts of phenotype
positive/genotype negative patients with familial forms of cardiac arrhythmia. Further, there
remain pressing unanswered questions regarding the role for the cardiac cytoskeleton for the
local organization of membrane ion channel complexes \textit{in vivo}.

Based on genetic findings in a proband with severe ventricular arrhythmia and cardiac
arrest, we uncovered a new and essential cytoskeletal-based pathway critical for cardiac
electrical function. We identify \(\beta II\) spectrin as an integral regulatory node for the organization of
critical myocyte membrane and membrane-associated proteins. \(\beta II\) spectrin is critical for the
regulation of ankyrin-B and \(\alpha II\) spectrin, and defects in this assembly result in severe arrhythmia
associated with aberrant calcium phenotypes. Moreover, we link dysfunction in this pathway
with accelerated heart failure phenotypes. In summary, our findings provide a new mechanism
for human excitable cell disease, as well as uncover new roles for the cardiac cytoskeleton in
human cardiovascular disease.

\textbf{Methods}

\textbf{Statistics}

Data are presented as mean \(\pm\) SEM. For the comparison of two groups, we performed
Wilcoxon-Mann-Whitney \(U\) tests. For the comparison of greater than two groups, we applied a
Kruskal-Wallis test. When we obtained a significant P value, we continued with pair-wise
comparisons utilizing Wilcoxon-Mann-Whitney \(U\) tests according to the closed testing principle.
For our study, a value of P<0.05 was considered statistically significant.

\textbf{Human Studies}

Approval for use of human subjects was obtained from the Institutional Review Board of Ohio
State University, subjects provided informed consent.

Animal Studies

Procedures followed were approved and in accordance with institutional guidelines (Ohio State University)

Additional methods are provided in the Data Supplement.

Results

Identification of a new class of ANK2 human arrhythmia mutation

Human ANK2 variants cause cardiac arrhythmia phenotypes including sinus node disease, atrial fibrillation, conduction block, ventricular arrhythmia, syncope, and sudden cardiac death. We identified a new class of ANK2 variant in a proband with severe history of recurrent sudden cardiac arrest due to ventricular fibrillation (VF) (Figure 1A). The proband is a 36-year-old female with prolonged QTc on her electrocardiogram (ECG) who suffered out of hospital cardiac arrest due to VF. Following resuscitation, she underwent implantation of a transvenous dual chamber implantable cardioverter-defibrillator (ICD). Since her first event, she has had recurrent VF resulting in syncope and ICD shocks, with ICD interrogation demonstrating premature ventricular complexes (PVCs) preceding episodes of VF. In addition to prolonged QTc interval (Figure 1B), the individual displays regular PVCs (Figure 1C), both harbingers of potential arrhythmic events. Initial genetic testing for variants in KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 was negative for deleterious mutations. Subsequent genetic testing utilizing an extended sequencing panel including 5 additional genes (ANK2, KCNJ2, CAV3, RYR2, and CASQ2) revealed an ANK2 c.2969G>A change resulting in the substitution of Arg to Gln at position 990 (p.R990Q). Exon array of ANK2 and other genes previously tested by sequencing analysis did
not detect any deletions or duplications. The c.2969G>A variant is rare across multiple populations with a minor allele frequency of ~0.007% (0/4406 African-American alleles, 1/8599 European-American alleles; NHLBI ESP). Notably, R990 is highly conserved from human to zebrafish, roundworm, and fruit fly (Figure 1D), and structural modelling reveals that the p.R990Q variant is juxtaposed to the central ZU5 binding surface for βII spectrin (Figure 1A, E12). This region of ankyrin has not previously been linked with disease and in fact is >1,500 base pairs from any previously identified variant (Figure 1A,D-E).

Ankyrin-B and βII spectrin are molecular partners in human heart

A requisite function of a canonical ankyrin polypeptide is association with the αβ spectrin hetero-tetramer. This complex, by association with actin (via spectrin) functionally couples integral membrane proteins (ion channels, receptors, transporters) with the cytoskeletal infrastructure. Ankyrins associate with β spectrin gene products through conserved residues in the N-terminal ZU5 (Zu5N) domain.12 Based on the location of the human variant, we tested the functional relationship between ankyrin-B and βII spectrin. βII spectrin is normally localized at myocyte T-tubules (Figure 2A and Supplemental Figure 1) with ankyrin-B.13 Ankyrin-B directly associates with radiolabelled βII spectrin (Figure 2B), and βII spectrin co-immunoprecipitates with ankyrin-B from detergent-soluble lysates from adult mouse heart as well as non-failing human heart (Figure 2C-D). We observed a larger macromolecular complex between ankyrin-B and βII spectrin with membrane proteins including the Na+/K+ ATPase and Na+/Ca2+ exchanger (ankyrin-binding partners) as well as the cytoskeletal element actin by co-immunoprecipitation experiments from both mouse and human heart (Figure 2C-D). These data demonstrate the presence of a βII spectrin/ankyrin-B cytoskeletal complex in heart.

We hypothesized that the human p.R990Q variant confers susceptibility to cardiac
arrhythmia by altering ankyrin-B-binding for βII spectrin, thus affecting integration of membrane proteins with the cytoskeleton.12,14 While wild-type ankyrin-B robustly associated with βII spectrin, we observed a significant decrease in binding of ankyrin-B p.R990Q with βII spectrin (Figure 2E-F). \textit{In silico} modelling for the human p.R990Q variant using the co-structure for ankyrin-B and βII spectrin revealed that the R990 forms several hydrogen bonds and salt bridges with surrounding residues, a property strictly conserved in all ankrys (Figure 2G). Moreover, modelling revealed that p.R990Q results in loss of salt bridge interactions with surrounding residues (Figure 2G). Ankyrin-B p.R990Q may directly disrupt βII spectrin-binding.

Alternatively, based on the localization of the residue, this mutation may destabilize the folding of the ZU5 domain, resulting indirectly in the loss of spectrin-binding and overall loss of ankyrin-B function.

\textbf{Analysis of human variants that block βII spectrin-binding in myocytes}

We tested the relationship between human ankyrin-B variants and βII spectrin in primary myocytes. As mice lacking global ankyrin-B expression die \textit{in utero} or shortly after birth thus limiting the ability to study ankyrin-dependent mechanisms past post-natal day 2, we generated a new mouse model homozygous for a conditional cardiac ankyrin-B null allele (αMHC-Cre; ankyrin-B conditional knockout (cKO) mouse; \textit{Supplemental Figure 2}). The null allele was created by targeting \textit{Ank2} exon 24 disrupting all known \textit{Ank2} splice products. The mutant allele was confirmed by Southern blot and PCR strategies (\textit{Supplemental Figure 2B}), and myocytes from ankyrin-B cKO mice display loss of ankyrin-B protein by immunoblot and immunostaining (\textit{Supplemental Figure 2C-F}). Using well-differentiated primary neonatal ankyrin-B cKO myocytes (post-natal day 7), we tested activity of the p.R990Q variant. WT ankyrin-B-GFP or human ankyrin-B variant p.R990Q were introduced into ankyrin-B cKO myocytes. Notably,
compared with control WT myocytes (Supplemental Figure 3A-B), ankyrin-B cKO myocytes
display loss of targeting of Na⁺/Ca²⁺ exchanger, a known binding partner in heart (Supplemental
Figure 3C-D). GFP-ankyrin-B was striated when expressed in ankyrin-B cKO myocytes, and
was sufficient to rescue the localization of the Na⁺/Ca²⁺ exchanger (Supplemental Figure 3E-
F). In contrast, ankyrin-B p.R990Q, similar to two ankyrin-B mutants previously identified to
lack spectrin-binding (A1000P, DAR976AAA)¹³, was not appropriately targeted (diffuse
cytoplasmic expression) and failed to rescue the localization of the Na⁺/Ca²⁺ exchanger
(Supplemental Figure 3G-L).

βII spectrin cKO mice display sinus node dysfunction and ventricular arrhythmia

The functional role for βII spectrin for post-natal cardiac function in vivo is unknown and
untested. We therefore examined cardiac electrical phenotypes in a new mouse model with
conditional deletion of cardiac βII spectrin (Figure 3A; βII spectrin cKO). βII spectrin cKO
mice lack βII spectrin in heart but not in other tissues (Figure 3B-F). Telemetry studies of
conscious mice show reduced heart rate, increased heart rate variability, atrioventricular (AV)
block, and pro-arrhythmic ECG phenotypes (widened QRS complexes, prolonged QT interval)
in βII spectrin cKO mice compared with WT littermates at baseline (Figure 4A-H). Notably,
catecholaminergic stress (exercise or low dose epinephrine) resulted in pronounced ventricular
arrhythmia (both non-sustained and sustained episodes) and death (Figure 4L-N). We observed
no difference in maximal heart rate in response to low or high dose epinephrine (Supplemental
Figure 4) and under no circumstances were ECG or arrhythmic anomalies observed in control
littermates. While cardiac electrical dysfunction may arise secondary to structural heart disease
(hypertrophy, heart failure), we observed no significant differences in mean left ventricular
ejection fraction (LVEF), cardiac output, wall thickness, or other significant structural
phenotypes between control and βII spectrin cKO mice (Supplemental Figure 5A-B and Supplemental Figure 6A-M).

βII spectrin cKO myocytes display afterdepolarizations and abnormal calcium waves

Based on severity of observed arrhythmias in βII spectrin cKO mice, we examined βII spectrin cKO mouse ventricular myocyte action potentials. Unlike myocytes from control littermates, βII spectrin cKO myocytes displayed chaotic electrical behavior even in the absence of catecholamine stimulation (Figure 5A,C). Mean APD_{90} was not different between genotypes (Figure 5I). However, we observed frequent spontaneous afterdepolarizations in βII spectrin cKO myocytes at baseline (Figure 5C-D). Afterdepolarizations were present independent of pacing frequency and increased in both frequency and duration following superfusion with isoproterenol (Figure 5B, D, F). We tested whether spontaneous calcium release potentially underlies the chaotic electrical behavior of βII spectrin cKO myocytes by examining action potentials in the presence of ryanodine, an inhibitor of Ca^{2+} release from the SR. Notably, ryanodine (100 nM) prevented afterdepolarizations in myocytes ±isoproterenol (Figure 5G-H, J). Together, these data strongly support a critical role for βII spectrin in regulating myocyte electrical behavior and suggest a role of intracellular Ca^{2+} as a potential mechanism underlying the electrical arrhythmogenic phenotypes.

Spontaneous Ca^{2+} waves (SCaW) at the level of the myocyte may mediate Ca^{2+}-dependent afterdepolarizations, known cellular triggers for arrhythmia.15, 16 Therefore, we compared the relative propensity of control and βII spectrin cKO myocytes to generate SCaWs. βII spectrin cKO myocytes were significantly more likely to generate SCaWs compared with control myocytes (Figure 5M-Q). SCaWs were observed in ~56% of βII spectrin cKO myocytes versus only ~18% of control myocytes (Figure 5K), and we observed <0.2 waves/WT
myocyte versus an average of ~2 waves/βII spectrin cKO myocyte (p<0.05). Importantly, spontaneous unified Ca\(^{2+}\) release events (indicated by a perpendicular spontaneous dye front in the confocal line-scans) were frequently observed in βII spectrin cKO myocytes but not in control myocytes (Figure 5O-Q). Such perpendicular waves are indicative of a unified Ca\(^{2+}\) release within the myocyte, and provide evidence that the cell spontaneously reached threshold that initiated an action potential. Such a unified spontaneous Ca\(^{2+}\) release was not observed in control myocytes; rather only slowly propagating waves were observed (Figure 5M). This SCaW-dependent phenotype provides a mechanism for the afterdepolarizations observed in βII spectrin cKO myocytes.

βII spectrin is required for organization of cardiac membrane proteins

We hypothesized that loss of normal calcium cycling and arrhythmias in βII spectrin cKO mice reflected the central role for βII spectrin in organizing cardiac membrane proteins. To test this hypothesis, we first examined the status of T-tubule and SR membrane proteins critical for calcium release. While we observed no difference in T-tubule L-type calcium channel localization or T-tubule structure between genotypes (Figure 6A-B), we observed heterogeneity in the subcellular localization of ryanodine receptor 2 (RyR\(_2\)), the primary cardiac SR calcium release channel in βII spectrin cKO myocytes (Figure 6D and Supplemental Figure 7). To further examine potential RyR\(_2\) heterogeneity, we analysed RyR\(_2\) localization by total internal reflection fluorescence (TIRF) and super-resolution imaging (see Supplemental Methods). In agreement with previous super-resolution imaging of Soeller and colleagues\(^{17}\), RyR\(_2\) is localized by these techniques to discrete clusters of irregular shapes/sizes (Figure 6E). In contrast, RyR\(_2\) imaging of heterogeneous regions of interest (i.e. red * in Figure 6D, right) in βII spectrin cKO myocytes showed reduced size/intensity of RyR\(_2\) clusters as well as irregular intensity patterning
compared with control myocytes (Figure 6F). Consistent with these findings RyR2 levels were significantly reduced in βII spectrin cKO hearts (Figure 6G-H). This loss was selective for RyR2 versus other SR proteins as we observed no difference in the expression or localization of the SR calcium ATPase (SERCA2) or in the intercalated disc protein N-cadherin (Figure 6C).

In summary, these data define βII spectrin as required for the selective local organization of RyR2 calcium release channels. Of note, defects in local RyR2 organization have been linked with aberrant calcium-dependent release, arrhythmia, and heart failure phenotypes in humans and animal models.18-20

βII spectrin is required for expression and targeting of ankyrin-B

In addition to RyR2, βII spectrin cKO mice displayed loss of expression and localization of ankyrin-B in adult heart (Figure 6I-M). These findings were initially unanticipated, as prior work implicates ankyrin-B as critical for βII spectrin targeting and localization in post-natal day two neonatal cardiomyocytes.13 To define the functional relationship of ankyrin-B and βII spectrin in myocyte localization, we evaluated βII spectrin and ankyrin-B localization in wild-type neonatal cardiomyocytes. As shown in Supplemental Figure 8, striated expression of ankyrin-B precedes βII spectrin at post-natal day 1 in mice. However, both proteins are expressed and co-localized by post-natal day three (Supplemental Figure 8). In support of a role of ankyrin-B in the targeting of βII spectrin and in agreement with prior work13, ankyrin-B cKO neonatal cardiomyocytes lack βII spectrin expression or striation at post-natal day 1 or day 3 (Supplemental Figure 8). However, we were surprised to observe that later in myocyte maturation (post-natal day 7), ankyrin-B expression was not requisite for βII spectrin expression. In fact, βII spectrin expression in post-natal day myocytes is equivalent to expression/staining observed in wild-type cardiomyocytes (Supplemental Figure 8). This is further illustrated in
adult myocytes where we observe no difference in βIII spectrin expression or localization in ankyrin-B cKO hearts (Supplemental Figures 9-10). Finally, βII spectrin cKO cardiomyocytes demonstrate normal expression and localization of ankyrin-B at post-natal day 1 and 3, but loss of ankyrin-B expression and targeting at post-natal day 7 (Supplemental Figure 8). Together, these findings demonstrate a complex relationship between ankyrin and spectrin in heart.

More specifically, our data show that ankyrin-B plays a dominant role for βII spectrin targeting in immature, developing myocytes whereas in maturing and mature myocytes, βII spectrin assumes the dominant targeting role for ankyrin-B. While we assume this transition likely represents a shift in the maturity of the membrane/cytoskeletal network (i.e. myocyte transverse-tubules begin to develop ~7 days in culture21), future work will be important to better define the underlying mechanisms. Notably, while βII spectrin cKO mice displayed reduced ankyrin-B expression, we observed no change in the expression of ankyrin-R (Ank1) in βII spectrin cKO adult heart compared to control (Figure 6N-O). However, ankyrin-G (Ank3), a third ankyrin gene product expressed in heart22, showed elevated expression in βII spectrin cKO hearts (Figure 6N-O), likely as a compensatory mechanism in response to reduced ankyrin-B levels.

βII spectrin is required for organization of ankyrin-B-associated membrane proteins

Ankyrin-B targets Na+/Ca2+ exchanger and Na+/K+ ATPase and controls regulation of dyadic proteins, including RyR2.23 Consistent with our above findings, we observed a significant decrease in I_{NCX} in βII spectrin cKO myocytes (Figure 7A-B). These changes were confirmed by both immunoblot and immunostaining where we observed decreased expression of Na/Ca exchanger as well as Na/K ATPase (Figure 7C-E). Notably, despite the major alterations in electrical activity in βII spectrin cKO myocytes, we did not observe differences in I_{Na} current (peak, activation/inactivation/late current) and Na,1.5 and connexin43 protein levels were
unchanged in βII spectrin cKO hearts (Figure 7C and Supplemental Figure 11). Together with our data on RyR$_2$, these findings identify βII spectrin as essential for the localization of multiple membrane proteins required for myocyte Ca$^{2+}$ regulation.

βII spectrin regulates αII spectrin and the myocyte microtubule network

While Na/Ca exchanger and Na/K ATPase loss is likely related to loss of ankyrin-B targeting in βII spectrin cKO mice, the mechanism for RyR$_2$ dysfunction is less clear. We hypothesized that this defect reflects an important role for βII spectrin in organizing local cardiac cytoskeleton. In metazoans, α- and β-spectrin form a submembrane lattice through formation of hetero-tetramers via anti-parallel N- and C-terminal interactions. However, the requirement of βII spectrin expression for the targeting and formation of the hetero-tetramer in heart is unknown. We examined the abundance of αII spectrin, an in vivo partner for cardiac βII spectrin. Consistent with prior reports demonstrating degradation of α-spectrin in the absence of adequate erythroid β-spectrin$^{24-26}$, αII spectrin levels were reduced nearly 50% in βII spectrin cKO hearts (Figure 7F-G). In line with these data, we observed reduced abundance of αII spectrin in βII spectrin cKO myocytes by immunostaining (Figure 7H-K). Based on these data, we further investigated the integrity of the cytoskeleton in βII spectrin cKO myocytes. While actin was unchanged in expression or localization in βII spectrin cKO mice, we observed significant increases in levels of βI spectrin and α- and β-tubulin in βII spectrin cKO hearts by both immunoblot and/or immunostaining (Figure 7L-O and Supplemental Figure 12), likely as a compensatory response to βII spectrin deficiency, and consistent with prior findings of tubulin remodeling in failing hearts.27 However, levels of desmin, an intermediate filament protein critical for myocyte cytoskeletal infrastructure, were unchanged between control and βII spectrin cKO hearts (Supplemental Figure 12). In summary, these data demonstrate that myocytes lacking
βII spectrin display significant, yet selective cytoskeletal remodeling.

βII spectrin cKO mice display accelerated heart failure phenotypes

Heart failure is characterized by significant electrical and structural remodelling. Based on severe electrical and structural phenotypes present in βII spectrin cKO mice at baseline, we hypothesized that βII spectrin cKO mice would display accelerated and more pronounced cardiac damage following induction of heart failure through transverse aortic constriction (TAC). Notably, unlike control littermates or sham βII spectrin cKO mice, βII spectrin cKO mice displayed cardiac arrhythmia and death associated with major structural remodelling following six weeks of banding (Figure 8A-G). Examination of βII spectrin cKO mouse banded sections revealed high prevalence of widespread myocardial degeneration of the LV free wall and septum that was characterized by vacuolation, pallor, interstitial and ventricular myocyte necrosis (Figure 8A-D). Further, at six weeks post-banding βII spectrin cKO mice displayed severe AV block, ST segment depression, frequent PVCs, and junctional rhythms (Figure 8E-G). While we observed standard pre-heart failure phenotypes in control mice in response to the TAC protocol, we did not observe the extensive electrical or structural phenotypes found in βII spectrin cKO littermates.

Discussion

The spectrin superfamily is comprised of two α- and five β- spectrin genes. Most information regarding spectrin function comes from the erythrocyte, although a growing body of literature points to key roles of spectrin family members in cytoskeletal infrastructure in complex cells. In the red blood cell, α- and β-spectrin tetramerize and form the basis of the submembrane ultrastructure through interactions with membrane proteins (e.g. anion exchanger) and
cytoskeleton (actin). Mutations in α- or β-spectrin in humans or animals result in loss of membrane integrity, spherocytosis, and hemolytic anemia.\(^{28}\) In fact, spectrin mutations are the cause of the most common forms of hereditary spherocytosis in the Caucasian population. In complex cells, spectrins are critical for membrane assembly and maintenance and both αII and βII spectrin deficient mice are embryonic lethal.\(^{29,30}\) βII spectrin is required for lateral membrane formation of columnar epithelial cells in the lung\(^ {31}\) and βII and βIV spectrin are critical for development and maintenance of the axon initial segment and nodes of Ranvier in the central nervous system.\(^ {32-34}\) Little is known on the role of βII spectrin in heart as mice homozygous for βII spectrin allele deficiency die \textit{in utero}.\(^ {30}\) However, data from the βIII spectrin literature offers insight into the likely mechanisms for βII spectrin function in heart. For example, work from Stankewich, Morrow, Ranum, and colleagues demonstrate that βIII spectrin is essential for membrane protein targeting in the nervous system.\(^ {35,36}\) Similar to our findings in heart, targeted deletion of βIII spectrin in brain results in impaired assembly of the post-synaptic membrane, endomembrane retention of multiple synaptic proteins, as well as ataxia and seizure phenotypes.\(^ {36}\) Moreover, human βIII spectrin gene mutations found in the region where βIII spectrin associates with the dynactin subunit Arp1\(^ {37}\) cause human spinocerebellar ataxia (SCA5) due in to defects in membrane protein (glutamate transporter EAAT4, metabotropic glutamate receptor 1α) targeting.\(^ {35,38}\) Thus, based on βIII spectrin data, as well as our new findings, we hypothesize that βII spectrin is a critical player in membrane protein sorting, versus simply a static membrane structural protein. In fact, the demonstrated links between spectrins and dynactin\(^ {37}\) provide a logical rationale for the cell and molecular phenotypes observed in βII spectrin cKO animals. While this study focused on the relationship between βII spectrin and ankyrin-B, based on our new data (Figure 6N-O), it will be important to identify the relationship
of βII spectrin with other cardiac ankyrin and spectrin gene products.

An important, but unexpected finding of this study is the essential role of βII spectrin for the local organization of RyR2. The cardiac RyR2 is a central player for myocyte calcium release and RyR2 dysfunction has been linked with a broad spectrum of heart failure and arrhythmia phenotypes in human and animal models.\(^{39-42}\) Our data demonstrate a role of βII spectrin for both the expression and targeting of RyR2. However, potentially more significant, remaining RyR2 populations in βII spectrin cKO myocytes are disorganized, displaying a heterogeneous pattern. In parallel, loss of βII spectrin results in reorganization of the microtubule network that may underlie the heterogeneous RyR2 distribution. Alternatively, microtubule reorganization may be a compensatory response of the cell to βII spectrin loss, as we also identified increased expression of βI spectrin (Supplemental Figure 12). Notably, abnormal organization of the calcium release structure was also identified in a mutant mouse model harboring a calsequestrin mutation linked with human catecholaminergic polymorphic ventricular tachycardia (CPVT).\(^{42}\) These mice, like the βII spectrin cKO mice, display unstable electrical events and significant cytosolic calcium management phenotypes. Beyond spectrin, junctophilin, a lipophilic molecule anchored to the junctional SR, has also been linked with the organization of the ryanodine receptor in heart. In fact, \(JPH2^{+/−}\) mice are embryonic lethal and display an enlarged dyadic cleft.\(^{43}\) While organization of the RyR2 is altered in βII spectrin cKO mice, we observed normal localization and expression of T-tubule L-type calcium channels (Ca\(_{\text{v}1.2}\)). Further, we observed no difference in T-tubule morphology between control and βII spectrin cKO mice through Di-8-ANEPPS imaging. Therefore, the βII spectrin pathway appears to regulate select populations of membrane proteins without altering membrane morphology. It will be critical for future experiments to define the specific pathways underlying βII spectrin-dependent regulation of
RyR₂ clusters. Importantly, βII spectrin-dependent regulation of RyR₂ clusters is likely independent of ankyrin-B, as ankyrin-B⁴/⁻ mice display no defects in RyR₂ expression or localization.¹⁰ Finally, our work supports a relationship between βII spectrin and the microtubule system. As spectrins have previously been linked with microtubule-based proteins including kinesin II and the dynein complex⁴⁴-⁴⁶, and spectrin-associated proteins including protein 4.1R have been linked with arrhythmia in animals⁴⁷, work to integrate the role of the βII spectrin pathway with intracellular targeting versus cytoskeletal organization will be an important future area of research. Likewise, as our data show accelerated heart failure phenotypes in βII spectrin cKO mice (Figure 8), it will be important to investigate the long-term function of βII spectrin in well-phenotyped human and animal disease models.

Funding Sources: NIH HL114893 (TJH), HL084583, HL083422, HL114383 (PJM), James S. McDonell Foundation (TJH), American Heart Association (PJM), NCATS TL1TR001069 (SAS), The Indiana University Health – Indiana University School of Medicine Strategic Research Initiative (KGS and MV), South University of Science and Technology of China (WZ), the European–North American Atrial Fibrillation Research Alliance (07CVD03, DD) grant of Fondation Leducq.

Conflict of Interest Disclosures: None.

References:

37. Holleran EA, Ligon LA, Tokito M, Stankewich MC, Morrow JS, Holzbaur EL. Beta iii

Figure Legends:

Figure 1. Ankyrin-B arrhythmia variant identified in conserved spectrin-binding domain. (A) Ankyrin-B includes *ANK* repeats, a spectrin-binding domain comprised of two ZU5 and one UPA domain, and a regulatory domain comprised of a death and C-terminus. Identified *ANK2* loss-of-function mutations are noted by blue arrows and novel p.R990Q variant is indicated in red. (B) *ANK2* p.R990Q proband displays QT-prolongation. (C) 10 second rhythm strip in p.R990Q proband demonstrating atrial demand pacing (black arrows) with premature ventricular contraction (red arrow). (D) Sequence alignment of ankyrin-B spectrin-binding sequence. Residues that are absolutely conserved and highly conserved are in blue and green, respectively. Secondary structural elements are indicated above the alignment. p.R990Q is conserved across species and marked with “o”. (E) Structure of the ZU5^N^-UPA tandem of ankyrin-B SBD reveals the spectrin-binding surface and location of p.R990 (*green*).

Figure 2. Ankyrin-B/βII spectrin complex is blocked by human disease mutation. (A) βII spectrin (green) is localized in a striated pattern in isolated mouse myocytes (co-labelled with α-actinin, red). Scale=10 μm. (B) Radiolabelled ankyrin-B (spectrin-binding domain) associates with GST βII spectrin fusion protein, but not GST. (C-D) βII spectrin (βIIIS) Ig co-immunoprecipitates ankyrin-B, NCX1, Na/K ATPase, αII spectrin, and actin from detergent soluble lysates of non-failing mouse and human LV. (E) Human *ANK2* p.R990Q arrhythmia variant displays aberrant βII spectrin-binding. Data in inset represents equal inputs for experiments. Curves denote binding for GST-βII spectrin or GST alone with a concentration range of radiolabelled ankyrin-B or radiolabelled ankyrin-B R990Q (n=5/group; * represents...
p<0.05). Panel F represents primary binding data and Coomassie Blue-stained gels for fusion proteins in E. (G) Ribbon structure from co-crystal structure of ankyrin-B/βII spectrin. Human p.R990Q variant shown in green.

Figure 3. Generation and validation of mice lacking βII spectrin in cardiomyocytes. (A) Targeting strategy to generate Cre-dependent loss of cardiac βII spectrin. βII spectrin in brain (B) and heart (C) of control and βII spectrin cKO mice. (D) βII spectrin levels in control (n=5) versus βII spectrin cKO hearts (n=5; p<0.05). (E) βII spectrin localization in control and βII spectrin cKO adult ventricular myocytes. Bar= 10 μm.

Figure 4. Loss of βII spectrin causes bradycardia, rate variability, and arrhythmia. (A-B) βII spectrin cKO mice display reduced heart rate (n=5) as assessed by telemetry compared to control mice (n=5, p<0.05). (B) Heart rates of control and three βII spectrin cKO mice that show bradycardia and rate variability. (C-D) ECGs from control and βII spectrin cKO mouse showing increased RR, QRS, and QT intervals. Mean data for parameters are shown in E-H (n=5 mice/genotype; p<0.05). (I-J) Control ECG recording over 1-second demonstrating no R-R variability or heart block vs. ECG recording from βII spectrin cKO littermate demonstrating type II heart block, confirmed by P-waves (arrow heads) without ventricular conduction. (K) 3-second ECG recording of βII spectrin cKO mouse demonstrating significant R-R variability with heart block. (L-N) βII spectrin cKO mice demonstrate severe arrhythmia phenotypes and death following injection of epinephrine. Examples include (L) four sinus P-waves (arrow heads) without ventricular conduction consistent with type II AV block, (M) bigeminy, and (N) polymorphic ventricular arrhythmia.
Figure 5. βII spectrin cKO myocytes display electrical instability, afterdepolarizations, and aberrant Ca waves. Action potential measurements of (A-B) control and (C-D) βII spectrin cKO myocytes measured at baseline at 0.5 Hz pacing protocol ± 1μM Iso. (E-F) Electrical instability was present in βII spectrin cKO myocytes independent of pacing frequency (shown at 1 Hz). (G-H) Ryanodine (100 nM) blocked abnormal electrical instability of βII spectrin cKO myocytes ± Iso. (I) Mean APD$_{90}$ of control and βII spectrin cKO myocytes ± Iso (n>10 myocytes genotype; p<0.05 for control vs. control + Iso). (J) Prevalence of afterdepolarizations for control and βII spectrin cKO myocytes ± Iso and in the presence of ryanodine (n>10 myocytes/treatment; p<0.05 for control versus cKO at baseline; p<0.05 for control + Iso versus cKO + Iso). (K-L) βII spectrin cKO myocytes were more likely to form spontaneous Ca$^{2+}$ waves (n=27 control, n=25 βII spectrin cKO; p<0.05). (M-Q) Linescan images of fluo-4-loaded myocytes field stimulated at 0.5 Hz. Following stimulation, myocytes were continuously monitored for spontaneous Ca$^{2+}$ wave formation for 15 sec. (M-N) Control myocytes with no spontaneous wave activity. When waves formed they were slow moving (N, dashed white line). (O-Q) Spontaneous waves in βII spectrin cKO myocytes (red arrowheads). Stimulated transients are indicated by white arrowheads.

Figure 6. βII spectrin is required for organization of calcium release units and ankyrin-B. Like control mouse myocytes, βII spectrin cKO myocytes display normal localization of transverse-tubule Ca$_{v}$1.2 (A), transverse-tubule organization (B, visualized by Di-8-ANEPPs), and intercalated disc N-cadherin (C). In contrast, RyR$_{2}$ expression was reduced and heterogeneous in βII spectrin cKO myocytes (D, red *). (E-F) RyR$_{2}$ expression was further analyzed by total internal reflection fluorescence (TIRF) and super-resolution imaging. (E-F, left) Overlay of a TIRF image (red) and the corresponding super-resolution image (green) of RyR$_{2}$ in control (E)
and βII spectrin cKO (F) cardiomyocyte. (E-F, right) Super-resolution images of RyR2 in control and βII spectrin cKO myocytes. Note that data in F was collected from area of RyR2 heterogeneity (red * cKO panel D, right) that illustrates reduced RyR2 cluster size and intensity. Scale bar for E-F: 1000 nm. (G-H) RyR2 levels were significantly reduced in βII spectrin cKO myocytes (n=4 hearts/genotype, p<0.05). (I-K) Ankyrin-B levels are decreased in the heart but not brain of βII spectrin cKO mice (n=5 hearts/genotype; p<0.05). (L-M) Ankyrin-B shows reduced expression and abnormal targeting in βII spectrin cKO versus control myocytes (Bar=10 microns). (N-O) Ankyrin-G, but not ankyrin-R levels are decreased in the heart of βII spectrin cKO mice (n=5) versus control mice (n=6; p<0.05).

Figure 7. βII spectrin deficiency results in reduced expression of ankyrin-B-associated membrane proteins and abnormal myocyte cytoskeletal organization. (A-B) βII spectrin cKO myocytes (n=12) display reduced NCX compared with control mouse myocytes (n=14; p<0.05). (C-E) βII spectrin cKO hearts display reduced NCX and Na/K ATPase expression but normal expression of Cx43 compared with control hearts (n=4 hearts/genotype; p<0.05). (F-K) βII spectrin cKO hearts (n=5) display reduced αII spectrin expression and localization compared with control hearts (n=5) by immunoblot and immunostaining (p<0.05). (L-O) βII spectrin cKO hearts display significant increase in α-tubulin expression by immunoblot and immunostaining compared to control hearts (n=5 hearts/genotype for panel L; p<0.05). Bar=10 μM for panels N-O.

Figure 8. βII spectrin cKO mice show severe damage and electrical phenotypes following aortic banding. (A-B) Unlike control TAC mice, βII spectrin cKO mice displayed widespread myocardial degeneration of the LV free wall and septum, characterized by vacuolation (arrows),
pallor (inside circle), and necrosis of myocytes (C=coronary artery; H&E staining; 200x). (C-D) βII spectrin cKO hearts further displayed increased interstitial fibrosis (blue) of connective tissue compared with control sections (vacuolation noted by arrows; 200x). Electrical phenotypes observed in βII spectrin cKO and not control mice included (E) AV conduction defects, (F) ST segment depression, and (G) intermittent PVCs and junctional beats.
Figure 1
Figure 2

A) α-actinin and βII-spectrin

B) 35S-Met AnkB SBD

C) Mouse LV

D) Human LV

E) Graph showing βII spectrin binding (A.U.) relative to control

F) SDS-PAGE gel showing [35S] ankynir-B

G) Molecular model of β-spectrin and Ank-B interaction

Legend:
- GST-βII spectrin + [35S] AnkB
- GST-βII spectrin + [35S] AnkB R990Q
- GST + [35S] AnkB
- E1407
- E1093

Significance:
- * indicates statistical significance

Downloaded from http://circ.ahajournals.org/ by guest on April 14, 2017
Figure 3
Figure 5
Figure 6
Figure 7
Dysfunction in the βII Spectrin-Dependent Cytoskeleton Underlies Human Arrhythmia
Sakima A. Smith, Amy C. Sturm, Jerry Curran, Crystal F. Kline, Sean C. Little, Ingrid M. Bonilla,
Victor P. Long, Michael Makara, Iuliiia Polina, Langston D. Hughes, Tyler R. Webb, Zhiyi Wei,
Patrick Wright, Niels Voigt, Deepak Bhakta, Katherine G. Spoonamore, Chuansheng Zhang, Raul Weiss, Philip F. Binkley, Paul M. Janssen, Ahmet Kilic, Robert S. Higgins, Mingzhai Sun, Jianjie Ma, Dobromir Dobrev, Mingjie Zhang, Cynthia A. Carnes, Matteo Vatta, Matthew N. Rasband,
Thomas J. Hund and Peter J. Mohler

Circulation. published online January 28, 2015;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/early/2015/01/28/CIRCULATIONAHA.114.013708

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2015/01/28/CIRCULATIONAHA.114.013708.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click Request
Permissions in the middle column of the Web page under Services. Further information about this process is
available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Supplemental Methods

Ankyrin-B βII spectrin conditional knock-out (cKO) mice. Ankyrin-B cKO mice were generated by the introduction of LoxP sites flanking exon 24 of Ank2. The strategy results in the deletion of 73 bp of coding sequence: the splicing of exon 23-exon 25 leads to a frame shift resulting in a premature stop codon in exon 25. Mice were crossed to generate pure lines of floxed mice devoid of the neomycin cassette. Mice were screened by PCR and Southern analyses (genOway). Animals were crossed with mice expressing Cre under the cardiac promoter α-myosin heavy chain (αMHC-Cre) resulting in specific loss of ankyrin-B in adult cardiac myocytes. βII spectrin cKO mice were generated by the introduction of LoxP sites flanking exon 3 of the gene. These animals were then crossed with αMHC-Cre mice.

Immunoblots and immunostaining. Tissue was harvested and immediately placed into ice cold homogenization buffer (in mM: 50 Tris-HCl, 10 NaCl, 320 sucrose, 5 EDTA, 2.5 EGTA; supplemented with 1:1000 protease inhibitor cocktail and 1:1000 PMSF). Following quantification, tissue lysates were analyzed on Mini-PROTEAN tetra cell (BioRad) on a 4-15% precast TGX gel (BioRad). Gels were transferred to a nitrocellulose membrane using the Mini-PROTEAN tetra cell (BioRad). Membranes were blocked for 1 hour at room temperature using a 3% BSA solution or 5% milk solution and incubated with primary antibody overnight at 4°C. Densitometry analysis was done using ImageLab software (BioRad). For all experiments, protein values were normalized against an internal loading control (actin, GAPDH, calsequestrin).

Super-resolution image acquisition, reconstruction, and sample preparation. Our custom built STORM system is based on an inverted microscope (IX71, Olympus America Inc.) with 1.49 NA 100x oil
immersion total internal reflection fluorescence (TIRF) objective. A 647 nm diode laser (Vortran Laser Technology Inc.) is used to both excite and activate Alexa Fluor 647 (Life Technologies, CA). An EMCCD camera (iXon Ultra 897, Andor Technologies, CT) is used for image acquisition. The sample holder is mounted on a 3D piezo stage (Nano-LPS, Mad City Lab). An infrared 980 nm laser is used in combination with the piezo stage for the axial Zero Drift Correction (ZDC).\(^2\) The super-resolution image is reconstructed using a tracklet-based method as described.\(^3\) The effective resolution is approximately 35 nm. Control or βII spectrin cKO cardiomyocytes were labeled using RyR\(_2\) or βII-spectrin primary antibody as described\(^4\) for 24 hours. Cells were then washed and incubated with an Alexa Fluor 647 conjugated secondary goat-anti-mouse (Life Technologies, CA) or goat-anti-rabbit secondary antibody (Life Technologies, CA) for 3 hours at room temperature. Glass bottom culture dishes (MatTek, MA) were coated with Matrigel (Corning Inc, MA, 1:6 dilution) for 45 minutes. 50 \(\mu\)l labeled cell suspension was pipetted into the dish and settled for 1 hour before washing with the imaging buffer.\(^5\) Cells were imaged in the imaging buffer and typically 60,000 to 80,000 frames were acquired with a frame rate of 56 fps.

Site Directed Mutagenesis. Primers were designed to insert the p.R990Q mutations into the spectrin-binding domain of ankyrin-B in pcDNA3.1+. Primers were used in concert with the Stratagene QuikChange Site-Direct Mutagenesis kit and manufacturer’s instructions. Sequences were verified before experiments.

Production and purification of fusion proteins. cDNAs for the WT ankyrin-B, and p.R990Q spectrin-binding domains were PCR-amplified, cloned into pGEX6P-1 (Amersham), and sequenced to confirm correct sequences. To facilitate cloning, all constructs were engineered to contain 5’ EcoRI and 3’ XhoI restriction sites. BL21(DE3)pLysS cells were transformed with the ankyrin-B pGEX6P-1 constructs and grown overnight at 37 °C in LB supplemented with 0.05 g/L ampicillin. The overnight cultures were
subcultured for large-scale expression. Cells were grown to an optical density of 0.6 and induced with 1 mM isopropyl 1-thio-α-D-galactopyranoside (IPTG) for 4 h at 37 °C. Cells were centrifuged for 10 min at 8,000 x g, re-suspended in PBS, and frozen at -80 °C following re-suspension. Cells were lysed by thawing. The crude extract was suspended in a solution of PBS, 1 mM DTT, 1 mM EDTA, 40 g/mL AEBSF, 10 g/mL leupeptin, 40 g/mL benzamidine, 10 g/mL peptstatin (Lysis buffer). Lysates were homogenized by sonication, centrifuged to remove cellular debris, and the supernatant incubated with glutathione-sepharose overnight at 4 °C. The overnight incubation was centrifuged and washed in PBS. A small aliquot was separated by SDS-PAGE and Coomassie Blue stained to quantitate immobilized protein.

ECG experiments. ECG recordings of ambulatory mice were obtained using subcutaneously implanted radiotelemeters (DSI, St. Paul, MN). For baseline HR analysis, continuous ECG data was collected for 1 hour on seven separate days. Only ECG complexes with clearly defined onset and termination signals were sampled. ECG parameter measurement was performed by one individual and confirmed by two or more individuals. For stress tests, mice were initially injected intraperitoneally with both low dose (0.2 mg/kg) and high dose (2 mg/kg) epinephrine. Baseline recordings were performed prior to each injection for at least 5 minutes and for at least 15 minutes after the injection. Non-sustained and sustained arrhythmias were identified using standard ECG analysis guidelines. Variability was assessed over a 10 min period and expressed as the average heart rate plus standard deviation. In a separate group of mice, surface ECG recordings were obtained under anesthesia with 2% isoflurane. Three needle electrodes were placed subcutaneously in the standard limb configuration. For each mouse, 15 min of continuous data were sampled at 4 kHz with a PowerLab 4/30 interface (AD Instruments). Analysis was performed offline using LabChart 7 Pro (AD Instruments).
Electrophysiology. Membrane currents were assessed by use of an Axopatch-200B amplifier and a CV-203BU head stage (Axon Instruments). Experimental control, data acquisition, and data analysis were accomplished with the use of software package PClamp 10 with the Digidata 1440A acquisition system (Axon Instruments).

Calcium wave studies. Isolated and fluo-4 loaded ventricular myocytes were analyzed for calcium waves. Myocytes were field stimulated at 0.5 Hz and upon cessation of stimulation were continuously monitored for spontaneous calcium wave formation for 30 seconds. Data in Fig. 5K represents total spontaneous waves for each genotype over the 30 second interval. Fig. 5L represents waves/myocyte over the first 15 seconds of observation.

Action Potentials. Action potentials (APs) were performed using multiple pacing frequencies ± superfusion with 1µM isoproterenol. In parallel experiments, myocytes were pre-treated with 100 nM ryanodine.

Antibodies. The following antibodies were used in this study: mouse monoclonal anti-NCX1 (Swant), rabbit polyclonal anti-βII spectrin, ankyrin-B, ankyrin-R, and ankyrin-G, CaMKIIδ/CaMKIIδ pS287 (Badrilla), mouse monoclonal anti-Ca,1.2 (Affinity Bioreagents), βI spectrin (neuromab), rabbit polyclonal anti-Na,1.5, Na/K ATPase (Millipore), actin (Santa Cruz Biotechnology), α-actinin (Sigma), αII spectrin (Sigma), βII spectrin, connexin43 (Invitrogen), α-tubulin (Sigma), N-cadherin (Invitrogen), desmin (Sigma), GAPDH (Fitzgerald), RyR2 and SERCA2 (Affinity Bioreagents).

Human variant rescue studies. Assays to evaluate human ankyrin-B mutations were performed in primary control and ankyrin-B cKO myocytes. Ankyrin-B R990Q, as well as two ankyrin-B mutations previously shown to lack βII spectrin-binding (DAR976AAA, A1000P) were evaluated in parallel experiments.
In vitro binding assays. In vitro binding assays were performed as previously described using GST-fusion proteins and \(^{35}\text{S}\)-labelled in vitro translation products. Reactions were performed at 4°C for 3 hours in a high stringency binding buffer (50 mM Tris pH 7.4, 1 mM EDTA, 1 mM EGTA, 500 mM NaCl, 0.1% Triton X-100), washed 5 times in a high stringency wash buffer (1 M NaCl binding buffer), separated by SDS-PAGE, and visualized by phosphorimaging. All binding experiments were replicated at least three times.

Structural modeling. Analysis of ankyrin-B/βII spectrin interactions were performed using the high resolution structure of the ankyrin-B ZZUD tandem. All structural figures were prepared using PyMOL (www.pymol.org).

Echocardiography. Transthoracic echocardiogram was performed using the Vevo 2100 (Visualsonics). The mice were anesthetized using 2.0 % isoflurane in 95% O2 / 5% CO\(_2\) at a rate of \(~ 0.8\) L/min. Anesthesia was maintained by administration of oxygen and \(~1\)% isoflurane. Electrode gel was placed on the ECG sensors of the heated platform and the mouse was placed supine on the platform to monitor electrical activity of heart. A temperature probe was inserted into the rectum of the mouse to monitor core temperature of \(~37^\circ\)C. The MS-400 transducer was used to collect the contractile parameters of the heart in the short axis M-mode. Transverse aortic constriction was performed as described.\(^7\)

Neonatal cardiomyocyte experiments. Experiments were performed as described, however for transfections, unlike previous studies in global ankyrin-B\(^{-}\) myocytes in post-natal day 1 myocytes\(^6\) (done at P1 as global ankyrin-B mice die immediately after birth\(^8\)), experiments in this manuscript were performed to evaluate expression in post-natal 7 day myocytes to coincide with expression and striation of βII spectrin in the myocyte. Based on our new findings, while βII spectrin requires ankyrin-B
expression in immature myocytes (<post-natal day 3), this relationship reverses by post-natal day 7 where
βII spectrin expression is required for ankyrin-B expression.

References

 MN. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial
 Ma J. Super-resolution microscope image reconstruction by spatiotemporal object decomposition
 2014;22:12160-12176
4. Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, Gudmundsson H, Kline CF, Davidson
 NP, Cardona N, Rasband MN, Anderson ME, Mohler PJ. A beta(iv)-spectrin/camkii signaling
5. van de Linde S, Kasper R, Heilemann M, Sauer M. Photoswitching microscopy with standard
 fluorophores. Applied Physics B. 2008;93
6. Mohler PJ, Yoon W, Bennett V. Ankyrin-b targets beta2-spectrin to an intracellular compartment
 RM, Anderson ME, Binkley P, Felder RB, Carnes CA, Band H, Hund TJ, Mohler PJ. Differential
 regulation of ehd3 in human and mammalian heart failure. J Mol Cell Cardiol. 2012;52:1183-
 1190
8. Scotland P, Zhou D, Benveniste H, Bennett V. Nervous system defects of ankyrinb (-/-) mice
 suggest functional overlap between the cell adhesion molecule l1 and 440-kd ankyrinb in
Supplemental Figure 1. Localization of βII spectrin in myocytes. (A) Overlay of a TIRF image (red) and the super-resolution image (green) of βII spectrin in control myocytes. (B) Super-resolution image of βII spectrin. Scale bar: 500 nm.
Supplemental Figure 2. Generation and validation of mice lacking ankyrin-B in ventricular cardiomyocytes.

(A) Targeting strategy to generate Cre-dependent loss of cardiac ankyrin-B. (B) Southern blot analysis of heterozygous Neo-excised conditional knockout (αMHC-Cre; Ank2f/f, cKO). Genomic DNA of tested animals was compared with WT DNA from C57/Bl6 mouse. Spe I digested DNAs were blotted on nylon membrane and hybridized with external 3’ probe. (C-D) Expression of ankyrin-B in tissues from ankyrin-B cKO mouse relative to control mice (p<0.05 for ankyrin-B cKO heart compared with control heart). (E-F) Ankyrin-B immunostaining in control and ankyrin-B cKO mouse myocytes. Bar= 10 μm.
Supplemental Figure 3. Ankyrin-B R990Q in primary cardiomyocytes. Compared with control myocytes (A-B), ankyrin-B cKO myocytes (C-D) at post-natal day 7 display loss of ankyrin-B expression and membrane targeting of the Na/Ca exchanger (NCX1). (E-F) Expression of GFP-ankyrin-B is sufficient to rescue the striated pattern of ankyrin-B and NCX1 expression in ankyrin-B cKO myocytes. (G-H) While expressed in ankyrin-B cKO myocytes (green), GFP-ankyrin-B p.R990Q is abnormally localized and lacks ability to rescue abnormal Na/Ca exchanger localization. As a control for ankyrin-B R990Q, two mutant ankyrin-B polypeptides that lack βII spectrin-binding activity (I-L; A1000P, DAR976AAA) were analysed in parallel. Bar=10 μm.
Supplemental Figure 4. βII spectrin cKO mice display bradycardia but normal peak heart rate response. Heart rate of conscious control mouse and βII spectrin cKO mice at baseline and following 2 mg/kg epinephrine I.P. Data represent mean heart rates of five mice/genotype recorded by telemetry (p<0.05 for cKO mice versus control mice at baseline).
Supplemental Figure 5. βII spectrin cKO mice display normal cardiac function. (A) Normal baseline LVEF (69%) for 8 week old control mouse using M-mode end-systolic and -diastolic measurements. (B) Eight week βII spectrin cKO mouse with baseline LVEF of 67%.
Supplemental Figure 6. βII spectrin cKO mouse cardiac measurements. (A) βII spectrin cKO mice displayed decreased heart rates when compared to control mice (n=5/genotype; p<0.05). There was no significant difference between control and βII spectrin cKO mice with respect to (B) cardiac output, (C) ejection fraction, (D) stoke volume, (F) systolic volume, (G) diastolic volume, (E) fractional shortening and (H) systolic and (I) diastolic diameter (n=5/genotype; N.S.). (J) Control mice displayed significantly more left ventricular posterior wall thickness (LVPW) during systole than βII spectrin cKO mice (n=5 mice/genotype, p<0.05). (K) LVPW thickness during diastole was similar between control and βII spectrin cKO mice (n=5 mice/genotype; N.S.). Intraventricular septal (IVS) thickness did not differ between control and βII spectrin cKO mice during systole (L) or diastole (M); (n=5 mice/genotype; N.S.).
Supplemental Figure 7. βII spectrin cKO hearts display heterogeneity in RyR2 expression. RyR2 expression in (A) control, (B) βII spectrin cKO, and (C) ankyrin-B cKO left ventricle heart sections (multiple sections from n=3 hearts/genotype examined). RyR2 localization was generally homogeneous along the Z-line of control and ankyrin-B cKO hearts (white arrowheads), we observed heterogeneity in RyR2 expression both across myocyte sections as well as within single βII spectrin cKO myocytes (note * in panel B). Bar=10 μM.
Supplemental Figure 8. Ankyrin-B targets βII spectrin in immature neonatal myocytes, whereas βII spectrin targets ankyrin-B in mature and adult myocytes. (A-C) Localization of ankyrin-B and βII spectrin in post-natal day 1 (P1) neonatal cardiomyocytes from control (A), ankyrin-B cKO (B), and βII spectrin cKO myocytes (C). Note that βII spectrin expression is minimal in the P1 myocyte whereas ankyrin-B is expressed and striated in control myocytes. Also note that ankyrin-B is expressed and striated in βII spectrin cKO myocytes. (D-F) At P3, βII spectrin is expressed in control myocytes and requires ankyrin-B for expression and localization. (G-I) In contrast to post-natal days 1-3, ankyrin-B is not required for βII spectrin expression or targeting. In fact, in these maturing myocytes, similar to adult myocytes, βII spectrin is required for ankyrin-B expression. Scale equals 10 microns in all panels.
Supplemental Figure 9. βII spectrin levels are unchanged in hearts of ankyrin-B cKO mice. Expression levels of βII spectrin is not significantly different in protein lysates (A-B) from control (Ctrl, n=4) versus ankyrin-B cKO hearts (n=4; p=N.S.) or by immunostaining (C-D) of adult cardiomyocytes (red). Scale bar equals ten microns.
Supplemental Figure 10. Ankyrin-B is not required for βII spectrin expression or localization. βII spectrin localization (red) in control, βII spectrin cKO, and ankyrin-B cKO left ventricle. Sections are co-labeled with α-actinin. Note that in C, βII spectrin is normally expressed and striated in the absence of ankyrin-B. Also note that minor background of βII spectrin staining in βII spectrin cKO is small vessel (*), not ventricular myocytes. Bar=10 μM.
Supplemental Figure 11. βII spectrin deficiency does not alter cardiomyocyte INa. (A-B) Control (n=10) and βII spectrin cKO mouse myocytes (n=11) display no difference in I_{Na} phenotypes (N.S.).
Supplemental Figure 12. βII spectrin deficiency results in increased expression of βI spectrin.

(A, C) βI spectrin levels are increased nearly two-fold in βII spectrin cKO hearts (n=5) compared to control hearts (n=5 hearts; p<0.05). (B,C) Desmin expression levels are equivalent between control (n=5) and βII spectrin cKO hearts (n=5; p=N.S.).