Meox2/Tcf15 Heterodimers Program the Heart Capillary Endothelium for Cardiac Fatty Acid Uptake

Running title: Coppiello et al.; Meox2/Tcf15 regulate cardiac fatty acid uptake

Giulia Coppiello, PhD; Maria Collantes, PhD; María Salomé Sirerol-Piquer, PhD; Sara Vandenwijngaert, PhD; Sandra Schoors, MSc; Melissa Swinnen, PhD; Ine Vandersmissen, MSc; Paul Herijgers, MD, PhD; Baki Topal, MD, PhD; Johannes van Loon, MD, PhD; Jan Goffin, MD, PhD; Felipe Prósper, MD, PhD; Stefan Janssens, MD, PhD; Iván Peñuelas, PhD; Xabier L. Aranguren, PhD; Aernout Luttun, PhD*

1Dept of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium; 2Dept of Nuclear Medicine, Clínica Universidad de Navarra/MicroPET Research Unit CIMA-CUN, University of Navarra, Pamplona, Spain; 3Laboratory of Comparative Neurobiology, Instituto Cavanilles, University of Valencia, CIBERNED, Valencia, Spain; 4Dept of Cardiovascular Sciences, Cardiology Unit, KULeuven, Leuven, Belgium; 5,6Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB/Department of Oncology, KULeuven, Leuven, Belgium; 7Dept of Cardiovascular Sciences, Experimental Cardiac Surgery Unit, KULeuven, Leuven, Belgium; 8Dept of Abdominal Surgery, University Hospitals Leuven/KULeuven, Leuven, Belgium; 9Dept of Neurosurgery, University Hospitals Leuven/KULeuven, Leuven, Belgium; 10Hematology and Cell Therapy Area, Clínica Universidad de Navarra and Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain

*contributed equally

Address for Correspondence:
Aernout Luttun, PhD
Associate Professor, Department of Cardiovascular Sciences
Center for Molecular and Vascular Biology, Endothelial Cell Biology Unit
KULeuven, Campus Gasthuisberg, Onderwijs & Navorsing 1
Herestraat 49, box 911, B-3000 Leuven, Belgium
Tel: +3216345775/+3216372076
Fax: +3216345990
E-mail: aernout.luttun@med.kuleuven.be

Abstract

Background—Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking.

Methods and Results—Using microarray profiling on freshly isolated ECs from heart, brain and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport-related proteins. Using gain- and loss-of-function approaches, we showed that Meox2/Tcf15 mediate FA uptake in heart ECs in part by driving endothelial CD36 and lipoprotein lipase expression and facilitate FA transport across heart ECs. Combined Meox2 and Tcf15 haplodeficiency impaired FA uptake in heart ECs and reduced FA transfer to cardiomyocytes. In the long term this combined haplodeficiency resulted in impaired cardiac contractility.

Conclusions—Our findings highlight a regulatory role for ECs in FA transfer to the heart parenchyma and unveil two of its intrinsic regulators. Our insights could be used to develop new strategies based on endothelial Meox2/Tcf15 targeting to modulate FA transfer to the heart and remedy cardiac dysfunction resulting from altered energy substrate usage.

Key words: endothelium, fatty acid, transcription factors, cardiac metabolism, heart, endothelial heterogeneity, Meox2, Tcf15, fatty acid transport, heart capillaries

Endothelial cells (ECs) lining capillaries of different organs have specialized expression patterns,
morphologies and functions related to the specific needs of tissue parenchymal cells with which they communicate. This heterogeneity is determined by environmental cues and intrinsic regulators (e.g., transcription factors or TFs), which remain largely unknown. While specific characteristics of capillary ECs have been described for liver and brain, such information for heart ECs is lacking, except for their documented modulating role in myocardial contractile performance. As a continuously contracting organ, the heart daily produces ~20 times its own weight in adenosine triphosphate (ATP). Mainly glucose and fatty acids (FAs) serve as substrates for ATP production. Under physiological conditions FAs account for 60-90% of ATP generation, whereas glucose contributes for 10-40%. A broad range of cardiomyopathies leading to cardiac hypertrophy and failure are associated with chronic alterations in cardiac energy metabolism in general and FA utilization in particular. Besides the demonstrated role of molecules involved in FA metabolism in cardiomyocytes, recent findings suggest that proteins involved in FA uptake and transport in ECs and cardiomyocytes may also play a role in these pathologies. Nevertheless, it has not been established whether cardiac ECs are specialized to fulfill the high FA delivery demanded by the heart.

Recent studies identified vascular endothelial growth factor (VEGF)-B as a paracrine mediator of FA uptake through ECs in heart, brown adipose tissue and skeletal muscle and showed that VEGF-B inhibition protected against type-2 diabetes by decreasing FA uptake and reverting muscle metabolism towards glucose consumption. However, EC-intrinsic (transcriptional) regulators determining FA uptake and transfer are unknown, except for peroxisome proliferator-activated receptor (PPAR)γ, whose activities are not restricted to the heart. We identified two novel transcriptional regulators of the gene signature and metabolic substrate transport in heart ECs, i.e., Meox2 and Tcf15. They both have been described to play a
role in specification of paraxial mesoderm to somitic dermomyotome and a defect in heart development has not been reported in Meox2- or Tcf15-deficient mice. Meox2 participates in EC homeostasis, while Tcf15 has never been studied in ECs, except that it was cloned from an endothelial library. Here we demonstrate that within the adult heart, Meox2 and Tcf15 are exclusively expressed in ECs, and that they are critical regulators of FA transport across cardiac ECs.

Methods

An extended methods text is available online, which includes Supplementary Table1 (antibodies) and Supplementary Table2 (quantitative (q)RT-PCR primers).

Animals/human biopsies

ECs for expression profiling were sorted from Tie2-GFP mice. Meox2Cre/+ mice (referred to as Meox2+/−; C57BL/6) were obtained from the Jackson Laboratories and Tcf15+/− mice (129S7/SvEvBrd*C57Bl/6) were provided by E.N.Olson/A.Rawls (Dallas, TX/Tempe, AZ, USA). Human biopsies obtained under informed consent were handled according to the Helsinki Declaration. Procedures were approved by the Ethics Committees of KULeuven for Animal Use, or University Hospitals Leuven.

Cell isolation/culture

ECs were FACS-sorted based on Tie2-GFP fluorescence or antibodies, or selected with antibody-conjugated magnetic beads. Cells were collected in RNA extraction buffer or collection buffer for protein extraction or FA uptake experiments. Cardiomyocytes were isolated using a Langendorff perfusion set-up. For in vitro studies, human heart ECs and umbilical cord vein ECs (HUVECs) were grown in EBM2 medium supplemented with EGM2-MV bullet-kit on gelatin-
coated plates and cardiomyocytes were plated on laminin-coated dishes in protein-supplemented M199 medium.

Microarray

Mouse genome-wide microarrays on ECs were performed by the VIB Nucleomics Core, as described online. Functional annotation analysis was done on the validated heart EC gene list using DAVID software (http://david.abcc.ncifcrf.gov/).

RNA/protein/cDNA preparation, qRT-PCR, Western blot, ELISA and enzymatic activity assays

Total RNA was extracted with RLT or TRIzol®, retro-transcribed using SuperscriptIII Reverse Transcriptase and qRT-PCR was performed with SYBR-Green master mix. For Western blot, total proteins were extracted with RIPA buffer containing protease inhibitors. Human APOB and mouse lipoprotein lipase (Lpl) protein were measured by ELISA and Lpl activity was measured with a colorimetric kit.

Lentiviral overexpression/siRNA knockdown

The construct for overexpressing human MEOX2 was purchased (Genecopoeia). Open reading frames for human WT1, EBF3 and murine Tcf15 were cloned from cDNA-containing plasmids (Thermo Scientific) and PPARG1 (further referred to as PPARG) was cloned from human heart EC cDNA. Lentiviruses were produced in HEK293 cells. Lentiviral transduction, lysate harvesting and siRNA knockdown of CD36 or LPL were performed as described online.

Proximity ligation assay (PLA)/GST pull-down assays

PLA was performed as previously described in HUVECs overexpressing MEOX2 and FLAG-tagged Tcf15 or PROX1. GST pull-down assays were performed in HEK293 cells transfected with plasmids encoding GST-tagged Tcf15, FLAG-tagged MEOX2 or both.
In vitro/ex vivo FA uptake/transport

FA uptake was analyzed as described online in cultured human heart ECs 72 hours post-transduction or after siRNA treatment, in freshly isolated magnetically selected murine heart ECs or in adult murine cardiomyocytes, 4 hours after plating. FA transport in EC mono- or co-culture with cardiomyocytes was analyzed as described online.

Histology

Immunofluorescence and Sirius-red stainings were performed on 3-6μm paraffin sections. Oil-Red-O staining was performed as described online on 10μm cryosections.

Echocardiography

Mice (n=8-9; analyzed at 3-4 and 11 months of age) were sedated with 1.5% isoflurane and standard views were obtained in 2 dimensions by transthoracic echocardiography using an MS400 transducer on a Vevo2100 scanner. Image analysis was performed by a blinded investigator using VisualSonics software.

FA/glucose uptake

For FA uptake assessment in vivo, mice were injected intravenously with 14C-OA or [3H]OA and after 30 minutes radioactivity in different organs/plasma was measured on an LKB-Wallac-Rackbeta-1214 Counter or hearts were harvested and processed for semi-thin sectioning and autoradiography. Glucose uptake was determined by positron emission tomography imaging during 1 hour after intravenous injection of [18F]FDG.

Statistics

Data are expressed as mean±s.e.m. from pooled data of 3-12 independent experiments. Data normality was supported by the Shapiro-Wilk test (larger samples) or evidence from literature reporting on analogous datasets (smaller samples). For single comparisons homogeneity of group
variances was determined with the Levene test and P-values were calculated with the Welch t-test or the two-tailed (un)paired Student’s t-test where appropriate. For time courses of a single variable comparison, repeated measures ANOVA was applied, followed by Student’s t-test for each time point. $P<0.05$ was considered significant. For multiple comparisons, P-values were calculated with a priori non-orthogonal contrast analysis (with the type of comparisons predetermined based on biological relevance and indicated in the Figure [legend]s), after one-way ANOVA and the Levene test. The significance level α (0.05) was corrected for multiple comparisons with Keppel-modified Bonferroni test and the resulting α^* is indicated in the Figure legends where appropriate.

Results

The gene signature of heart capillary ECs

To obtain a heart microvascular EC signature, we performed a microarray comparison of pure populations of GFP+ ECs freshly isolated from hearts, livers and brains of adult Tie2-GFP mice (Supplementary Figure 1A-C + Note1) revealing a high degree of heterogeneity between vascular beds (Figure 1A). After filtration (by defining as a threshold a minimum Log$_2$ probe set intensity of 6 and a minimum 4-fold difference compared to brain and liver ECs [$P<0.05$]) and qRT-PCR validation of the gene list (only genes significantly enriched in the EC fraction compared to non-ECs and/or cardiomyocytes were retained [$P<0.05$, data not shown], we obtained a set of 31 genes enriched in heart capillary ECs (Figure 1B). Functional annotation revealed that the main functions represented were lipid binding and lipid/FA transport (Figure 1C). To consolidate this signature, we measured its expression in ECs freshly isolated from additional tissues, i.e., pancreas, lung and kidney. We found that most genes (81% compared to
at least two, 48% compared to all three tissues) were at least 4-fold enriched in heart ECs (Supplementary Figure 1D). On the other hand, ECs isolated from tissues with continuous endothelium that, like the heart, are highly active in FA uptake for energy production or storage (i.e., skeletal muscle or SkM, brown and white adipose tissue or BAT and WAT, respectively) showed for most genes an expression level similar to that in heart ECs (Figure 1D). Cross-species validation in human ECs confirmed a partially retained enrichment of the signature in human heart when compared with brain and liver ECs (Supplementary Figure 2A). Finally, as for other EC types2,31,32, human heart ECs lost their specific gene expression profile upon culturing (Supplementary Figure 2B).

Transcriptional regulation of heart EC identity in vitro

In addition to FA transport-related genes, the signature contained five TF-encoding genes, i.e., Meox2, Tcf15, early B-cell factor 3 (Ebf3), Pparg and Wilms tumor 1 (Wt1; Figure 1B). We confirmed by tissue immunostaining and Western blot on sorted cells that Meox2 and Tcf15 were exclusively expressed in the EC compartment of the murine heart and undetectable in liver or brain ECs (Figure 1E,F + Supplementary Figure 3). We next tested whether these TFs would intrinsically regulate the heart EC signature by assessing whether their overexpression would restore the fingerprint in human heart ECs in which it was erased by culturing.

Overexpressing MEOX2 or Tcf15 alone did not affect signature gene expression, however, when overexpressed in combination, 31% of the genes were significantly upregulated (Figure 2A). PLA and GST pull-down revealed that this cooperative effect involved heterodimeric complex formation (Figure 2B,C). MEOX2 or Tcf15 did neither affect each other’s expression nor that of WTI, but had a small yet significant inductive effect on PPARG. EBF3 was strongly induced by MEOX2+Tcf15. Yet, its overexpression induced a limited number of signature genes and thus
did not recapitulate the effect of MEOX2+Tcf15. Furthermore, combining EBF3 overexpression with MEOX2+Tcf15 did not have an additive effect (Supplementary Figure 4A). We also studied the inductive effect of PPARG and the most abundant WTI isoform (Supplementary Note2). PPARG and WTI overexpression partially induced the heart EC fingerprint (Supplementary Figure 4B,C). Moreover, PPARG exerted a synergistic effect with MEOX2+Tcf15, whereas WTI did not have an additive effect on MEOX2+Tcf15+PPARG overexpression. Upregulation for a random gene subset was confirmed at protein level (Supplementary Figure 4D). MEOX2+Tcf15 overexpression induced the heart EC signature in HUVECs to a similar extent as in cultured heart ECs (Supplementary Figure 4E).

Meox2/Tcf15 determine heart EC identity in vivo

To address whether Meox2 and Tcf15 cooperated to affect the heart EC expression profile in vivo, mice lacking one allele of each factor were generated. Mice homozygously deficient for Tcf15(24) or Meox2 (Supplementary Note3) die perinatally, while combined heterozygously deficient mice are viable. ECs were isolated from hearts and, as a control, from livers of adult Meox2+/Tcf15+/ mice and their single-heterozygous or wild-type littermates and their gene expression profile was analyzed by qRT-PCR. While haplodeficiency for Meox2 or Tcf15 alone only slightly affected the heart EC signature, we observed a significant downregulation of 45% of the signature genes in Meox2+/Tcf15+/ hearts, supporting the cooperative interaction of both TFs also in vivo (Figure 3A). Complementary to our in vitro findings, Pparg and Ebf3 were significantly downregulated, whereas Wti was not affected, confirming the TF hierarchy we unraveled in vitro (Figure 2A). General EC markers were not affected in heart ECs, and liver sinusoidal EC-specific genes were not altered in liver ECs (Supplementary Figure 5A,B), suggesting that Meox2/Tcf15 specialize ECs in the heart while neither affecting EC identity per
nor EC specialization in unrelated tissues.

Meox2+Tcf15 haplodeficiency alters energy substrate transporter gene expression in heart ECs in vivo

Since FA transport emerged as a principal function associated with the heart EC signature, we further investigated whether *Meox2+Tcf15* haplodeficiency altered endothelial expression of additional genes encoding FA or glucose transport-related molecules, previously described in heart ECs but not included in our signature, either because not being enriched in heart ECs in comparison to both liver and brain ECs, or because being less than 4-fold enriched (Supplementary Figure 5C). FA translocase *CD36*\(^{(15,18,19)}\), cytoplasmic FA binding protein *Fabp4\(^{(33)}\) and *Gpihbp1*, encoding the transporter and anchoring protein for Lpl on the luminal EC surface\(^{(34)}\), were significantly downregulated in *Meox2+/−:Tcf15+/−* heart, but not in liver ECs, while *Fatp3*, a FA transporter regulated by VEGF-B interaction with heart ECs\(^{(21)}\) and the glucose transporter *Glut1* were upregulated in *Meox2+/−:Tcf15+/−* heart ECs (Figure 3B,C). Expression of *Fatp4*, another FA transporter gene induced by VEGF-B\(^{(21)}\), was not affected by *Meox2+Tcf15* haplodeficiency (Figure 3C). Reduced *CD36* expression in *Meox2+/−:Tcf15+/−* heart ECs was confirmed at the protein level (Figure 3D). Together, these observations further suggest a functional role for Meox2+Tcf15 in FA (and glucose) transfer in and through heart ECs.

Meox2/Tcf15 drive free FA uptake in and transport across ECs

To demonstrate that Meox2/Tcf15 are functionally important for FA trafficking, we next determined whether free FA (FFA) uptake in cultured human heart ECs could be enhanced by their overexpression. As measured by FACS, uptake of BSA-bound fluorescently-labeled dodecanoic acid was increased by 150% upon *MEOX2+Tcf15* overexpression (Figure 4A).

Additionally, freshly isolated heart ECs from *Meox2+/−:Tcf15+/−* mice showed a 19% decrease in
FFA uptake compared to those of wild-type littermates (Figure 4B). Since CD36 expression in heart ECs of Meox2+/−:Tcf15+/− mice was significantly lowered (Figure 3B,D), while it was upregulated upon combined MEOX2+Tcf15 overexpression in cultured heart ECs and HUVECs (unlike other transporters; Supplementary Figure 6A,B + data not shown) and since CD36 is the FA transporter expressed at the highest level in heart ECs (> 200-fold higher than any other FA transporter; Supplementary Figure 6C), we investigated whether CD36 was involved in Meox2/Tcf15-driven FFA uptake. CD36 knockdown reduced FFA uptake by 12% in heart ECs overexpressing MEOX2+Tcf15, meaning that CD36 accounted for ~20% of the uptake caused by combined MEOX2+Tcf15 overexpression (Figure 4C). Using an in vitro transwell assay, we deliver proof that Meox2/Tcf15 also affected FFA transport across an endothelial monolayer (Figure 4D). Finally, with a co-culture system we showed that Meox2/Tcf15 regulate the capacity of ECs to take up and transfer FFAs to cardiomyocytes (Figure 4E).

Meox2/Tcf15 regulate VLDL-derived FA uptake in heart ECs

FAs reach the heart EC barrier not only bound to albumin (FFAs) but also esterified in the triacylglycerol core of circulating lipoproteins (e.g., chylomicrons or very low-density lipoproteins [VLDL]). We determined whether Meox2/Tcf15 could regulate VLDL-derived FA uptake by measuring the uptake of DiI signal incorporated in the lipidic parts of DiI-labeled VLDL. MEOX2+Tcf15 overexpression in cultured heart ECs induced an increase of DiI uptake by 53% (Figure 5A), and, accordingly, in heart ECs freshly isolated from Meox2+/−:Tcf15+/− mice, DiI uptake was decreased by 22% compared to wild-type mice (Figure 5B). It is known that in vivo, triglyceride (TG)-derived FAs from VLDL can be taken up by tissues either as a component of nascent or remnant lipoprotein particles or as FFAs following Lpl-mediated TG lipolysis at the luminal EC surface34−36. In our in vitro system, VLDL particle uptake occurred

 DOI: 10.1161/CIRCULATIONAHA.114.013721
and MEOX2+Tcf15 overexpression tended to increase this, as shown by the uptake of ApoB protein, but this increase was not significant (Supplementary Figure 7A). On the other hand, we found Lpl mRNA expression in pure heart ECs (Figure 1B), the levels of which were 25% of those in pure cardiomyocytes (Figure 5C). Since, compared to wild-type, Meox2+/+;Tcf15+/+ hearts show a downregulation of Lpl mRNA by 90% in their EC but not cardiomyocyte fraction (Figure 3A + Supplementary Figure 8A) and had an ~18% decrease in Lpl protein and activity (Figure 5D,E), we estimated that EC-derived Lpl activity is ~20% of that in the total heart.

Furthermore, MEOX2+Tcf15 overexpression in cultured heart ECs increased LPL activity by 48% and this increase was completely neutralized upon LPL knockdown (Figure 5F). Together, these results support the production of active Lpl by heart ECs and its regulation by Meox2/Tcf15. To demonstrate that this EC-produced LPL hydrolyzing activity was involved in MEOX2+Tcf15-driven VLDL-derived FFA uptake, we knocked-down CD36, an important downstream mediator of LPL-generated FFAs that is not involved in VLDL particle uptake (ref.35 + Supplementary Figure 7B). CD36 knockdown in MEOX2+Tcf15 overexpressing heart ECs decreased the DiI signal by 13% (Figure 5G). Together, these data demonstrate an EC-autonomous role for Meox2/Tcf15-regulated Lpl in VLDL-derived FFA uptake.

Meox2/Tcf15 regulate cardiac energy substrate uptake in vivo

To evaluate whether Meox2+Tcf15 haplodeficiency altered FA uptake in the heart in vivo, we administered 14C-OA via tail vein injection to 12-16 weeks-old Meox2+/+;Tcf15+/+ and wild-type males, and measured the radioactive signal in different organs after 30 minutes. FA uptake was significantly decreased in the heart (by 35%), and was also decreased (by 50%) in oxidative SkM (soleus) in Meox2+/+;Tcf15+/+ mice – as expected by the fact that Meox2 and Tcf15 are also expressed in the SkM endothelium, which also expresses the other genes of the heart EC
signature at high levels (Figure 6A). Unexpectedly, however, FA uptake was significantly increased (by ~100%) in BAT of Meox2+/−:Tcf15+/− mice, although BAT ECs had similar levels of expression of the genes of the heart EC fingerprint and FA transporters than heart ECs, and showed downregulation of, e.g., CD36 and Lpl in Meox2+/−:Tcf15+/− mice (Figure 1D + Supplementary Figure 9A,B). Other organs had a similar uptake in the two genotypes.

Although we detected a 22% increase in radioactive signal in plasma of Meox2+/−:Tcf15+/− mice – which could suggest a slower clearance of plasma FAs by peripheral tissues, this increase was not statistically significant (P=0.24). Autoradiography on semi-thin sections of Meox2+/−:Tcf15+/− and wild-type littermate hearts confirmed that there was much less FA signal in Meox2+/−:Tcf15+/− hearts 30 minutes after [3H]OA injection and furthermore shows that the signal almost exclusively originated from cardiomyocytes, with no accumulation of FAs in the extracellular space, suggesting that FA uptake by cardiomyocytes was not compromised (Figure 6B).

Accordingly, expression of none of the lipid or glucose transport-related genes tested was affected in Meox2+/−:Tcf15+/− cardiomyocytes and they did not have an impaired FA uptake in vitro (Supplementary Figure 8A,B). Together, these data suggest that in Meox2+/−:Tcf15+/− mice FA delivery from the plasma to cardiomyocytes is impaired because of a reduced passage through the endothelium. To investigate whether reduced FA delivery was compensated by increased glucose uptake, we measured 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake in the heart, and detected a 38% increase in Meox2+/−:Tcf15+/− compared to wild-type mice at ~60 minutes post-injection (Figure 6C,D).

Aged Meox2+/−:Tcf15+/− mice develop cardiac dysfunction

Since an altered energy substrate use could be associated with cardiac dysfunction in animal models upon aging17,36, we performed histological and functional analysis on young and aged
Meox2^{+/−}:Tcf15^{+/−} and wild-type males. In accordance with the in vivo ¹⁴C-OA uptake assay, Oil red-O staining revealed a decrease in lipid accumulation in heart muscle of Meox2^{+/−}:Tcf15^{+/−} compared to wild-type hearts both in young (Supplementary Figure 10A) and aged mice (Figure 7A). However, while young mice displayed normal cardiac function and histology (Supplementary Figure 10B,C + Table 3), aged (44 weeks-old) Meox2^{+/−}:Tcf15^{+/−} mice displayed heart systolic dysfunction, as evidenced by a reduced ejection fraction and fractional shortening, sporadically accompanied by fibrosis and associated with a slight decrease in capillary density, but no significant differences in cardiomyocyte size (Figure 7 + Supplementary Table 3+4).

Discussion

To improve the understanding of EC heterogeneity between capillaries of different organs, we here report a fingerprint of genes enriched in heart microvascular ECs, which is largely shared with ECs of SkM, BAT and WAT, all tissues highly active in FA uptake for energy production or storage. We show that Meox2 and Tcf15, by interacting as a heterodimeric complex, EC-autonomously determine the expression of these fingerprint genes both in vitro and in vivo, while individually they had only a minor effect.

Our *in vitro* and *ex vivo* mechanistic studies showed that Meox2/Tcf15 intrinsically regulate uptake by cardiac ECs of FFAs originating from both BSA-conjugates and EC-derived Lpl hydrolysis of TGs contained in VLDL particles (Figure 8). Although the finding of EC-derived Lpl challenges the currently prevailing view that cardiomyocytes are the sole cardiac source of Lpl³⁴, we estimated that EC-derived Lpl protein and activity is ~20% of that in the whole heart, which is well in line with the observation by Bharadwaj *et al.*³⁵ that there is ~16%...
residual Lpl activity in hearts of cardiomyocyte-specific Lpl-deficient mice. Meox2/Tcf15 also potentially regulate the expression of Gpihbp1\(^{(34)}\), responsible for Lpl transfer from cardiomyocytes and for its positioning at the luminal surface of heart capillary ECs (Figure 8).

Using a combination of gain- and loss-of-function experiments, we showed that CD36 is downstream of Meox2/Tcf15-mediated uptake of FFAs originating from both BSA-conjugates and VLDL particles in heart ECs. The high CD36 expression levels compared to other transporter genes in heart ECs further support its important role in cardiac FA uptake. Nevertheless, while in our Dil-VLDL assay CD36’s contribution to Meox2/Tcf15-driven FFA uptake could have been underestimated by simultaneous detection of particle uptake, the fact that CD36 knockdown only partially impaired Meox2/Tcf15-driven uptake of BODIPY-labeled FFAs suggests the existence of other Meox2/Tcf15 downstream mediators or the occurrence of compensatory mechanisms upon CD36 knockdown.

In Meox2\(^{+/-}\):Tcf15\(^{+/-}\) heart ECs, Fatp3, a FA transporter regulated by the paracrine VEGF-B\(^{(21)}\), was increased, but this was not sufficient to fully compensate for the partial loss of CD36 induced by Meox2+Tcf15 haplodeficiency, since cardiac FA uptake was significantly compromised in the Meox2\(^{+/-}\):Tcf15\(^{+/-}\) heart. On the other hand, Fatp4, another FA transporter regulated by VEGF-B\(^{(21)}\), was not affected by the haploinsufficiency of Meox2+Tcf15 in heart ECs. Finally, MEOX2+Tcf15 overexpression did not regulate FATP3 or FATP4 in vitro (data not shown), while VEGF-B is not able to regulate CD36\(^{(21)}\). Therefore, we hypothesize that these extrinsic and intrinsic pathways do not overlap in regulating FA uptake in heart ECs. On the other hand, we found that Pparg, known to be an intrinsic regulator of EC FA uptake\(^{23}\), seemed to be downstream of and synergize with Meox2/Tcf15 to determine the heart EC signature, suggesting a new TF hierarchy in charge of endothelial FA uptake.
Meox2/Tcf15 did not only support FA uptake in, but also transport across ECs, as shown with a transwell assay. In particular, they could regulate the capacity of ECs to take up and transfer FAs to cardiomyocytes, as shown in our *in vitro* co-culture experiments. Meox2/Tcf15-mediated transendothelial transport was likely dependent on CD36-mediated FA uptake and may involve certain fingerprint genes and cytoplasmic FA transporters in charge of FA shuttling from the apical to the basal side of ECs, such as *Fabp4* and *Fabp5*, the loss of which is known to decrease FA uptake in the heart and which were downregulated in heart ECs of Meox2+/−:Tcf15+/− mice (Figure 8).

In vivo, Meox2+Tcf15 haplodeficiency caused decreased FA uptake in the heart. Surprisingly, despite a similar expression of signature genes and FA transporters in heart and BAT ECs and a common downregulation of CD36 in ECs of both tissues in Meox2+/−:Tcf15+/− mice, FA uptake was increased in Meox2+/−:Tcf15+/− BAT, suggesting that compensatory uptake mechanisms were at play, *e.g.*, involving BAT EC-specific genes or environmental factors secreted by brown adipocytes.

Together, our *in vitro* and *ex vivo* mechanistic studies in EC mono- or co-cultures with cardiomyocytes support the notion that an EC-specific role for Meox2/Tcf15 in FA uptake and transport to cardiomyocytes accounts for the lower cardiac FA uptake measured in adult Meox2+/−:Tcf15+/− hearts *in vivo*. Additional support for such a role is given by the fact that Meox2/Tcf15 expression was undetectable in other cardiac cells and, additionally, expression of genes related to FA transport in freshly isolated Meox2+/−:Tcf15+/− cardiomyocytes was unaffected nor was their uptake of FAs – as evidenced *in vitro* in isolated cardiomyocytes and *in vivo* by autoradiography. Nevertheless, our *in vivo* FA uptake studies were performed in ubiquitous and constitutive Meox2+/−:Tcf15+/− mice. Hence, we cannot entirely exclude that Meox2+Tcf15
haplodeficiency during development or in other organs or even in other cell types in the heart could have also contributed to the lower cardiac FA uptake in adult Meox2+/−:Tcf15+/− mice. Definitive proof for an isolated cardiac EC-exclusive cause of the diminished cardiac FA uptake would require the generation of cardiac EC-specific, inducible knock-out mice.

Interestingly, the reduced FA uptake was compensated by a higher glucose uptake in the heart of Meox2+/−:Tcf15+/− mice – possibly due to higher Glut1 (but not Glut4; data not shown) expression in cardiac ECs, suggesting a switch in energy substrate usage in Meox2+/−:Tcf15+/− hearts. Even though higher glucose consumption has been proven beneficial for the heart upon cardiac stress10,37, chronic adaptation to impaired FA uptake towards higher glucose consumption (like in Lpl−/−(36), H-Fabp−/−(17) or CD36−/−(15,18) mice) limits the heart’s metabolic flexibility, rendering it more susceptible to events that lead to cardiac metabolic changes, like an insult or aging. Accordingly, Meox2+Tcf15 haplodeficiency in aged mice resulted in impaired cardiac contractility, sporadically accompanied by fibrosis – likely a late manifestation of cardiac dysfunction. Our current data however do not provide conclusive evidence that the heart phenotype of aged Meox2+/−:Tcf15+/− mice is related to a defect in adult cardiac EC FA handling, as this would require a conditional genetic approach. Furthermore, other genes regulated by Meox2/Tcf15 encoding proteins whose function is not directly linked to energy substrate delivery could contribute to heart dysfunction/fibrosis, e.g., tissue inhibitor of metalloproteinase (Timp)4 and metalloproteinase Adamts9, which play a role in matrix remodeling in the heart38,39.

In summary, here we provide for the first time a fingerprint of genes enriched in ECs lining capillaries of tissues with high metabolic capacity for FAs, suggesting a common specialization of these vascular beds. We identified Meox2/Tcf15 heterodimers as transcriptional determinants of the heart EC fingerprint and demonstrated that they are critical regulators of FA
transport across heart ECs, in part through regulation of CD36 and Lpl expression. Combined Meox2+Tcf15 haplodeficiency resulted in downregulation of these and other FA transport-related genes and an increase of glucose transporter Glut1 in heart ECs, and a switch of the cardiac energy substrate balance (Figure 8). These findings have broadened our understanding of the genetic identity and physiological role of heart microvascular endothelium and provide a platform for further mechanistic studies for therapeutic exploitation of specific EC targeting aimed at modulating the energy substrate uptake in the heart or promoting heart-specific revascularization.

Acknowledgments: We thank E.N.Olson and A.Rawls for providing Tcf15+/− mice and P.Vandervoort, T.Vervoort, B.Hoekman, T.Koninckx, S.Gonzalez-Granero, the Servei Central de Suport a la Investigació Experimental (University of Valencia) and the VIB Nucleomics Core Facility for technical/bioinformatic assistance.

Funding Sources: This work was supported by grants from the European Commission (European Research Council ERC-StG-IMAGINED203291, A.L.; FP7-INELPY, F.P.; FP7-ERC-Adv-269073, P.C.), Fund for Scientific Research (FWO) post-/pre-doctoral fellowships (X.L.A./I.V.), an IWT (Agentschap voor Innovatie door Wetenschap en Technologie) and an E. Vanderscheuren fellowship of the Flemish association against cancer (VLK; S.S.), a KULeuven ‘Geconcerteerde Onderzoeksacties’ (GOA11/012; A.L.) grant, long-term structural Methusalem funding by the Flemish Government (P.C.), a Foundation Leducq Transatlantic Network (ARTEMIS; P.C.), a KULeuven Program Financing grant (PF/10/014; A.L., S.J., P.H.), Interuniversity Attraction Poles grants (IUAP/P7/07, A.L.; IUAP/P7/03, P.C.), FWO research grants (G.0393.12, G.0B09.13 and G.0A22.14; A.L.) and the UTE (Unión Temporal de Empresas) project CIMA (F.P.).

Conflict of Interest Disclosures: None.
References:

Role of vascular endothelial growth factor B. *Physiology (Bethesda).* 2013;28:125-134.

25. Mankoo BS, Collins NS, Ashby P, Grigorieva E, Pevny LH, Candia A, Wright CV, Rigby PW, Pachnis V. Mox2 is a component of the genetic hierarchy controlling limb muscle

Figure Legends:

Figure 1. The heart EC fingerprint is enriched in lipid transport-related genes. A, Principal component diagram and heat map from a microarray on freshly isolated ECs from murine (m) heart, brain and liver (n=5). B, Log2 probe set intensity of validated genes from the heart EC fingerprint in murine heart, liver and brain ECs (n=5; *P<0.05 versus heart ECs). C, Functional annotation of significantly enriched gene categories from the heart EC fingerprint. D, mRNA expression (qRT-PCR) of heart EC fingerprint genes in SkM, BAT or WAT relative to heart ECs (n=3-4; *P<0.05 versus heart ECs and a minimum 4-fold difference). E, Western blots of Meox2, Tcf15, housekeeping protein expression (α-Tubulin/Gapdh) or loading control (Ponceau) in sorted ECs and non-ECs from the heart or freshly isolated cardiomyocytes. F, Immunofluorescence stainings for Meox2 or Tcf15 (red; white arrowheads) in murine heart, liver and brain tissue (ECs stained by lectin in green; arrows indicate EC nuclei). Scale bars: 20μm. Quantitative data represent mean±s.e.m.

Figure 2. Meox2/Tcf15 heterodimers regulate the heart EC fingerprint in vitro. A, Diagram representing mRNA expression (qRT-PCR) for the heart EC fingerprint in cultured human heart
ECs overexpressing MEOX2, Tcf15 or MEOX2+Tcf15 versus ‘Cherry’ control. (n=3-9; *P<0.027, #P<0.05 versus Cherry shown under the bars; or versus another condition as indicated above the bars. P<0.027 was considered significant [α’]). B, Representative pictures of a Proximity Ligation Assay (PLA) on HUVECs (nuclei stained with TO-PRO in blue) showing no red PLA signal in non-transduced cells (left) or cells overexpressing MEOX2 and PROX1 (right), while the red nuclear dots in the middle panel correspond to MEOX2/Tcf15 heterodimers. Scale bars: 10μm. C, Western blot for GST (top) and FLAG (bottom) of protein lysates from a GST pull-down assay in HEK293 cells overexpressing GST-Tcf15, FLAG-MEOX2 or both, showing pre-pull-down total protein lysate samples (left) and post-GST pull-down samples (right). MW: molecular weight. Quantitative data represent mean±s.e.m.

Figure 3. Meox2/Tcf15 regulate heart EC identity *in vivo*. A, mRNA expression (qRT-PCR) of heart EC fingerprint genes in heart ECs from Meox2+/−, Tcf15+/− or Meox2+/−:Tcf15+/− mice relative to wild-type littermates (n=3-8; *P<0.05, #P<0.1 versus wild-type). B,C, mRNA expression (qRT-PCR) in heart (B,C) or liver ECs (B) from Meox2+/−:Tcf15+/− mice relative to wild-type littermates (n=5-8 for B; n=3 for C; *P<0.05, #P<0.1 versus wild-type). D, Histogram overlay representative for n=3 showing reduced CD36 protein in heart ECs from Meox2+/−:Tcf15+/− mice versus wild-type littermates. Quantitative data represent mean±s.e.m.

Figure 4. Meox2/Tcf15 regulate free FA uptake and transport in ECs. A, Representative histogram overlay showing BODIPY-dodecanoic acid (DA)-uptake by cultured human heart ECs transduced with empty or MEOX2+Tcf15 lentiviral vectors and corresponding quantification of mean fluorescence intensity (MFI; n=3; §P=0.053 versus empty vector). B, Representative
histogram overlay showing BODIPY-DA-uptake by freshly isolated heart ECs from wild-type and Meox2+/⁻:Tcf15+/⁻ mice and corresponding MFI quantification (n=4; *P<0.05 versus wild-type). C, Quantification of BODIPY-DA-uptake in human heart ECs overexpressing MEOX2+Tcf15 transfected with a non-silencing (NS) or a siRNA-CD36 construct (n=4; *P<0.05 versus NS). D, Time course of Texas-Red Dextran and ¹⁴C-Palmitic acid accumulation in the lower well of a transwell chamber, transported through a monolayer of HUVECs transduced with Cherry or MEOX2+Tcf15 lentiviruses. Data are expressed relative to the signal at time zero (n=3; *P<0.05 versus Cherry). E, Relative radioactivity in cardiomyocytes (CM) co-cultured with HUVECs (ECs) transduced with Cherry or MEOX2+Tcf15 lentiviruses and pre-loaded with ¹⁴C-OA. Data are expressed as relative signal versus CM co-cultured with ECs+Cherry (n=4; *P<0.05 versus CM+[ECs+Cherry]). Quantitative data represent mean±s.e.m.

Figure 5. Meox2/Tcf15 regulate VLDL-derived FA uptake in heart ECs. A,B, Representative histogram overlays showing DiI-VLDL-uptake, (A) in cultured human heart ECs transduced with empty or MEOX2+Tcf15 lentiviral vectors and corresponding MFI quantification (n=5; *P<0.05 versus empty vector); (B) in freshly isolated heart ECs from wild-type and Meox2+/⁻:Tcf15+/⁻ mice and corresponding MFI quantification (n=6; *P<0.05 versus wild-type). C, Diagram representing qRT-PCR on freshly isolated cardiomyocytes and heart ECs (n=3; *P<0.05 versus cardiomyocytes). D, Quantification of LPL protein content in wild-type and Meox2+/⁻:Tcf15+/⁻ hearts (n=3-4; *P<0.05 versus wild-type). E, Relative LPL activity in wild-type and Meox2+/⁻:Tcf15+/⁻ hearts (n=3-4; *P<0.1 versus wild-type). F, Bar graphs representing relative LPL activity in cultured heart ECs transduced with empty vector or MEOX2+Tcf15 (left) or in MEOX2+Tcf15 overexpressing heart ECs transfected with a non-silencing (NS) or a siRNA-
LPL construct (right; \(n=3-5; ^* P<0.05 \) versus empty vector or NS). G, Quantification of DiI-VLDL-uptake in human heart ECs overexpressing MEOX2+Tcf15 transfected with either a non-silencing (NS) or an siRNA-CD36 construct (\(n=5; ^* P<0.05 \) versus NS). Quantitative data represent mean±s.e.m.

Figure 6. Meox2/Tcf15 regulate cardiac energy substrate uptake *in vivo*. A, Diagram showing the amount of radioactivity in hearts from Meox2\(^{+/−}:Tcf15^{+/−}\) or wild-type littermates, expressed as percentage of injected \(^{14}\)C-Oleic acid (OA) dose (ID) per gram (\(n=5-14; ^* P<0.05, ^# P<0.1 \) versus wild-type). B, Representative autoradiography pictures on semi-thin sections (with corresponding insets on the right) of wild-type and Meox2\(^{+/−}:Tcf15^{+/−}\) hearts 30 minutes after \(^{3}\)H]OA injection. Scale bars: 10μm. C,D, Time-lapse quantification (C) of \(^{18}\)F]FDG uptake into Meox2\(^{+/−}:Tcf15^{+/−}\) or wild-type hearts (\(n=11-12; ^* P<0.05 \) versus wild-type) and representative small animal PET images (D) of wild-type and Meox2\(^{+/−}:Tcf15^{+/−}\) hearts (arrows) 60 minutes after injection. Quantitative data represent mean±s.e.m.

Figure 7. Aged Meox2\(^{+/−}:Tcf15^{+/−}\) mice develop cardiac dysfunction. A, Oil Red-O (ORO)-stained cross-sections of wild-type or Meox2\(^{+/−}:Tcf15^{+/−}\) hearts. Scale bars: 20μm. B, Echocardiographic analysis of wild-type or Meox2\(^{+/−}:Tcf15^{+/−}\) mice showing % ejection fraction (%EF) and % fractional shortening (%FS; \(n=8-9; ^* P<0.05 \) versus wild-type). C, Sirius red-stained cross-sections of wild-type or Meox2\(^{+/−}:Tcf15^{+/−}\) hearts. Scale bars: 500μm. D,E, Cross-sections of wild-type or Meox2\(^{+/−}:Tcf15^{+/−}\) hearts stained with laminin (D; basement membranes: green) and corresponding cross-sections of wild-type or Meox2\(^{+/−}:Tcf15^{+/−}\) hearts stained with BSI lectin (E; capillaries: red). Scale bars: 20μm. Quantitative data represent mean±s.e.m.
Figure 8. Schematic summary. In wild-type heart endothelial cells (ECs), Meox2/Tcf15 heterodimers regulate the balance between fatty acid (FA) and glucose uptake by orchestrating the expression of multiple transport-related genes, supporting the preferential use of FAs as a source of energy production in cardiomyocytes. Combined $Meox2^{+}Tcf15$ heterozygous deficiency results in downregulation of these genes and an increase in $Glut1$, and causes a shift to higher glucose and lower FA delivery to cardiomyocytes. Genes for which we have direct mechanistic proof are underlined. Lpl: lipoprotein lipase; FABP: fatty acid binding protein; HSPG: heparan sulphate proteoglycans; Glut1: glucose transporter 1; Alb: albumin; VLDL: very low-density lipoprotein; CM: chylomicron.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

A. Number of events and relative mean fluorescence intensity with Empty vector and + MEOX2 + Tcf15.

B. Number of events and relative mean fluorescence intensity with wild-type heart ECs and Meox2^+/Tcf15^/- heart ECs.

C. Cardiomyocytes and Heart ECs relative mRNA expression for Lpl, Tek, and Myh6.

D. Relative LPL activity with wild-type heart, Meox2^+/Tcf15^/- heart, and Meox2^+/Tcf15^/- heart ECs.

E. Relative LPL activity with wild-type heart, Meox2^+/Tcf15^/- heart, and Meox2^+/Tcf15^/- heart ECs.

F. Relative LPL activity with Empty vector, + MEOX2 + Tcf15, + MEOX2 + Tcf15 and siRNA NS, and + MEOX2 + Tcf15 and siRNA LPL.

G. Relative mean fluorescence intensity with + MEOX2 + Tcf15 and siRNA NS and + MEOX2 + Tcf15 and siRNA CD36.
Figure 6

A) Graph showing the comparison between wild-type and Meox2^+/-. The x-axis represents various tissues: Heart, Soleus, BAT, WAT, Liver, Brain, and Plasma. The y-axis represents some measurable quantity, possibly concentration or activity, with wild-type indicated by circles and Meox2^+/-.:Tcf15^+/-. indicated by triangles.

B) Image showing [3H] Oleic Acid 30 minutes uptake in wild-type and Meox2^+/-.:Tcf15^+/-. tissues. The images suggest differences in uptake or distribution.

C) Graph showing [18F] FDG uptake over time in wild-type and Meox2^+/-.:Tcf15^+/-. animals. The x-axis represents time in minutes, ranging from 0 to 60, and the y-axis represents [18F] FDG uptake (Kbq/g). The data points are marked with error bars and asterisks indicating statistical significance.

D) Images showing [18F] FDG uptake in wild-type and Meox2^+/-.:Tcf15^+/-. animals at 60 minutes. The images highlight regions of interest with color-coded intensity, possibly indicating areas of higher uptake or metabolic activity.
Figure 7
Figure 8
Meox2/Tcf15 Heterodimers Program the Heart Capillary Endothelium for Cardiac Fatty Acid Uptake

Giulia Coppiello, Maria Collantes, María Salomé Sírerol-Píquer, Sara Vandenwijngaert, Sandra Schoors, Melissa Swinnen, Ine Vandersmissen, Paul Herijgers, Baki Topal, Johannes van Loon, Jan Goffin, Felipe Prósper, Peter Carmeliet, Jose Manuel García-Verdugo, Stefan Janssens, Iván Peñuelas, Xabier L. Aranguren and Aernout Luttun

Circulation, published online January 5, 2015;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2015/01/05/CIRCULATIONAHA.114.013721

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2015/01/05/CIRCULATIONAHA.114.013721.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL
I. EXPANDED METHODS AND RESULTS

A. Extended Methods

Animals and human biopsies. Tie2-GFP mice\(^1\) were used as EC donors for expression profiling. Meox2\(^{+/−}\):Tcf15\(^{+/−}\) mice were obtained by intercrossing Meox2\(^{Cre/+}\) (C57Bl/6 background; further referred to as ‘Meox2\(^{+/−}\)’; Jackson Laboratories; stockN°003755) and Tcf15\(^{+/−}\) mice (129S7/SvEvBrd*C57Bl/6 background; provided by E.N. Olson and A. Rawls, Dallas, TX and Tempe, AZ, USA)\(^2\). After obtaining informed consent, human ECs were isolated from heart biopsies (right atrial appendage from patients undergoing mitral valve surgery without pulmonary hypertension or right heart failure), brain biopsies (cortical tissue from epileptic patients undergoing amygdalo-hippocampectomy) or liver biopsies (patients undergoing elective cholecystectomy). Experimental procedures with animals and human-derived samples were approved by the Ethics Committee on Animal Use of KU Leuven and of University Hospitals Leuven, respectively. Human samples were handled according to the Helsinki Declaration.

EC isolation and culture. For murine microvascular EC isolation, tissues from 8-12 weeks-old mice were dissected out, surrounding connective tissue and visible large vessels removed and tissues enzymatically digested using optimized procedures for each organ (\(i.e.,\) 1.2 U/ml dispase [BD], followed by Percoll gradient centrifugation for liver; 0.7 mg/ml crude collagenase [Gibco] + 39 U/ml DNase I [Ambion] followed by bovine serum albumin (BSA) density gradient centrifugation for brain; 0.7 mg/ml crude collagenase for kidney, lung and pancreas; and 1.5 mg/ml collagenase I [Gibco] for heart, skeletal muscle, BAT and WAT). After a final wash in PBS, cells were resuspended in FACS buffer (PBS/EDTA, 1 mM/HEPES, 25 mM/1% BSA, pH7), filtered with a 40 µm mesh and sorted directly in RLT (Qiagen) or TRIzol® (+ 1% β-mercapto-ethanol [BME]) for RNA extraction or in PBS for being washed, pelleted and subsequently resuspended in Gey’s buffer for protein extraction or resuspended in incubation medium for \textit{ex vivo} fatty acid (FA) uptake experiments. For profiling, sorting of \(\sim\)10\(^6\) cells was done with FACS (Area I, BD), based on the GFP\(^+\) fraction from Tie2-GFP donors and for each organ, samples were a mix of male and female in a 1:1 ratio. For assaying gene expression in Meox2\(^{+/−}\):Tcf15\(^{+/−}\) donors and their single-heterozygous or wild-type littermates, FACS sorting was based on the CD31\(^+\)CD34\(^−\)CD45\(^−\) fraction and either males or females were used. For \textit{ex vivo} FA uptake experiments and for protein extraction, cells were sorted from Meox2\(^{+/−}\):Tcf15\(^{+/−}\) and wild-type mice by magnetic beads selection (Miltenyi), using a combination of CD102 and CD31
antibodies, after CD45 depletion. Antibodies used for magnetic selection are listed in Supplementary Table I. For human heart ECs, epicardial tissue was removed and biopsies were digested with 1.5 mg/ml collagenase I; for human liver ECs, biopsies were digested with 0.08 Wunsch U/ml liberase (Roche) and 39 U/ml DNAse I; for human brain ECs, meninges and the most external layer of white matter were removed and biopsies were digested with 0.7 mg/ml crude collagenase and 39 U/ml DNAse I followed by BSA density gradient centrifugation. After a final wash in PBS, cells were resuspended in FACS buffer, filtered with a 40 µm mesh and sorted directly in RLT or TRIzol® (+ 1% BME) for RNA extraction. Sorting was done either based on the Tie2⁺podoplanin⁻CD45⁻ or the CD31⁺CD34⁻CD45⁻ fraction. An antibody list for FACS is provided in Supplementary Table I. To obtain cultured human heart ECs, all cells obtained from freshly digested biopsies were grown on plates coated with 0.1% gelatin in EBM2 medium supplemented with EGM2-MV bullet kit (Lonza) in standard conditions (95% O₂/5% CO₂/37°C). When confluent (after 10-15 days), the Tie2⁺podoplanin⁻CD45⁻ or CD31⁺(Tie2⁺)CD45⁻ fraction was sorted and re-plated (‘passage (P)1’) and propagated up to P10. Cells between P1-10 were used for expression profiling of the heart EC signature by qRT-PCR or for lentiviral transduction of heart EC transcription factors (TFs) as described below. Before every experiment cell purity was assessed by CD31 FACS staining. HUVECs were isolated as described and grown in EBM2 medium supplemented with EGM2-MV bullet kit (Lonza) in standard conditions (95% O₂/5% CO₂/37°C).

Microarray analysis. Organs of several 8-12 weeks-old mice (with a 1:1 gender ratio) were pooled to obtain ~10⁶ cells per sample in RLT lysis buffer (Qiagen). 10⁵ cells from the eGFP⁻ non-EC fraction were also sorted. RNA extraction was performed with a Qiagen micro-kit according to the manufacturer’s instructions. The VIB Nucleomics Core lab performed the RNA quality control using a Bioanalyzer 2100 (Agilent Technologies) and 500 pg of RNA from the EC fraction of 5 selected samples per tissue was amplified, biotin-labeled and run on a mouse genome-wide microarray (Affymetrics Mo Gene1-0ST). Qualitative and statistical analysis of the microarray output was performed by the Nucleomics Core lab. Statistical analysis was performed using the Lima Package by contrast analysis with a moderated t-statistic corrected for multiple testing with Benjamini-Hochberg. For validation, only genes with an absolute Log₂ probe set intensity≥6 and presenting a minimal difference between tissues of 2 Log₂ probe set intensity (corresponding to a 4-fold or higher difference; P<0.05) were retained. Microarray data is accessible at the NCBI Gene Expression Omnibus website.
Supplement to Coppiello et al., CIRCULATIONAHA/2014/013721/R2

Functional annotation analysis was done on the validated gene list with DAVID software (http://david.abcc.ncifcrf.gov/).

Cardiomyocyte isolation and culture. Single ventricular myocytes were enzymatically dissociated from 3- to 4-months-old mice. Mice were injected i.p. with heparin, anesthetized with pentobarbital, and the heart was quickly excised. After cannulation of the aorta, hearts were mounted on a Langendorff perfusion set. The heart was briefly rinsed with normal Tyrode solution, containing 137 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl₂, 1 mM CaCl₂, 11.8 mM Hepes, 10 mM glucose and 10 mM 2,3-butanedione monoxime (BDM; Sigma Aldrich), pH adjusted to 7.4 with NaOH. Subsequently it was perfused with a Ca²⁺-free Tyrode solution for 10 minutes. The Ca²⁺-free Tyrode solution contained 130 mM NaCl, 5.4 mM KCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 6 mM Hepes, 20 mM glucose and 10 mM BDM, pH adjusted to 7.2 with NaOH. Collagenase type II 672 U/ml (Worthington), and 30 µM CaCl₂ added to the Ca²⁺-free Tyrode solution, were recirculated for 8-10 minutes. The enzymes were washed out with low Ca²⁺ Tyrode solution, i.e., the Ca²⁺-free solution to which 0.18 mM CaCl₂ was added, supplemented with 0.5% BSA (Sigma) for 3 minutes and then again with low Ca²⁺ Tyrode solution without BSA for 3 minutes. All solutions used were continuously gassed with 95% O₂/5% CO₂. The heart was then removed from the perfusion apparatus, the ventricles dissociated into single cells by pipetting and afterwards with 5 minutes gentle shaking. Cells were sieved through a 250 µm mesh opening, washed twice with Ca²⁺-free Tyrode solution supplemented with increasing doses of Ca²⁺ (0.5 and 1 mM) and pelleted by centrifugation at 50g for 1 minute after each wash. Finally, cardiomyocytes were collected in TRIzol® or RIPA buffer for ex-vivo qRT-PCR or Western blot analysis, or resuspended in culture medium (M199 medium, Gibco-Life Technologies), supplemented with 2 mM carnitine, 5 mM taurine, 5 mM creatine (all Sigma Aldrich), and 10 mM BDM, plated onto dishes previously coated with laminin (Sigma Aldrich), and allowed to attach for four hours under standard conditions (95% O₂/5% CO₂, 37°C) before using them for in vitro FA uptake experiments.

RNA/protein isolation, cDNA preparation, qRT-PCR and Western blot. RNA isolation, qRT-PCR and Western blot were performed as described³. Briefly, total RNA from cell lysates was extracted using TRIzol® reagent (Invitrogen) or RLT lysis buffer (Qiagen). mRNA was reverse transcribed using Superscript III Reverse Transcriptase (Invitrogen) and cDNA underwent 40 rounds of amplification on an ABI PRISM 7700 cycler (Applied Biosystems) for standard SYBR-Green (Applied Biosystems) qRT-PCR. Primer sequences are listed in Supplementary Table 2. mRNA levels were normalized using

Gapdh, Actb or Tubb as housekeeping gene. For copy number quantification of gene expression between different cell types, the same amount of RNA was retro-transcribed and copy number was expressed relative to housekeeping gene copy number (Gapdh). Proteins were extracted with RIPA buffer (Sigma) supplemented with protease inhibitors. For Western blotting, 10 to 40 µg of protein was used. Blot pictures were recorded with a Bio-Rad Chemidoc XRS+ molecular imager, equipped with Image Lab software (Bio-Rad laboratories). An antibody list for Western blotting is provided in Supplementary Table I.

Lentiviral overexpression. Virus productions were titered to use the minimum amount of virus giving ~100% transduction. For transduction, 25,000 cultured human heart ECs were plated on 0.1% gelatin-coated 24-well plates, in the morning and transduced in the evening. The medium was changed 12 hours post-transduction. When multiple transductions were performed, the different viruses were added with an interval of 24 hours. Cells were seeded at day 1 in the morning and viruses were added on a fixed day, i.e., Tcf15-overexpressing lentivirus was added at day 1 in the evening, MEOX2 lentivirus at day 2, PPARG lentivirus at day 3 and WT1 lentivirus at day 4. For all conditions, cells were lysed at day 7 for RNA extraction, cDNA synthesis and qRT-PCR analysis or Western blot experiments.

siRNA knockdown. siRNA knockdown was performed using Silencer® Select pre-designed siRNA from Applied Biosystems for LPL (siRNA ID#: s701); CD36 (siRNA ID# s2645) and non-silencing negative control 1 (‘NS’; siRNA ID#: am4636). Briefly, 3 days after lentiviral transduction, 10,000 heart ECs were plated on 1.9 cm² wells (= day 0). On day 1, cells were transfected by adding to the growth medium 5 pmol siRNA mixed with 0.5 µl of Lipofectamine 2000 (Life Technologies,) in 100 µl of OPTI-MEM (Life Technologies). The day after, transfection media was replaced and cells were maintained until day 4. In all cases siRNA NS-transfected cells were used as reference. Knockdown efficiency was tested by qRT-PCR and was 90% for CD36 and 93% for LPL.

In vitro and ex vivo FA uptake. Cultured human heart ECs 72 hours post-transduction or after siRNA treatment or freshly isolated magnetically selected murine heart ECs were incubated with QBT reagent (BODIPY-labeled dodecanoic acid coupled to a quenching element; Molecular Devices) in HBSS buffer + 0.1% FA-free BSA for 30 minutes to determine free FA uptake. For VLDL-derived FA uptake, cells were incubated with 10 µg/ml Dil-Human VLDL (Kalen Biomedical) for 2 hours in Gey’s buffer. Before FACS analysis, cultured cells were washed and harvested. Resuspended cells were washed with
PBS several times, pelleted and fixed with 0.4% PFA in PBS. For free FA uptake in cardiomyocytes, BODIPY-PA (Molecular Probes) was used and fixed cells counterstained with DAPI were photographed on a Zeiss Axiovert 200M microscope equipped with a Zeiss MRc5 camera and Axiovision 4.8 software.

In vitro FA transport transwell assay. FA transport was analyzed in cultured HUVECs. Seventy-two hours post-transduction 50,000 HUVECs overexpressing MEOX2+Tcf15 or a Cherry reporter were seeded on 24-well transwell inserts (0.4 µm pore size; Corning). The day after, medium was changed to M199 (Gibco) supplemented with 20% fetal bovine serum (FBS), 2 mM L-glutamine, 30 mg/L EC growth factor supplements (EGCS), 10 units/ml heparin, 50 IU/ml penicillin and 50 mg/ml streptomycin. After 3 days, 0.05 µCi/well 14C-Palmitic acid (PerkinElmer) and 0.75 µg/ml Texas-Red Dextran (MW 70,000; Invitrogen) was added to the apical chamber. Eight minutes later, the entire lower liquid compartment was collected and used as sample for time zero. Thereafter, 50 µl samples were collected from the lower compartment at 30 minutes, 1 hour, 2, 4 and 6 hours and replaced with 50 µl of medium. For quantification of Dextran fluorescence, samples were measured with a fluorescence reader. For measurement of the 14C signal, samples were suspended in Emulsifier Safe Liquid Scintillation Cocktail (PerkinElmer) and total radioactivity was measured by liquid scintillation counting. Each experiment was performed in quadruplicate.

In vitro FA transport co-culture. 50,000 HUVECs transduced with Cherry or MEOX2+Tcf15 were resuspended in EGM2-MV and applied on the bottom side of the membrane of an inverted transwell column (Corning). Cells were maintained in this position for 30 minutes at 37°C to allow attachment to the membrane. Next, the transwell column was introduced with the cells in downward position in a 24-well plate containing EGM2-MV and cultured overnight at 37°C, 5% CO₂. The next day, HUVECs were washed with Gey’s buffer and incubated for 1 hour with 0.5 µCi/well of 14C-Oleic Acid (OA; Perkin Elmer) in Gey’s buffer + 0.1% FA-free BSA. Thereafter, HUVEC monolayers were extensively washed (5 times for 2-3 minutes) with Gey’s buffer and the transwell column was transferred to a 24-well plate containing primary rat cardiomyocytes (Lonza). The co-culture was incubated in cardiomyocyte medium (Lonza) for 6 hours at 37°C to allow the transfer of 14C-OA from ECs to the cardiomyocytes. Next, the transwell column was removed and cardiomyocytes were thoroughly washed with PBS containing Ca²⁺ and Mg²⁺ (3 times for 2 minutes) and lysed with PBS + 1% Triton.
for 5 minutes. Cell lysates were resuspended in Emulsifier Safe Liquid Scintillation Cocktail (PerkinElmer) and total radioactivity was measured by liquid scintillation counting.

LPL protein and activity quantification. For quantification on tissues, whole hearts were isolated from Meox2\(^{+/}\):Tcf15\(^{+/}\) and wild-type mice anesthetized by i.p. injection of a ketamine (100 mg/kg) and xylazine (10 mg/kg) mixture and perfused through the heart apex with 0.9% saline solution to completely remove the blood. Hearts were snap-frozen in liquid N\(_2\) and stored at -80°C until analysis. Frozen hearts were homogenized by shaking (using a Ribolyser) in 300 μl of PBS containing protease inhibitors and lysing matrix D (MP Biomedicals). Cleared supernatants were used for protein quantification and for LPL ELISA (Cusabio) and LPL activity measurement (Roar) according to the manufacturer’s instructions. For quantification of LPL activity on cultured cells, cell monolayers were thoroughly washed in PBS, trypsinized, washed again in PBS and collected in 100 μl PBS containing protease inhibitors. LPL quantity and activity were normalized for protein content.

Proximity ligation assay (PLA). PLA was performed using the Duolink II PLA kit (Sigma) as described\(^4\). To test Meox2 and Tcf15 heterodimerization, HUVECs were transduced with lentiviruses encoding MEOX2 and FLAG-tagged Tcf15. As negative control, non-transduced cells or cells transduced with MEOX2 and FLAG-tagged PROX1 were used. To determine Meox2-Tcf15 heterodimer formation anti-Meox2 and anti-FLAG antibodies (Supplementary Table 1) were used, followed by Duolink II anti-mouse PLUS (positive oligonucleotide) and Duolink II anti-rabbit MINUS (negative complementary oligonucleotide) secondary antibodies. Duolink II Detection Reagent Orange was used to visualize protein interactions. Confocal images were recorded with a Zeiss LSM510 confocal microscope equipped with LSM510 software (Carl Zeiss).

GST pull-down assay. GST pull-down assay was performed according to the manufacturer’s instructions with minor modifications (Pierce GST Protein Interaction Pull Down Kit). Two 10 cm\(^2\) plates were seeded with 5x10\(^6\) HEK293 cells each and transfected with 4 μg of GST-Tcf15 and 4 μg of FLAG-MEOX2 plasmids alone or in combination. When GST-Tcf15 and FLAG-tagged MEOX2 were used alone, 4 μg of Cherry control plasmid was also added. Forty-eight hours after transfection, cells were collected, lysed and incubated on glutathione agarose columns overnight. The next day, unbound proteins were extensively washed, followed by elution of bound proteins with 100 mM glutathione.
Protein interactions were analyzed by Western blot using anti-GST and anti-FLAG antibodies (Supplementary Table I).

Histology. Sirius-red, immunofluorescence and Oil Red-O stainings were performed as described\(^5,6\). Briefly, for Oil Red-O staining, mice were anesthetized with pentobarbital, hearts were rapidly excised, washed in KCl 1M and PBS, directly snap-frozen in liquid N\(_2\) and conserved at -80°C until used. Frozen hearts were embedded in Tissue-tek freezing medium (Leica Biosystems), cryo-sectioned at 10 \(\mu\)m, air-dried for 10 minutes and immediately stored at -20°C to be used the same day. Tissues were rinsed with milliQ water and fixed for 1 hour with 3.7% formaldehyde in milliQ water. After one rinse in milliQ water, slides were immersed in a freshly prepared, Wattman-filtered Oil Red-O solution (0.3% Oil Red-O in 60% Triethyl-phosphate-H\(_2\)O) for 30 minutes, rinsed with milliQ water and deionized water and mounted with Aquadrop (Merck). Immunofluorescence and immunohistochemical stainings were performed on 3-6 \(\mu\)m sections of paraffin embedded tissues. An antibody list for immunofluorescence stainings is provided in Supplementary Table 1. Images were recorded on a Zeiss Axiovert 200M microscope equipped with a Zeiss MRC5 camera and Axiovision 4.8 software. Capillary/cardiomyocyte ratio and cardiomyocyte cross-sectional area were quantified by a blinded investigator on 20-30 pictures per mouse, using Image J software.

In vivo FA uptake. For the assessment of FA uptake *in vivo*, 5 to 14 wild-type and *Meox2*\(^{+/−}:Tcf15^{+/−}\) mice were injected intravenously with a 2 \(\mu\)Ci dose of [\(^{14}\)C]Oleic Acid (\(^{14}\)C-OA; PerkinElmer) dissolved in saline (1:4). For the analysis of \(^{14}\)C-OA in tissues, and after 30 minutes of intravenous injection, mice were anesthetized with an i.p. injection of a ketamine (75 mg/kg) and xylazine (10 mg/kg) mixture and perfused with 0.9% saline solution. Plasma was sampled and organs (heart, soleus muscle, liver, brain, brown and white adipose tissue or BAT and WAT, respectively) were dissected, weighed and solubilized by the addition of Solvable (PerkinElmer, 1 ml/100 mg tissue) in a glass scintillation vial and incubated at 60°C overnight. After cooling to room temperature, 30% (w/w) hydrogen peroxide was added followed by heating at 60°C for another hour to minimize color quenching of samples. Finally, scintillation fluid (Normascint, Scharlab) was added to each sample followed by vigorous shaking. The vials were then allowed to equilibrate in the dark for at least 60 minutes before scintillation counting using an LKB-Wallac-Rackbeta-1214 Counter (PerkinElmer). Final data are expressed as % injected dose per gram of tissue. For autoradiography experiments, wild-type and *Meox2*\(^{+/−}:Tcf15^{+/−}\) mice (\(n=3\) per group) were injected with saline (background control) or 100
µCi [³H]OA and sacrificed by cervical dislocation 30 minutes after injection. Hearts were dissected out and, after removal of the atrial appendages, immersed in KCl 1M. Samples were rinsed in cacodylate buffer (0.1 M + 3 mM CaCl₂) and fixed overnight in fixative solution (2% glutaraldehyde + 3 mM CaCl₂ in 0.1 M cacodylate buffer, pH 7.4) at 4°C. Ventricles were cut transversally at 200 µm, post-fixed in 2% osmium tetroxide for 2 hours, partially dehydrated and embedded in LBR White at low temperatures (from 0°C to -4°C) to avoid loss of lipids during sample preparation. Semi-thin sections (2 µm) were cut with a diamond knife and mounted onto slides, dipped in autoradiographic emulsion (Kodak Autoradiography Emulsion type NTB), exposed for 25 days at 4°C, developed in G 150 developer (Agfa), and counterstained with 1% toluidine blue.

[^18F]FDG PET imaging. Glucose uptake in the heart was measured by positron emission tomography (PET) with the radiotracer 2-deoxy-2[^18F]fluoro-D-glucose ([^18F]FDG), synthetized by standard nucleophilic substitution methods at the Clínica Universidad de Navarra PET-GMP laboratory. PET imaging was performed in a dedicated small animal scanner (Philips Mosaic), with 2 mm resolution at full width half maximum (FWHM), 11.9 cm axial field of view (FOV) and 12.8 cm transaxial FOV. Mice (n=12 wild-type and n=11 Meox2^{+/-}:Tcf15^{+/-}) were anesthetized with 2% isoflurane in 100% O₂ gas and placed horizontally on the PET scanner bed. The[^18F]FDG (7.9 ± 1.5 MBq in 100 µl saline) was injected through the tail vein simultaneously at the beginning of a list mode study of 60 minutes. For each study, a summed sinogram of the whole emission study and an 18 frame dynamic sinogram (2 × 15”; 7 × 30”; 1 × 60”; 1x120”; 1x180”; 2x300”; 4x300”) were created. From these sinograms, both a summed and a dynamic image were generated containing the information about the corresponding time intervals. All the images were reconstructed using the 3D Ramla algorithm with 2 iterations and a relaxation parameter of 0.024 into a 128×128 matrix with a 1 mm voxel size applying dead time, decay, random and scattering corrections. For the assessment of[^18F]FDG uptake in the heart, all studies were exported and analyzed using the PMOD software (PMOD Technologies Ltd., Adliswil, Switzerland). For each mouse, a volume of interest (VOI) of the heart was drawn on coronal 1 mm-thick slices of summed PET images. Then, VOI was applied to the dynamic image to obtain the[^18F]FDG uptake values for each time point. The obtained data were normalized by the specific dose at the time of injection.
B. Supplementary Notes

Supplementary Note I. Microvascular EC purity.
As a source for sorting ECs from the heart, we used Tie2-GFP mice in which the Tie2 promoter-enhancer is active in blood-vascular but not lymphatic ECs\(^1\). As previously described, CD36 is highly expressed in microvascular ECs and absent in ECs from large vessels\(^7\). Nevertheless, between capillary ECs from different organs there is a different degree of expression of CD36, being very low in brain ECs and high in liver and heart ECs (ref. 8 and as evident from our microarray analysis; Supplementary Figure VC). Indeed, for heart and liver, microvascular EC purity could be determined by FACS for CD36 (as shown for the heart in Supplementary Figure IA), whereas under identical FACS staining conditions we could not detect CD36 positive cells in brain ECs. Therefore, to confirm microvascular EC purity of brain EC preparations, we relied upon the significant enrichment for known brain-specific microvascular EC markers such as Glut1, Lat1, Ocln and Tfrc (Supplementary Figure IC).

Supplementary Note II. Relative abundance of WT1 isoforms in cardiac ECs.
Several WT1 isoforms have been described with different tissue specificities and functions\(^9\). We quantified the relative abundance of the long versus short isoforms (the latter generated from an alternative start codon in intron 1) and of the isoforms carrying or not the KTS domain in freshly isolated human and mouse heart ECs and found that the most abundant WT1 isoform in heart ECs is the isoform expressing exon1 and the KTS domain (ratio isoform - exon1/isoform + exon1 = 1:1,500, and 71 ± 8% carrying the KTS element). We therefore overexpressed the isoform D (expressing exon1, exon5 and carrying KTS), the most prevalent isoform of WT1\(^9\) in normal tissues, to test its effect on the heart EC gene signature.

Supplementary Note III. Mendelian ratios of Meox2\(^{+/−}\) x Meox2\(^{+/−}\) intercrosses.
Meox2\(^{Cre/+}\) mice were obtained from the Jackson Laboratories (stockN°003755) and crossed for one additional generation in C57Bl/6 to establish the colony. When setting up Meox2\(^{Cre/+}\) x Meox2\(^{Cre/+}\) crosses to obtain Meox2\(^{cre/cre}\) (or Meox2\(^{−/−}\)) mice, we observed that Meox2\(^{−/−}\) pups died within a few hours after birth, while the ratios just before birth (at embryonic day 19.5) were Mendelian. This observation is at variance with what is reported on the Jackson Laboratory website where it is mentioned that Meox2\(^{−/−}\) mice are viable at birth and die just before weaning (http://jaxmice.jax.org/strain/003755.html).
II. SUPPLEMENTARY FIGURES

Supplementary Figure I.

A

![Supplementary Figure I A](image)

B

![Supplementary Figure I B](image)

C

![Supplementary Figure I C](image)

D

![Supplementary Figure I D](image)
Supplementary Figure I. Sorting strategy and microarray validation.

A, Representative FACS plots of heart homogenates from Tie2-GFP mice showing gate (G1) setting for sorting of GFP+ endothelial cells (ECs) and G1 analysis revealing 99% purity for EC marker CD31 and 96% for microvascular EC marker CD36[7], and negligible contamination (<1%) with hematopoietic cells (expressing CD45). B, Probe set intensities for heart, brain and liver EC samples for vascular endothelial, lymphatic endothelial, pericyte-smooth muscle or hematopoietic markers demonstrating the purity of the sorted EC fractions used for microarray. C, Probe set intensities for heart, brain and liver EC samples for previously described heart, brain and liver-specific microvascular EC markers, demonstrating the expected enrichment of previously known tissue-specific microvascular EC markers in the corresponding tissue EC types[10-13] (n=5; *P<0.05 versus corresponding specific organ and a minimum 4-fold difference and Log2 probe intensity ≥6). D, mRNA expression determined by qRT-PCR of genes of the heart EC fingerprint in heart, pancreas, kidney or lung ECs relative to heart ECs (n=3-4; *P<0.05 versus heart ECs and a minimum 4-fold difference), revealing that most genes (81% compared to at least 2 of these tissues and 48% compared to all three tissues) were at least 4-fold enriched in heart ECs. ND: not detectable. Quantitative data represent mean ± s.e.m.
Supplementary Figure II. Analysis of the heart EC fingerprint in freshly isolated and cultured human EC samples.

A, mRNA expression determined by qRT-PCR of genes of the heart EC fingerprint in human (h) heart, brain or liver ECs relative to human heart ECs (n=3-10; *P<0.05; #P<0.1 versus heart ECs), revealing that part of the signature is also enriched in human heart ECs versus brain and liver ECs. ND: not detectable.

B, mRNA expression determined by qRT-PCR of genes of the heart EC fingerprint in cultured (passage 1-10) human (h) heart ECs relative to freshly isolated human heart ECs (n=3-10; *P<0.05; #P<0.1 versus freshly isolated heart ECs), revealing that the majority of the genes of the heart EC fingerprint is silenced at least 90%. Data represent mean ± s.e.m.
Supplementary Figure III. Meox2 and Tcf15 protein expression in murine tissues.
Western blots of Meox2 and Tcf15 expression, housekeeping protein expression (α-Tubulin) and EC marker Endoglin on freshly isolated ECs from murine (m) heart, liver and brain confirm the unique expression of Meox2 and Tcf15 in ECs from the heart.
Supplementary Figure IVA, B. Analysis of TF overexpression on the heart EC fingerprint in cultured human heart ECs.

Diagrams represent mRNA expression determined by qRT-PCR for 29 genes of the heart EC fingerprint in cultured human heart ECs overexpressing certain TF (combination) s relative to a ‘Cherry’ reporter control. Primers in the 3’UTR region were used to distinguish endogenous expression from that caused by lentiviral overexpression. Two of the 31 signature genes were not included, i.e., Klra9 and Klra10, as there is no human equivalent. Data represent mean ± s.e.m. A, Overexpression of MEOX2+Tcf15, EBF3 or MEOX2+Tcf15+EBF3 versus Cherry (*P<0.037 or #P<0.05 versus Cherry shown under the bars [for EBF3 or MEOX2+Tcf15+EBF3]; or versus MEOX2+Tcf15 as indicated above the bars; *P<0.037 was considered significant [α']; n=3-4). B, Overexpression of...
MEOX2+Tcf15, PPARG or MEOX2+Tcf15+PPARG versus Cherry (*P<0.027 or *P<0.05 versus Cherry shown under the bars; or versus another condition as indicated above the bars; *P<0.027 was considered significant [α’]; n=3-9 independent experiments; for each comparison shown in Supplementary Figure IVB,C and Figure 2A all the conditions were tested and analyzed in parallel; in all experiments where PPARG was overexpressed, an agonist, rosiglitazone, was added at 10 µM). When PPARG was overexpressed alone, we measured a strong upregulation of three genes, two known targets, RBP7\(^{(14)}\) and AQP7\(^{(15)}\), and one novel target (FABP9). When PPARG was combined with MEOX2+Tcf15, for multiple genes, a superior inductive effect was obtained compared to MEOX2+Tcf15.
Supplementary Figure IV C-E. Analysis of TF overexpression on the heart EC fingerprint in cultured human ECs.

Diagrams in C,E represent mRNA expression determined by qRT-PCR for 29 genes of the heart EC fingerprint in cultured human ECs (heart ECs in panel C, HUVECs in panel E) overexpressing certain transcription factor (combination)s relative to a ‘Cherry’ reporter control. Primers in the 3’UTR region were used to distinguish endogenous expression from that caused by lentiviral overexpression. Two of the 31 signature genes were not included, i.e., Klra9 and Klra10, as there is no human equivalent. Data represent mean ± s.e.m. C, Overexpression of MEOX2+Tcf15+PPARG, WT1 or MEOX2+Tcf15+PPARG+WT1 versus Cherry (*P<0.027 or #P<0.05 versus Cherry shown under the bars; or versus another condition as indicated above the bars; *P<0.027 was considered significant [α’];
$n=3\text{-}9$ independent experiments; for each comparison shown in Supplementary Figure IVB,C and Figure 2A all the conditions were tested and analyzed in parallel). Upon overexpression of WTI alone, we detected an upregulation of multiple genes of the signature, however, combining overexpression of WTI with $MEOX2/Tcf15/PPARG$ did not have an additive effect. D, Western blots for ZDHHC2 and RBP7 in cultured human heart ECs transduced with Cherry or $MEOX2+Tcf15+PPARG$. α-TUBULIN was used as loading control. E, Overexpression of $MEOX2+Tcf15$ in HUVECs. ($n=3\text{-}7$; $*P<0.05$; $^\#P<0.1$ versus Cherry).
Supplementary Figure V.

A, mRNA expression determined by qRT-PCR of general EC markers in heart ECs sorted from $\text{Meox}_2^{+/−}$, $\text{Tcf15}^{+/−}$, or $\text{Meox}_2^{+/−}:\text{Tcf15}^{+/−}$ littermates relative to wild-type heart ECs ($n=6-8$) revealing no significant differences in expression. B, mRNA expression determined by qRT-PCR of liver sinusoidal (LS)EC markers in liver ECs sorted from $\text{Meox}_2^{+/−}$, $\text{Tcf15}^{+/−}$, or $\text{Meox}_2^{+/−}:\text{Tcf15}^{+/−}$ littermates relative to wild-type LSECs ($n=4-8$) revealing no significant differences in expression. C, Probe set intensities (in Log₂ scale) for murine heart, brain and liver EC samples for several genes encoding fatty acid or glucose transport-related molecules. ($n=5$; *$P<0.05$ versus heart ECs). Data represent mean ± s.e.m.
Supplementary Figure VI. CD36 regulation by MEOX2+Tcf15 and comparative expression analysis of FA transporters in heart ECs.

A,B, Diagram representing qRT-PCR relative quantification of CD36 in cultured human heart ECs (A) and HUVECs (B) transduced with MEOX2+Tcf15 versus Cherry. (n=5-7; *P<0.05; #P<0.1).

C, Left: Log2 microarray probe set intensity for the most described membrane FA translocase/transporters revealing that CD36 is the FA translocase expressed at the highest level in freshly isolated murine heart ECs (n=5). Right: qRT-PCR copy number quantification relative to Gapdh confirming the microarray data on the left (n=4-7). Data represent mean ± s.e.m.
Supplementary Figure VII.

Supplementary Figure VII. Effect of MEOX2+Tcf15 and CD36 on VLDL particle uptake.

Quantification of human APOB protein in cultured heart ECs overexpressing an empty vector or MEOX2+Tcf15 (A) or in cultured MEOX2+Tcf15 overexpressing heart ECs treated with siRNA-NS or siRNA-CD36 (B) after incubation with human VLDL, revealing the occurrence of particle uptake but with no significant differences among the conditions tested (n=3).
Supplementary Figure VIII. Effect of Meox2+Tcf15 heterozygous deficiency on FA uptake in cardiomyocytes.

A, mRNA expression determined by qRT-PCR of genes encoding FA or glucose transport-related genes in cardiomyocytes freshly isolated from Meox2+/-:Tcf15+/- littermates relative to wild-type cardiomyocytes (n=4) revealing no significant differences in expression. B, Representative fluorescence micrographs of cultured cardiomyocytes from wild-type or Meox2+/-:Tcf15+/- littermates exposed to BODIPY-palmitic acid (PA; in green), counterstained with DAPI for nuclei (in blue), revealing no differences in PA uptake between genotypes. An excess (10X) of non-labeled PA was used as competition assay. Quantitative data represent mean ± s.e.m.
Supplementary Figure IX. Analysis of gene expression in BAT ECs.

A, Diagram representing qRT-PCR copy number quantification relative to Gapdh in murine heart ECs versus BAT ECs of the most described membrane FA translocase/transporters revealing no significant differences in expression. ND: not detectable. (n=4-7). B, Diagram representing qRT-PCR quantification of Cd36 and Lpl in BAT ECs isolated from Meox2^{+/−}:Tcf15^{+/−} mice relative to wild-type littermates shown as representative genes regulated by Meox2/Tcf15 in heart ECs and also in BAT ECs (n=3-4; *P<0.05; §P=0.056). Data represent mean ± s.e.m.
Supplementary Figure X. Young Meox2°/°:Tcf15°/° mice show reduced lipid storage but do not develop cardiac fibrosis or dysfunction.

A, Representative Oil Red-O (ORO)-stained cross-sections of wild-type or Meox2°/°:Tcf15°/° hearts. Scale bars: 20 μm. B, Representative Sirius-red stained cross-sections of wild-type or Meox2°/°:Tcf15°/° hearts. Scale bars: 500 μm. C, Echocardiographic analysis of wild-type or Meox2°/°:Tcf15°/° mice showing % ejection fraction (% EF; n=5) and % fractional shortening (% FS; n=9). Quantitative data represent mean ± s.e.m.
III. SUPPLEMENTARY TABLES

Supplementary Table I. List of antibodies for FACS, magnetic bead sorting, Western blot, IF staining and GST pull-down assay.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Species</th>
<th>Supplier, catalog N°</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD31</td>
<td>Mouse</td>
<td>BD 558738</td>
<td>FITC</td>
</tr>
<tr>
<td>CD31</td>
<td>Mouse</td>
<td>BD 551262</td>
<td>APC</td>
</tr>
<tr>
<td>CD34</td>
<td>Mouse</td>
<td>BD 55138</td>
<td>PE</td>
</tr>
<tr>
<td>CD45</td>
<td>Mouse</td>
<td>BD 559864</td>
<td>APC</td>
</tr>
<tr>
<td>CD36</td>
<td>Mouse</td>
<td>Biolegend 102612</td>
<td>APC</td>
</tr>
<tr>
<td>CD31</td>
<td>Human</td>
<td>BD 555446</td>
<td>PE</td>
</tr>
<tr>
<td>CD31</td>
<td>Human</td>
<td>BD 555445</td>
<td>FITC</td>
</tr>
<tr>
<td>CD34</td>
<td>Human</td>
<td>BD 345804</td>
<td>APC</td>
</tr>
<tr>
<td>CD45</td>
<td>Human</td>
<td>BD 345808</td>
<td>FITC</td>
</tr>
<tr>
<td>PODOPLANIN</td>
<td>Human</td>
<td>Angiobio 11-009PE</td>
<td>PE</td>
</tr>
<tr>
<td>TIE2</td>
<td>Human</td>
<td>Reliatech 101-NBi54</td>
<td>Biotin</td>
</tr>
<tr>
<td>Endoglin</td>
<td>Mouse</td>
<td>R&D AF1320</td>
<td>None</td>
</tr>
<tr>
<td>Laminin</td>
<td>Mouse</td>
<td>Sigma L9393</td>
<td>None</td>
</tr>
<tr>
<td>Meox2</td>
<td>Mouse</td>
<td>Eurogentec</td>
<td>None</td>
</tr>
<tr>
<td>Tcf15</td>
<td>Mouse</td>
<td>Santa Cruz sc-46438</td>
<td>None</td>
</tr>
<tr>
<td>Gapdh</td>
<td>Human/Mouse</td>
<td>Cell Signaling 2118</td>
<td>None</td>
</tr>
<tr>
<td>α-Tubulin</td>
<td>Human/Mouse</td>
<td>Sigma T6199</td>
<td>None</td>
</tr>
<tr>
<td>ZDHCC2</td>
<td>Human</td>
<td>Santa Cruz sc-98219</td>
<td>None</td>
</tr>
<tr>
<td>RBP7</td>
<td>Human</td>
<td>Sigma HPA034749</td>
<td>None</td>
</tr>
<tr>
<td>BSI Lectin</td>
<td>Mouse</td>
<td>Sigma L3759</td>
<td>Biotin</td>
</tr>
<tr>
<td>FLAG</td>
<td>-</td>
<td>Sigma F1804</td>
<td>None</td>
</tr>
<tr>
<td>GST</td>
<td>-</td>
<td>Thermo scientific MA1-23238</td>
<td>None</td>
</tr>
<tr>
<td>CD31</td>
<td>Mouse</td>
<td>Biolegend 102502</td>
<td>None</td>
</tr>
<tr>
<td>CD102</td>
<td>Mouse</td>
<td>Biolegend 105602</td>
<td>None</td>
</tr>
</tbody>
</table>
Supplementary Table II. List of primers for qRT-PCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Species</th>
<th>Forward primer (5'3')</th>
<th>Reverse primer (5'3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>H</td>
<td>TGTTATCGTGGAAGGACTCATGAC</td>
<td>ATGCCAGTGAGCTCCCGTGACGC</td>
</tr>
<tr>
<td>ACTB</td>
<td>H</td>
<td>TGGCACACCACCTTCTACAATG</td>
<td>TAGCAACGTACATGGCTGGG</td>
</tr>
<tr>
<td>ABLIM3</td>
<td>H</td>
<td>TTCTATCACGGGAGAAGCTCA</td>
<td>TTGGTCCACGATCTTTGAGT</td>
</tr>
<tr>
<td>ADAMTS9</td>
<td>H</td>
<td>TACACCAGAAACGACTGTGT</td>
<td>TCAGGATCGGGAGGGTATTC</td>
</tr>
<tr>
<td>ADH1</td>
<td>H</td>
<td>ATGGAGGTGTGGATTTTTGCG</td>
<td>GTGCCTCCAGTACATGAGAG</td>
</tr>
<tr>
<td>AKAP5</td>
<td>H</td>
<td>GACGCCCTACGGTACCTTTT</td>
<td>CCAGGGAATTTCGTACCA</td>
</tr>
<tr>
<td>AQP7</td>
<td>H</td>
<td>GACTGGGGACACAGGAGGAGAG</td>
<td>GGATGTTGAACACATGAT</td>
</tr>
<tr>
<td>C1QTNF9</td>
<td>H</td>
<td>AATGTCTCGCAGGAGAAGA</td>
<td>CAGTTGACTGCTCTTGTTC</td>
</tr>
<tr>
<td>CD36</td>
<td>H</td>
<td>CGTTCATGGTGCTGTCTCTTGT</td>
<td>TTGAATGGTCTGCTGCTTTA</td>
</tr>
<tr>
<td>EBF3</td>
<td>H</td>
<td>TGCCACCGTCTCATTAAATGT</td>
<td>TCGAAGACTGCTGGATTTG</td>
</tr>
<tr>
<td>EEPD1</td>
<td>H</td>
<td>GTACGACCTGACCTTTTGGTC</td>
<td>GGGTCTTGGTGCTGATGTTT</td>
</tr>
<tr>
<td>FAPB9</td>
<td>H</td>
<td>TGATGGGAAAATGAGATGACCA</td>
<td>CTCCTTGGCAAGGCTTTTT</td>
</tr>
<tr>
<td>H19</td>
<td>H</td>
<td>GAGCTCCTGAGGGAGGAGAGAT</td>
<td>CCAGGCTAAGCTGCTGAGGA</td>
</tr>
<tr>
<td>HN11</td>
<td>H</td>
<td>TCTTCCAGACAGGCTATATA</td>
<td>CCAGAAAATTGTGCTGCTT</td>
</tr>
<tr>
<td>KCNA5</td>
<td>H</td>
<td>CAGTTCCCCACCTCTCTTTTG</td>
<td>CAGGGGCTCTGCTCTTCTT</td>
</tr>
<tr>
<td>LPL</td>
<td>H</td>
<td>GTCCGTGGCTACCTGCTATT</td>
<td>TGTCCACCAGTTGTTGTA</td>
</tr>
<tr>
<td>MAP3K5</td>
<td>H</td>
<td>GCCCCCTGCTAGAAAATATG</td>
<td>TTAATGGACCCATTTGAGAA</td>
</tr>
<tr>
<td>MCT8</td>
<td>H</td>
<td>TATGCAGAAGTCCTCCTGTGG</td>
<td>CCAACAGGAGTTGAGTTCT</td>
</tr>
<tr>
<td>MEOX2</td>
<td>H</td>
<td>CAGAAAGAAAGGACCAGCA</td>
<td>TCCACCTTTTACCTCTCAC</td>
</tr>
<tr>
<td>MEOX2 UTR</td>
<td>H</td>
<td>TCTGGGACCACCTCTCTTGG</td>
<td>CCACACCCTCTGCTCATT</td>
</tr>
<tr>
<td>NAV3</td>
<td>H</td>
<td>GGACGCGAGTGGTACTGAAAA</td>
<td>CAGAGAGCCACATGAGAA</td>
</tr>
<tr>
<td>NTS</td>
<td>H</td>
<td>AAGCCACAGCTGGATCTGTTGC</td>
<td>AAGCCACAGGCTGAGGTTT</td>
</tr>
<tr>
<td>PAPSS2</td>
<td>H</td>
<td>GAGGTGGCTAAGCTGTTGAGT</td>
<td>TCTTCTGGCAACCTCCTGCT</td>
</tr>
<tr>
<td>PDPN</td>
<td>H</td>
<td>TGCCTGTGGACCTGAGATC</td>
<td>TCGCTGCTGGCTGAGTAC</td>
</tr>
<tr>
<td>PMP2</td>
<td>H</td>
<td>GGGGTTAGCACCAGGGAAGAAGA</td>
<td>CAGACTGCTCCGGAGAGAA</td>
</tr>
<tr>
<td>PPARC</td>
<td>H</td>
<td>GACCTCCTCCCACCTCTTTGA</td>
<td>CGACATTCAAGGCTGAG</td>
</tr>
<tr>
<td>PPARC UTR</td>
<td>H</td>
<td>CCTGGGACCACCCCTTCTGG</td>
<td>CCACACCCTCTGCTCATT</td>
</tr>
<tr>
<td>PRND</td>
<td>H</td>
<td>ACCAAGGGAGGAATTGTCA</td>
<td>GCTGCTGCACTGCAGCAG</td>
</tr>
<tr>
<td>RBP7</td>
<td>H</td>
<td>TGCTCAAGCCACCAAGAGTG</td>
<td>AGGTGACCTGCTGATGCTC</td>
</tr>
<tr>
<td>RTN1</td>
<td>H</td>
<td>GAGTTTCCTGCTGCTTGCTC</td>
<td>AGGTTGATCTGGACTGAG</td>
</tr>
<tr>
<td>SLC28A2</td>
<td>H</td>
<td>CTTGGGGAACATGACACTCT</td>
<td>GCTTACCCCTCCTACAC</td>
</tr>
<tr>
<td>SLC27A1</td>
<td>H</td>
<td>GGTTCAAGTCATGGGGAGA</td>
<td>AGCACTCCTGAGGAGTCTC</td>
</tr>
<tr>
<td>SLC27A3</td>
<td>H</td>
<td>TGTCACACCAGGAGAGTATGA</td>
<td>CCACATGCTGAGAAACCC</td>
</tr>
<tr>
<td>SLC27A4</td>
<td>H</td>
<td>GGCTAAAACCTGGCTGAGACC</td>
<td>AGGACCAGCTGGAGAGAG</td>
</tr>
<tr>
<td>TCF15</td>
<td>H</td>
<td>GCAGCTGCTTGAAGGTGAG</td>
<td>CGTTCCTACACAAAGAGGAG</td>
</tr>
<tr>
<td>TCF15 UTR</td>
<td>H</td>
<td>TCTGGGAAGCTGGAGGATGAG</td>
<td>CCAGAAACATGCTGCTTC</td>
</tr>
<tr>
<td>TIMP4</td>
<td>H</td>
<td>CAGACCCCTGCTGACACTGAA</td>
<td>AGACTTCTCCCTGACCC</td>
</tr>
<tr>
<td>WT1</td>
<td>H</td>
<td>CAATGACATCCACGCTTGA</td>
<td>GACACGGCTGCTGTTATCC</td>
</tr>
<tr>
<td>WT1 UTR</td>
<td>H</td>
<td>CAGGCTGCTCACAACCTGGAGAG</td>
<td>CTCATTTGTGCAAGAGAG</td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>Gene</th>
<th>Well</th>
<th>Primer 5' Sequence</th>
<th>Primer 3' Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDHHC2</td>
<td>H</td>
<td>TTGCGGCAACAGATTACAG</td>
<td>TGCTGACTAGGCCAACAATGA</td>
</tr>
<tr>
<td>ACTA2</td>
<td>H</td>
<td>TGGTTGTGTGAATGGCTCT</td>
<td>CTGTTCCATGTCGTCCTCAAGT</td>
</tr>
<tr>
<td>PROX1</td>
<td>H</td>
<td>CAGTACTGAGAGCTGCTATACACAGAG</td>
<td>TCTGAGCAACCTCCAGAGAAATCTC</td>
</tr>
<tr>
<td>PTPRC</td>
<td>H</td>
<td>GACAACAGTGAGAAGAGACG</td>
<td>GGAAGGTGTTGGGCTTTTG</td>
</tr>
<tr>
<td>TIE2</td>
<td>H</td>
<td>ACACCTGCTCATGCTCACTCGC</td>
<td>AGCAGTACAGAGATGGTTGCATTC</td>
</tr>
<tr>
<td>PECAM1</td>
<td>H</td>
<td>TCTGCACTGAGGTAATGACAA</td>
<td>CTGATGCTGCAACAGCA</td>
</tr>
<tr>
<td>Tubb</td>
<td>M</td>
<td>GGGAGGTTGATAAGCGATGAA</td>
<td>CCCAGGTTCTGACTCCACA</td>
</tr>
<tr>
<td>Gapdh</td>
<td>M</td>
<td>CCGCATTCTCTTGAGCTGAG</td>
<td>GAATTTGCGGAGGAGGAGT</td>
</tr>
<tr>
<td>Actb</td>
<td>M</td>
<td>GACGCGCAGGTCATCACTACTAT</td>
<td>CTTCTGACATCCTGAGGAAAA</td>
</tr>
<tr>
<td>Abhin3</td>
<td>M</td>
<td>CAGTCATTCGAGGACATGGA</td>
<td>CCCCTGACTGAACATCAGGT</td>
</tr>
<tr>
<td>Actc1</td>
<td>M</td>
<td>CAGCTGACATCTCTCCCTCTCT</td>
<td>ATGATTGGTGGCCCTCAGAAG</td>
</tr>
<tr>
<td>Adams9</td>
<td>M</td>
<td>ACCCGGATGAGATACGTCAG</td>
<td>GGTCAGTCTGACAGCACAG</td>
</tr>
<tr>
<td>Adh1</td>
<td>M</td>
<td>ACAAACCCTTCCAGATGAG</td>
<td>CTTCTTCAAAGCTCCTCAAC</td>
</tr>
<tr>
<td>Airn</td>
<td>M</td>
<td>GGGGAGGTTGAGGAGGAGT</td>
<td>CTTGATGCTGAGACAGG</td>
</tr>
<tr>
<td>Akap5</td>
<td>M</td>
<td>AGCCAGGCTGAGGACAGGAAG</td>
<td>TGTCACTTCCAGACAGG</td>
</tr>
<tr>
<td>Akb1cc19</td>
<td>M</td>
<td>AGCTCTGACAGGTCAGGGATACCC</td>
<td>CAGCAGGCTGACTCTTTGAG</td>
</tr>
<tr>
<td>Agp7</td>
<td>M</td>
<td>CTCGGTGCTCACTCTTGCTTGT</td>
<td>CCTGGAACCTGTCACCCCA</td>
</tr>
<tr>
<td>Clqtnf9</td>
<td>M</td>
<td>AGTGCCAAATGCGCTCTCAGATG</td>
<td>AGGCTGCATGACTCTTTTCTG</td>
</tr>
<tr>
<td>Coxtb</td>
<td>M</td>
<td>TGGGAGGTTGAGGAGGAGT</td>
<td>CTTCTGATGCTGAGGAG</td>
</tr>
<tr>
<td>Dnmt1</td>
<td>M</td>
<td>CAATGGAACAGCTACAGCTGAT</td>
<td>AATATGGGACACCTGTTCAG</td>
</tr>
<tr>
<td>Eb3</td>
<td>M</td>
<td>CTGCGACATCATCAGGATG</td>
<td>GAACCCCTTGGCGTCGCT</td>
</tr>
<tr>
<td>Eepd1</td>
<td>M</td>
<td>TGGGAGGTTGAGGAGGAGT</td>
<td>GCTTCTGACAGGAGGAGT</td>
</tr>
<tr>
<td>Enpp3</td>
<td>M</td>
<td>CAGCTACGAGGATACAGGAT</td>
<td>CTTGATGCTGAGAGGAG</td>
</tr>
<tr>
<td>Fabp3</td>
<td>M</td>
<td>GACGCCAGTGACGAGGAAAG</td>
<td>GGCTGAGGTCAGTAGAGG</td>
</tr>
<tr>
<td>Fabp9</td>
<td>M</td>
<td>ATGAGATGCTACAGGACAGGAAG</td>
<td>CTGTTTGCCAAGGAGGAC</td>
</tr>
<tr>
<td>Gda</td>
<td>M</td>
<td>GTGGGTGCTCACTGACGATG</td>
<td>TCTTCTGACGACACAGG</td>
</tr>
<tr>
<td>H19</td>
<td>M</td>
<td>AATGGTGTGCTACGAGGACAGGAAG</td>
<td>GCAAGAAGTGGCAAGAGAAG</td>
</tr>
<tr>
<td>Hnll</td>
<td>M</td>
<td>AGGCCAAAGGAAGTGGGATCAG</td>
<td>TGGAGAATGGTTCATCGG</td>
</tr>
<tr>
<td>Kcna5</td>
<td>M</td>
<td>CGCTCTCCTGATCCTCGTAG</td>
<td>CAGCTGTGAAAAGGCGATCT</td>
</tr>
<tr>
<td>Ktra10</td>
<td>M</td>
<td>GCCCAAAGATGAACTATGCTTTC</td>
<td>ATGCTGGTGGAAAGGAGT</td>
</tr>
<tr>
<td>Ktra9</td>
<td>M</td>
<td>AGATTCTCCAGGACGACAGCA</td>
<td>ATGGGCTACTGGTCAATG</td>
</tr>
<tr>
<td>Lamb1</td>
<td>M</td>
<td>GGAACCCGAGTTTAGCTATAG</td>
<td>GGGTTGAGGTTGTCAGTAC</td>
</tr>
<tr>
<td>Lipg</td>
<td>M</td>
<td>ACCTACACGCTGTCATTTG</td>
<td>GCTGAGGCGATTTCTCCCTT</td>
</tr>
<tr>
<td>Lpl</td>
<td>M</td>
<td>TTTGGCTCCAGAGGGTACC</td>
<td>GCTTCCTGCTGTGTTGGAAG</td>
</tr>
<tr>
<td>Map3k5</td>
<td>M</td>
<td>GGCAGAACACATCATCCTTCT</td>
<td>GCCAGCTTCAAAAAGCTG</td>
</tr>
<tr>
<td>Mb</td>
<td>M</td>
<td>CACCCTGAGACCCTGGGATAAA</td>
<td>GAGCAGTCTGCTCAAAGTG</td>
</tr>
<tr>
<td>Me3j10</td>
<td>M</td>
<td>CAGTTATGCGATGTCCTTCCTTTT</td>
<td>TGCTCAGAGCTGTCGTCACT</td>
</tr>
<tr>
<td>Meox2</td>
<td>M</td>
<td>GGCAGATACGAGGATGAGG</td>
<td>AGGGGTGTCACAGAGATGGG</td>
</tr>
<tr>
<td>Myh6</td>
<td>M</td>
<td>CCACCCAGATGCTGCAAGAAGAT</td>
<td>AGGGGTGTCAGGAGGAG</td>
</tr>
<tr>
<td>Myl2</td>
<td>M</td>
<td>GACCCAGATGCTGCAAGAATC</td>
<td>TGCTCAGGATGACTCCTT</td>
</tr>
<tr>
<td>Myl3</td>
<td>M</td>
<td>AAGGGGAGATTGAAAAATCAC</td>
<td>GCAGGAAGTCGTCCTAAATC</td>
</tr>
</tbody>
</table>

27
Myoz2 M CCATGCAGAATGGGAGAGTT TTTGGGTACAAAGCCTCCAG
Nav3 M AAGCAAGCAGTGACCTGGAT AGGGGACAGTGATGTTGGAG
Nis M TTCACAATGAGTTGGCAGGA GTGTTGACCTGCTGTGTCAGA
Papss2 M GTCTACCAGGCCCATCATGT GAGATCGGCAATGAAGATCA
Pmp2 M GTGGGGTTAGCCAACAGAAA TCTCCAGTGTCAGATTGCTC
Pparg M CAGGCCTCATGAAGAACCTT GGATCCGGCAGTTAAGATCA
Prg4 M GCCACCTGCAACTGTGATTA CTGCACGACACTTGCCATAC
Prnd M CAGCAAGGAAGTCTGAGG CGTGCAAGACCAGCATCTAC
Rbp7 M TCAGCGGATCTCTGGAATTT AGGCTGTGGAATTTGCTT
Rtn1 M CATCAGCTTCCGCATCTACA AAGGCTGTGAGAGCTCTTC
Sclc28a2 M GAGCAAGCTGATCTCCTTTGC ATGCTGATCAGGATTTGC
Tcf15 M GCTCCATCTGCACCTTCTGT TTTGTCCTCCGGTCCTTAC
Timp4 M ACCAAAGCTGAGTTGGTCAAC CAGCCACGTGGCTATTGA
Tnc1 M CAGGACAGGAGGAGCCACAC CAGGGCAAGGAGCAGATGTA
Tnnt2 M GAGCAAGGAGGAGCCACAC CAGGGCAAGGAGCAGATGTA
Wt1 M AGGTTTTCCTGCTCAAGGCA GCTGAAGGGCTTTTCACTTG
Zdhhc2 M GCTGTACCTGCTTTTATTCG CCAACAGAGAGGACACAGTG
Acta2 M CGCTGTCAGGAACCCTGAGA CGAAGCCGGCCTTACAGA
Ptprc M GCCCGGGATGAGACTGAG TTTGAAAGCAGTGATGCTC
Cdh5 M ATGGACAGACCCCAAGCGG TCTCTGAGATGCTAAGCTAC
Ng2 M CCTTCTACAAGTGACCATTGC CTTGAGAAGGCTTCACTTG
Pdpm M GCGAGTGTTTGTTCTGTTG AGAAGTTGCTTGCAGCTAGA
Pecam1 M GTCATGCGACATCTGAGA CTGCTGAGATGCTAAGCTAC
Prox1 M CGCGTGGGTTTCTTCTCTGC GGGCTGTGCTGACATGGTCA
Tek M GAAACATCCTCCACTGCTCAT GTGAGGTGTCTCTCTGCAT
Fabp5 M CAAAACCGAGACAGACTGAG CCTCTATGGCCTTCTCTTC
Sle2a4 M ATTCCTGTTGCCAGGGCT ATGGAGATGCGATGCTGTT
Sle2a1 M CCGCCTCATGTTGGCTGT TGTTGGATGAGATGGGAGG
Gpihbp1 M GGGCAGAAGATGCTGATGAT CTGGAGCGAGCTGTTGCT
Sle27a1 M ACCACTCTGCAGGGAAACTC AGCGGCAGATTCCACATAT
Sle27a2 M ATGCGCTGTCGATCCTTCTTAC TAGCAAGGGCGCTTCTCTCAT
Sle27a3 M AGGCTGTGTCAGGATGCT AACTGGGTTGACAGCACCC
Sle27a4 M CTACCAGCGGCCCATGTT GAATTCTTGAGGACATCCA
Sle27a5 M TCGGATCTGGAATTCTACG CAGGAATGCAAACACCCCTGT
Sle27a6 M AGCAGATGGATGGAATG TGCAACGTGCTAATCAGCAG
CD36 M TGGCAGTGGAGACATGCT GCCAGTGCATCTGTTGTTTG
Fabp4 M TTGAAGCTTGTCTCAAGTGA TCGACTGTCATCCCATCCTC
Flt1 M TGGCCAGAAGGATGGAGGT TCGCAATCCTCCACACAATG
Nrp1 M ACACCTGAGCTTCCGACGGTT CCACGCAGGCTGCTCTCTC

H: human; M: mouse
Supplementary Table III. Cardiomyocyte size and capillary counts in young and aged wild-type and Meox2+/−:Tcf15+/− mice.

<table>
<thead>
<tr>
<th></th>
<th>Cardiomyocyte size (µm2)</th>
<th>Capillary count (No/No cardiomyocytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type (young)</td>
<td>351 ± 17</td>
<td>0.99 ± 0.07</td>
</tr>
<tr>
<td>Meox2+/−:Tcf15+/− (young)</td>
<td>369 ± 29</td>
<td>0.97 ± 0.08</td>
</tr>
<tr>
<td>\textit{P}-value</td>
<td>0.59</td>
<td>0.85</td>
</tr>
<tr>
<td>wild-type (aged)</td>
<td>298 ± 23</td>
<td>0.78 ± 0.01</td>
</tr>
<tr>
<td>Meox2+/−:Tcf15+/− (aged)</td>
<td>345 ± 28</td>
<td>0.69 ± 0.02*</td>
</tr>
<tr>
<td>\textit{P}-value</td>
<td>0.21</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Data represent mean ± s.e.m. (n=4 for young; n=7 for aged; \textit{*P}<0.05 \textit{versus} wild-type).

Supplementary Table IV. Echocardiographic parameters in 11 month-old wild-type and Meox2+/−:Tcf15+/− males.

<table>
<thead>
<tr>
<th></th>
<th>IVSd/BSA (mm/cm2)</th>
<th>PWd/BSA (mm/cm2)</th>
<th>LVIDd/BSA (mm/cm2)</th>
<th>LVIDs/BSA (mm/cm2)</th>
<th>EF (%)</th>
<th>FS (%)</th>
<th>HR (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>0.57±0.03</td>
<td>0.57±0.03</td>
<td>3.9±0.1</td>
<td>2.6±0.1</td>
<td>59.9±3.5</td>
<td>33.2±3.0</td>
<td>500±25</td>
</tr>
<tr>
<td>Meox2+/−:Tcf15+/−</td>
<td>0.56±0.03</td>
<td>0.50±0.05</td>
<td>4.1±0.2</td>
<td>3.2±0.2</td>
<td>45.2±4.8</td>
<td>22.8±3.6</td>
<td>501±22</td>
</tr>
<tr>
<td>% Meox2+/−:Tcf15+/− versus wild-type</td>
<td>98±6</td>
<td>88±8</td>
<td>106±4</td>
<td>123±9*</td>
<td>75±8*</td>
<td>68±11*</td>
<td>100±4</td>
</tr>
<tr>
<td>\textit{P}-value</td>
<td>0.85</td>
<td>0.26</td>
<td>0.31</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.98</td>
</tr>
</tbody>
</table>

\textit{Abbreviations}: IVSd: interventricular septal thickness at end-diastole; BSA: body surface area; PWd: posterior wall thickness at end-diastole; LVIDd: left ventricular internal diastolic diameter; LVIDs: left ventricular internal systolic diameter; EF: ejection fraction; FS: fractional shortening; HR: heart rate; bpm: beats per minute. Data represent mean ± s.e.m. (n=8-9; \textit{*P}<0.05 \textit{versus} wild-type).
IV. SUPPLEMENTAL REFERENCES

