Hydrogen Inhalation During Normoxic Resuscitation Improves Neurological Outcome in a Rat Model of Cardiac Arrest, Independent of Targeted Temperature Management

Running title: Hayashida et al.; Benefit of H₂ Resuscitation for PCAS

Kei Hayashida, MD¹; Motoaki Sano, MD, PhD²; Naomi Kamimura, PhD³; Takashi Yokota, PhD³; Masaru Suzuki, MD, PhD¹; Shigeo Ohta, PhD³; Keiichi Fukuda, MD, PhD²; Shingo Hori, MD, PhD¹

¹Dept of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan; ²Dept of Cardiology, School of Medicine, Keio University, Tokyo, Japan; ³Dept of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kanagawa, Japan

Address for Correspondence:
Motoaki Sano, MD, PhD
Department of Cardiology
School of Medicine, Keio University
35 Shinanomachi, Shinjuku-ku
Tokyo 160-8582, Japan
Tel: 81-3-5363-3874
Fax: 81-3-5363-3875
E-mail: msano@a8.keio.jp

Journal Subject Code: Basic science research:[130] Animal models of human disease
Abstract

Background—We have previously shown that hydrogen (H\textsubscript{2}) inhalation, commenced at the start of hyperoxic cardiopulmonary resuscitation (CPR), significantly improves brain and cardiac function in a rat model of cardiac arrest (CA). Here, we examine the effectiveness of this therapeutic approach when H\textsubscript{2} inhalation is commenced upon the return of spontaneous circulation (ROSC) under normoxic conditions, either alone, or in combination with targeted temperature management (TTM).

Methods and Results—Rats were subjected to 6 min VF CA followed by CPR. Five min after achieving ROSC, post-CA rats were randomized into four groups: mechanically ventilated (MV) with 26\% O\textsubscript{2} and normothermia (control); MV with 26\% O\textsubscript{2}, 1.3\% H\textsubscript{2} and normothermia (H\textsubscript{2}); MV with 26\% O\textsubscript{2} and TTM (TTM); MV with 26\% O\textsubscript{2}, 1.3\% H\textsubscript{2} and TTM (TTM + H\textsubscript{2}). Animal survival rate at 7 d after ROSC was 38.4\% in the control group, 71.4\% in the H\textsubscript{2} and TTM groups, and 85.7\% in the TTM+H\textsubscript{2} group. Combined therapy of TTM and H\textsubscript{2} inhalation was superior to TTM alone in terms of neurological deficit scores at 24, 48, and 72 h post-ROSC, and motor activity at 7 d post-ROSC. Neuronal degeneration and microglial activation in a vulnerable brain region was suppressed by both TTM alone and H\textsubscript{2} inhalation alone, with the combined therapy of TTM and H\textsubscript{2} inhalation being most effective.

Conclusions—H\textsubscript{2} inhalation was beneficial when commenced after ROSC, even when delivered in the absence of hyperoxia. Combined TTM and H\textsubscript{2} inhalation was more effective than TTM alone.

Key words: cardiopulmonary resuscitation, heart arrest, ischemia/reperfusion injury/neuroprotection, antioxidant, hydrogen gas
Introduction

Ischemia–reperfusion (I/R) is a critical cause of rapid and acute oxidative stress in post-cardiac arrest syndrome (PCAS). The reactive oxygen species (ROS) generated by reperfusion of the ischemic brain are therefore a potential target for preventing ischemic brain injury. In 2007, Ohsawa et al. \(^1\) discovered that hydrogen gas (H\(_2\)) has antioxidant and anti-apoptotic properties that protect the brain against I/R injury by selectively neutralizing hydroxyl radicals. Since then, the efficacy of H\(_2\) on I/R injury has been studied extensively. \(^2\)

Inhalation of 1-4\% H\(_2\) reduces infarct size in rat models of acute cerebral, and coronary artery, occlusion, with 2\% H\(_2\) being most effective. \(^1,4\) These pioneering studies were followed by publications from a number of groups worldwide demonstrating 1.3\%-3\% inhaled H\(_2\) protects against acute oxidative stress. \(^5-12\)

We demonstrated previously that inhalation of 2\% H\(_2\) commenced at the beginning of hyperoxic (98\% O\(_2\)) cardiopulmonary resuscitation (CPR), and until 2 hours after the return of spontaneous circulation (ROSC), improved survival and neurological deficit score (NDS) in a rat model of cardiac arrest. \(^12\) This effect was comparable to that of targeted temperature management (TTM) alone (33\(^\circ\)C). \(^12\) Several issues require further investigation before clinical application of these findings becomes feasible. First, there was no direct evidence for preservation of brain function at a histological level. A brief episode of global brain ischemia produces selective and often extensive neuronal loss in vulnerable brain structures in humans and rodents, such as the hippocampal CA1 pyramidal neurons. In addition, cell death does not occur immediately, but is delayed for days (delayed neuronal death). Accordingly, previous reports assessed CA1 pyramidal neuron necrosis at 10 and 30 days \(^13\) or at 7 days \(^14\)
post-ischemia. In our previous study, although H₂ inhalation improved neurological outcome (based on the NDS) at 24 hours after ROSC, this phenomenon was not associated with a reduction in either brain edema or hippocampal CA1 pyramidal neurons at this early time point. Second, in our previous study inhalation of H₂ commenced at the beginning of CPR, but in a clinical setting hypothermia is applied after ROSC. Therefore, this present study investigated whether the benefit of H₂ inhalation is similar when commenced after ROSC. Third, because all animal groups in our previous study were ventilated using 98% O₂, H₂ may protect only from the harmful effects of hyperoxia. We wish to investigate therapy benefit under normoxic conditions.

We therefore investigated whether H₂ inhalation without hyperoxia improves neurological outcome in a rat model following resuscitation from CA, independent of TTM.

Materials and methods
Animal preparation
Seventeen-week-old male Wistar ST rats weighing an average of 408 g were used in this study after obtaining institutional approval from the Animal Ethics Committee, and were housed in a rodent facility under 12 h light–dark cycle conditions.

The rats were fasted overnight except for free access to water, and then were anesthetized by intraperitoneal injection of pentobarbital sodium (45 mg/kg). The trachea was intubated via a tracheostomy with a 14-gauge cannula and mechanically ventilated (MV) with a tidal volume (TV) of 0.65 ml per 100 g body weight, a respiratory rate of 100/min, and FiO₂ of 0.21 (Ventilator: SN-480-7, Shinano, Japan). Polyethylene catheters (PE50,
Natsume, Japan) were inserted into the left femoral arteries and veins, and flushed intermittently with saline solution containing 2.5 IU/ml bovine heparin. Arterial blood pressure was measured and an electrocardiogram (ECG) was recorded by subcutaneous needle electrodes. Core temperature was monitored by a rectal temperature probe (BAT-10, Physitemp Instruments Inc., NJ, USA) and maintained using a heating plate (SCP-85, AsOne, Japan) throughout the experiment as appropriate temperature management.

Ventricular fibrillation and CPR model

Ventricular fibrillation (VF) was induced by electrical stimulation via a transthoracic epicardium electrode, as previously described. This stimulator (Isostim, World Precision Instruments Inc., FL, USA) was used to perform direct and constant electrical stimulation of the epicardium with crude current, continuous single stimulation, a delay of 100 ms, a wave width of 1 ms, a frequency of 50 Hz, an intensity of 1 mA, and stimulation duration of 3 min. The MV was stopped and disconnected from the tracheal tube after onset of VF. CA was defined by an abrupt blood pressure drop, disappearance of the pulse wave signal, and VF on the ECG recording. After 6 min of VF induction, advanced cardiac life support started, in which the rats were ventilated (0.65 ml/100 g, 100 breaths/min) and chest compressions (200/min) were started by the investigator’s finger, paced by a metronome. Chest compressions were adjusted to a uniform rate, and a target aortic diastolic pressure of > 20 mm Hg. Adrenalin (2 μg/100 g) and 0.1 ml sodium bicarbonate (8.4%) were immediately administered to the rats at the beginning of CPR and repeated at 3-min intervals as needed. The administration of intravenous fluid during CPR was limited to under 2 ml. Three min after commencing chest compressions, defibrillation was performed with direct-current
single-phase waves of 2 J when the ECG displayed VF. If the defibrillation failed, CPR was repeated and defibrillations were again performed 1 min after CPR. ROSC was defined as the return of supraventricular rhythm with a mean aortic pressure over 50 mm Hg for a minimum of 5 min. If spontaneous circulation was not restored in the rats after 6 min, CPR was considered to be a failure. The concentration of H₂ in the gas mixture was monitored using a Breath Gas Analyzer Model TGA-2000 (TERAMECS, Kyoto, Japan). Sham-operated controls were subjected to the same operative procedure, without electrical stimulation.

Premixed gas comprising H₂ gas and oxygen

The maximal concentration of flammable H₂ is 1.3% in mixed gas formulations comprising flammable gas and oxygen at greater than atmospheric concentration. The *High Pressure Gas Safety Act* in Japan states that flammable gas contained in the mixed gas cannot exceed one third of the lower explosion limit (4%). Our preliminary experiments revealed that although 2% inhaled H₂ is superior to 1% inhaled H₂ for reducing reactive oxygen metabolites in blood, both are essentially equivalent in suppressing systemic inflammatory activation, and equally improved the survival and functional outcomes in our rat model of CA with VF (data not shown). Therefore, we decided to use premixed gas comprising 1.3% H₂ and 26% O₂ in the following experiments.

Experimental protocol

Five min after achieving ROSC, animals were randomized into four groups (2:1:1:1 ratio):

- MV with 26% O₂ and normothermia (control: Ctl group, n = 13);
- MV with 26% O₂, 1.3% H₂ and normothermia (H₂ group, n = 7);
- MV with 26% O₂ and TTM (TTM group, n = 7);
- MV with 26% O₂, 1.3% H₂ and TTM (TTM + H₂ group, n = 7). Gas inhalation was
continued for 2 h (Figure 1). In animals of the TTM groups, rapid cooling was started after randomization and induced with ice packs and an electric fan. Body temperature reached 33°C within 15 min. Once the target temperature was reached, it was maintained for 2 h, followed by a slow rewarming period at a rate of 1.5°C/h, after which the animals were maintained at 37°C until the end of the experiment. Normothermic animals were maintained at 37°C. Arterial blood pressure, ECG recordings, intrathoracic pressure, and rectal temperature were monitored for 4 h. No inotropic agent was administered. After a recovery period of 4 h, rats were weaned from the ventilator, all vascular catheters and tracheal tubes were removed, and surgical wounds were sutured. After each experimental period, rats were returned to their cages with easily accessible food and water, and were observed in a rodent facility with a controlled room temperature of 22°C. Buprenorphine (0.01 mg/kg) was injected intramuscularly daily to ensure the surgical pain relief during the recovery period for all groups.

We used 43 consecutive rats for the survival study. Among them, 9 rats were excluded from further analyses (5 rats: ROSC was not achieved, 4 rats: CA was not induced due to technical failure), and randomization did not begin until ROSC. The survival time after CPR was recorded up to 7 d.

Neurological deficit evaluation

A single investigator who was unaware of each animal’s group assignment performed all neurological deficit score (NDS) evaluations. Consciousness and breathing, cranial nerve reflexes, motor function, sensory function, and coordination were scored according to an NDS system (0-500 scale; 0 normal, 500 death or brain death), as described previously.21
Y maze test

The Y-maze test is a gross test for spatial memory, and uses a Y-maze apparatus composed of three equally spaced arms (120°; 80 cm long × 30 cm high × 15 cm wide). This ethologically relevant test is based on the rodents’ innate curiosity to explore novel areas. Briefly, rats were placed into one of the arms of the maze (start arm) and allowed to explore the maze with one of the arms closed for 15 min (training trial). After a 1-h intertrial interval, rats were returned to the Y maze by placing them in the start arm. Rats were allowed to explore freely all three arms of the maze for 8 min (test trial). A rat is considered to enter an arm if all four limbs enter into an arm compartment. The sequence of arm entries was recorded by video recorder. The dependent variables were motor activity, defined as the number of arms entered, and percent alternation, calculated as the number of alternations (entries into three different arms consecutively) divided by the total possible alternations (i.e., the number of arms entered minus 2) and multiplied by 100.\(^{22}\) After each trial, the maze was cleaned with dilute alcohol and dried with paper towel.

Histopathological analysis

At 7 d after ROSC, rats were decapitated. The left sides of the brains were quickly removed and fixed with Zamboni’s solution. The brains were histologically compared with those of sham-operated rats. Coronal tissue slices (6-μm thickness) of paraffin-embedded brain tissue (at the level of the hippocampus) were stained for histological evaluation. To examine changes in the neurons, astrocytes, and microglia after global cerebral ischemia–reperfusion, we performed immunohistochemical staining with an anti-neuronal nuclei antibody (NeuN, Catalog No. MAB377, Millipore, Temecula, CA, USA) for neurons, anti-ionized calcium-
binding adapter molecule 1 antibody (Iba-1, Catalog No. 019-19741, Wako Pure Chemical Industries, Ltd., Osaka, Japan) for microglia/macrophages, and biotin-conjugated microtubule-associated protein 2 antibody (MAP2, Catalog No. M9942, Sigma-Aldrich, St. Louis, MO, USA) for axonal damage, Fluoro-Jade C (FJC) labeling (Fluoro-Jade C Ready-to-Dilute Staining Kit, Catalog No. TR-100-FJ, Biosensis, Thebarton, SA, Australia) for degenerative neuronal cells, and glial fibrillary acidic protein (GFAP) staining (anti-GFAP antibody, Catalog No. AB5804, Millipore, Temecula, CA, USA) for activated astrocytes.

In each NeuN-, Iba1-, and MAP2-stained section, 2 slide fields were randomly examined using a defined rectangular field area (0.14 mm²). MAP2 staining is reported as the area’s relative intensity of staining (%), calculated using automated counting software (Image J 1.46i, National Institutes of Health, USA). Fluorescence microscopic examination of FJC and GFAP-staining was performed on 2 slide fields of defined field area (0.05 mm²). Images were analyzed using Image J. Automated counting data for each stained section was reported as degenerating cells in blue and activated astrocytes in red.

Statistical analysis

Measurements are reported as mean ± SEM. For single comparisons, we performed an unpaired two-tailed Student’s t-test; for multiple comparisons, we used an analysis of variance (ANOVA) followed by Tukey’s correction for post hoc comparisons. Physiologic data (rectal temperature, mean arterial pressure, heart rate) were examined by a mixed-effects model for repeated measures analyses comprising treatment group, time, and treatment-by-time interaction as factors and random intercept for each subject. NDS were on an ordinal scale and were analyzed by Kruskal-Wallis with Mann-Whitney U analyses between multiple
groups. The Kaplan–Meier analysis and log-rank test were used to calculate the survival rates. Statistical significance was considered at a two-sided p value of < 0.05. Statistical analyses were performed using SPSS® software (SPSS Inc., Chicago, IL, USA).

Results

H₂ therapy commenced after ROSC under normoxic conditions improved animal survival and neurological recovery in post-CA rats

There were no differences among the four experimental groups in hemodynamics, blood gases, or chemistries at baseline, during CPR, or during post-cardiac arrest care following ROSC (Supplementary Table 1, Supplementary Table 2, Figure 2b and 2c). There were also no significant differences in the number of gasps during CA, diastolic pressure during CPR, or the number of defibrillations required to establish ROSC among the four experimental groups (Supplementary Table 1). Rectal temperature was rapidly reduced from 37.0 ± 0.0°C to 32.8 ± 0.2°C at 15 min after ROSC in hypothermic animals, and the normothermic animals showed no significant changes in rectal temperature during the experiments (Figure 2a).

The survival rate at 7 d after ROSC was 5 out of 13 (38.4%) rats in the Ctl group; 5 out of 7 (71.4%) rats survived in the H₂ group; 5 out of 7 (71.4%) rats survived in the TTM group; and, 6 out of 7 (85.7%) rats survived in the TTM+H₂ group (P < 0.05 vs. Ctl group, Figure 3).

The NDS was evaluated at 24, 48, 72 h and 7 d after ROSC (Table 1). NDS values at 72 h after ROSC were better in the H₂ group (185 ± 82, P < 0.05), the TTM group (217 ± 74,
$P < 0.05$), and the TTM+H$_2$ group (90 ± 68, $P < 0.01$) than in the Ctl group (395 ± 40), while scores in the TTM+H$_2$ group were better than in the TTM group ($P < 0.05$). As a practical example, rats with a NDS of 395 were unresponsive, immobile, reacted minimally to stimuli and were associated with high mortality. Rats with NDS of 217 generally had an increased respiratory rate, sluggish responses to pain, and disordered coordination, but retained some mobility, whereas rats with a NDS of 90 appeared alert, reacted briskly to stimuli and had mild respiratory impairment. NDS values at 7 d were also better in the H$_2$ group (166 ± 87, $P < 0.05$), the TTM group (185 ± 84, $P < 0.05$), and the TTM+H$_2$ group (88 ± 69, $P < 0.01$) than in the Ctl group (389 ± 43) (Table 1). Improved neurological outcome following H$_2$ and hypothermia treatment was consistent when NDS values were evaluated separately for survivors only (Supplementary Table 3). To confirm the prognostic value of NDS, we examined the relationship between NDS category at 24 h after ROSC, and mortality. A higher NDS at 24 hours after ROSC was associated with a poorer survival (Figure 4).

Rats were also subjected to a Y-maze test to assess motor activity and spatial memory. Motor activity at 7 d after ROSC was significantly lower in the Ctl ($P < 0.01$ vs. sham) and TTM groups ($P < 0.05$ vs. sham) than in the sham group (Figure 5a), while motor activity at 7 d after ROSC was non-significant in the H$_2$ and TTM+H$_2$ group compared to the sham group. The Ctl group appeared deficient in spatial working memory as tested by spontaneous alternation in the Y-maze compared to the sham group ($P < 0.05$), whereas spatial working memory at 7 d after ROSC became non-significant in the other groups compared to the sham group (Figure 5b).
H₂ inhalation rescued neuronal death, and suppressed microglia activation in the hippocampus and cerebral cortex

A transient period of global cerebral ischemia and reperfusion after CA is associated with delayed neuronal death and activation of astrocytes and microglia in selectively vulnerable areas such as the hippocampus and cerebral cortex, both in experimental animals and in humans.²⁴-²⁷ The number of surviving NeuN-positive cells in the hippocampus CA1 from the Ctl group was significantly lower than that in sham-operated post-CA rats. The number of NeuN-positive cells in the hippocampus CA1 was significantly preserved in the H₂, TTM, and TTM+H₂ groups compared to the Ctl group (**Figure 6a**). MAP2, abundant in neuronal dendrites, functions in maintaining the cytoskeletal integrity of dendrites. Extensive loss of MAP2-immunoreactive dendrites was apparent in the hippocampus CA1 in the Ctl group. The intensity of MAP2-immunoreactive dendrites were significantly higher in the H₂, TTM, and TTM+H₂ groups compared to the Ctl group, suggesting maintenance of normal structural integrity of CA1 dendrites (**Figure 6b**). There were significantly more Iba1-positive activated microglia/macrophages in the CA1 in the Ctl and TTM groups compared to the other groups (**Figure 6c**).

We also evaluated neuronal degeneration and astrocyte activation in the cerebral cortex by FJC and GFAP immunostaining. FJC⁺ degenerating neurons and GFAP⁺ reactive astrocytes were conspicuous in the Ctl group, while the TTM+H₂ group showed significantly fewer degenerating neurons than controls (**Figure 7**).

Discussion

Inhalation of H₂ commenced before the ROSC has been shown to improve animal survival
and NDSs in a rat model of CA, to an extent comparable to TTM (33°C). In this study, we demonstrated a beneficial effect of H₂ inhalation commenced after the ROSC, even in the absence of hyperoxia. H₂-treated animals exhibited improved NDS scores, with correlative reductions neuronal degeneration and microglial activation in regions typically vulnerable to ischemic injury.

To date, therapeutic hypothermia is the only approach proven to improve outcome in patient with PCAS, when applied after the ROSC. However, Nielsen et al. recently reported that therapeutic hypothermia at a target temperature of 33°C did not confer a benefit compared with a target temperature of 36°C in patients with PCAS. One explanation for the lack of benefit at the lower temperature is that improvement in patient intensive care over the past decade reduces any potential incremental benefit of a single intervention. From the viewpoint of translating the present results into clinical benefit, it is particularly important that the combined therapy of TTM and H₂ inhalation was more effective than TTM alone. The NDS at 24, 48, and 72 h after ROSC demonstrated improved neurological outcome in the TTM+H₂ group compared to the TTM group. Motor activity was also better in the TTM+H₂ group than in the TTM group. Consistent with this, degenerative neuronal changes in the cerebral cortex and survival rate at 7 d after ROSC were both significantly improved by the TTM+H₂ therapy compared to the Ctl group, but not by TTM alone.

The patients in the HACA trial were allowed to passively cool to a temperature of 32-34°C and were maintained as such for 24 h, with passive rewarming occurring over a median period of 8 hours. In the Bernard study, the patients were treated with TTM of 33°C for 12 hours, and active rewarming over a period of 6 hours. In an animal study, Ye et al.
have demonstrated that a shorter duration of mild hypothermia, induced rapidly and early after ROSC, improved postresuscitation microcirculation, myocardial and cerebral functions, and survival as well as, or better than, prolonged duration of hypothermia in a rat model of cardiopulmonary resuscitation. Taking into account the high metabolic rate of rats compared to humans, we chose a 2 h duration for therapeutic hypothermia, followed by 2 h of rewarming.

Previously, we demonstrated that post-CA rats die of systemic I/R injury. 12 In that study, the left ventricular end-diastolic pressure gradually increased to \(\geq 20 \) mmHg at 2 hours after ROSC in the control group. Histological analyses at 24 hours after ROSC exhibited contraction band necrosis, coagulation necrosis with cytoplasmic eosinophilia, loss of nuclei, and vacuolar degeneration surrounded by inflammatory cell infiltration in the myocardium of the post-CA control rats; all effects that could be associated with increased water content in the lung. The early death in these post-CA rats was also associated with a systemic inflammatory response as shown by the increased serum IL-6 levels at 2 hours after ROSC and impaired neurological function based on the NDS at 24 hours after ROSC.

The early mortality of Ctl group post-CA rats was comparable to other recently published findings. Using a rat model of 6-min-VF CA, Ma et al. 34 showed that 4 out of 10 animals survived more than 72 hours, while Janata et al. 18 showed better outcomes than ours. However, Janata’s experimental protocol was different from ours in that the VF CA was induced by a 1-minute impulse, and if spontaneous defibrillation occurred, an additional 15-second impulse was delivered. In addition, after ROSC, sodium bicarbonate was given to treat metabolic acidosis and crystalloids, while boluses of vasopressin 0.005 IU/ kg and
epinephrine 5 μg/kg were given IV to keep MAP greater than 60 mm Hg. By contrast, we performed constant electrical stimulation of the epicardium for 3 minutes and there was no spontaneous reversion of VF.

H₂ therapy’s mode of action is primarily suppression of oxidative stress. Cellular redox homeostasis is maintained by a delicate balance between ROS production and antioxidant defences. When ROS are produced excessively or endogenous antioxidant capacity is diminished, indiscriminate oxidation leads to potentially damaging “oxidative stress”. The hydroxyl radical (•OH) is a major trigger of the chain reaction forming free radicals, and once occurring on biomembranes, it continues and expands causing serious cellular damage. In contrast, H₂O₂ and •NO function as signaling molecules that induce antioxidant enzymes. Notably, H₂ reacts with strong oxidants such as •OH in cells, but remains mild enough to neither disturb metabolic redox reactions nor affect signaling ROS. In addition, H₂ rapidly diffuses into tissues and cells. Thus, H₂ can be used as an effective antioxidant therapy.

Inhaled H₂ acts rapidly; it may also therefore be suitable as a defense against acute oxidative stress elicited by ischemia/reperfusion. Inhaled H₂ at therapeutic doses has no adverse effects on the saturation level of arterial oxygen (SpO₂) nor hemodynamic parameters, including blood pressure, heart rate, and left ventricular pressure. H₂ may accumulate in the lipid phase more than in the aqueous phase, especially in unsaturated lipid regions that are the major target of the radical chain reaction. Thus, H₂ may confer an advantage in suppressing the radical chain reaction, avoiding lipid peroxide production and the consequent generation of oxidative stress markers, such as 4-hydroxyl-2-nonenal and
malondialdehyde. Additionally, •OH can modify deoxy-guanine (dG) to 8-OHdG. Indeed, we showed that inhalation of H₂ gas decreased these oxidative markers in rat models of cardiac ischemia-reperfusion injury and PCAS.⁴,¹²

H₂ inhalation was protective and, in some aspects, superior to the use of hypothermia in other studies.⁴,¹² For example, H₂ gas inhalation, but not therapeutic hypothermia, prevented PCAS-associated increases in left ventricular end-diastolic pressure and serum IL-6 at 2 hours after ROSC.¹²,³⁸ These results are surprising because therapeutic hypothermia is believed to confer protection against reperfusion injury by multiple mechanisms,³⁹ including suppression of free radicals, enzymes, and excitatory and inflammatory reactions, in addition to the direct physical protection of membranes. In contrast, the cornerstone of H₂ therapy is selective ROS attenuation.

The reduction of oxidative stress by H₂ may lead to various effects including anti-inflammatory and anti-apoptotic responses via changes in gene expression,⁴⁰ signal transduction,⁴¹-⁴³ and mitochondrial membrane potential,¹¹,³⁷ although whether H₂ has a mode of action independent of its anti-oxidative properties is unknown. In a rat model of hyperoxic lung injury, H₂ reduced mRNA levels encoding several pro-inflammatory cytokines, including IL-1β, IL-6, tumor necrosis factor (TNF)-α, and intercellular adhesion molecule (ICAM)-1, in the lung.⁴⁰ H₂ inhalation significantly improved the survival rate and organ damage in a mouse model of cecal-ligation and puncture-induced sepsis⁴⁴ as well as zymosan-induced generalized inflammation.⁴⁵ H₂ also has anti-apoptotic properties, such as mitigating hyperoxia-induced lung epithelial cell apoptosis via the induction of Bcl-2 protein and suppressing hyperoxia-mediated induction of Bax protein.⁴⁰ Inhalation of H₂ also
reduced infarct size in a canine model of cardiac ischemia-reperfusion injury via opening of the mitochondrial K\textsubscript{ATP} channels followed by inhibition of mitochondrial permeability transition pores.11 We recognize several limitations in our study. First, the small rodent brain has different metabolic and rheological properties from the complex human brain. Findings analogous to those from the rat CPR model are yet to be demonstrated in large-animal and clinical studies.46 Second, pentobarbital used for anesthesia may adversely affect basic cardiac function.47 Although there was no difference among experimental groups in the pentobarbital dose, or the time from premedication dosing to onset of CA, hypothermia might reduce the systemic clearance of pentobarbital and thus affect myocardial contractility. Third, the rats in the TTM group were subjected to hypothermia for only 2 h. Such a short duration of hypothermia has not been replicated in larger animals or preclinical work. Further studies are required prior to clinical application, especially if such a short therapeutic window is being proposed. Fourth, the experimental design does not allow conclusions to be drawn as to the most appropriate concentrations of H\textsubscript{2}, or whether increased duration of H\textsubscript{2} ventilation would provide a greater degree of protection. Finally, it is possible that greater differences between TTM and H\textsubscript{2} therapy may have been revealed with a larger number of animals, or with a longer duration of therapy.

In conclusion, we have demonstrated for the first time that H\textsubscript{2} inhalation commenced after normoxic resuscitation improves neurological outcome, independent of TTM, in a rat model of CA. Our findings suggest a potentially novel and easily applicable solution to PCAS. Although further investigation is required, H\textsubscript{2} is expected to be an innovative
therapeutic tool for unmet medical needs that currently constitute a considerable health burden, particularly for critically ill patients. This study may pave the way for successful translation of H₂ inhalation therapy into clinical practice.

Acknowledgments: The authors thank Y. Miyake (Keio University School of Medicine) for technical assistance.

Funding Sources: This work was supported by Grant-in-Aid for Scientific Research (KAKENHI) (to S.H.).

Conflict of Interest Disclosures: None.

References:

Table 1. Neurological Deficit Score at 24, 48, 72 h, and 7 d.

<table>
<thead>
<tr>
<th>Group</th>
<th>24 hours</th>
<th>48 hours</th>
<th>72 hours</th>
<th>7 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctl (n = 13)</td>
<td>381 ± 34</td>
<td>384 ± 37</td>
<td>395 ± 40</td>
<td>389 ± 43</td>
</tr>
<tr>
<td>H₂ (n = 7)</td>
<td>155 ± 45**</td>
<td>218 ± 77*</td>
<td>185 ± 82*</td>
<td>166 ± 87*</td>
</tr>
<tr>
<td>TTM (n = 7)</td>
<td>254 ± 67</td>
<td>239 ± 69*</td>
<td>217 ± 74*</td>
<td>185 ± 84*</td>
</tr>
<tr>
<td>TTM + H₂ (n = 7)</td>
<td>80 ± 25**</td>
<td>115 ± 66**</td>
<td>90 ± 68**</td>
<td>88 ± 69**</td>
</tr>
</tbody>
</table>

Ctl, control; TTM, targeted temperature management. Values expressed as mean ± SEM. Significant differences: *P* < 0.05, **P** < 0.01 compared to the Ctl group; #P < 0.05 compared to the TTM group.
Figure Legends:

Figure 1. Experimental protocol for CPR and post resuscitation care in a VF-induced cardiac arrest model. CA, cardiac arrest; CPR, cardiopulmonary resuscitation; DC, direct current cardioversion; ROSC, return of spontaneous circulation; TTM, targeted temperature management.

Figure 2. Changes in rectal temperature, mean blood pressure, and heart rate during post-cardiac arrest care after ROSC. (a) Rectal temperature, (b) mean blood pressure, and (c) heart rate. The bars represent the mean and SEM. Ctl, control; TTM, targeted temperature management.

Figure 3. Kaplan-Meier analyses of cumulative survival at 7 days after ROSC. Significant differences: *P* < 0.05 compared to the Ctl group. Ctl, control; TTM, targeted temperature management.

Figure 4. The relationship between NDS category and mortality. To examine if NDS score was associated with mortality, we combined the data sets from 4 groups and drew Kaplan-Meier survival curves according to NDS at 24 hours after ROSC. Animals were divided into 4 groups by NDS quartiles at 24 hours after ROSC. *P* < 0.001 for analysis of variance between groups. NDS, neurological deficit score; ROSC, return of spontaneous circulation.
Figure 5. Effects of H₂ and TTM on motor activity and spatial memory at 7 d after cardiac arrest. (a) Motor activity and (b) spatial memory at 7 days after cardiac arrest in the Y-maze test. (n = 3-4) * P < 0.05, ** P < 0.01 compared to the sham-operated group. The bars represent the mean and SEM. Ctl, control; TTM, targeted temperature management.

Figure 6. Effect of H₂ and TTM on neuronal death and microglia activation in the hippocampus CA1 sector at 7 d after cardiac arrest. Representative photomicrographs of immunohistochemistry for (a) NeuN, (b) MAP2, and (c) Iba-1 in the hippocampus CA1 sector of the sham-operated group (n = 3) and the experimental groups (n = 4-5) at 7 days after cardiac arrest. Bar = 50 μm, Significant differences: * P < 0.05, ** P < 0.001 compared to the sham-operated group, † P < 0.05, †† P < 0.01, § P < 0.001 compared to the Ctl group. The bars represent the mean and SEM. Ctl, control; TTM, targeted temperature management.

Figure 7. Effect of H₂ and TTM on neuronal death and astrocyte activation in the cerebral cortex at 7 d after cardiac arrest. Representative photomicrographs of the immunohistochemical localization of DAPI, Fluoro-Jade C (FJC), and GFAP staining in cerebral cortex. (a, e, i, m, q) Nuclear DNA was labeled with DAPI (Blue); (b, f, j, n, r) degenerating neurons were labeled with FJC (green); (c, g, k, o, s) reactive astrocytes were labeled with GFAP (red); (d, h, l, p, t) merged images. n = 3-6. Bar = 50 μm. * P < 0.01 compared to the sham-operated group, † P < 0.01 compared to the Ctl group. The bars represent the mean and SEM. Ctl, control; TTM, targeted temperature management.
Figure 1

- **CPR** 3 min ~
- **DC**
- **CA** 6 min
- **ROSC** 5 min
- **Randomization** 0
- **Normoxia (FiO₂ : 0.26)**
 - 37°C
 - 1.3% H₂, 37°C
- **Maintaining:** 37°C
- **TTM**
- **TTL**
- **TTM+H₂**
 - 33°C
 - 1.3% H₂, 33°C
- **Rewarming:** up to 37°C
- **7 days survival**
Figure 2

(a) Rectal temperature, °C
- CA
- CPR
- ROSC
- Randomization
- 5 mins

- Ctl (n=13)
- H2 (n=7)
- TTM (n=7)
- TTM+H2 (n=7)

(b) Mean BP (mmHg)
- CA

(c) HR (bpm)
- CA
Follow-up time (d)

Survival rate

- TTM+H2 (n=7)
- TTM (n=7)
- H2 (n=7)
- Ctl (n=13)

Figure 3
Figure 5

(a) Motor activity (n)

(b) Alternation (%)
Figure 6

a) NeuN

b) MAP2

c) Iba-1
Figure 7

Sham

a) [Image]
b) [Image]
c) [Image]
d) [Image]

CTL

e) [Image]
f) [Image]
g) [Image]
h) [Image]

H2

i) [Image]
j) [Image]
k) [Image]
l) [Image]

TTM

m) [Image]
n) [Image]
o) [Image]
p) [Image]

TTM+H2

q) [Image]
r) [Image]
s) [Image]
t) [Image]

![Graphs](Sham CTL H2 TTM TTM+H2)

![Graphs](GFAP relative intensity area (%) Sham CTL H2 TTM TTM+H2)
Hydrogen Inhalation During Normoxic Resuscitation Improves Neurological Outcome in a Rat Model of Cardiac Arrest, Independent of Targeted Temperature Management
Kei Hayashida, Motoaki Sano, Naomi Kamimura, Takashi Yokota, Masaru Suzuki, Shigeo Ohta, Keiichi Fukuda and Shingo Hori

Circulation. published online November 3, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2014/11/03/CIRCULATIONAHA.114.011848

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/11/03/CIRCULATIONAHA.114.011848.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL
Supplementary Table 1. Variables at baseline and during cardiopulmonary resuscitation

<table>
<thead>
<tr>
<th></th>
<th>Ctl (n = 13)</th>
<th>H₂ (n = 7)</th>
<th>TTM (n = 7)</th>
<th>TTM+H₂ (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, g</td>
<td>407 ± 3</td>
<td>406 ± 5</td>
<td>406 ± 5</td>
<td>411 ± 4</td>
</tr>
<tr>
<td>HR at BL, bpm</td>
<td>381 ± 8</td>
<td>382 ± 6</td>
<td>356 ± 11</td>
<td>395 ± 10</td>
</tr>
<tr>
<td>MAP at BL, mmHg</td>
<td>108 ± 4</td>
<td>102 ± 6</td>
<td>94 ± 6</td>
<td>108 ± 7</td>
</tr>
<tr>
<td>CPR time to ROSC, s</td>
<td>208 ± 14</td>
<td>192 ± 14</td>
<td>225 ± 22</td>
<td>202 ± 21</td>
</tr>
<tr>
<td>Number of gasps during CA, n</td>
<td>26 ± 4</td>
<td>23 ± 6</td>
<td>25 ± 7</td>
<td>20 ± 4</td>
</tr>
<tr>
<td>DBP at 60 s after starting CPR, mmHg</td>
<td>50 ± 3</td>
<td>55 ± 7</td>
<td>49 ± 4</td>
<td>59 ± 6</td>
</tr>
<tr>
<td>DBP at 150 s after starting CPR, mmHg</td>
<td>41 ± 2</td>
<td>45 ± 7</td>
<td>44 ± 3</td>
<td>42 ± 2</td>
</tr>
<tr>
<td>Total administration of defibrillation, n</td>
<td>1.4 ± 0.2</td>
<td>1.3 ± 0.3</td>
<td>1.4 ± 0.3</td>
<td>1.3 ± 0.3</td>
</tr>
</tbody>
</table>

Ctl, control; TTM, targeted temperature management; BL, baseline; HR, heart rate; MAP, mean arterial blood pressure; B.E., base excess; CPR, cardiopulmonary resuscitation; ROSC, return of spontaneous circulation. CA, cardiac arrest; DBP, diastolic blood pressure; s, second. Values expressed as mean ± SEM.
Supplementary Table 2. Arterial blood gas and chemistries analyses at baseline and during post-CA care after ROSC

<table>
<thead>
<tr>
<th></th>
<th>At baseline</th>
<th>At 30 min</th>
<th>At 60 min</th>
<th>At 120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctl</td>
<td>7.47 ± 0.01</td>
<td>7.27 ± 0.03</td>
<td>7.33 ± 0.02</td>
<td>7.35 ± 0.02</td>
</tr>
<tr>
<td>H₂</td>
<td>7.51 ± 0.03</td>
<td>7.33 ± 0.03</td>
<td>7.37 ± 0.01</td>
<td>7.39 ± 0.02</td>
</tr>
<tr>
<td>TTM</td>
<td>7.47 ± 0.02</td>
<td>7.25 ± 0.03</td>
<td>7.32 ± 0.02</td>
<td>7.31 ± 0.02</td>
</tr>
<tr>
<td>TTM + H₂</td>
<td>7.46 ± 0.02</td>
<td>7.29 ± 0.03</td>
<td>7.36 ± 0.02</td>
<td>7.36 ± 0.01</td>
</tr>
<tr>
<td>PaO₂, torr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctl</td>
<td>80 ± 3</td>
<td>103 ± 7</td>
<td>95 ± 5</td>
<td>103 ± 5</td>
</tr>
<tr>
<td>H₂</td>
<td>74 ± 5</td>
<td>99 ± 7</td>
<td>93 ± 4</td>
<td>97 ± 4</td>
</tr>
<tr>
<td>TTM</td>
<td>81 ± 4</td>
<td>112 ± 8</td>
<td>111 ± 5</td>
<td>116 ± 6</td>
</tr>
<tr>
<td>TTM + H₂</td>
<td>77 ± 3</td>
<td>111 ± 7</td>
<td>114 ± 5</td>
<td>118 ± 5</td>
</tr>
<tr>
<td>PaCO₂, torr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctl</td>
<td>35 ± 2</td>
<td>36 ± 2</td>
<td>36 ± 3</td>
<td>32 ± 2</td>
</tr>
<tr>
<td>H₂</td>
<td>32 ± 2</td>
<td>33 ± 2</td>
<td>33 ± 1</td>
<td>33 ± 1</td>
</tr>
<tr>
<td>TTM</td>
<td>34 ± 2</td>
<td>39 ± 1</td>
<td>36 ± 2</td>
<td>39 ± 2</td>
</tr>
<tr>
<td>TTM + H₂</td>
<td>36 ± 2</td>
<td>39 ± 3</td>
<td>36 ± 3</td>
<td>37 ± 3</td>
</tr>
<tr>
<td>Base excess, mmol/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctl</td>
<td>2.6 ± 0.5</td>
<td>-9.3 ± 1.9</td>
<td>-6.6 ± 1.4</td>
<td>-7.4 ± 1.2</td>
</tr>
<tr>
<td>H₂</td>
<td>2.0 ± 0.8</td>
<td>-7.9 ± 1.5</td>
<td>-5.6 ± 1.0</td>
<td>-4.6 ± 0.8</td>
</tr>
<tr>
<td>TTM</td>
<td>1.5 ± 0.4</td>
<td>-9.3 ± 1.5</td>
<td>-6.8 ± 1.1</td>
<td>-5.5 ± 1.1</td>
</tr>
<tr>
<td>Group</td>
<td>Lactate, mmol/l</td>
<td>Lactate, mmol/l</td>
<td>Lactate, mmol/l</td>
<td>Lactate, mmol/l</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>TTM + H₂</td>
<td>2.5 ± 0.6</td>
<td>−7.0 ± 1.3</td>
<td>−4.4 ± 0.5</td>
<td>−4.4 ± 0.8</td>
</tr>
<tr>
<td>Ctl</td>
<td>1.1 ± 0.1</td>
<td>6.3 ± 1.1</td>
<td>4.0 ± 0.7</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td>H₂</td>
<td>1.4 ± 0.1</td>
<td>5.2 ± 0.8</td>
<td>3.1 ± 0.4</td>
<td>2.1 ± 0.3</td>
</tr>
<tr>
<td>TTM</td>
<td>1.1 ± 0.1</td>
<td>6.1 ± 0.9</td>
<td>3.2 ± 0.6</td>
<td>2.4 ± 0.8</td>
</tr>
<tr>
<td>TTM + H₂</td>
<td>0.9 ± 0.0</td>
<td>3.9 ± 0.7</td>
<td>2.2 ± 0.2</td>
<td>2.1 ± 0.6</td>
</tr>
</tbody>
</table>

Ctl, control; TTM, targeted temperature management. Values expressed as mean ± SEM. There were no significant differences for treatment by time among the four groups by mixed-effects model for repeated-measures analyses.
Supplementary Table 3. Neurological Deficit Score of survivors at 7 d after cardiac arrest

<table>
<thead>
<tr>
<th></th>
<th>Ctl</th>
<th>H₂</th>
<th>TTM</th>
<th>TTM + H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of survivors</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>NDS at 7d</td>
<td>193 ± 56</td>
<td>33 ± 19*</td>
<td>59 ± 35*</td>
<td>20 ± 16**</td>
</tr>
</tbody>
</table>

Ctl, control; TTM, targeted temperature management. Values expressed as mean ± SEM.

Significant differences: *P < 0.05, **P = 0.01 compared to the Ctl group.