2014 AHA/ACC Guideline for the Management of Patients With Non–ST-Elevation Acute Coronary Syndromes

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the Society of Thoracic Surgeons

Endorsed by the American Association for Clinical Chemistry

WRITING COMMITTEE MEMBERS*

Ezra A. Amsterdam, MD, FACC, Chair†
Nanette K. Wenger, MD, MACC, FAHA, Vice Chair*‡
Ralph G. Brindis, MD, MPH, MACC, FSCAI‡
Donald E. Casey, Jr, MD, MPH, MBA, FACP, FAHA§
Theodore G. Ganiats, MD∥
David R. Holmes, Jr, MD, MACC†
Allan S. Jaffe, MD, FACC, FAHA*†
Hani Jneid, MD, FACC, FAHA, FSCAI†
Rosemary F. Kelly, MD∥
Philip R. Liebson, MD, FACC, FAHA†
Debabrata Mukherjee, MD, FACC†
Eric D. Peterson, MD, MPH, FACC, FAHA*#
Marc S. Sabatine, MD, MPH, FACC, FAHA*†
Richard W. Smalling, MD, PhD, FACC, FSCAI* **
Susan J. Zieman, MD, PhD, FACC†

ACC/AHA TASK FORCE MEMBERS

Jeffrey L. Anderson, MD, FACC, FAHA, Chair
Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect
Nancy M. Albert, PhD, RN, FAHA
Biykem Bozkurt, MD, PhD, FACC, FAHA
Ralph G. Brindis, MD, MPH, MACC
Lesley H. Curtis, PhD, FAHA
David DeMets, PhD††
Lee A. Fleisher, MD, FACC, FAHA
Samuel Gidding, MD, FAHA
Robert A. Guyton, MD, FACC††
Clyde W. Yancy, MD, FACC, FAHA††

The writing committee gratefully acknowledges the memory of Dr. Francis M. Fesmire (representative of the American College of Emergency Physicians), who died during the development of this document but contributed immensely to our understanding of non–ST-elevation acute coronary syndromes.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply; see Appendix 1 for recusal information.
†ACC/AHA Representative.
‡ACC/AHA Task Force on Practice Guidelines Liaison.
§American College of Physicians Representative.
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamble</td>
<td>6</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>9</td>
</tr>
<tr>
<td>1.1. Methodology and Evidence Review</td>
<td>9</td>
</tr>
<tr>
<td>1.2. Organization of the GWC</td>
<td>10</td>
</tr>
<tr>
<td>1.3. Document Review and Approval</td>
<td>10</td>
</tr>
<tr>
<td>1.4. Scope of the CPG</td>
<td>10</td>
</tr>
<tr>
<td>2. Overview of ACS</td>
<td>12</td>
</tr>
<tr>
<td>2.1. Definition of Terms</td>
<td>12</td>
</tr>
<tr>
<td>2.2. Epidemiology and Pathogenesis</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1. Epidemiology</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2. Pathogenesis</td>
<td>15</td>
</tr>
<tr>
<td>3. Initial Evaluation and Management</td>
<td>15</td>
</tr>
<tr>
<td>3.1. Clinical Assessment and Initial Evaluation: Recommendation</td>
<td>15</td>
</tr>
<tr>
<td>3.1.1. ED or Outpatient Facility Presentation: Recommendations</td>
<td>16</td>
</tr>
<tr>
<td>3.2. Diagnosis of NSTE-ACS</td>
<td>16</td>
</tr>
<tr>
<td>3.2.1. History</td>
<td>16</td>
</tr>
<tr>
<td>3.2.2. Physical Examination</td>
<td>17</td>
</tr>
<tr>
<td>3.2.3. Electrocardiogram</td>
<td>17</td>
</tr>
<tr>
<td>3.2.4. Biomarkers of Myocardial Necrosis</td>
<td>18</td>
</tr>
<tr>
<td>3.2.5. Imaging</td>
<td>18</td>
</tr>
<tr>
<td>3.3. Prognosis—Early Risk Stratification: Recommendations</td>
<td>18</td>
</tr>
<tr>
<td>3.3.1. Rationale for Risk Stratification and Spectrum of Risk: High, Intermediate, and Low</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2. Estimation of Level of Risk</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2.1. History: Angina Symptoms and Angina Equivalents</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2.2. Demographics and History in Diagnosis and Risk Stratification</td>
<td>20</td>
</tr>
<tr>
<td>3.3.2.3. Early Estimation of Risk</td>
<td>21</td>
</tr>
<tr>
<td>3.3.2.4. Electrocardiogram</td>
<td>23</td>
</tr>
<tr>
<td>3.3.2.5. Physical Examination</td>
<td>24</td>
</tr>
<tr>
<td>3.4. Cardiac Biomarkers and the Universal Definition of MI: Recommendations</td>
<td>25</td>
</tr>
<tr>
<td>3.4.1. Biomarkers: Diagnosis</td>
<td>25</td>
</tr>
<tr>
<td>3.4.2. Biomarkers: Prognosis</td>
<td>25</td>
</tr>
<tr>
<td>3.4.3. Cardiac Troponins</td>
<td>26</td>
</tr>
<tr>
<td>3.4.3.1. Prognosis</td>
<td>28</td>
</tr>
<tr>
<td>3.4.4. CK-MB and Myoglobin Compared With Troponin</td>
<td>28</td>
</tr>
<tr>
<td>4. Early Hospital Care</td>
<td>29</td>
</tr>
<tr>
<td>4.1. Standard Medical Therapies</td>
<td>30</td>
</tr>
<tr>
<td>4.1.1. Oxygen: Recommendation</td>
<td>30</td>
</tr>
<tr>
<td>4.1.2. Anti-Ischemic and Analgesic Medications</td>
<td>30</td>
</tr>
<tr>
<td>4.1.2.1. Nitrates: Recommendations</td>
<td>30</td>
</tr>
<tr>
<td>4.1.2.2. Analgesic Therapy: Recommendations</td>
<td>31</td>
</tr>
<tr>
<td>4.1.2.3. Beta-Adrenergic Blockers: Recommendations</td>
<td>32</td>
</tr>
<tr>
<td>4.1.2.4. Calcium Channel Blockers: Recommendations</td>
<td>33</td>
</tr>
<tr>
<td>4.1.2.5. Other Anti-Ischemic Interventions</td>
<td>34</td>
</tr>
<tr>
<td>4.1.2.6. Cholesterol Management</td>
<td>35</td>
</tr>
<tr>
<td>4.2. Inhibitors of Renin-Angiotensin-Aldosterone System: Recommendations</td>
<td>36</td>
</tr>
<tr>
<td>4.3. Initial Antiplatelet/Anticoagulant Therapy in Patients With Definite or Likely NSTE-ACS</td>
<td>37</td>
</tr>
<tr>
<td>4.3.1. Initial Oral and Intravenous Antiplatelet Therapy in Patients With Definite or Likely NSTE-ACS Treated With an Initial Invasive or Ischemia-Guided Strategy: Recommendations</td>
<td>37</td>
</tr>
<tr>
<td>4.3.1.1. Aspirin</td>
<td>37</td>
</tr>
<tr>
<td>4.3.1.2. P2Y12 Receptor Inhibitors</td>
<td>39</td>
</tr>
<tr>
<td>4.3.2. Initial Parenteral Anticoagulant Therapy in Patients With Definite NSTE-ACS: Recommendations</td>
<td>41</td>
</tr>
<tr>
<td>4.3.2.1. Low-Molecular-Weight Heparin</td>
<td>42</td>
</tr>
<tr>
<td>4.3.2.2. Bivalirudin</td>
<td>42</td>
</tr>
<tr>
<td>4.3.2.3. Fondaparinux</td>
<td>42</td>
</tr>
<tr>
<td>4.3.2.4. Unfractionated Heparin</td>
<td>43</td>
</tr>
</tbody>
</table>
Preamble

The American College of Cardiology (ACC) and the American Heart Association (AHA) are committed to the prevention and management of cardiovascular diseases through professional education and research for clinicians, providers, and patients. Since 1980, the ACC and AHA have shared a responsibility to translate scientific evidence into clinical practice guidelines (CPGs) with recommendations to standardize and improve cardiovascular health. These CPGs, based on systematic methods to evaluate and classify evidence, provide a cornerstone of quality cardiovascular care.

In response to published reports from the Institute of Medicine (1, 2) and the ACC/AHA’s mandate to evaluate new knowledge and maintain relevance at the point of care, the ACC/AHA Task Force on Practice Guidelines (Task Force) began modifying its methodology. This modernization effort is published in the 2012 Methodology Summit Report (3) and 2014 perspective article (4). The latter recounts the history of the collaboration, changes over time, current policies, and planned initiatives to meet the needs of an evolving healthcare environment. Recommendations on value in proportion to resource utilization will be incorporated as high-quality comparative-effectiveness data become available (5). The relationships between CPGs and data standards, appropriate use criteria, and performance measures are addressed elsewhere (4).

Intended Use—CPGs provide recommendations applicable to patients with or at risk of developing cardiovascular disease. The focus is on medical practice in the United States, but CPGs developed in collaboration with other organizations may have a broader target. Although CPGs may be used to inform regulatory or payer decisions, the intent is to improve the quality of care and be aligned with the patient's best interest.

Evidence Review—Guideline writing committee (GWC) members are charged with reviewing the literature; weighing the strength and quality of evidence for or against particular tests, treatments, or procedures; and estimating expected health outcomes when data exist. In analyzing the data and developing CPGs, the GWC uses evidence-based methodologies developed by the Task Force (6). A key component of the ACC/AHA CPG methodology is the development of recommendations on the basis of all available evidence. Literature searches focus on randomized controlled trials (RCTs) but also include registries, nonrandomized comparative and descriptive studies, case series, cohort studies, systematic reviews, and expert opinion. Only selected references are cited in the CPG. To ensure that CPGs remain current, new data are reviewed biannually by the GWCs and the Task Force to determine if recommendations should be updated or modified. In general, a target cycle of 5 years is planned for full revisions (1).

Guideline-Directed Medical Therapy—Recognizing advances in medical therapy across the spectrum of cardiovascular diseases, the Task Force designated the term “guideline-directed medical therapy” (GDMT) to
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

represent recommended medical therapy as defined mainly by Class I measures, generally a combination of lifestyle modification and drug- and device-based therapeutics. As medical science advances, GDMT evolves, and hence GDMT is preferred to “optimal medical therapy.” For GDMT and all other recommended drug treatment regimens, the reader should confirm the dosage with product insert material and carefully evaluate for contraindications and possible drug interactions. Recommendations are limited to treatments, drugs, and devices approved for clinical use in the United States.

Class of Recommendation and Level of Evidence—Once recommendations are written, the Class of Recommendation (COR; i.e., the strength the GWC assigns to the recommendation, which encompasses the anticipated magnitude and judged certainty of benefit in proportion to risk) is assigned by the GWC. Concurrently, the Level of Evidence (LOE) rates the scientific evidence supporting the effect of the intervention on the basis on the type, quality, quantity, and consistency of data from clinical trials and other reports (Table 1) (4). Unless otherwise stated, recommendations are presented in order by the COR and then the LOE. Where comparative data exist, preferred strategies take precedence. When more than 1 drug, strategy, or therapy exists within the same COR and LOE and there are no comparative data, options are listed alphabetically.

Relationships With Industry and Other Entities—The ACC and AHA exclusively sponsor the work of GWCs without commercial support, and members volunteer their time for this activity. The Task Force makes every effort to avoid actual, potential, or perceived conflicts of interest that might arise through relationships with industry or other entities (RWI). All GWC members and reviewers are required to fully disclose current industry relationships or personal interests from 12 months before initiation of the writing effort. Management of RWI involves selecting a balanced GWC and requires that both the chair and a majority of GWC members have no relevant RWI (see Appendix 1 for the definition of relevance). GWC members are restricted with regard to writing or voting on sections to which their RWI apply. In addition, for transparency, GWC members’ comprehensive disclosure information is available as an online supplement (http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000134/-/DC1). Comprehensive disclosure information for the Task Force is also available at http://www.cardiosource.org/en/ACC/About-ACC/Who-We-Are/Leadership/Guidelines-and-Documents-Task-Forces.aspx. The Task Force strives to avoid bias by selecting experts from a broad array of backgrounds representing different geographic regions, sexes, ethnicities, races, intellectual perspectives/biases, and scopes of clinical practice. Selected organizations and professional societies with related interests and expertise are invited to participate as partners or collaborators.

Individualizing Care in Patients With Associated Conditions and Comorbidities—The ACC and AHA recognize the complexity of managing patients with multiple conditions, compared with managing patients with a single disease, and the challenge is compounded when CPGs for evaluation or treatment of several coexisting
illnesses are discordant or interacting (7). CPGs attempt to define practices that meet the needs of patients in most, but not all, circumstances and do not replace clinical judgment.

Clinical Implementation—Management in accordance with CPG recommendations is effective only when followed; therefore, to enhance their commitment to treatment and compliance with lifestyle adjustment, clinicians should engage the patient to participate in selecting interventions on the basis of the patient’s individual values and preferences, taking associated conditions and comorbidities into consideration (e.g., shared decision making). Consequently, there are circumstances in which deviations from these guidelines are appropriate.

The recommendations in this CPG are the official policy of the ACC and AHA until they are superseded by a published addendum, focused update, or revised full-text CPG.

Jeffrey L. Anderson, MD, FACC, FAHA
Chair, ACC/AHA Task Force on Practice Guidelines
Table 1. Applying Classification of Recommendations and Level of Evidence

<table>
<thead>
<tr>
<th>CLASS</th>
<th>Benefit >> Risk</th>
<th>Benefit > Risk</th>
<th>Benefit ≥ Risk</th>
<th>No Benefit or Class III Harm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS I</td>
<td>Procedure/Treatment SHOULD be performed/administered</td>
<td>Recommendation that procedure or treatment is useful/effective</td>
<td>Recommendation in favor of treatment or procedure being useful/effective</td>
<td>Recommendation’s usefulness/efficacy less well established</td>
</tr>
<tr>
<td>CLASS IIa</td>
<td>Additional studies with focused objectives needed</td>
<td>Some conflicting evidence from multiple randomized trials or meta-analyses</td>
<td>Greater conflicting evidence from multiple randomized trials or meta-analyses</td>
<td>Recommendation that procedure or treatment is not useful/effective and may be harmful</td>
</tr>
<tr>
<td>CLASS III</td>
<td>IT IS REASONABLE to perform procedure/administer treatment</td>
<td>Additional studies with broad objectives needed; additional registry data would be helpful</td>
<td>Sufficient evidence from multiple randomized trials or meta-analyses</td>
<td>Sufficient evidence from multiple randomized trials or meta-analyses</td>
</tr>
</tbody>
</table>

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the clinical practice guidelines do not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes mellitus, history of prior myocardial infarction, history of heart failure, and prior aspirin use.
†For comparative-effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.

1. Introduction

1.1. Methodology and Evidence Review

The recommendations listed in this CPG are, whenever possible, evidence based. An extensive evidence review was conducted through October 2012, and other selected references published through April 2014 were reviewed by the GWC. Literature included was derived from research involving human subjects, published in
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

English, and indexed in MEDLINE (through PubMed), EMBASE, the Cochrane Library, Agency for Healthcare Research and Quality Reports, and other selected databases relevant to this CPG. The relevant data are included in evidence tables in the Data Supplement available online at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0000000000000134/-/DC2. Key search words included but were not limited to the following: acute coronary syndrome, anticoagulant therapy, antihypertensives, anti-ischemic therapy, antiplatelet therapy, antithrombotic therapy, beta blockers, biomarkers, calcium channel blockers, cardiac rehabilitation, conservative management, diabetes mellitus, glycoprotein IIb/IIIa inhibitors, heart failure, invasive strategy, lifestyle modification, myocardial infarction, nitrates, non-ST elevation, P2Y12 receptor inhibitor, percutaneous coronary intervention, renin-angiotensin-aldosterone inhibitors, secondary prevention, smoking cessation, statins, stent, thienopyridines, troponins, unstable angina, and weight management. Additionally, the GWC reviewed documents related to non–ST-elevation acute coronary syndrome (NSTEMI) previously published by the ACC and AHA. References selected and published in this document are representative and not all-inclusive.

1.2. Organization of the GWC

The GWC was composed of clinicians, cardiologists, internists, interventionists, surgeons, emergency medicine specialists, family practitioners, and geriatricians. The GWC included representatives from the ACC and AHA, American Academy of Family Physicians, American College of Emergency Physicians, American College of Physicians, Society for Cardiovascular Angiography and Interventions (SCAI), and Society of Thoracic Surgeons (STS).

1.3. Document Review and Approval

This document was reviewed by 2 official reviewers each nominated by the ACC and AHA; 1 reviewer each from the American Academy of Family Physicians, American College of Emergency Physicians, SCAI, and STS; and 37 individual content reviewers (including members of the American Association of Clinical Chemistry, ACC Heart Failure and Transplant Section Leadership Council, ACC Cardiovascular Imaging Section Leadership Council, ACC Interventional Section Leadership Council, ACC Prevention of Cardiovascular Disease Committee, ACC Surgeons’ Council, Association of International Governors, and Department of Health and Human Services). Reviewers’ RWI information was distributed to the GWC and is published in this document (Appendix 2).

This document was approved for publication by the governing bodies of the ACC and the AHA and endorsed by the American Association for Clinical Chemistry and the Society of Thoracic Surgeons.

1.4. Scope of the CPG

The 2014 NSTE-ACS CPG is a full revision of the 2007 ACCF/AHA CPG for the management of patients with unstable angina (UA) and non–ST-elevation myocardial infarction (NSTEMI) and the 2012 focused update (8).
The new title, “Non–ST-Elevation Acute Coronary Syndromes,” emphasizes the continuum between UA and NSTEMI. At presentation, patients with UA and NSTEMI can be indistinguishable and are therefore considered together in this CPG.

In the United States, NSTE-ACS affects >625,000 patients annually,* or almost three fourths of all patients with acute coronary syndrome (ACS) (9). In selecting the initial approach to care, the term “ischemia-guided strategy” has replaced the previous descriptor, “initial conservative management,” to more clearly convey the physiological rationale of this approach.

The task of the 2014 GWC was to establish a contemporary CPG for the optimal management of patients with NSTE-ACS. It incorporates both established and new evidence from published clinical trials, as well as information from basic science and comprehensive review articles. These recommendations were developed to guide the clinician in improving outcomes for patients with NSTE-ACS. Table 2 lists documents deemed pertinent to this effort and is intended for use as a resource, thus obviating the need to repeat extant CPG recommendations.

The GWC abbreviated the discussion sections to include an explanation of salient information related to the recommendations. In contrast to textbook declaratory presentations, explanations were supplemented with evidence tables. The GWC also provided a brief summary of the relevant recommendations and references related to secondary prevention rather than detailed reiteration. Throughout, the goal was to provide the clinician with concise, evidence-based contemporary recommendations and the supporting documentation to encourage their application.

Table 2. Associated CPGs and Statements

<table>
<thead>
<tr>
<th>Title</th>
<th>Organization</th>
<th>Publication Year (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable ischemic heart disease</td>
<td>ACC/AHA/AATS/PCNA/SCAI/STS</td>
<td>2014 (10)*</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>AHA/ACC/HRS</td>
<td>2014 (12)</td>
</tr>
<tr>
<td>Assessment of cardiovascular risk</td>
<td>ACC/AHA</td>
<td>2013 (13)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>ACC/AHA</td>
<td>2013 (14)</td>
</tr>
<tr>
<td>Lifestyle management to reduce cardiovascular risk</td>
<td>AHA/ACC</td>
<td>2013 (15)</td>
</tr>
<tr>
<td>Management of overweight and obesity in adults</td>
<td>AHA/ACC/TOS</td>
<td>2013 (16)</td>
</tr>
<tr>
<td>ST-elevation myocardial infarction</td>
<td>ACC/AHA</td>
<td>2013 (17)</td>
</tr>
<tr>
<td>Treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults</td>
<td>ACC/AHA</td>
<td>2013 (18)</td>
</tr>
<tr>
<td>Acute myocardial infarction in patients presenting with ST-segment elevation</td>
<td>ESC</td>
<td>2012 (19)</td>
</tr>
<tr>
<td>Device-based therapy</td>
<td>ACC/AHA/HRS</td>
<td>2013 (20)</td>
</tr>
<tr>
<td>Third universal definition of myocardial infarction</td>
<td>ESC/ACC/AHA/WHF</td>
<td>2012 (21)</td>
</tr>
<tr>
<td>Acute coronary syndromes in patients presenting without persistent ST-segment elevation</td>
<td>ESC</td>
<td>2011 (22)</td>
</tr>
<tr>
<td>Coronary artery bypass graft surgery</td>
<td>ACC/AHA</td>
<td>2011 (23)</td>
</tr>
</tbody>
</table>

*Estimate includes secondary discharge diagnoses.
2. Overview of ACS

2.1. Definition of Terms

ACS has evolved as a useful operational term that refers to a spectrum of conditions compatible with acute myocardial ischemia and/or infarction due to an abrupt reduction in coronary blood flow (Figure 1). A key branch point is ST-segment elevation (ST elevation) or new left bundle-branch block on the electrocardiogram (ECG), which is an indication for immediate coronary angiography to determine if there is an indication for reperfusion therapy to open a likely completely occluded coronary artery. Separate CPGs have been developed for ST-elevation myocardial infarction (STEMI) (17).
Figure 1. Acute Coronary Syndromes

The top half of the figure illustrates the progression of plaque formation and onset and complications of NSTE-ACS, with management at each stage. The numbered section of an artery depicts the process of atherogenesis from 1) normal artery to 2) extracellular lipid in the subintima to 3) fibrofatty stage to 4) procoagulant expression and weakening of the fibrous cap. ACS develops with 5) disruption of the fibrous cap, which is the stimulus for thrombogenesis. 6) Thrombus resorption may be followed by collagen accumulation and smooth muscle cell growth. Thrombus formation and possible coronary vasoconstriction reduce blood flow in the affected coronary artery and cause ischemic chest pain.

The bottom half of the figure illustrates the clinical, pathological, electrocardiographic, and biomarker correlates in ACS and the general approach to management. Flow reduction may be related to a completely occlusive thrombus (bottom half, right side) or subtotally occlusive thrombus (bottom half, left side). Most patients with ST elevation (thick white arrow in bottom panel) develop QwMI, and a few (thin white arrow) develop NQMI. Those without ST elevation have either UA or NSTEMI (thick red arrows), a distinction based on cardiac biomarkers. Most patients presenting with NSTEMI develop NQMI; a few may develop QwMI. The spectrum of clinical presentations including UA, NSTEMI, and STEMI is referred
to as ACS. This NSTE-ACS CPG includes sections on initial management before NSTE-ACS, at the onset of NSTE-ACS, and during the hospital phase. Secondary prevention and plans for long-term management begin early during the hospital phase. Patients with noncardiac etiologies make up the largest group presenting to the ED with chest pain (dashed arrow).

*Elevated cardiac biomarker (e.g., troponin), Section 3.4.

ACS indicates acute coronary syndrome; CPG, clinical practice guideline; Dx, diagnosis; ECG, electrocardiogram; ED, emergency department; MI, myocardial infarction; NQMI, non–Q-wave myocardial infarction; NSTE-ACS, non–ST-elevation acute coronary syndromes; NSTEMI, non–ST-elevation myocardial infarction; QwMI, Q-wave myocardial infarction; STEMI, ST-elevation myocardial infarction; and UA, unstable angina.

Modified with permission from Libby et al (38).

The absence of persistent ST elevation is suggestive of NSTE-ACS (except in patients with true posterior myocardial infarction [MI], Sections 3.3.2.4, 4.3.2, and 7.2.2). NSTE-ACS can be further subdivided on the basis of cardiac biomarkers of necrosis (e.g., cardiac troponin, Sections 3.2.4 and 3.4). If cardiac biomarkers are elevated and the clinical context is appropriate, the patient is considered to have NSTEMI (34); otherwise, the patient is deemed to have UA. ST depression, transient ST elevation, and/or prominent T-wave inversions may be present but are not required for a diagnosis of NSTEMI. Abnormalities on the ECG and elevated troponins in isolation are insufficient to make the diagnosis of ACS but must be interpreted in the appropriate clinical context. Thus, UA and NSTEMI are closely related conditions whose pathogenesis and clinical presentations are similar but vary in severity. The conditions differ primarily by whether the ischemia is severe enough to cause myocardial damage leading to detectable quantities of myocardial injury biomarkers. The term “possible ACS” is often assigned during initial evaluation if the ECG is unrevealing and troponin data are not yet available. UA can present without any objective data of myocardial ischemic injury (normal ECG and normal troponin), in which case the initial diagnosis depends solely on the patient’s clinical history and the clinician’s interpretation and judgment. However, with the increasing sensitivity of troponin assays, biomarker-negative ACS (i.e., UA) is becoming rarer (39). The pathogenesis of ACS is considered in the "Third Universal Definition of Myocardial Infarction" (21). This statement defines MI caused by a primary coronary artery process such as spontaneous plaque rupture as MI type 1 and one related to reduced myocardial oxygen supply and/or increased myocardial oxygen demand (in the absence of a direct coronary artery process) as a MI type 2 (Appendix 4, Table A and Section 3.4 for an additional discussion on the diagnosis of MI).

2.2. Epidemiology and Pathogenesis

2.2.1. Epidemiology

In the United States, the median age at ACS presentation is 68 years (interquartile range 56 to 79), and the male-to-female ratio is approximately 3:2 (40). Some patients have a history of stable angina, whereas in others, ACS is the initial presentation of coronary artery disease (CAD). It is estimated that in the United States, each year, >780,000 persons will experience an ACS. Approximately 70% of these will have NSTE-ACS (9). Patients with NSTE-ACS typically have more comorbidities, both cardiac and noncardiac, than patients with STEMI.
2.2.2. Pathogenesis

The hallmark of ACS is the sudden imbalance between myocardial oxygen consumption (MVO$_2$) and demand, which is usually the result of coronary artery obstruction. The imbalance may also be caused by other conditions, including excessive myocardial oxygen demand in the setting of a stable flow-limiting lesion; acute coronary insufficiency due to other causes (e.g., vasospastic [Prinzmetal] angina [Section 7.11], coronary embolism, coronary arteritis); noncoronary causes of myocardial oxygen supply-demand mismatch (e.g., hypotension, severe anemia, hypertension, tachycardia, hypertrophic cardiomyopathy, severe aortic stenosis); nonischemic myocardial injury (e.g., myocarditis, cardiac contusion, cardiotoxic drugs); and multifactorial causes that are not mutually exclusive (e.g., stress [Takotsubo] cardiomyopathy [Section 7.13], pulmonary embolism, severe heart failure [HF], sepsis) (41).

3. Initial Evaluation and Management

3.1. Clinical Assessment and Initial Evaluation: Recommendation

Class I

1. Patients with suspected ACS should be risk stratified based on the likelihood of ACS and adverse outcome(s) to decide on the need for hospitalization and assist in the selection of treatment options (42-44). (Level of Evidence: B)

Patients with suspected ACS must be evaluated rapidly to identify those with a life-threatening emergency versus those with a more benign condition. The goal of the initial evaluation focuses on answering 2 questions:

1. What is the likelihood that the symptoms and signs represent ACS?
2. What is the likelihood of adverse clinical outcome(s)?

Risk assessment scores and clinical prediction algorithms using clinical history, physical examination, ECG, and cardiac troponins have been developed to help identify patients with ACS at increased risk of adverse outcome(s). Common risk assessment tools include the TIMI (Thrombolysis In Myocardial Infarction) risk score (42), the PURSUIT (Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy) risk score (43), the GRACE (Global Registry of Acute Coronary Events) risk score (44), and the NCDR-ACTION (National Cardiovascular Data Registry-Acute Coronary Treatment and Intervention Outcomes Network) registry (https://www.ncdr.com/webncdr/action/). These assessment tools have been applied with variable efficacy to predict outcomes in patients presenting to the emergency department (ED) with undifferentiated chest pain (“pain” encompasses not only pain, but also symptoms such as discomfort, pressure, and squeezing) (45-48). The Sanchis score (49), Vancouver rule (50), Heart (History, ECG, Age, Risk Factors, and Troponin) score (51), HEARTS$_3$ score (52), and Hess prediction rule (53) were developed specifically for patients in the ED with chest pain. Although no definitive study has demonstrated the superiority of risk assessment scores or clinical prediction rules over clinician judgment, determination of the level of risk on
initial evaluation is imperative to guide patient management, including the need for additional diagnostic testing and treatment. See Section 3.2.2 for a discussion of risk stratification variables.

See Online Data Supplement 1 for additional information on clinical assessment and initial evaluation.

3.1.1. ED or Outpatient Facility Presentation: Recommendations

Class I

1. Patients with suspected ACS and high-risk features such as continuing chest pain, severe dyspnea, syncope/presyncope, or palpitations should be referred immediately to the ED and transported by emergency medical services when available. *(Level of Evidence: C)*

Class IIb

1. Patients with less severe symptoms may be considered for referral to the ED, a chest pain unit, or a facility capable of performing adequate evaluation depending on clinical circumstances. *(Level of Evidence: C)*

Patients with suspected ACS and high-risk features should be transported to the ED by emergency medical services when available. Hospitals and outpatient facilities should provide clearly visible signage directing patients transported by private vehicle to the appropriate triage area. Outpatient facilities should have the capacity for ECG and cardiac troponin measurements with immediate ED referral for those considered to have ACS.

3.2. Diagnosis of NSTE-ACS

Differential diagnosis of NSTE-ACS includes (41):

- Nonischemic cardiovascular causes of chest pain (e.g., aortic dissection, expanding aortic aneurysm, pericarditis, pulmonary embolism)
- Noncardiovascular causes of chest, back, or upper abdominal discomfort include:
 - Pulmonary causes (e.g., pneumonia, pleuritis, pneumothorax)
 - Gastrointestinal causes (e.g., gastroesophageal reflux, esophageal spasm, peptic ulcer, pancreatitis, biliary disease)
 - Musculoskeletal causes (e.g., costochondritis, cervical radiculopathy)
 - Psychiatric disorders
 - Other etiologies (e.g., sickle cell crisis, herpes zoster)

In addition, the clinician should differentiate NSTE-ACS from acute coronary insufficiency due to a nonatherosclerotic cause and noncoronary causes of myocardial oxygen supply-demand mismatch (41) (Section 2.2.2).

3.2.1. History
NSTE-ACS most commonly presents as a pressure-type chest pain that typically occurs at rest or with minimal exertion lasting ≥ 10 minutes (41). The pain most frequently starts in the retrosternal area and can radiate to either or both arms, the neck, or the jaw. Pain may also occur in these areas independent of chest pain. Patients with NSTE-ACS may also present with diaphoresis, dyspnea, nausea, abdominal pain, or syncope. Unexplained new-onset or increased exertional dyspnea is the most common angina equivalent. Less common presentations include nausea and vomiting, diaphoresis, unexplained fatigue, and syncope. Factors that increase the probability of NSTE-ACS are older age, male sex, positive family history of CAD, and the presence of peripheral arterial disease, diabetes mellitus, renal insufficiency, prior MI, and prior coronary revascularization. Although older patients (≥ 75 years of age) and women usually present with typical symptoms of ACS, the frequency of atypical presentations is increased in these groups as well as in patients with diabetes mellitus, impaired renal function, and dementia (54, 55). Atypical symptoms, including epigastric pain, indigestion, stabbing or pleuritic pain, and increasing dyspnea in the absence of chest pain should raise concern for NSTE-ACS (56). Psychiatric disorders (e.g., somatoform disorders, panic attack, anxiety disorders) are noncardiac causes of chest pain that can mimic ACS (57).

3.2.2. Physical Examination

The physical examination in NSTE-ACS can be normal, but signs of HF should expedite the diagnosis and treatment of this condition. Acute myocardial ischemia may cause a S_4, a paradoxical splitting of S_2, or a new murmur of mitral regurgitation due to papillary muscle dysfunction. However, these signs may also exist without NSTE-ACS and thus are nonspecific. The coupling of pain on palpation suggesting musculoskeletal disease or inflammation with a pulsatile abdominal mass suggesting abdominal aortic aneurysm raises concern for nonischemic causes of NSTE-ACS. The physical examination can indicate alternative diagnoses in patients with chest pain, several of which are life threatening. Aortic dissection is suggested by back pain, unequal palpated pulse volume, a difference of ≥ 15 mm Hg between both arms in systolic blood pressure (BP), or a murmur of aortic regurgitation. Acute pericarditis is suggested by a pericardial friction rub. Cardiac tamponade can be reflected by pulsus paradoxus. Pneumothorax is suspected when acute dyspnea, pleuritic chest pain, and differential breath sounds are present. A pleural friction rub may indicate pneumonitis or pleuritis.

3.2.3. Electrocardiogram

A12-lead ECG should be performed and interpreted within 10 minutes of the patient’s arrival at an emergency facility to assess for cardiac ischemia or injury (21). Changes on ECG in patients with NSTE-ACS include ST depression, transient ST elevation, or new T-wave inversion (21, 58). Persistent ST elevation or anterior ST depression indicative of true posterior MI should be treated according to the STEMI CPG (17). The ECG can be relatively normal or initially nondiagnostic; if this is the case, the ECG should be repeated (e.g., at 15- to 30-minute intervals during the first hour), especially if symptoms recur (21). A normal ECG does not exclude ACS and occurs in 1% to 6% of such patients (59-61). A normal ECG may also be associated with left circumflex or
right coronary artery occlusions, which can be electrically silent (in which case posterior electrocardiographic leads [V7 to V9] may be helpful). Right-sided leads (V3R to V4R) are typically performed in the case of inferior STEMI to detect evidence of right ventricular infarction. Left ventricular (LV) hypertrophy, bundle-branch blocks with repolarization abnormalities, and ventricular pacing may mask signs of ischemia/injury (62).

3.2.4. Biomarkers of Myocardial Necrosis

Cardiac troponins are the most sensitive and specific biomarkers for NSTE-ACS. They rise within a few hours of symptom onset and typically remain elevated for several days (but may remain elevated for up to 2 weeks with a large infarction). A negative cardiac troponin obtained with more sensitive cardiac troponin assays on admission confers a >95% negative predictive value for MI compared with high-sensitivity assays that confer a negative predictive value ≥99% (63-65). See Section 3.4 for a detailed review of biomarkers for the diagnosis of MI.

3.2.5. Imaging

A chest roentgenogram is useful to identify potential pulmonary causes of chest pain and may show a widened mediastinum in patients with aortic dissection. Computed tomography (CT) of the chest with intravenous contrast can help exclude pulmonary embolism and aortic dissection. Transthoracic echocardiography can identify a pericardial effusion and tamponade physiology and may also be useful to detect regional wall motion abnormalities. Transesophageal echocardiography can identify a proximal aortic dissection. In low-risk patients with chest pain, coronary CT angiography can result in a more rapid, more cost-effective diagnosis than stress myocardial perfusion imaging (66).

3.3. Prognosis—Early Risk Stratification: Recommendations

See Table 4 for a summary of recommendations from this section.

Class I

1. In patients with chest pain or other symptoms suggestive of ACS, a 12-lead ECG should be performed and evaluated for ischemic changes within 10 minutes of the patient’s arrival at an emergency facility (21). (Level of Evidence: C)

2. If the initial ECG is not diagnostic but the patient remains symptomatic and there is a high clinical suspicion for ACS, serial ECGs (e.g., 15- to 30-minute intervals during the first hour) should be performed to detect ischemic changes. (Level of Evidence: C)

3. Serial cardiac troponin I or T levels (when a contemporary assay is used) should be obtained at presentation and 3 to 6 hours after symptom onset (see Section 3.4, Class I, #3 recommendation if time of symptom onset is unclear) in all patients who present with symptoms consistent with ACS to identify a rising and/or falling pattern of values (21, 64, 67-71). (Level of Evidence: A)

4. Additional troponin levels should be obtained beyond 6 hours after symptom onset (see Section 3.4, Class I, #3 recommendation if time of symptom onset is unclear) in patients with normal troponin levels on serial examination when changes on ECG and/or clinical presentation confer an intermediate or high index of suspicion for ACS (21, 72-74). (Level of Evidence: A)
5. Risk scores should be used to assess prognosis in patients with NSTE-ACS (42-44, 75-80). (Level of Evidence: A)

Class IIa
1. Risk-stratification models can be useful in management (42-44, 75-81). (Level of Evidence: B)
2. It is reasonable to obtain supplemental electrocardiographic leads V7 to V9 in patients whose initial ECG is nondiagnostic and who are at intermediate/high risk of ACS (82-84). (Level of Evidence: B)

Class IIb
1. Continuous monitoring with 12-lead ECG may be a reasonable alternative in patients whose initial ECG is nondiagnostic and who are at intermediate/high risk of ACS (85, 86). (Level of Evidence: B)
2. Measurement of B-type natriuretic peptide or N-terminal pro–B-type natriuretic peptide may be considered to assess risk in patients with suspected ACS (87-91). (Level of Evidence: B)

3.3.1. Rationale for Risk Stratification and Spectrum of Risk: High, Intermediate, and Low

Assessment of prognosis guides initial clinical evaluation and treatment and is useful for selecting the site of care (coronary care unit, monitored step-down unit, or outpatient monitored unit), antithrombotic therapies (e.g., P2Y12 inhibitors, platelet glycoprotein [GP] IIb/IIIa inhibitors [Sections 4.3.1.2 and 5.1.2.2]), and invasive management (Sections 4.4.2.1, 4.3.1, 4.4, 4.4.4, 4.4.5). There is a strong relationship between indicators of ischemia due to CAD and prognosis (Table 3 and Figure 2). Patients with a high likelihood of ischemia due to CAD are at greater risk of a major adverse cardiac event (MACE) than patients with a lower likelihood of ischemia due to CAD. Risk is highest at the time of presentation but remains elevated past the acute phase. By 6 months, NSTE-ACS mortality rates may equal or exceed those of STEMI (58). By 12 months, rates of death, MI, and recurrent instability in contemporary registries are >10%. Early events are related to the ruptured coronary plaque and thrombosis, and later events are more closely associated with the pathophysiology of chronic atherosclerosis and LV systolic function (92-98).

3.3.2. Estimation of Level of Risk

At initial presentation, the clinical history, anginal symptoms and equivalents, physical examination, ECG, renal function, and cardiac troponin measurements can be integrated into an estimation of the risk of death and nonfatal cardiac ischemic events (Table 3 and Figure 2) (42, 78).

3.3.2.1. History: Angina Symptoms and Angina Equivalents

In patients with or without known CAD, clinicians must determine whether the presentation is consistent with acute ischemia, stable ischemic heart disease, or an alternative etiology. Factors in the initial clinical history related to the likelihood of acute ischemia include age, sex, symptoms, prior history of CAD, and the number of traditional risk factors (99-105).

The characteristics of angina include deep, poorly localized chest or arm pain that is reproducibly associated with exertion or emotional stress (106). Angina is relieved promptly (i.e., in <5 minutes) with rest
and/or short-acting nitroglycerin. Patients with NSTE-ACS may have typical or atypical anginal symptoms, but episodes are more severe and prolonged, may occur at rest, or may be precipitated by less exertion than the patient previously experienced. Some patients have no chest pain but present solely with dyspnea or with arm, shoulder, back, jaw, neck, epigastric, or ear discomfort (107-109).

Features not characteristic of myocardial ischemia include:

- Pleuritic pain (sharp or knifelike pain provoked by respiration or cough);
- Primary or sole location of discomfort in the middle or lower abdomen;
- Pain localized by the tip of 1 finger, particularly at the LV apex or costochondral junction;
- Pain reproduced with movement or palpation of the chest wall or arms;
- Brief episodes of pain lasting a few seconds or less;
- Pain that is of maximal intensity at onset; and
- Pain that radiates into the lower extremities.

Evaluation should include the clinician’s impression of whether the pain represents a high, intermediate, or low likelihood of acute ischemia.

Although typical characteristics increase the probability of CAD, atypical features do not exclude ACS. In the Multicenter Chest Pain Study, acute ischemia was diagnosed in 22% of patients who presented to the ED with sharp or stabbing pain and in 13% of those with pleuritic pain (110). Seven percent of patients whose pain was reproduced with palpation had ACS. The ACI-TIPI (Acute Cardiac Ischemia Time-Insensitive Predictive Instrument) project found that older age, male sex, chest or left arm pain, and chest pain or pressure were the most important findings, and each increased the likelihood of ACS (111, 112).

The relief of chest pain with nitroglycerin is not predictive of ACS. One study reported that sublingual nitroglycerin relieved symptoms in 35% of patients with documented ACS compared with 41% of patients without ACS (113). The relief of chest pain by “gastrointestinal cocktails” (e.g., mixtures of liquid antacids, and/or viscous lidocaine, and/or anticholinergic agents) does not predict the absence of ACS (114).

3.3.2.2. Demographics and History in Diagnosis and Risk Stratification

A prior history of MI is associated with a high risk of obstructive and multivessel CAD (115). Women with suspected ACS are less likely to have obstructive CAD than men. When obstructive CAD is present in women, it tends to be less severe than it is in men (116). It has been suggested that coronary microvascular disease and endothelial dysfunction play a role in the pathophysiology of NSTE-ACS in patients with nonobstructive CAD (116). Older adults have increased risks of underlying CAD (117, 118), multivessel CAD, and a worse prognosis (Section 7.1).

A family history of premature CAD is associated with increased coronary artery calcium scores (119) and increased risk of 30-day cardiac events in patients with ACS (120, 121). Diabetes mellitus, extracardiac...
(carotid, aortic, or peripheral) arterial disease, and hypertension are major risk factors for poor outcomes in patients with ACS (Section 6.2) with both STEMI (122) and NSTE-ACS (92).

The current or prior use of aspirin at presentation is associated with increased cardiovascular risk (42), likely reflecting the greater probability that patients who have been prescribed aspirin have an increased cardiovascular risk profile and/or prior vascular disease. Smoking is associated with a lower risk of death in ACS (42, 123, 124), primarily because of the younger age of smokers with ACS and less severe CAD. Overweight and/or obesity at ACS presentation are associated with lower short-term risk of death. The “obesity paradox” may be a function of younger age at presentation, referral for angiography at an earlier stage of disease, and more aggressive management of ACS (123). These individuals, especially those with severe obesity (body mass index >35), have a higher long-term total mortality risk (124-129).

Cocaine use can cause ACS by inducing coronary vasospasm, dissection, thrombosis, positive chronotropic and hypertensive actions, and direct myocardial toxicity (Section 7.10) (130). Methamphetamines are also associated with ACS (131). Urine toxicology screening should be considered when substance abuse is suspected as a cause of or contributor to ACS, especially in younger patients (<50 years of age) (132).

3.3.2.3. Early Estimation of Risk

The TIMI risk score is composed of 7, 1-point risk indicators rated on presentation (Table 3) (42). The composite endpoints increase as the score increases. The TIMI risk score has been validated internally within the TIMI 11B trial and in 2 separate cohorts of patients from the ESSENCE (Efficacy and Safety of Subcutaneous Enoxaparin in Non–Q-Wave Coronary Event) trial (133). The TIMI risk score calculator is available at www.timi.org. The TIMI risk index is useful in predicting 30-day and 1-year mortality in patients with NSTE-ACS (134). For patients with a TIMI risk score of 0 and normal high-sensitivity cardiac troponin 2 hours after presentation, accelerated diagnostic protocols have been developed that predict a very low rate of 30-day MACE (Section 3.4.3) (65).

The GRACE risk model predicts in-hospital and postdischarge mortality or MI (44, 78, 79, 81). The GRACE tool was developed from 11,389 patients in GRACE and validated in subsequent GRACE and GUSTO (Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries) IIb cohorts. The sum of scores is applied to a reference nomogram to determine all-cause mortality from hospital discharge to 6 months. The GRACE clinical application tool is a web-based downloadable application and is available at http://www.outcomes-umassmed.org/grace/ (Figure 2) (44, 135).

Among patients with a higher TIMI risk score (e.g., ≥ 3), there is a greater benefit from therapies such as low-molecular-weight heparin (LMWH) (133, 136), platelet GP IIb/IIIa inhibitors (137), and an invasive strategy (138). Similarly, the GRACE risk model can identify patients who would benefit from an early invasive strategy (139). Patients with elevated cardiac troponin benefit from more aggressive therapy, whereas those without elevated cardiac troponins may not (140). This is especially true for women in whom some data suggest
adverse effects from invasive therapies in the absence of an elevated cardiac troponin value (141). Although B-type natriuretic peptide and N-terminal pro–B-type natriuretic peptide are not useful for the diagnosis of ACS per se (but rather HF, which has many etiologies), they add prognostic value (87-91).

Table 3. TIMI Risk Score* for NSTE-ACS

<table>
<thead>
<tr>
<th>TIMI Risk Score</th>
<th>All-Cause Mortality, New or Recurrent MI, or Severe Recurrent Ischemia Requiring Urgent Revascularization Through 14 d After Randomization, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>4.7</td>
</tr>
<tr>
<td>2</td>
<td>8.3</td>
</tr>
<tr>
<td>3</td>
<td>13.2</td>
</tr>
<tr>
<td>4</td>
<td>19.9</td>
</tr>
<tr>
<td>5</td>
<td>26.2</td>
</tr>
<tr>
<td>6–7</td>
<td>40.9</td>
</tr>
</tbody>
</table>

*The TIMI risk score is determined by the sum of the presence of 7 variables at admission: 1 point is given for each of the following variables: ≥65 y of age; ≥3 risk factors for CAD; prior coronary stenosis ≥50%; ST deviation on ECG; ≥2 anginal events in prior 24 h; use of aspirin in prior 7 d; and elevated cardiac biomarkers.

CAD indicates coronary artery disease; ECG, electrocardiogram; MI, myocardial infarction; NSTE-ACS, non–ST-elevation acute coronary syndromes; and TIMI, Thrombolysis In Myocardial Infarction.

Modified with permission from Antman et al. (42).

Figure 2. Global Registry of Acute Coronary Events Risk Calculator for In-Hospital Mortality for Acute Coronary Syndrome

A. GRACE Risk Model Nomogram

1. Find Points for Each Predictive Factor:

<table>
<thead>
<tr>
<th>Killip Class</th>
<th>Points</th>
<th>SBP, mm Hg</th>
<th>Points</th>
<th>Heart Rate, Rest/min</th>
<th>Points</th>
<th>Age, y</th>
<th>Points</th>
<th>Creatinine Level, mg/dL</th>
<th>Points</th>
<th>Total Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>≤80</td>
<td>88</td>
<td>≤80</td>
<td>0</td>
<td>≤80</td>
<td>0</td>
<td>≤80</td>
<td>0</td>
<td>0-0.59 1</td>
</tr>
<tr>
<td>II</td>
<td>20</td>
<td>80–99</td>
<td>63</td>
<td>90–99</td>
<td>0</td>
<td>90–99</td>
<td>0</td>
<td>90–99</td>
<td>0</td>
<td>8.3-1.44 2</td>
</tr>
<tr>
<td>III</td>
<td>39</td>
<td>100–119</td>
<td>45</td>
<td>100–119</td>
<td>9</td>
<td>100</td>
<td>9</td>
<td>100</td>
<td>9</td>
<td>19.9-26.2 3</td>
</tr>
<tr>
<td>IV</td>
<td>59</td>
<td>120–159</td>
<td>34</td>
<td>120–159</td>
<td>13</td>
<td>120</td>
<td>13</td>
<td>120</td>
<td>13</td>
<td>26.2-40.9 4</td>
</tr>
<tr>
<td>≥200</td>
<td>0</td>
<td>≥200</td>
<td>46</td>
<td>≥200</td>
<td>46</td>
<td>≥200</td>
<td>46</td>
<td>≥200</td>
<td>46</td>
<td>40.9</td>
</tr>
</tbody>
</table>

*Other Risk Factors Points:

- Cardiac Arrest at Admission: 30
- ST-Segment Deviation: 25
- Elevated Cardiac-Enzyme Levels: 14

2. Sum Points for All Predictive Factors:

3. Look Up Risk Corresponding to Total Points:

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Probability of In-Hospital Death, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥200</td>
<td>≤0.2</td>
</tr>
<tr>
<td>210–220</td>
<td>0.3</td>
</tr>
<tr>
<td>220–230</td>
<td>0.4</td>
</tr>
<tr>
<td>230–240</td>
<td>0.5</td>
</tr>
<tr>
<td>240–250</td>
<td>0.6</td>
</tr>
</tbody>
</table>

For example, a patient has Killip class II, SBP of 100 mm Hg, heart rate of 100 beats/min, is 65 years of age, has serum creatinine level of 1 mg/dL, did not have a cardiac arrest at admission but did have ST-segment deviation and elevated enzyme levels. His score would be 20 + 5 + 1 + 5 + 7 + 0 + 14 + 14 = 69. This person would have about a 16% risk of having an in-hospital death.

Similarly, a patient with Killip class I, SBP of 80 mm Hg, heart rate of 80 beats/min, is 55 years of age, has serum creatinine level of 0.4, and no risk factors would have the following score:

0 + 60 + 3 + 41 + 1 = 105, which gives approximately a 0.9% risk of having an in-hospital death.

To convert serum creatinine level to micromoles per liter, multiply by 88.4.
SBP indicates systolic blood pressure.
Reprinted with permission from Granger et al. (142).

B. Calibration of Simplified Global Registry of ACS Mortality Model

\[\text{ACS indicates acute coronary syndrome. Reprinted with permission from Granger et al. (142).}\]

\[\text{3.3.2.4. Electrocardiogram}\]

The 12-lead ECG is pivotal in the decision pathway for the evaluation and management of patients presenting with symptoms suggestive of ACS (58, 59, 85). Transient ST changes (≥0.5 mm [0.05 mV]) during symptoms at rest strongly suggest ischemia and underlying severe CAD. Patients without acute ischemic changes on ECG have a reduced risk of MI and a very low risk of in-hospital life-threatening complications, even in the presence of confounding electrocardiographic patterns such as LV hypertrophy (143-145). ST depression (especially horizontal or downsloping) is highly suggestive of NSTE-ACS (21, 146, 147). Marked symmetrical precordial T-wave inversion (≥2 mm [0.2 mV]) suggests acute ischemia, particularly due to a critical stenosis of the left anterior descending coronary artery (148, 149); it may also be seen with acute pulmonary embolism and right-sided ST-T changes.

Nonspecific ST-T changes (usually defined as ST deviation of <0.5 mm [0.05 mV] or T-wave inversion of <2 mm [0.2 mV]) are less helpful diagnostically. Significant Q waves are less helpful, although by suggesting prior MI, they indicate a high likelihood of significant CAD. Isolated Q waves in lead 3 are a normal finding. A completely normal ECG in a patient with chest pain does not exclude ACS, because 1% to 6% of such patients will have a MI, and at least 4% will have UA (59-61). Fibrinolytic therapy is contraindicated for patients with
ACS without ST elevation, except for those with electrocardiographic evidence of true posterior MI (i.e., ST elevation in posterior chest leads [V₇ to V₉]). This can be evaluated when acute myocardial infarction (AMI) is suspected but electrocardiographic changes are modest or not present (82-84); a transthoracic echocardiogram to evaluate for posterior wall motion abnormalities may also be helpful in this setting.

Alternative causes of ST-T changes include LV aneurysm, pericarditis, myocarditis, bundle-branch block, LV hypertrophy, hyperkalemia, Prinzmetal angina, early repolarization, apical LV ballooning syndrome (Takotsubo cardiomyopathy, Section 7.13), and Wolff-Parkinson-White conduction. Central nervous system events and therapy with tricyclic antidepressants or phenothiazines can cause deep T-wave inversion.

3.3.2.5. Physical Examination

The physical examination is helpful in assessing the hemodynamic impact of an ischemic event. Patients with suspected ACS should have vital signs measured (BP in both arms if dissection is suspected) and should undergo a thorough cardiovascular examination. Patients with evidence of LV dysfunction on examination (e.g., rales, S₃ gallop) or acute mitral regurgitation have a higher likelihood of severe underlying CAD and are at high risk of a poor outcome. In the SHOCK (Should we Emergently Revascularize Occluded Coronaries for Cardiogenic Shock) study, NSTEMI accounted for approximately 20% of cardiogenic shock complicating MI (150). Other trials have reported lower percentages (92, 151). The physical examination may also help identify comorbid conditions (e.g., occult GI bleeding) that could impact therapeutic risk and decision making.

Table 4. Summary of Recommendations for Prognosis: Early Risk Stratification

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform rapid determination of likelihood of ACS, including a 12-lead ECG within 10 min of arrival at an emergency facility, in patients whose symptoms suggest ACS</td>
<td>I</td>
<td>C</td>
<td>(21)</td>
</tr>
<tr>
<td>Perform serial ECGs at 15- to 30-min intervals during the first hour in symptomatic patients with initial nondiagnostic ECG</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Measure cardiac troponin (cTnl or cTnT) in all patients with symptoms consistent with ACS*</td>
<td>I</td>
<td>A</td>
<td>(21, 64, 67-71)</td>
</tr>
<tr>
<td>Measure serial cardiac troponin I or T at presentation and 3–6 h after symptom onset* in all patients with symptoms consistent with ACS</td>
<td>I</td>
<td>A</td>
<td>(21, 72-74)</td>
</tr>
<tr>
<td>Use risk scores to assess prognosis in patients with NSTE-ACS</td>
<td>I</td>
<td>A</td>
<td>(42-44, 75-80)</td>
</tr>
<tr>
<td>Risk-stratification models can be useful in management</td>
<td>IIa</td>
<td>B</td>
<td>(42-44, 75-81)</td>
</tr>
<tr>
<td>Obtain supplemental electrocardiographic leads V₇ to V₉ in patients with initial nondiagnostic ECG at intermediate/high risk for ACS</td>
<td>IIa</td>
<td>B</td>
<td>(82-84)</td>
</tr>
<tr>
<td>Continuous monitoring with 12-lead ECG may be a reasonable alternative with initial nondiagnostic ECG in patients at intermediate/high risk for ACS</td>
<td>IIb</td>
<td>B</td>
<td>(85, 86)</td>
</tr>
<tr>
<td>BNP or NT–pro-BNP may be considered to assess risk in patients with suspected ACS</td>
<td>IIb</td>
<td>B</td>
<td>(87-91)</td>
</tr>
</tbody>
</table>

*See Section 3.4, Class I, #3 recommendation if time of symptom onset is unclear.
3.4. Cardiac Biomarkers and the Universal Definition of MI: Recommendations

See Table 5 for a summary of recommendations from this section and Online Data Supplement 3 for additional information on cardiac injury markers and the universal definition of AMI.

3.4.1. Biomarkers: Diagnosis

Class I

1. Cardiac-specific troponin (troponin I or T when a contemporary assay is used) levels should be measured at presentation and 3 to 6 hours after symptom onset in all patients who present with symptoms consistent with ACS to identify a rising and/or falling pattern (21, 64, 67-71, 152-156). *(Level of Evidence: A)*

2. Additional troponin levels should be obtained beyond 6 hours after symptom onset in patients with normal troponins on serial examination when electrocardiographic changes and/or clinical presentation confer an intermediate or high index of suspicion for ACS (21, 72-74, 157). *(Level of Evidence: A)*

3. If the time of symptom onset is ambiguous, the time of presentation should be considered the time of onset for assessing troponin values (67, 68, 72). *(Level of Evidence: A)*

Class III: No Benefit

1. With contemporary troponin assays, creatine kinase myocardial isoenzyme (CK-MB) and myoglobin are not useful for diagnosis of ACS (158-164). *(Level of Evidence: A)*

3.4.2. Biomarkers: Prognosis

Class I

1. The presence and magnitude of troponin elevations are useful for short- and long-term prognosis (71, 73, 165, 166). *(Level of Evidence: B)*

Class IIb

1. It may be reasonable to remeasure troponin once on day 3 or day 4 in patients with MI as an index of infarct size and dynamics of necrosis (164, 165). *(Level of Evidence: B)*

2. Use of selected newer biomarkers, especially B-type natriuretic peptide, may be reasonable to provide additional prognostic information (87, 88, 167-171). *(Level of Evidence: B)*

Cardiac troponins are the mainstay for diagnosis of ACS and for risk stratification in patients with ACS. The primary diagnostic biomarkers of myocardial necrosis are cardiac troponin I and cardiac troponin T. Features that favor troponins for detection of ACS include high concentrations of troponins in the myocardium; virtual absence of troponins in nonmyocardial tissue; high-release ratio into the systemic circulation (amount found in blood relative to amount depleted from myocardium); rapid release into the blood in proportion to the extent of myocardial injury; and the ability to quantify values with reproducible, inexpensive, rapid, and easily applied assays. The 2012 Third Universal Definition of MI provides criteria that classify 5 clinical presentations of MI based on pathological, clinical, and prognostic factors (21). In the appropriate clinical context, MI is indicated by a rising and/or falling pattern of troponin with ≥1 value above the 99th percentile of the upper reference level.
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

and evidence for serial increases or decreases in the levels of troponins (67, 68, 156). The potential consequences of emerging high-sensitivity troponin assays include increases in the diagnosis of NSTEMI (152, 172, 173) influenced by the definition of an abnormal troponin (67, 153, 174, 175). The recommendations in this section are formulated from studies predicated on both the new European Society of Cardiology/ACC/AHA/World Health Organization criteria (21) and previous criteria/redefinitions of MI based on earlier-generation troponin assays (Appendix 4, Table A).

Table 5. Summary of Recommendations for Cardiac Biomarkers and the Universal Definition of MI

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure cardiac-specific troponin (troponin I or T) at presentation and 3–6 h after symptom onset in all patients with suspected ACS to identify pattern of values</td>
<td>I</td>
<td>A</td>
<td>(21, 64, 67-71, 152-156)</td>
</tr>
<tr>
<td>Obtain additional troponin levels beyond 6 h in patients with initial normal serial troponins with electrocardiographic changes and/or intermediate/high risk clinical features</td>
<td>I</td>
<td>A</td>
<td>(21, 72-74, 157)</td>
</tr>
<tr>
<td>Consider time of presentation the time of onset with ambiguous symptom onset for assessing troponin values</td>
<td>I</td>
<td>A</td>
<td>(67, 68, 72)</td>
</tr>
<tr>
<td>With contemporary troponin assays, CK-MB and myoglobin are not useful for diagnosis of ACS</td>
<td>III: No Benefit</td>
<td>A</td>
<td>(158-164)</td>
</tr>
<tr>
<td>Prognosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troponin elevations are useful for short- and long-term prognosis</td>
<td>I</td>
<td>B</td>
<td>(71, 73, 165, 166)</td>
</tr>
<tr>
<td>Remeasurement of troponin value once on d 3 or 4 in patients with MI may be reasonable as an index of infarct size and dynamics of necrosis</td>
<td>IIb</td>
<td>B</td>
<td>(164, 165)</td>
</tr>
<tr>
<td>BNP may be reasonable for additional prognostic information</td>
<td>IIb</td>
<td>B</td>
<td>(87, 88, 167-171)</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndromes; BNP, B-type natriuretic peptide; CK-MB, creatine kinase myocardial isoenzyme; COR, Class of Recommendation; LOE, Level of Evidence; and MI, myocardial infarction.

3.4.3. Cardiac Troponins

See Online Data Supplement 4 for additional information on cardiac troponins.

Of the 3 troponin subunits, 2 subunits (troponin I and troponin T) are derived from genes specifically expressed in the myocardium. Cardiac troponin measurements provide highly sensitive results specific for detecting cardiomyocyte necrosis (34, 173). Highly sensitive assays can identify cardiac troponin not only in the blood of patients with acute cardiac injury but also in the blood of most healthy people (64, 68, 70, 166, 176, 177). As assay sensitivity increases, a greater proportion of patients will have detectable long-term elevations in troponin, thus requiring consideration of serial changes for the diagnosis of MI. Clinicians should be aware of the sensitivity of the tests used for troponin evaluation in their hospitals and cutpoint concentrations for clinical decisions. Markedly elevated values are usually related to MI, myocarditis, rare analytical factors, or chronic elevations in patients with renal failure and in some patients with HF.

CPGs endorse the 99th percentile of the upper reference level as the appropriate cutpoint for considering myocardial necrosis (21, 22). For the diagnosis of acute myocardial necrosis, it is important to determine not only the peak troponin value but also serial changes:
1. A troponin value above the 99th percentile of the upper reference level is required. Additionally, evidence for a serial increase or decrease ≥20% is required if the initial value is elevated (21, 178).

2. For any troponin values below or close to the 99th percentile, evidence for acute myocardial necrosis is indicated by a change of ≥3 standard deviations of the variation around the initial value as determined by the individual laboratory (21, 179).

3. Clinical laboratory reports should indicate whether significant changes in cardiac troponin values for the particular assay have occurred.

Absolute changes in nanograms per liter of high-sensitivity cardiac troponin T levels appear to have a significantly higher diagnostic accuracy for AMI than relative changes and may distinguish AMI from other causes of high-sensitivity cardiac troponin T elevations (71). This has also been suggested for some contemporary assays (71). Troponins are elevated in MI as early as 2 to 4 hours after symptom onset (64, 70), and many medical centers obtain troponins at 3 hours. Depending on the assay, values may not become abnormal for up to 12 hours. In the vast majority of patients with symptoms suggestive of ACS, MI can be excluded or confirmed within 6 hours, because very few patients present immediately after symptom onset. In high-risk patients, measurements after 6 hours may be required to identify ACS.

Solitary elevations of troponin cannot be assumed to be due to MI, because troponin elevations can be due to tachyarrhythmia, hypotension or hypertension, cardiac trauma, acute HF, myocarditis and pericarditis, acute pulmonary thromboembolic disease, and severe noncardiac conditions such as sepsis, burns, respiratory failure, acute neurological diseases, and drug toxicity (including cancer chemotherapy). Chronic elevations can result from structural cardiac abnormalities such as LV hypertrophy or ventricular dilatation and are also common in patients with renal insufficiency (34). Patients with end-stage renal disease and no clinical evidence of ACS frequently have elevations of cardiac troponin (180-182). With conventional assays, this is more common with cardiac troponin T than with cardiac troponin I (180). In the diagnosis of NSTEMI, cardiac troponin values must manifest an acute pattern consistent with the clinical events, including ischemic symptoms and electrocardiographic changes. Troponin elevations may persist for up to 14 days or occasionally longer. There is a paucity of guidelines for establishment of reinfarction during the acute infarct period on the basis of troponin measurements. References suggest that an increase of >20% of previous troponin levels or an absolute increase of high-sensitivity cardiac troponin T values (e.g., >7 ng/L over 2 hours) may indicate reinfarction (183-185).

During pregnancy, troponin values are within the normal range in the absence of cardiovascular morbidities. There is controversy as to whether troponin levels are elevated in pre-eclampsia, eclampsia, or gestational hypertension (186-189). When present, cardiac troponin elevations reflect myocardial necrosis.

Point-of-care troponin values may provide initial diagnostic information, although their sensitivity is substantially below that of central laboratory methods (154, 155, 190-192). In addition, the rigorous quantitative assay standardization needed for routine diagnosis favors central laboratory testing.
3.4.3.1. Prognosis

Troponin elevations convey prognostic assessment beyond that of clinical information, the initial ECG, and the predischarge stress test (71). In addition, troponin elevations may provide information to direct therapy. Patients with cardiac troponin elevations are at high risk and benefit from intensive management and early revascularization (193-195). High risk is optimally defined by the changing pattern as described in Section 3.4.3. Cardiac troponin elevations correlate with estimation of infarct size and risk of death; persistent elevation 72 to 96 hours after symptom onset may afford relevant information in this regard (164). Elevations of cardiac troponin can occur for multiple reasons other than MI. In these cases, there is often substantial risk of adverse outcomes, as troponin elevation indicates cardiomyocyte necrosis (181).

3.4.4. CK-MB and Myoglobin Compared With Troponin

Previously, CK-MB was used for early evidence of myocardial injury. Because myoglobin is a relatively small molecule, it is rapidly released from infarcted myocardium. CK-MB is much less sensitive for detection of myocardial injury than troponin, and substantially more tissue injury is required for its detection. With the availability of cardiac troponin, CK-MB, myoglobin, and other diagnostic biomarkers are no longer necessary (158, 160-163, 196-198). CK-MB may be used to estimate MI size. Detection of MI after percutaneous coronary intervention (PCI) remains an area of controversy. Because of the increased sensitivity of cardiac troponin, the prognostic value associated with varying degrees of elevation remains unclear.

See Online Data Supplements 5, 6, and 7 for additional information on cardiac injury markers.

3.5. Immediate Management

3.5.1. Discharge From the ED or Chest Pain Unit: Recommendations

Class IIa

1. It is reasonable to observe patients with symptoms consistent with ACS without objective evidence of myocardial ischemia (nonischemic initial ECG and normal cardiac troponin) in a chest pain unit or telemetry unit with serial ECGs and cardiac troponin at 3- to 6-hour intervals (196, 197, 199-201). (Level of Evidence: B)

2. It is reasonable for patients with possible ACS who have normal serial ECGs and cardiac troponins to have a treadmill ECG (200-202) (Level of Evidence: A), stress myocardial perfusion imaging (200), or stress echocardiography (203, 204) before discharge or within 72 hours after discharge. (Level of Evidence: B)

3. In patients with possible ACS and a normal ECG, normal cardiac troponins, and no history of CAD, it is reasonable to initially perform (without serial ECGs and troponins) coronary CT angiography to assess coronary artery anatomy (205-207) (Level of Evidence: A) or rest myocardial perfusion imaging with a technetium-99m radiopharmaceutical to exclude myocardial ischemia (208, 209). (Level of Evidence: B)
4. It is reasonable to give low-risk patients who are referred for outpatient testing daily aspirin, short-acting nitroglycerin, and other medication if appropriate (e.g., beta blockers), with instructions about activity level and clinician follow-up. (Level of Evidence: C)

The majority of patients presenting to the ED with chest pain do not have ACS (Figure 1), and most are at low risk for major morbidity and mortality (35). Low-risk patients are usually identified by an absence of history of cardiovascular disease, normal or near-normal initial ECG, normal initial troponin, and clinical stability (35, 202). The utility of an accelerated diagnostic protocol for detecting patients with benign conditions versus those who require admission for serious disease has been established (35). At minimum, these protocols involve serial ECGs and troponin measurements, both of which can be performed in the ED, a separate chest pain unit, or a telemetry unit. A 30-day negative predictive value >99% for ACS has been reported for patients presenting to the ED with chest pain who undergo a 2-hour accelerated diagnostic protocol composed of a TIMI risk score of 0, normal ECG, and normal high-sensitivity troponin at 0 hours and 2 hours (assuming appropriate follow-up care) (65, 210). Some protocols also call for a functional or anatomic test (e.g., treadmill test, rest scintigraphy, coronary CT angiography, stress imaging). Coronary CT angiography is associated with rapid assessment, high negative predictive value, decreased length of stay, and reduced costs (205-207); however, in the latter studies, it increased the rate of invasive coronary angiography and revascularization with uncertain long-term benefits in low-risk patients without ECG or troponin alterations (211). Accelerated diagnostic protocols are also potentially applicable in intermediate-risk patients, whose presentation includes a history of cardiovascular disease, diabetes mellitus, chronic kidney disease (CKD), and/or advanced age (202).

See Online Data Supplement 8 for additional information on discharge from the ED or chest pain unit.

4. Early Hospital Care

The standard of care for patients who present with NSTE-ACS, including those with recurrent symptoms, ischemic electrocardiographic changes, or positive cardiac troponins, is admission for inpatient management. The goals of treatment are the immediate relief of ischemia and the prevention of MI and death. Initially, stabilized patients with NSTE-ACS are admitted to an intermediate (or step-down) care unit. Patients undergo continuous electrocardiographic rhythm monitoring and observation for recurrent ischemia. Bed or chair rest is recommended for patients admitted with NSTE-ACS. Patients with NSTE-ACS should be treated with antianginal (Section 4.1.2.5), antiplatelet, and anticoagulant therapy (Section 4.3). Patients are managed with either an early invasive strategy or an ischemia-guided strategy (Section 4.4).

Patients with continuing angina, hemodynamic instability, uncontrolled arrhythmias, or a large MI should be admitted to a coronary care unit. The nurse-to-patient ratio should be sufficient to provide 1) continuous electrocardiographic rhythm monitoring, 2) frequent assessment of vital signs and mental status, and 3) ability to perform rapid cardioversion and defibrillation. These patients are usually observed in the coronary
care unit for at least 24 hours. Those without recurrent ischemia, significant arrhythmias, pulmonary edema, or hemodynamic instability can be considered for admission or transfer to an intermediate care or telemetry unit.

An assessment of LV function is recommended because depressed LV function will likely influence pharmacological therapies (e.g., angiotensin-converting enzyme [ACE] inhibitors for depressed left ventricular ejection fraction [LVEF]) may suggest the presence of more extensive CAD and may influence the choice of revascularization (PCI versus coronary artery bypass graft surgery [CABG]). Because significant valvular disease may also influence the type of revascularization, echocardiography rather than ventriculography is often preferred for assessment of LV function.

4.1. Standard Medical Therapies
See Table 6 for a summary of recommendations from this section.

4.1.1. Oxygen: Recommendation

Class I
1. Supplemental oxygen should be administered to patients with NSTE-ACS with arterial oxygen saturation less than 90%, respiratory distress, or other high-risk features of hypoxemia. (Level of Evidence: C)

Patients with cyanosis, arterial oxygen saturation <90%, respiratory distress, or other high-risk features of hypoxemia are treated with supplemental oxygen. The 2007 UA/NSTEMI CPG recommended the routine administration of supplemental oxygen to all patients with NSTE-ACS during the first 6 hours after presentation on the premise that it is safe and may alleviate hypoxemia (212). The benefit of routine supplemental oxygen administration in normoxic patients with NSTE-ACS has never been demonstrated. At the time of GWC deliberations, data emerged that routine use of supplemental oxygen in cardiac patients may have untoward effects, including increased coronary vascular resistance, reduced coronary blood flow, and increased risk of mortality (213-215).

4.1.2. Anti-Ischemic and Analgesic Medications

4.1.2.1. Nitrates: Recommendations

Class I
1. Patients with NSTE-ACS with continuing ischemic pain should receive sublingual nitroglycerin (0.3 mg to 0.4 mg) every 5 minutes for up to 3 doses, after which an assessment should be made about the need for intravenous nitroglycerin if not contraindicated (216-218). (Level of Evidence: C)
2. Intravenous nitroglycerin is indicated for patients with NSTE-ACS for the treatment of persistent ischemia, HF, or hypertension (219-224). (Level of Evidence: B)

Class III: Harm
1. Nitrates should not be administered to patients with NSTE-ACS who recently received a phosphodiesterase inhibitor, especially within 24 hours of sildenafil or vardenafil, or within 48 hours of tadalafil (225-227). (Level of Evidence: B)
Nitrates are endothelium-independent vasodilators with peripheral and coronary vascular effects. By dilating the capacitance vessels, nitrates decrease cardiac preload and reduce ventricular wall tension. More modest effects on the arterial circulation result in afterload reduction and further decrease in MVO$_2$. This may be partially offset by reflex increases in heart rate and contractility, which counteract the reduction in MVO$_2$ unless a beta blocker is concurrently administered. Nitrates also dilate normal and atherosclerotic coronary arteries and increase coronary collateral flow. Nitrates may also inhibit platelet aggregation (228).

RCTs have not shown a reduction in MACE with nitrates. The rationale for nitrate use in NSTE-ACS is extrapolated from pathophysiological principles and extensive (although uncontrolled) clinical observations, experimental studies, and clinical experience. The decision to administer nitrates should not preclude therapy with other proven mortality-reducing interventions such as beta blockers.

Intravenous nitroglycerin is beneficial in patients with HF, hypertension, or symptoms that are not relieved with sublingual nitroglycerin and administration of a beta blocker (219, 221-224). Patients who require intravenous nitroglycerin for >24 hours may require periodic increases in the infusion rate and use of nontolerance-producing regimens (e.g., intermittent dosing) to maintain efficacy. In current practice, most patients who require continued intravenous nitroglycerin for the relief of angina undergo prompt coronary angiography and revascularization. Topical or oral nitrates are acceptable alternatives to intravenous nitroglycerin for patients who do not have refractory or recurrent ischemia (229, 230). Side effects of nitrates include headache and hypotension. Nitrates should not be administered to patients with hypotension or to those who received a phosphodiesterase inhibitor and administered with caution to patients with right ventricular infarction (231).

See Online Data Supplement 9 for additional information on nitrates.

4.1.2.2. Analgesic Therapy: Recommendations

Class IIb
1. In the absence of contraindications, it may be reasonable to administer morphine sulfate intravenously to patients with NSTE-ACS if there is continued ischemic chest pain despite treatment with maximally tolerated anti-ischemic medications (232, 233). (Level of Evidence: B)

Class III: Harm
1. Nonsteroidal anti-inflammatory drugs (NSAIDs) (except aspirin) should not be initiated and should be discontinued during hospitalization for NSTE-ACS because of the increased risk of MACE associated with their use (234, 235). (Level of Evidence: B)

The role of morphine sulfate was re-evaluated for this CPG revision, including studies that suggest the potential for adverse events with its use (232). Morphine sulfate has potent analgesic and anxiolytic effects, as well as hemodynamic actions, that are potentially beneficial in NSTE-ACS. It causes venodilation and produces modest reductions in heart rate (through increased vagal tone) and systolic BP. In patients with symptoms despite antianginal treatment, morphine (1 mg to 5 mg IV) may be administered during intravenous nitroglycerin.
therapy with BP monitoring. The morphine dose may be repeated every 5 to 30 minutes to relieve symptoms and maintain the patient’s comfort. Its use should not preclude the use of other anti-ischemic therapies with proven benefits in patients with NSTE-ACS. To our knowledge, no RCTs have assessed the use of morphine in patients with NSTE-ACS or defined its optimal administration schedule. Observational studies have demonstrated increased adverse events associated with the use of morphine sulfate in patients with ACS and acute decompensated HF (232, 233, 236). Although these reports were observational, uncontrolled studies limited by selection bias, they raised important safety concerns.

Although constipation, nausea, and/or vomiting occur in >20% of patients, hypotension and respiratory depression are the most serious complications of excessive use of morphine. Naloxone (0.4 mg to 2.0 mg IV) may be administered for morphine overdose with respiratory or circulatory depression.

Traditional NSAIDs and selective cyclooxygenase (COX)-2 inhibitors markedly block endothelial prostacyclin production, which leads to unopposed platelet aggregation by platelet-derived thromboxane A$_2$. Both types of NSAIDs prevent the beneficial actions of aspirin and interfere with the inhibition of COX-1, thromboxane A$_2$ production, and platelet aggregation. Because of their inhibitory activity on the ubiquitous COXs, NSAIDs have an extensive adverse side effect profile, particularly renal and gastrointestinal. The increased cardiovascular hazards associated with NSAIDs have been observed in several studies of patients without ACS (234, 235, 237, 238). The PRECISION (Prospective Randomized Evaluation of Celecoxib Integrated Safety Versus Ibuprofen Or Naproxen) trial, in progress at the time of publication, is the first study of patients with high cardiovascular risk who are receiving long-term treatment with a selective COX-2 inhibitor or traditional NSAIDs. PRECISION will examine the relative cardiovascular safety profiles of celecoxib, ibuprofen, and naproxen in patients without ACS (239).

See Online Data Supplement 10 for additional information on analgesic therapy.

4.1.2.3. Beta-Adrenergic Blockers: Recommendations

Class I

1. Oral beta-blocker therapy should be initiated within the first 24 hours in patients who do not have any of the following: 1) signs of HF, 2) evidence of low-output state, 3) increased risk for cardiogenic shock, or 4) other contraindications to beta blockade (e.g., PR interval >0.24 second, second- or third-degree heart block without a cardiac pacemaker, active asthma, or reactive airway disease) (240-242). (Level of Evidence: A)

2. In patients with concomitant NSTE-ACS, stabilized HF, and reduced systolic function, it is recommended to continue beta-blocker therapy with 1 of the 3 drugs proven to reduce mortality in patients with HF: sustained-release metoprolol succinate, carvedilol, or bisoprolol. (Level of Evidence: C)

3. Patients with documented contraindications to beta blockers in the first 24 hours of NSTE-ACS should be re-evaluated to determine their subsequent eligibility. (Level of Evidence: C)
Class IIa
1. It is reasonable to continue beta-blocker therapy in patients with normal LV function with NSTE-ACS (241, 243). *(Level of Evidence: C)*

Class III: Harm
1. Administration of intravenous beta blockers is potentially harmful in patients with NSTE-ACS who have risk factors for shock (244). *(Level of Evidence: B)*

Beta blockers decrease heart rate, contractility, and BP, resulting in decreased MVO$_2$. Beta blockers without increased sympathomimetic activity should be administered orally in the absence of contraindications. Although early administration does not reduce short-term mortality (241, 244), beta blockers decrease myocardial ischemia, reinfarction, and the frequency of complex ventricular dysrhythmias (240, 245), and they increase long-term survival. Early beta blockade, particularly if given intravenously, can increase the likelihood of shock in patients with risk factors. Risk factors for shock include patients >70 years of age, heart rate >110 beats per minute, systolic BP <120 mm Hg, and late presentation (244). In patients with LV dysfunction (LVEF <0.40) with or without pulmonary congestion, beta blockers are strongly recommended before discharge. Beta blockers should be used prudently with ACE inhibitors or angiotensin-receptor blockers (ARBs) in patients with HF. Renin-angiotensin-aldosterone system blocking agents should be cautiously added in patients with decompensated HF (246). Beta blockers without intrinsic sympathomimetic activity should be used, especially beta-1 blockers such as sustained-release metoprolol succinate, bisoprolol, or carvedilol, a beta-1 and alpha-1 blocker. This is because of their mortality benefit in patients with HF and systolic dysfunction (246, 247). In patients with chronic obstructive lung disease or a history of asthma, beta blockers are not contraindicated in the absence of active bronchospasm. Beta-1 selective beta blockers are preferred and should be initiated at a low dosage.

See Online Data Supplement 11 for additional information on beta blockers, including risk factors for shock.

4.1.2.4. Calcium Channel Blockers: Recommendations

Class I
1. In patients with NSTE-ACS, continuing or frequently recurring ischemia, and a contraindication to beta blockers, a nondihydropyridine calcium channel blocker (CCB) (e.g., verapamil or diltiazem) should be given as initial therapy in the absence of clinically significant LV dysfunction, increased risk for cardiogenic shock, PR interval greater than 0.24 second, or second- or third-degree atrioventricular block without a cardiac pacemaker (248-250). *(Level of Evidence: B)*

2. Oral nondihydropyridine calcium antagonists are recommended in patients with NSTE-ACS who have recurrent ischemia in the absence of contraindications, after appropriate use of beta blockers and nitrates. *(Level of Evidence: C)*

3. CCBs* are recommended for ischemic symptoms when beta blockers are not successful, are contraindicated, or cause unacceptable side effects. *(Level of Evidence: C)*

4. Long-acting CCBs and nitrates are recommended in patients with coronary artery spasm. *(Level of Evidence: C)*

*Short-acting dihydropyridine calcium channel antagonists should be avoided.
Class III: Harm

1. Immediate-release nifedipine should not be administered to patients with NSTE-ACS in the absence of beta-blocker therapy (251, 252). (Level of Evidence: B)

CCBs include dihydropyridines and nondihydropyridines. The dihydropyridines (nifedipine and amlodipine) produce the most marked peripheral vasodilation and have little direct effect on contractility, atrioventricular conduction, and heart rate. The nondihydropyridines (diltiazem and verapamil) have significant negative inotropic actions and negative chronotropic and dromotropic effects. All CCBs cause similar coronary vasodilation and are preferred in vasospastic angina (253). They also alleviate ischemia due to obstructive CAD by decreasing heart rate and BP. Verapamil and diltiazem decreased reinfarction in patients without LV dysfunction in some (248, 249, 254) but not all studies (255, 256). Verapamil may be beneficial in reducing long-term events after AMI in hypertensive patients without LV dysfunction (250) and in patients with MI and HF receiving an ACE inhibitor (257). Immediate-release nifedipine causes a dose-related increase in mortality in patients with CAD and harm in ACS and is not recommended for routine use in patients with ACS (251, 258). Long-acting preparations may be useful in older patients with systolic hypertension (259). There are no significant trial data on efficacy of amlodipine or felodipine in patients with NSTE-ACS.

See Online Data Supplement 12 for additional information on CCBs.

4.1.2.5. Other Anti-Ischemic Interventions

Ranolazine

Ranolazine is an antianginal medication with minimal effects on heart rate and BP (260, 261). It inhibits the late inward sodium current and reduces the deleterious effects of intracellular sodium and calcium overload that accompany myocardial ischemia (262). Ranolazine is currently indicated for treatment of chronic angina. The MERLIN-TIMI (Metabolic Efficiency With Ranolazine for Less Ischemia in Non–ST-Elevation Acute Coronary Syndromes-Thrombosis In Myocardial Infarction) 36 trial examined the efficacy and safety of ranolazine in 6,560 patients with NSTE-ACS who presented within 48 hours of ischemic symptoms (263). In a post hoc analysis in women, ranolazine was associated with a reduced incidence of the primary endpoint (cardiovascular death, MI, or recurrent ischemia), principally due to a 29% reduction in recurrent ischemia (116). In the subgroup with prior chronic angina (n=3,565), ranolazine was associated with a lower primary composite endpoint, a significant reduction of worsening angina, and increased exercise duration (264). Because the primary endpoint of the original MERLIN-TIMI 36 trial was not met, all additional analyses should be interpreted with caution. The recommended initial dose is 500 mg orally twice daily, which can be uptitrated to a maximum of 1,000 mg orally twice daily. Ranolazine is usually well tolerated; its major adverse effects are constipation, nausea, dizziness, and headache. Ranolazine prolongs the QTc interval in a dose-related manner,
but QTc prolongation requiring dose reduction was comparable with ranolazine and placebo in the MERLIN-TIMI 36 trial (263).

See Online Data Supplement 13 for additional information on ranolazine.

Intra-Aortic Balloon Pump (IABP) Counterpulsation

IABP counterpulsation may be used in patients with NSTE-ACS to treat severe persistent or recurrent ischemia, especially in patients awaiting invasive angiography and revascularization, despite intensive medical therapy. In experimental studies, IABP counterpulsation increases diastolic BP and coronary blood flow and potentially augments cardiac output while diminishing LV end-diastolic pressure. The use of IABP for refractory ischemia dates back several decades, and its current application is predominantly driven by clinical experience and nonrandomized observational studies (265). When studied in rigorous RCTs, IABP counterpulsation failed to reduce MACE in high-risk elective PCI (266), decrease infarct size after primary PCI for acute STEMI (267), or diminish early mortality in patients with cardiogenic shock complicating AMI (268).

4.1.2.6. Cholesterol Management

Class I

1. High-intensity statin therapy should be initiated or continued in all patients with NSTE-ACS and no contraindications to its use (269-273). (Level of Evidence: A)

Class IIa

1. It is reasonable to obtain a fasting lipid profile in patients with NSTE-ACS, preferably within 24 hours of presentation. (Level of Evidence: C)

Therapy with statins in patients with NSTE-ACS reduces the rate of recurrent MI, coronary heart disease mortality, need for myocardial revascularization, and stroke. High-risk patients, such as those with NSTE-ACS, derive more benefit in reducing these events from high-intensity statins, such as atorvastatin which lower low-density lipoprotein cholesterol levels by ≥50% as in the PROVE IT-TIMI 22 (Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis In Myocardial Infarction) and MIRACL (Myocardial Ischemia Reduction With Acute Cholesterol Lowering) trials (273, 274), than from moderate- or low-intensity statins (18, 272). These findings provide the basis for high-intensity statin therapy after stabilization of patients with NSTE-ACS. In addition, early introduction of this approach can promote improved compliance with this regimen.

Table 6. Summary of Recommendations for Early Hospital Care

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administer supplemental oxygen only with oxygen saturation <90%, respiratory distress, or other high-risk features for hypoxemia</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Nitrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administer sublingual NTG every 5 min × 3 for continuing ischemic pain and then assess need for IV NTG</td>
<td>I</td>
<td>C</td>
<td>(216-218)</td>
</tr>
<tr>
<td>Administer IV NTG for persistent ischemia, HF, or hypertension</td>
<td>I</td>
<td>B</td>
<td>(219-224)</td>
</tr>
<tr>
<td>Nitrates are contraindicated with recent use of a phosphodiesterase inhibitor</td>
<td>III: Harm</td>
<td>B</td>
<td>(225-227)</td>
</tr>
</tbody>
</table>
Analgesic therapy

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Class of Recommendation</th>
<th>Level of Evidence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV morphine sulfate may be reasonable for continued ischemic chest pain despite maximally tolerated anti-ischemic medications</td>
<td>IIb</td>
<td>B</td>
<td>(232, 233)</td>
</tr>
<tr>
<td>NSAIDs (except aspirin) should not be initiated and should be discontinued during hospitalization for NSTE-ACS because of the increased risk of MACE associated with their use</td>
<td>III: Harm</td>
<td>B</td>
<td>(234, 235)</td>
</tr>
</tbody>
</table>

Beta-adrenergic blockers

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Class of Recommendation</th>
<th>Level of Evidence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate oral beta blockers within the first 24 h in the absence of HF, low-output state, risk for cardiogenic shock, or other contraindications to beta blockade</td>
<td>I</td>
<td>A</td>
<td>(240-242)</td>
</tr>
<tr>
<td>Use of sustained-release metoprolol succinate, carvedilol, or bisoprolol is recommended for beta-blocker therapy with concomitant NSTE-ACS, stabilized HF, and reduced systolic function</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Re-evaluate to determine subsequent eligibility in patients with initial contraindications to beta blockers</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>It is reasonable to continue beta-blocker therapy in patients with normal LV function with NSTE-ACS</td>
<td>IIa</td>
<td>C</td>
<td>(241, 243)</td>
</tr>
<tr>
<td>IV beta blockers are potentially harmful when risk factors for shock are present</td>
<td>III: Harm</td>
<td>B</td>
<td>(244)</td>
</tr>
</tbody>
</table>

CCBs

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Class of Recommendation</th>
<th>Level of Evidence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administer initial therapy with nondihydropyridine CCBs with recurrent ischemia and contraindications to beta blockers in the absence of LV dysfunction, increased risk for cardiogenic shock, PR interval >0.24 s, or second- or third-degree atrioventricular block without a cardiac pacemaker</td>
<td>I</td>
<td>B</td>
<td>(248-250)</td>
</tr>
<tr>
<td>Administer oral nondihydropyridine calcium antagonists with recurrent ischemia after use of beta blocker and nitrates in the absence of contraindications</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>CCBs are recommended for ischemic symptoms when beta blockers are not successful, are contraindicated, or cause unacceptable side effects*</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Long-acting CCBs and nitrates are recommended for patients with coronary artery spasm</td>
<td>I</td>
<td>C</td>
<td>N/A</td>
</tr>
<tr>
<td>Immediate-release nifedipine is contraindicated in the absence of a beta blocker</td>
<td>III: Harm</td>
<td>B</td>
<td>(251, 252)</td>
</tr>
</tbody>
</table>

Cholesterol management

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Class of Recommendation</th>
<th>Level of Evidence</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate or continue high-intensity statin therapy in patients with no contraindications</td>
<td>I</td>
<td>A</td>
<td>(269-273)</td>
</tr>
<tr>
<td>Obtain a fasting lipid profile, preferably within 24 h</td>
<td>IIa</td>
<td>C</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Short-acting dihydropyridine calcium channel antagonists should be avoided.

CCB indicates calcium channel blocker; COR, Class of Recommendation; HF, heart failure; IV, intravenous; LOE, Level of Evidence; LV, left ventricular; MACE, major adverse cardiac event; N/A, not available; NSAIDs, nonsteroidal anti-inflammatory drugs; NSTE-ACS, non-ST-elevation acute coronary syndromes; and NTG, nitroglycerin.

4.2. Inhibitors of Renin-Angiotensin-Aldosterone System: Recommendations

Class I

1. ACE inhibitors should be started and continued indefinitely in all patients with LVEF less than 0.40 and in those with hypertension, diabetes mellitus, or stable CKD (Section 7.6), unless contraindicated (275, 276). (Level of Evidence: A)

2. ARBs are recommended in patients with HF or MI with LVEF less than 0.40 who are ACE inhibitor intolerant (277, 278). (Level of Evidence: A)

3. Aldosterone blockade is recommended in patients post–MI without significant renal dysfunction (creatinine >2.5 mg/dL in men or >2.0 mg/dL in women) or hyperkalemia (K >5.0 mEq/L) who
are receiving therapeutic doses of ACE inhibitor and beta blocker and have a LVEF 0.40 or less, diabetes mellitus, or HF (279). *(Level of Evidence: A)*

Class IIa

1. ARBs are reasonable in other patients with cardiac or other vascular disease who are ACE inhibitor intolerant (280). *(Level of Evidence: B)*

Class IIb

1. ACE inhibitors may be reasonable in all other patients with cardiac or other vascular disease (281, 282). *(Level of Evidence: B)*

ACE inhibitors reduce mortality in patients with recent MI, primarily those with LV dysfunction (LVEF <0.40) with or without pulmonary congestion (283-285). In patients with normal LV function (including patients with diabetes mellitus), total mortality and MACE (including HF) are reduced. It has been found that approximately 15% of patients with NSTEMI develop HF during hospitalization, with the rate increasing to 24% of patients 1 year later (286). A meta-analysis demonstrated a small but significant (0.48%) absolute benefit of early initiation of an ACE inhibitor on survival at 30 days, with benefit seen as early as 24 hours after admission for AMI (283). An ACE inhibitor should be used cautiously in the first 24 hours of AMI, because it may result in hypotension or renal dysfunction (283). It may be prudent to initially use a short-acting ACE inhibitor, such as captopril or enalapril, in patients at increased risk of these adverse events. In patients with significant renal dysfunction, it is sensible to stabilize renal function before initiating an ACE inhibitor or an ARB, with re-evaluation of creatinine levels after drug initiation. An ARB may be substituted for an ACE inhibitor with similar benefits on survival (277, 278). Combining an ACE inhibitor and an ARB may result in an increase in adverse events (277, 278). In a study in which patients with AMI with LV dysfunction (LVEF <0.40) with or without HF were randomized 3 to 14 days after AMI to receive eplerenone (a selective aldosterone blocker), eplerenone was efficacious as an adjunct to ACE inhibitors and beta blockers in decreasing long-term mortality (279, 287). In a study of patients with HF, >50% of whom had an ischemic etiology, spironolactone (a nonselective aldosterone inhibitor) was beneficial (279); however, RCT data on MI are not available.

See Online Data Supplement 14 for additional information on inhibitors of renin-angiotensin-aldosterone system.

4.3. Initial Antiplatelet/Anticoagulant Therapy in Patients With Definite or Likely NSTE-ACS

4.3.1. Initial Oral and Intravenous Antiplatelet Therapy in Patients With Definite or Likely NSTE-ACS Treated With an Initial Invasive or Ischemia-Guided Strategy: Recommendations

See Table 7 for a summary of recommendations from this section and Online Data Supplement 15 for additional information on initial oral and intravenous antiplatelet therapy in patients with definite or likely NSTE-ACS treated with an early invasive or an ischemia-guided strategy.
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

Class I

1. Non–enteric-coated, chewable aspirin (162 mg to 325 mg) should be given to all patients with NSTE-ACS without contraindications as soon as possible after presentation, and a maintenance dose of aspirin (81 mg/d to 162 mg/d) should be continued indefinitely (288-290). (Level of Evidence: A)

2. In patients with NSTE-ACS who are unable to take aspirin because of hypersensitivity or major gastrointestinal intolerance, a loading dose of clopidogrel followed by a daily maintenance dose should be administered (291). (Level of Evidence: B)

3. A P2Y\textsubscript{12} inhibitor (either clopidogrel or ticagrelor) in addition to aspirin should be administered for up to 12 months to all patients with NSTE-ACS without contraindications who are treated with either an early invasive4 or ischemia-guided strategy. Options include:
 - Clopidogrel: 300-mg or 600-mg loading dose, then 75 mg daily (289, 292) (Level of Evidence: B)
 - Ticagrelor1: 180-mg loading dose, then 90 mg twice daily (293, 294) (Level of Evidence: B)

Class IIa

1. It is reasonable to use ticagrelor in preference to clopidogrel for P2Y\textsubscript{12} treatment in patients with NSTE-ACS who undergo an early invasive or ischemia-guided strategy (293, 294). (Level of Evidence: B)

Class IIb

1. In patients with NSTE-ACS treated with an early invasive strategy and dual antiplatelet therapy (DAPT) with intermediate/high-risk features (e.g., positive troponin), a GP IIb/IIIa inhibitor may be considered as part of initial antiplatelet therapy. Preferred options are eptifibatide or tirofiban (43, 94, 295). (Level of Evidence: B)

Despite the large number of new antiplatelet and antithrombotic agents, aspirin, which targets COX and subsequent thromboxane A\textsubscript{2} inhibition, is the mainstay of antiplatelet therapy. Multiple other pathways of platelet activation can be targeted by agents that inhibit the platelet P2Y\textsubscript{12} receptor, including thienopyridine prodrug agents, such as clopidogrel and prasugrel, which require conversion into molecules that bind irreversibly to the P2Y\textsubscript{12} receptor. Additional pyrimidine derivatives, including ticagrelor, do not require biotransformation and bind reversibly to the P2Y\textsubscript{12} receptor, antagonizing adenosine diphosphate platelet activation. In addition to these oral agents, intravenous GP IIb/IIIa receptor inhibitors, including abciximab, eptifibatide, and tirofiban, target the final common pathway of platelet aggregation. In the EARLY ACS (Early Glycoprotein IIb/IIIa Inhibition in Patients With Non–ST-Segment Elevation Acute Coronary Syndrome) trial, patients were randomly assigned to either early, pre–PCI double-bolus eptifibatide or delayed, provisional eptifibatide. Seventy-five percent of the patients received upstream, preprocedure clopidogrel. The risk of TIMI major bleeding in the early eptifibatide group was 2.6% compared with 1.8% (p=0.02) in the delayed provisional group (295). In the GUSTO IV-ACS (Global Use of Strategies To Open Occluded Coronary Arteries IV-Acute Coronary Syndromes) trial, there was no clinical benefit of abciximab in this population; in troponin-negative patients, mortality was 8.5% compared with 5.8 % in controls (p=0.002) (288, 289, 296, 297).

4See Section 5.1.2.1 for recommendations at the time of PCI.
1See Section 4.3.1.2 for prasugrel indications in either an early invasive or ischemia-guided strategy.
1The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily (290).
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

4.3.1.1. Aspirin

Aspirin is the established first-line therapy in patients with NSTE-ACS and reduces the incidence of recurrent MI and death (288, 289). A loading dose of non–enteric-coated aspirin 162 mg to 325 mg is the initial antiplatelet therapy. The subsequent maintenance dose is 81 mg per day to 162 mg per day; patients treated with ticagrelor should receive only 81 mg per day (290). High-dose (≥160 mg) versus low-dose (<160 mg) aspirin is associated with increased bleeding risk in the absence of improved outcomes (298). Most NSAIDs reversibly bind to COX-1, preventing inhibition by aspirin and by COX-2 and may cause prothrombotic effects. Enteric-coated aspirin should be avoided initially because of its delayed and reduced absorption (299).

4.3.1.2. P2Y₁₂ Receptor Inhibitors

Three P2Y₁₂ receptor inhibitors are approved in the United States for treatment of ischemic myocardial disorders, including NSTE-ACS. For discontinuation before surgery, see Section 5.

Clopidogrel

Administration of clopidogrel with aspirin was superior to administration of aspirin alone in reducing the incidence of cardiovascular death and nonfatal MI or stroke both acutely and over the following 11 months (289, 296). There was a slight increase in major bleeding events with clopidogrel, including a nonsignificant increase in life-threatening bleeding and fatal bleeding (289). An initial loading dose of 300 mg to 600 mg is recommended (289, 296, 300). A 600-mg loading dose results in a greater, more rapid, and more reliable platelet inhibition compared with a 300-mg loading dose (301). Use of clopidogrel for patients with NSTE-ACS who are aspirin intolerant is based on a study in patients with stable ischemic heart disease (291). When possible, discontinue clopidogrel at least 5 days before surgery (301).

Prasugrel

The metabolic conversion pathways of prasugrel produce more rapid and consistent platelet inhibition than clopidogrel (300). In patients with NSTE-ACS and defined coronary anatomy undergoing planned PCI, a 60-mg loading dose of prasugrel followed by 10 mg daily was compared with a 300-mg loading dose and 75 mg daily of clopidogrel. The composite primary endpoint (cardiovascular death, nonfatal MI, and stroke) was reduced in patients treated with prasugrel (hazard ratio [HR]: 0.81; p=0.001). This was driven by a risk reduction for MI and stent thrombosis with no difference in mortality (302). Counterbalancing the salutary effects of prasugrel was a significant increase in spontaneous bleeding, life-threatening bleeding, and fatal bleeding in the patients treated with prasugrel compared with patients treated with clopidogrel. There was net harm in patients with a history of cerebrovascular events and no clinical benefit in patients >75 years of age or those with low body weight (<60 kg) (302). In patients with NSTE-ACS treated with an ischemia-guided strategy, 1 RCT comparing aspirin and either clopidogrel or prasugrel evaluated the primary endpoint of death from cardiovascular causes, MI, or stroke for up to 30 months; there were similar bleeding rates and no benefit of treatment with prasugrel when compared with treatment with clopidogrel (303). The ACCOAST (A Comparison of Prasugrel at the Time...
of Percutaneous Coronary Intervention or as Pretreatment at the Time of Diagnosis in Patients With Non–ST-Elevation Myocardial Infarction) RCT of high-risk patients with NSTE-ACS scheduled to undergo early coronary angiography found that a strategy of administration of prasugrel at the time of randomization before angiography did not lead to a reduction in the composite primary endpoint when compared with a strategy of administration of prasugrel only at the time of PCI; however, it did lead to an increase in bleeding complications (304). On the basis of TRITON (Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel) study design and the results of TRILOGY ACS (Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes) and ACCOAST, prasugrel is not recommended for “upfront” therapy in patients with NSTE-ACS. The use of prasugrel in patients undergoing PCI is addressed in Section 5.

Ticagrelor

Ticagrelor is an oral, reversibly binding P2Y12 inhibitor with a relatively short plasma half-life (12 hours). Compared with clopidogrel, ticagrelor has a more rapid and consistent onset of action and, because it is reversible, it has a faster recovery of platelet function. The loading dose of ticagrelor for patients treated either invasively or with an ischemia-guided strategy is 180 mg followed by a maintenance dose of 90 mg twice daily (293, 294). In patients with NSTE-ACS treated with ticagrelor compared with clopidogrel, there was a reduction in the composite outcome of death from vascular causes, MI, or stroke (reduction: 11.7% to 9.8%; HR: 0.84; p<0.001) (293). The mortality rate was also lower in those patients treated with ticagrelor. Although overall major bleeding was not increased with ticagrelor, a modest increase in major bleeding and non–procedure-related bleeding occurred in the subgroup of patients who did not undergo CABG (major bleeding: 4.5% versus 3.8%; p=0.02; nonprocedure major bleeding: 3.1% versus 2.3%; p=0.05); however, there was no difference in blood transfusion or fatal bleeding (305). Side effects unique to ticagrelor include dyspnea (which occurs in up to 15% of patients within the first week of treatment but is rarely severe enough to cause discontinuation of treatment) (293) and bradycardia. The benefit of ticagrelor over clopidogrel was limited to patients taking 75 mg to 100 mg of aspirin (290). The short half-life requires twice-daily administration, which could potentially result in adverse events in noncompliant patients, particularly after stent implantation. When possible, ticagrelor should be discontinued at least 5 days before surgery (306). Although ticagrelor has not been studied in the absence of aspirin, its use in aspirin-intolerant patients is a reasonable alternative.

Intravenous GP IIb/IIIa Receptor Inhibitors

The small molecule GP IIb/IIIa receptor antagonists, tirofiban and eptifibatide, bind reversibly to the GP IIb/IIIa receptor. Because the drug-to-receptor ratio is high, platelet infusion is not effective in cases of severe bleeding after use of eptifibatide or tirofiban, and they must be cleared from the circulation to reduce bleeding. In contrast, with abciximab, the drug-to-receptor ratio is low, and platelet infusion may be effective.

Several large RCTs evaluated the impact of GP IIb/IIIa receptor inhibitors in patients with NSTE-ACS who were committed to an invasive strategy (295, 296, 306). The ACUITY (Acute Catheterization and Urgent
Intervention Triage Strategy) trial evaluated unfractionated heparin (UFH) versus bivalirudin with or without GP IIb/IIIa inhibitors (295, 307). The rates of composite ischemia (death, MI, unplanned revascularization) in patients who received bivalirudin alone compared with those who received UFH plus GP IIb/IIIa inhibitors were similar (9% versus 8%; p=0.45) (307). Fewer patients experienced major bleeding with bivalirudin alone than those who received heparin plus GP IIb/IIIa inhibitors (4% versus 7%; relative risk [RR]: 0.52; 95% confidence interval [CI]: 0.40 to 0.66; p<0.0001) (307). The ACUITY Timing trial evaluated the benefit of upstream GP IIb/IIIa receptor antagonist compared with its deferred use, testing the hypothesis that earlier administration of GP IIb/IIIa inhibitors in patients destined for PCI would be superior (308). Composite ischemia at 30 days occurred in 7.9% of patients assigned to deferred use compared with 7.1% assigned to upstream administration (RR: 1.12; 95% CI: 0.97 to 1.29; p=0.044 for noninferiority; p=0.13 for superiority). Deferred GP IIb/IIIa inhibitors reduced the 30-day rates of major bleeding compared with upstream use (4.9% versus 6.1%; p<0.001) (308). Similar results were reported by the EARLY ACS investigators, who evaluated eptifibatide given upstream versus delayed, provisional administration in >9,000 patients with NSTE-ACS (295). The composite endpoint of death, MI, recurrent ischemia requiring urgent revascularization, or thrombotic complications occurred in 9.3% of patients in the early-eptifibatide group compared with 10% in the delayed-eptifibatide group (odds ratio [OR]: 0.92; 95% CI: 0.80 to 1.06; p=0.23) (308). As in the ACUITY Timing trial, the early-eptifibatide group had significantly higher rates of bleeding and red cell transfusions (295, 308).

4.3.2. Initial Parenteral Anticoagulant Therapy in Patients With Definite NSTE-ACS: Recommendations

See Table 7 for a summary of recommendations regarding antiplatelet/anticoagulant therapy in patients with definite or likely NSTE-ACS and Online Data Supplement 16 for additional information on combined oral anticoagulant therapy and antiplatelet therapy in patients with definite NSTE-ACS.

Class I

1. In patients with NSTE-ACS, anticoagulation, in addition to antiplatelet therapy, is recommended for all patients irrespective of initial treatment strategy. Treatment options include:
 - Enoxaparin: 1 mg/kg subcutaneous (SC) every 12 hours (reduce dose to 1 mg/kg SC once daily in patients with creatinine clearance [CrCl] <30 mL/min), continued for the duration of hospitalization or until PCI is performed. An initial intravenous loading dose is 30 mg (133, 136, 309). (*Level of Evidence: A*)
 - Bivalirudin: 0.10 mg/kg loading dose followed by 0.25 mg/kg per hour (only in patients managed with an early invasive strategy), continued until diagnostic angiography or PCI, with only provisional use of GP IIb/IIIa inhibitor, provided the patient is also treated with DAPT (292, 293, 310, 311). (*Level of Evidence: B*)
 - Fondaparinux: 2.5 mg SC daily, continued for the duration of hospitalization or until PCI is performed (312-314). (*Level of Evidence: B*)
 - If PCI is performed while the patient is on fondaparinux, an additional anticoagulant with anti-IIa activity (either UFH or bivalirudin) should be administered because of the risk of catheter thrombosis (313-315). (*Level of Evidence: B*)
 - UFH IV: initial loading dose of 60 IU/kg (maximum 4,000 IU) with initial infusion of 12 IU/kg per hour (maximum 1,000 IU/h) adjusted per activated partial thromboplastin time to

See Section 5.1.2.1 for recommendations at the time of PCI.
maintain therapeutic anticoagulation according to the specific hospital protocol, continued for 48 hours or until PCI is performed (316-322). (Level of Evidence: B)

4.3.2.1. Low-Molecular-Weight Heparin

LMWHs have a molecular weight approximately one third that of UFH and have balanced anti-Xa and anti-IIa activity. LMWHs are readily absorbed after subcutaneous administration and have less platelet activation (323).

The anticoagulant activity of LMWH does not require routine monitoring. The dose of enoxaparin is 1 mg/kg SC every 12 hours for NSTE-ACS; an initial intravenous loading dose is 30 mg. In the presence of impaired renal function (CrCl <30 mL per minute), which is a common finding in older patients, the dose should be reduced to 1 mg/kg SC once daily, and strong consideration should be given to UFH as an alternative.

Calculation of CrCl is prudent in patients considered for enoxaparin therapy.

In the ESSENCE trial, in patients with UA or non–Q-wave MI, the rates of recurrent ischemic events and invasive diagnostic and therapeutic procedures were significantly reduced by enoxaparin therapy in the short term, and benefit was sustained at 1 year (324).

In the SYNERGY (Superior Yield of the New Strategy of Enoxaparin, Revascularization and Glycoprotein IIb/IIIa Inhibitors) trial of high-risk patients with NSTE-ACS treated with an early invasive strategy, there was no significant difference in death or MI at 30 days between those randomized to enoxaparin versus UFH. There was more TIMI major bleeding in those treated with enoxaparin without statistically significant increase in GUSTO severe bleeding or transfusion. Some of the increased bleeding may have been related to patients randomized to enoxaparin who received additional UFH at the time of PCI (325, 326).

4.3.2.2. Bivalirudin

The direct thrombin inhibitor bivalirudin is administered intravenously. Bivalirudin was evaluated in the ACUITY trial, a randomized open-label trial, in 13,819 moderate- to high-risk patients with NSTE-ACS with a planned invasive strategy. Three treatment arms were tested, including UFH or LMWH with a GP IIb/IIIa receptor inhibitor, bivalirudin with a GP IIb/IIIa receptor inhibitor, or bivalirudin alone. The majority of patients received clopidogrel (300 mg) before intervention, in addition to aspirin, anticoagulants, and GP IIb/IIIa inhibitors. Bivalirudin alone was noninferior to the standard UFH/LMWH combined with GP IIb/IIIa inhibitor (composite ischemia endpoint 7.8% versus 7.3%; HR: 1.08; p=0.32), but there was a significantly lower rate of major bleeding with bivalirudin (3.0% versus 5.7%; HR: 0.53; p<0.001) (310). The anticoagulant effect of bivalirudin can be monitored in the catheterization laboratory by the activated clotting time.

4.3.2.3. Fondaparinux

Fondaparinux is a synthetic polysaccharide molecule and the only selective inhibitor of activated factor X available for clinical use. Fondaparinux is well absorbed when given subcutaneously and has a half-life of 17
hours, enabling once-daily administration. Because it is excreted by the kidneys, it is contraindicated if CrCl is <30 mL per minute. Monitoring of anti-Xa activity is not required, and fondaparinux does not affect usual anticoagulant parameters such as activated partial thromboplastin time or activated clotting time. In NSTE-ACS, the dose of fondaparinux is 2.5 mg SC administered daily and continued for the duration of hospitalization or until PCI is performed (312-314). In the OASIS (Organization to Assess Strategies in Ischemic Syndromes)-5 study, patients with NSTE-ACS were randomized to receive 2.5 mg SC fondaparinux daily or enoxaparin 1 mg/kg SC twice daily for 8 days. The incidence of the primary composite ischemic endpoint at 9 days was similar between fondaparinux and enoxaparin, but major bleeding was significantly less frequent with fondaparinux. To avert catheter thrombosis when fondaparinux is used alone in patients undergoing PCI, an anticoagulant with anti-IIa activity is also administered (313-315). One regimen is 85 IU/kg of UFH loading dose at the time of PCI (reduced to 60 IU/kg if a GP IIb/IIIa inhibitor is used concomitantly) (314).

4.3.2.4. Unfractionated Heparin

Studies supporting the addition of a parenteral anticoagulant to aspirin in patients with NSTE-ACS were performed primarily on patients with a diagnosis of “unstable angina” in the era before DAPT and early catheterization and revascularization. In general, those studies found a strong trend for reduction in composite adverse events with the addition of parenteral UFH to aspirin therapy (316-322).

Clinical trials indicate that a weight-adjusted dosing regimen of UFH can provide more predictable anticoagulation (327) than a fixed initial dose (e.g., 5,000 IU loading dose, 1,000 IU/h initial infusion). The recommended weight-adjusted regimen is an initial loading dose of 60 IU/kg (maximum 4,000 IU) and an initial infusion of 12 IU/kg/h (maximum 1,000 IU/h), adjusted using a standardized nomogram.

4.3.2.5. Argatroban

Argatroban, a direct thrombin inhibitor, is indicated for prophylaxis or treatment of thrombosis in patients with heparin-induced thrombocytopenia, including those undergoing PCI (328). Steady state plasma concentrations are achieved in 1 to 3 hours after intravenous administration. Because of its hepatic metabolism, argatroban can be used in patients with renal insufficiency. The usual dose is 2 mcg/kg per minute by continuous intravenous infusion, adjusted to maintain the activated partial thromboplastin time at 1.5 to 3 times baseline (but not >100 s).

4.3.3. Fibrinolytic Therapy in Patients With Definite NSTE-ACS: Recommendation

Class III: Harm

1. In patients with NSTE-ACS (i.e., without ST elevation, true posterior MI, or left bundle-branch block not known to be old), intravenous fibrinolytic therapy should not be used (93, 329). (Level of Evidence: A)
There is no role for fibrinolytic therapy in patients with NSTE-ACS. Fibrinolysis with or without subsequent PCI in patients with NSTE-ACS was evaluated by the Fibrinolytic Trialists and TIMI investigators (93, 329). There was no benefit for mortality or MI. Intracranial hemorrhage and fatal and nonfatal MI occurred more frequently in patients treated with fibrinolytic therapy.

See Online Data Supplement 17 for additional information on parenteral anticoagulant and fibrinolytic therapy in patients with definite NSTE-ACS.

Table 7. Summary of Recommendations for Initial Antiplatelet/Anticoagulant Therapy in Patients With Definite or Likely NSTE-ACS and PCI

See Section 5.1.2.1 for recommendations on antiplatelet/anticoagulant therapy at the time of PCI and Sections 6.2.1 and 6.3 for recommendations on posthospital therapy.

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Dosing and Special Considerations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Non–enteric-coated aspirin to all patients promptly after presentation</td>
<td>162 mg–325 mg</td>
<td>I</td>
<td>A</td>
<td>(288-290)</td>
</tr>
<tr>
<td>• Aspirin maintenance dose continued indefinitely</td>
<td>81 mg/d–162 mg/d</td>
<td>I</td>
<td>A</td>
<td>(288-290)</td>
</tr>
<tr>
<td>P2Y12 inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Clopidogrel loading dose followed by daily maintenance dose in patients unable to take aspirin</td>
<td>75 mg</td>
<td>I</td>
<td>B</td>
<td>(291)</td>
</tr>
<tr>
<td>• P2Y12 inhibitor, in addition to aspirin, for up to 12 mo for patients treated initially with either an early invasive or initial ischemia-guided strategy:</td>
<td>300-mg or 600-mg loading dose, then 75 mg/d</td>
<td>I</td>
<td>B</td>
<td>(289, 292)</td>
</tr>
<tr>
<td>– Clopidogrel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Ticagrelor*</td>
<td>180-mg loading dose, then 90 mg BID</td>
<td>I</td>
<td></td>
<td>(293, 294)</td>
</tr>
<tr>
<td>• P2Y12 inhibitor therapy (clopidogrel, prasugrel, or ticagrelor) continued for at least 12 mo in post–PCI patients treated with coronary stents</td>
<td>N/A</td>
<td>I</td>
<td>B</td>
<td>(293, 296, 302, 330, 331)</td>
</tr>
<tr>
<td>• Ticagrelor in preference to clopidogrel for patients treated with an early invasive or ischemia-guided strategy</td>
<td>N/A</td>
<td>Ia</td>
<td>B</td>
<td>(293, 294)</td>
</tr>
<tr>
<td>GP IIb/IIIa inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GP IIb/IIIa inhibitor in patients treated with an early invasive strategy and DAPT with intermediate/high-risk features (e.g., positive troponin)</td>
<td>Preferred options are eptifibatide or tirofiban</td>
<td>Iib</td>
<td>B</td>
<td>(43, 94, 295)</td>
</tr>
<tr>
<td>Parenteral anticoagulant and fibrinolytic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SC enoxaparin for duration of hospitalization or until PCI is performed</td>
<td>1 mg/kg SC every 12 h (reduce dose to 1 mg/kg/d SC in patients with CrCl <30 mL/min)</td>
<td>I</td>
<td>A</td>
<td>(133, 136, 309)</td>
</tr>
<tr>
<td>• Initial IV loading dose 30 mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bivalirudin until diagnostic angiography or PCI is performed in patients with early invasive strategy only</td>
<td>Loading dose 0.10 mg/kg loading dose followed by 0.25 mg/kg/h</td>
<td>I</td>
<td>B</td>
<td>(292, 293, 310, 311)</td>
</tr>
</tbody>
</table>
4.4. Ischemia-Guided Strategy Versus Early Invasive Strategies

See Figure 3 for the management algorithm for ischemia-guided versus early invasive strategy.

<table>
<thead>
<tr>
<th>Management Approach</th>
<th>Recommended Dose/Protocol</th>
<th>COR</th>
<th>LOE</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only provisional use of GP IIb/IIIa inhibitor in patients also treated with DAPT</td>
<td>2.5 mg SC daily</td>
<td>I</td>
<td>B</td>
<td>(312-314)</td>
</tr>
<tr>
<td>SC fondaparinux for the duration of hospitalization or until PCI is performed</td>
<td>2.5 mg SC daily</td>
<td>I</td>
<td>B</td>
<td>(311-314)</td>
</tr>
<tr>
<td>Administer additional anticoagulant with anti-IIa activity if PCI is performed while patient is on fondaparinux</td>
<td>N/A</td>
<td>I</td>
<td>B</td>
<td>(313-315)</td>
</tr>
<tr>
<td>IV UFH for 48 h or until PCI is performed</td>
<td>Initial loading dose 60 IU/kg (max 4,000 IU) with initial infusion 12 IU/kg/h (max 1,000 IU/h)</td>
<td>I</td>
<td>B</td>
<td>(316-322)</td>
</tr>
<tr>
<td>Adjusted to therapeutic aPTT range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV fibrinolytic treatment not recommended in patients with NSTE-ACS</td>
<td>N/A</td>
<td>IIE Harm</td>
<td>A</td>
<td>(93, 329)</td>
</tr>
</tbody>
</table>

The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily (290).
Figure 3. Algorithm for Management of Patients With Definite or Likely NSTE-ACS*

*See corresponding full-sentence recommendations and their explanatory footnotes.
†In patients who have been treated with fondaparinux (as upfront therapy) who are undergoing PCI, an additional anticoagulant with anti-IIa activity should be administered at the time of PCI because of the risk of catheter thrombosis.
ASA indicates aspirin; CABG, coronary artery bypass graft; cath, catheter; COR, Class of Recommendation; DAPT, dual-antiplatelet therapy; GPI, glycoprotein IIb/IIIa inhibitor; LOE, Level of Evidence; NSTE-ACS, non–ST-elevation acute coronary syndrome; PCI, percutaneous coronary intervention; pts, patients; and UFH, unfractionated heparin.

4.4.1. General Principles

Two treatment pathways have emerged for all patients with NSTE-ACS. The invasive strategy triages patients to an invasive diagnostic evaluation (i.e., coronary angiography). In contrast, the initial ischemia-guided strategy calls for an invasive evaluation for those patients who 1) fail medical therapy (refractory angina or angina at rest or with minimal activity despite vigorous medical therapy), 2) have objective evidence of ischemia (dynamic electrocardiographic changes, myocardial perfusion defect) as identified on a noninvasive stress test, or 3) have clinical indicators of very high prognostic risk (e.g., high TIMI or GRACE scores). In both strategies, patients should receive optimal anti-ischemic and antithrombotic medical therapy as outlined in Section 4.1. A subgroup of patients with refractory ischemic symptoms or hemodynamic or rhythm instability are candidates for urgent coronary angiography and revascularization.

4.4.2. Rationale and Timing for Early Invasive Strategy

This strategy seeks to rapidly risk stratify patients by assessing their coronary anatomy. The major advantages of invasive therapy when appropriate are 1) the rapid and definitive nature of the evaluation, 2) the potential for earlier revascularization in appropriate patients that might prevent occurrence of further complications of ACS that could ensue during medical therapy, and 3) facilitation of earlier discharge from a facility.

4.4.2.1. Routine Invasive Strategy Timing

The optimal timing of angiography has not been conclusively defined. In general, 2 options have emerged: early invasive (i.e., within 24 hours) or delayed invasive (i.e., within 25 to 72 hours). In most studies using the invasive strategy, angiography was deferred for 12 to 72 hours while antithrombotic and anti-ischemic therapies were intensified (138, 332-337). The concept of deferred angiography espouses that revascularization may be safer once plaque is stabilized with optimal antithrombotic and/or anti-ischemic therapies. Conversely, early angiography facilitates earlier risk stratification and consequently speeds revascularization and discharge but can place greater logistic demands on a healthcare system.

4.4.3. Rationale for Ischemia-Guided Strategy

The ischemia-guided strategy seeks to avoid the routine early use of invasive procedures unless patients experience refractory or recurrent ischemic symptoms or develop hemodynamic instability. When the ischemia-guided strategy is chosen, a plan for noninvasive evaluation is required to detect severe ischemia that occurs at a low threshold of stress and to promptly refer these patients for coronary angiography and revascularization as indicated. The major advantage offered by the ischemia-guided strategy is that some patients’ conditions
stabilize during medical therapy and will not require coronary angiography and revascularization. Consequently, the ischemia-guided strategy may potentially avoid costly and possibly unnecessary invasive procedures.

4.4.4. Early Invasive and Ischemia-Guided Strategies: Recommendations

Class I
1. An urgent/immediate invasive strategy (diagnostic angiography with intent to perform revascularization if appropriate based on coronary anatomy) is indicated in patients (men and women\(^3\)) with NSTE-ACS who have refractory angina or hemodynamic or electrical instability (without serious comorbidities or contraindications to such procedures) (42, 44, 138, 338). \((\text{Level of Evidence: A})\)

2. An early invasive strategy (diagnostic angiography with intent to perform revascularization if appropriate based on coronary anatomy) is indicated in initially stabilized patients with NSTE-ACS (without serious comorbidities or contraindications to such procedures) who have an elevated risk for clinical events (Table 8) (42, 44, 138, 333, 334, 338, 339). \((\text{Level of Evidence: B})\)

Class IIa
1. It is reasonable to choose an early invasive strategy (within 24 hours of admission) over a delayed invasive strategy (within 25 to 72 hours) for initially stabilized high-risk patients with NSTE-ACS. For those not at high/intermediate risk, a delayed invasive approach is reasonable (139). \((\text{Level of Evidence: B})\)

Class IIb
1. In initially stabilized patients, an ischemia-guided strategy may be considered for patients with NSTE-ACS (without serious comorbidities or contraindications to this approach) who have an elevated risk for clinical events (333, 334, 338). \((\text{Level of Evidence: B})\)

2. The decision to implement an ischemia-guided strategy in initially stabilized patients (without serious comorbidities or contraindications to this approach) may be reasonable after considering clinician and patient preference. \((\text{Level of Evidence: C})\)

Class III: No Benefit
1. An early invasive strategy (i.e., diagnostic angiography with intent to perform revascularization) is not recommended in patients with:
 a. Extensive comorbidities (e.g., hepatic, renal, pulmonary failure, cancer), in whom the risks of revascularization and comorbid conditions are likely to outweigh the benefits of revascularization. \((\text{Level of Evidence: C})\)
 b. Acute chest pain and a low likelihood of ACS \((\text{Level of Evidence: C})\) who are troponin-negative, especially women (141). \((\text{Level of Evidence: B})\)

Several studies (93, 138, 334-337) and meta-analyses (141, 340) have concluded that a strategy of routine invasive therapy is generally superior to an ischemia-guided strategy or selectively invasive approach. One study reported that the routine invasive strategy resulted in an 18% relative reduction in death or MI, including a significant reduction in MI alone (341). The routine invasive arm was associated with higher in-hospital mortality (1.8% versus 1.1%), but this disadvantage was more than compensated for by a significant reduction in mortality between discharge and the end of follow-up (3.8% versus 4.9%). The invasive strategy was also associated with less angina and fewer rehospitalizations. Patients undergoing routine invasive treatment also had

\(^3\)See Section 7.7 for additional information on women.
improved quality of life. In an analysis of individual patient data (340) that reported 5-year outcomes from the FRISC (Framingham and Fast Revascularization During Instability in Coronary Artery Disease)-II trial (339), ICTUS (Invasive Versus Conservative Treatment in Unstable Coronary Syndromes) trial (338), and RITA (Randomized Trial of a Conservative Treatment Strategy Versus an Interventional Treatment Strategy in Patients with Unstable Angina)-3 trial (334), 14.7% of patients (389 of 2,721) randomized to a routine invasive strategy experienced cardiovascular death or nonfatal MI versus 17.9% of patients (475 of 2,746) in the selective invasive strategy (HR: 0.81; 95% CI: 0.71 to 0.93; p=0.002). The most marked treatment effect was on MI (10.0% routine invasive strategy versus 12.9% selective invasive strategy), and there were consistent trends for fewer cardiovascular deaths (HR: 0.83; 95% CI: 0.68 to 1.01; p=0.068) and all-cause mortality (HR: 0.90; 95% CI: 0.77 to 1.05). There were absolute reductions of 2.0% to 3.8% in cardiovascular death or MI in the low- and intermediate-risk groups and an 11.1% absolute risk reduction in the highest-risk patients. The invasive strategy demonstrated its greatest advantage in the highest-risk stratum of patients with no significant benefit on mortality over the noninvasive approach in moderate- and low-risk patients (342). An ischemia-guided strategy has been used with favorable results in initially stabilized patients with NSTE-ACS at elevated risk for clinical events, including those with positive troponin levels (338). One limitation of these studies is the absence of adherence to optimal medical therapy in noninvasively treated patients during long-term management. In addition, in FRISC-II, invasive management was delayed and patients with markedly positive stress tests (up to 2.9-mm exercise-induced ST depression) were randomized to noninvasive or invasive therapy (338).

Table 8. Factors Associated With Appropriate Selection of Early Invasive Strategy or Ischemia-Guided Strategy in Patients With NSTE-ACS

<table>
<thead>
<tr>
<th>Immediate invasive (within 2 h)</th>
<th>Refractory angina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signs or symptoms of HF or new or worsening mitral regurgitation</td>
</tr>
<tr>
<td></td>
<td>Hemodynamic instability</td>
</tr>
<tr>
<td></td>
<td>Recurrent angina or ischemia at rest or with low-level activities despite intensive medical therapy</td>
</tr>
<tr>
<td></td>
<td>Sustained VT or VF</td>
</tr>
<tr>
<td>Ischemia-guided strategy</td>
<td>Low-risk score (e.g., TIMI [0 or 1], GRACE [<109])</td>
</tr>
<tr>
<td></td>
<td>Low-risk Tn-negative female patients</td>
</tr>
<tr>
<td></td>
<td>Patient or clinician preference in the absence of high-risk features</td>
</tr>
<tr>
<td>Early invasive (within 24 h)</td>
<td>None of the above, but GRACE risk score >140</td>
</tr>
<tr>
<td></td>
<td>Temporal change in Tn (Section 3.4)</td>
</tr>
<tr>
<td></td>
<td>New or presumably new ST depression</td>
</tr>
<tr>
<td>Delayed invasive (within 25–72 h)</td>
<td>None of the above but diabetes mellitus</td>
</tr>
<tr>
<td></td>
<td>Renal insufficiency (GFR <60 mL/min/1.73 m²)</td>
</tr>
<tr>
<td></td>
<td>Reduced LV systolic function (EF <0.40)</td>
</tr>
<tr>
<td></td>
<td>Early postinfarction angina</td>
</tr>
<tr>
<td></td>
<td>PCI within 6 mo</td>
</tr>
<tr>
<td></td>
<td>Prior CABG</td>
</tr>
<tr>
<td></td>
<td>GRACE risk score 109–140; TIMI score ≥2</td>
</tr>
</tbody>
</table>

CABG indicates coronary artery bypass graft; EF, ejection fraction; GFR, glomerular filtration rate; GRACE, Global Registry of Acute Coronary Events; HF, heart failure; LV, left ventricular; NSTE-ACS, non–ST-elevation acute coronary syndrome; PCI, percutaneous coronary intervention; TIMI, Thrombolysis In Myocardial Infarction; Tn, troponin; VF, ventricular fibrillation; and VT, ventricular tachycardia.
4.4.4.1. Comparison of Early Versus Delayed Angiography

In some studies, early angiography and coronary intervention have been more effective in reducing ischemic complications than delayed interventions, particularly in patients at high risk (defined by a GRACE score >140) (139, 336). A more delayed strategy is also reasonable in low- to intermediate-risk patients. The advantage of early intervention was achieved in the context of intensive background antithrombotic and anti-ischemic therapy. However, this question was also assessed by a meta-analysis of 11 trials (7 RCTs and 4 observational studies) (343). Meta-analysis of the RCTs was inconclusive for a survival benefit of the early invasive strategy (OR: 0.83 [95% CI: 0.64 to 1.09]; p=0.180), and there were no significant differences in MI or major bleeding; a similar result was found with the observational studies. These data are limited by the small sample size of the individual trials, low event rates, inconsistency in timing of intervention, and heterogeneous patient profiles.

See Online Data Supplement 18 for additional information on comparison of early invasive strategy and ischemia-guided strategy.

4.4.5. Subgroups: Early Invasive Strategy Versus Ischemia-Guided Strategy

The TACTICS-TIMI (Treat Angina With Tirofiban and Determine Cost of Therapy With an Invasive or Conservative Strategy-Thrombolysis In Myocardial Infarction) 18 trial demonstrated a reduction in the 6-month endpoint of death or MI in older adults with ACS (138). Controversy exists over revascularization treatment differences between men and women with ACS. The FRISC-II trial showed a benefit of revascularization in men for death or MI that was not observed for women (344). In contrast, death, MI, or rehospitalization rates were reduced for both men and women in TACTICS-TIMI 18 (138). RITA-3 showed that the routine strategy of invasive evaluation resulted in a beneficial effect in high-risk men that was not seen in women (342). A meta-analysis suggests that in NSTE-ACS, an invasive strategy has a comparable benefit in men and high-risk women for reducing the composite endpoint of death, MI, or rehospitalization (141, 345, 346). In contrast, an ischemia-guided strategy is preferred in low-risk women (141). Another collaborative meta-analysis of randomized trials reported that an early invasive strategy yielded similar RR reductions in overall cardiovascular events in patients with and without diabetes mellitus (347). However, an invasive strategy appeared to reduce recurrent nonfatal MI to a greater extent in patients with diabetes mellitus.

See Online Data Supplement 19 for additional information on comparison of early versus delayed angiography.

4.4.6. Care Objectives

Coronary angiography is designed to provide detailed information about the size and distribution of coronary vessels, the location and extent of atherosclerotic obstruction, and the suitability for revascularization. The LV angiogram, usually performed with coronary angiography, provides an assessment of the extent of focal and global LV dysfunction and of the presence and severity of coexisting disorders (e.g., valvular or other associated...
lesions). Patients with NSTE-ACS can be divided into risk groups on the basis of their initial clinical presentation. The TIMI, PURSUIT, and GRACE scores are useful tools for assigning risk to patients with NSTE-ACS.

Risk stratification identifies patients who are most likely to benefit from subsequent revascularization. Patients with left main disease or multivessel CAD with reduced LV function are at high risk for adverse outcomes and are likely to benefit from CABG. Clinical evaluation and noninvasive testing aid in the identification of most patients at high risk because they often have ≥1 of the following high-risk features: advanced age (>70 years of age), prior MI, revascularization, ST deviation, HF, depressed resting LV function (i.e., LVEF ≤0.40) on noninvasive study, or noninvasive stress test findings, including magnetic resonance imaging (348). Any of these risk factors or diabetes mellitus may aid in the identification of high-risk patients who could benefit from an invasive strategy.

Some patients with NSTE-ACS are not in the very high-risk group and do not have findings that portend a high risk for adverse outcomes. They are not likely to receive the same degree of benefit from routine revascularization afforded to high-risk patients, and an invasive study is optional for those at lower risk and can be safely deferred pending further clinical evidence. Decisions about coronary angiography in patients who are not at high risk according to findings on clinical examination and noninvasive testing can be individualized on the basis of patient preferences and/or symptoms.

4.5. Risk Stratification Before Discharge for Patients With an Ischemia-Guided Strategy of NSTE-ACS: Recommendations

Class I

1. Noninvasive stress testing is recommended in low- and intermediate-risk patients who have been free of ischemia at rest or with low-level activity for a minimum of 12 to 24 hours (349-353). (Level of Evidence: B)

2. Treadmill exercise testing is useful in patients able to exercise in whom the ECG is free of resting ST changes that may interfere with interpretation (349-352). (Level of Evidence: C)

3. Stress testing with an imaging modality should be used in patients who are able to exercise but have ST changes on resting ECG that may interfere with interpretation. In patients undergoing a low-level exercise test, an imaging modality can add prognostic information (349-352). (Level of Evidence: B)

4. Pharmacological stress testing with imaging is recommended when physical limitations preclude adequate exercise stress. (Level of Evidence: C)

5. A noninvasive imaging test is recommended to evaluate LV function in patients with definite ACS (349-352). (Level of Evidence: C)

The management of patients with NSTE-ACS requires continuous risk stratification. Important prognostic information is derived from initial assessment, the patient’s course during the early days of management, and the response to anti-ischemic and antithrombotic therapy. The choice of stress test is based on the patient’s resting ECG and ability to exercise, local expertise, and available technologies. The exercise intensity of the treadmill test (low level or symptom-limited) is used at the discretion of the attending clinician based on individual patient
assessment. For invasively managed patients with residual nonculprit lesions, additional evaluation may be indicated to ascertain the significance of such lesions. Refer to the PCI CPG for additional details (26).

4.5.1. Noninvasive Test Selection

The goals of noninvasive testing in patients with a low or intermediate likelihood of CAD and high-risk patients who did not have an early invasive strategy are to detect ischemia and estimate prognosis. This information guides further diagnostic steps and therapeutic measures.

Because of its simplicity, lower cost, and widespread familiarity with its performance and interpretation, the standard low-level exercise electrocardiographic stress test remains the most reasonable test in patients who are able to exercise and who have a resting ECG that is interpretable for ST shifts. There is evidence that imaging studies are superior to exercise electrocardiographic evaluation in women for diagnosis of CAD (350). However, for prognostic assessment in women, treadmill exercise testing has provided comparable results to stress imaging (354). Patients with an electrocardiographic pattern that would interfere with interpretation of the ST segment (baseline ST abnormalities, bundle-branch block, LV hypertrophy with ST-T changes, intraventricular conduction defect, paced rhythm, pre-excitation, and digoxin) should have an exercise test with imaging. Patients who are unable to exercise should have a pharmacological stress test with imaging. Low- and intermediate-risk patients with NSTE-ACS may undergo symptom-limited stress testing, provided they have been asymptomatic and clinically stable at 12 to 24 hours for those with UA and 2 to 5 days for patients at similar risk with NSTEMI (349). The optimal testing strategy in women is less well defined than in men.

4.5.2. Selection for Coronary Angiography

In contrast to noninvasive tests, coronary angiography provides detailed structural information for assessment of prognosis and appropriate management. When combined with LV angiography, it also provides an assessment of global and regional LV function. Coronary angiography is usually indicated in patients with NSTE-ACS who have recurrent symptoms or ischemia despite adequate medical therapy or who are at high risk as categorized by clinical findings (HF, serious ventricular arrhythmias), noninvasive test findings (significant LV dysfunction with EF <0.40, large anterior or multiple perfusion defects or wall motion abnormalities on echocardiography, high-risk Duke treadmill score ≤−11), high-risk TIMI or GRACE scores, or markedly elevated troponin levels. Patients with NSTE-ACS who have had previous PCI or CABG also should be considered for early coronary angiography, unless prior coronary angiography data indicate that no further revascularization is feasible.

The general indications for coronary angiography and revascularization should be tempered by individual patient characteristics and preferences (a patient-centered approach). Patient and clinician judgments about risks and benefits are important for patients who might not be candidates for coronary revascularization, such as very frail older adults and those with serious comorbid conditions (e.g., severe hepatic, pulmonary, or renal failure; active or inoperable cancer).
5. Myocardial Revascularization

Recommendations about coronary artery revascularization indications, benefits, and choice of revascularization procedure (PCI or CABG) for all anatomic subsets have been published in the 2011 PCI CPG (26), the 2011 CABG CPG (23), and the 2012 stable ischemic heart disease CPG and its 2014 focused update (10, 11). The main difference between management of patients with stable ischemic heart disease and NSTE-ACS is a stronger impetus for revascularization in those with NSTE-ACS. Myocardial ischemia in ACS may progress to MI and is potentially life threatening. In addition, in patients with ACS, angina (including recurrent angina) is more likely to be reduced by revascularization than by medical therapy (26).

A “heart team” approach to revascularization decisions, involving an interventional cardiologist and cardiothoracic surgeon, is used in patients with unprotected left main or complex CAD. Calculation of the SYNTAX (Synergy Between Percutaneous Coronary Intervention With TAXUS and Cardiac Surgery) and STS scores is reasonable in these patients to guide the choice of revascularization (23, 26, 355).

Factors that influence the choice of revascularization procedure include the extent and complexity of CAD; short-term risk and long-term durability of PCI; operative mortality (which can be estimated by the STS score); diabetes mellitus; CKD; completeness of revascularization; LV systolic dysfunction; previous CABG; and the ability of the patient to tolerate and comply with DAPT. In general, the greater the extent and complexity of the multivessel disease, the more compelling the choice of CABG over multivessel PCI (23, 26, 356-358). In patients with NSTE-ACS, PCI of a culprit unprotected left main coronary artery lesion is an option if the patient is not a candidate for CABG (23, 26).

See Online Data Supplements 21 and 22 for additional information on myocardial revascularization.

5.1. Percutaneous Coronary Intervention

5.1.1. PCI—General Considerations: Recommendation

Class IIb

1. A strategy of multivessel PCI, in contrast to culprit lesion–only PCI, may be reasonable in patients undergoing coronary revascularization as part of treatment for NSTE-ACS (330, 359-364). *(Level of Evidence: B)*

Approximately half of all PCI procedures are performed in patients with UA or NSTEMI, and approximately 32% to 40% of patients with NSTE-ACS will undergo PCI (365). As discussed previously, in patients with NSTE-ACS, a strategy of early angiography and revascularization (primarily with PCI) results in lower rates of recurrent UA, recurrent rehospitalization, MI, and death (366, 367). Although PCI of a nonculprit lesion is not advocated in patients with STEMI (26), there is less agreement on whether nonculprit lesions should undergo intervention at the time of culprit-lesion PCI for NSTE-ACS. Most reports (359-364), but not all (330),
comparing culprit lesion–only PCI with multivessel PCI (e.g., PCI of multiple vessels performed at the same time) in patients with NSTE-ACS did not find an increased risk of MACE with multivessel PCI and found a reduction in the need for repeat revascularization. However, the data consist predominantly of post hoc analysis of nonrandomized data with variable duration of follow-up. This question has not been resolved and is an area of current investigation.

5.1.2. PCI—Antiplatelet and Anticoagulant Therapy

5.1.2.1. Oral and Intravenous Antiplatelet Agents: Recommendations

Class I

1. Patients already taking daily aspirin before PCI should take 81 mg to 325 mg non–enteric-coated aspirin before PCI (26, 368-370). *(Level of Evidence: B)*

2. Patients not on aspirin therapy should be given non–enteric-coated aspirin 325 mg as soon as possible before PCI (26, 368-370). *(Level of Evidence: B)*

3. After PCI, aspirin should be continued indefinitely at a dose of 81 mg to 325 mg daily (27, 288, 371). *(Level of Evidence: B)*

4. A loading dose of a P2Y_{12} receptor inhibitor should be given before the procedure in patients undergoing PCI with stenting (26, 293, 302, 331, 372-375). *(Level of Evidence: A)* Options include:
 a. Clopidogrel: 600 mg (331, 372-374, 376-378) *(Level of Evidence: B)*
 b. Prasugrel*: 60 mg (302) *(Level of Evidence: B)*
 c. Ticagrelor\#: 180 mg (293) *(Level of Evidence: B)*

5. In patients with NSTE-ACS and high-risk features (e.g., elevated troponin) not adequately pretreated with clopidogrel or ticagrelor, it is useful to administer a GP IIb/IIIa inhibitor (abciximab, double-bolus eptifibatide, or high-dose bolus tirofiban) at the time of PCI (379-382). *(Level of Evidence: A)*

6. In patients receiving a stent (bare-metal stent or drug-eluting stent [DES]) during PCI for NSTE-ACS, P2Y_{12} inhibitor therapy should be given for at least 12 months (330). Options include:
 a. Clopidogrel: 75 mg daily (296, 331) *(Level of Evidence: B)*
 b. Prasugrel\#: 10 mg daily (302) *(Level of Evidence: B)*
 c. Ticagrelor\#: 90 mg twice daily (293) *(Level of Evidence: B)*

Class IIa

1. It is reasonable to choose ticagrelor over clopidogrel for P2Y_{12} inhibition treatment in patients with NSTE-ACS treated with an early invasive strategy and/or coronary stenting (293, 294). *(Level of Evidence: B)*

2. It is reasonable to choose prasugrel over clopidogrel for P2Y_{12} treatment in patients with NSTE-ACS who undergo PCI who are not at high risk of bleeding complications (302, 303). *(Level of Evidence: B)*

3. In patients with NSTE-ACS and high-risk features (e.g., elevated troponin) treated with UFH and adequately pretreated with clopidogrel, it is reasonable to administer a GP IIb/IIIa inhibitor (abciximab, double-bolus eptifibatide, or high-dose bolus tirofiban) at the time of PCI (195, 383, 384). *(Level of Evidence: B)*

4. After PCI, it is reasonable to use 81 mg per day of aspirin in preference to higher maintenance doses (331, 368, 385-388). *(Level of Evidence: B)*

*Patients should receive a loading dose of prasugrel, provided that they were not pretreated with another P2Y_{12} receptor inhibitor.

\#The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily (290).
5. If the risk of morbidity from bleeding outweighs the anticipated benefit of a recommended duration of P2Y$_{12}$ inhibitor therapy after stent implantation, earlier discontinuation (e.g., <12 months) of P2Y$_{12}$ inhibitor therapy is reasonable (330). (Level of Evidence: C)

Class IIb
1. Continuation of DAPT beyond 12 months may be considered in patients undergoing stent implantation. (Level of Evidence: C)

Class III: Harm
1. Prasugrel should not be administered to patients with a prior history of stroke or transient ischemic attack (302). (Level of Evidence: B)

Comprehensive recommendations on the use of antiplatelet and anticoagulant therapy in patients with NSTE-ACS undergoing PCI are given in the 2011 PCI CPG (26). Aspirin reduces the frequency of ischemic complications after PCI and is ideally administered at least 2 hours, and preferably 24 hours, before PCI (26, 368, 369). DAPT, consisting of aspirin and a P2Y$_{12}$ inhibitor, in patients treated with coronary stents reduces the risk of stent thrombosis and composite ischemic events (296, 331, 372-375, 389, 390). Compared with a loading dose of 300 mg of clopidogrel, a loading dose of 600 mg of clopidogrel in patients undergoing PCI achieves greater platelet inhibition with fewer low responders and decreases the incidence of MACE (376-378). In patients with ACS who have undergone coronary stenting, treatment with prasugrel or ticagrelor, compared with treatment with clopidogrel, results in a greater reduction in composite ischemic events and the incidence of stent thrombosis, although at a risk of increased non–CABG bleeding (293, 302). The optimal duration of DAPT therapy in patients treated with DES is not well established (26). However, aspirin is continued indefinitely in all patients managed with a bare-metal stent or DES, and DAPT is an option for >12 months in patients who have received a DES. This determination should balance the risks of stent thrombosis and ischemic complications versus bleeding and should be jointly made by the clinician and the patient.

Loading and short-term maintenance doses of clopidogrel were studied in CURRENT–OASIS (Clopidogrel Optimal Loading Dose Usage to Reduce Recurrent Events–Organization to Assess Strategies in Ischemic Syndromes) 7, which demonstrated a potential benefit of higher-dose clopidogrel (600-mg loading dose, 150 mg daily for 6 days, 75 mg daily thereafter) in patients with NSTE-ACS undergoing an invasive management strategy (292, 391). Although the overall trial (292) failed to demonstrate a significant difference in the primary endpoint between the clopidogrel and aspirin groups (4.2% versus 4.4%), the PCI subset (n=17,263) showed significant differences in the clopidogrel arm (391). Notably, the higher-dose clopidogrel therapy increased major bleeding in the entire group (2.5% versus 2.0%; p=0.012) and the PCI subgroup (1.1% versus 0.7%; p=0.008). In addition, during the period of several hours required for conversion of clopidogrel to its active metabolite, there is reduced effectiveness. However, efficacy is restored following conversion.

Patients undergoing PCI who have previously received a loading dose of 300 mg of clopidogrel and are on a 75-mg daily maintenance dose should receive another 300-mg loading dose (315). There are no data
appropriate for prasugrel because this drug is administered before PCI. For ticagrelor, there are no data on additional loading.

5.1.2.2. GP IIb/IIIa Inhibitors: Recommendations

Class I

1. In patients with NSTE-ACS and high-risk features (e.g., elevated troponin) and not adequately pretreated with clopidogrel or ticagrelor, it is useful to administer a GP IIb/IIIa inhibitor (abciximab, double-bolus eptifibatide, or high-dose bolus tirofiban) at the time of PCI (379-382). (Level of Evidence: A)

Class IIa

1. In patients with NSTE-ACS and high-risk features (e.g., elevated troponin) treated with UFH and adequately pretreated with clopidogrel, it is reasonable to administer a GP IIb/IIIa inhibitor (abciximab, double-bolus eptifibatide, or high-dose bolus tirofiban) at the time of PCI (195, 383). (Level of Evidence: B)

GP IIb/IIIa receptor antagonist therapy in patients with NSTE-ACS undergoing PCI reduced the incidence of composite ischemic events, primarily through a decrease in documented MI, although in some trials this is counterbalanced by an increased rate of bleeding (193, 195, 310, 379-382, 392). Most, but not all, randomized trials of the use of GP IIb/IIIa inhibitor were conducted in the era before clopidogrel therapy (193, 195, 310, 379-383, 392). Abciximab, double-bolus eptifibatide, and high-bolus dose tirofiban result in a high degree of platelet inhibition, reduce ischemic complications in patients undergoing PCI, and appear to afford comparable angiographic and clinical outcomes (26). As trials of the GP IIb/IIIa inhibitors generally excluded patients at high risk of bleeding, recommendations for the use of GP IIb/IIIa inhibitors are best understood as applying to patients not at high risk of bleeding complications. Although GP IIb/IIIa inhibitors were used in 27% and 55% of patients, respectively, in the PLATO (Platelet Inhibition and Patient Outcomes) and TRITON studies of ticagrelor and prasugrel, there are insufficient data (293, 302, 393) (and no RCT data) from which to make specific recommendations about GP IIb/IIIa inhibitor use in patients treated with either of these P2Y₁₂ inhibitors.

See Online Data Supplement 21 for additional information on GP IIb/IIIa inhibitors.

5.1.2.3. Anticoagulant Therapy in Patients Undergoing PCI: Recommendations

Class I

1. An anticoagulant should be administered to patients with NSTE-ACS undergoing PCI to reduce the risk of intracoronary and catheter thrombus formation. (Level of Evidence: C)
2. Intravenous UFH is useful in patients with NSTE-ACS undergoing PCI. (Level of Evidence: C)
3. Bivalirudin is useful as an anticoagulant with or without prior treatment with UFH in patients with NSTE-ACS undergoing PCI (310, 394-398). (Level of Evidence: B)
4. An additional dose of 0.3 mg/kg IV enoxaparin should be administered at the time of PCI to patients with NSTE-ACS who have received fewer than 2 therapeutic subcutaneous doses (e.g., 1 mg/kg SC) or received the last subcutaneous enoxaparin dose 8 to 12 hours before PCI (309, 399-403). (Level of Evidence: B)
5. If PCI is performed while the patient is on fondaparinux, an additional 85 IU/kg of UFH should be given intravenously immediately before PCI because of the risk of catheter thrombosis (60
Amsterdam EA, et al. 2014 AHA/ACC NSTE-ACS Guideline

IU/kg IV if a GP IIb/IIIa inhibitor used with UFH dosing based on the target-activated clotting time) (26, 313-315, 404). (Level of Evidence: B)

6. In patients with NSTE-ACS, anticoagulant therapy should be discontinued after PCI unless there is a compelling reason to continue such therapy. (Level of Evidence: C)

Class IIa
1. In patients with NSTE-ACS undergoing PCI who are at high risk of bleeding, it is reasonable to use bivalirudin monotherapy in preference to the combination of UFH and a GP IIb/IIIa receptor antagonist (310, 396). (Level of Evidence: B)

Class IIb
1. Performance of PCI with enoxaparin may be reasonable in patients treated with upstream subcutaneous enoxaparin for NSTE-ACS (26, 309, 399-402, 405, 406). (Level of Evidence: B)

Class III: Harm
1. Fondaparinux should not be used as the sole anticoagulant to support PCI in patients with NSTE-ACS due to an increased risk of catheter thrombosis (26, 313-315). (Level of Evidence: B)

Anticoagulant therapy prevents thrombus formation at the site of arterial injury, on the coronary guide wire, and in the catheters used for PCI (26, 407). With rare exceptions, all PCI studies have used some form of anticoagulant at the time of PCI (26). Intravenous UFH and bivalirudin both have Class I recommendations in patients undergoing PCI in the 2011 PCI CPG (26). Patients who have received multiple doses of subcutaneously-administered enoxaparin who undergo PCI within 8 hours of the last subcutaneous dose generally have received adequate anticoagulation to undergo PCI, but the degree of anticoagulation may diminish 8 to 12 hours after the last subcutaneous dose. In such patients, as well as in patients who have received fewer than 2 subcutaneous doses of enoxaparin, the addition of enoxaparin (0.3 mg/kg IV) at the time of PCI provides additional anticoagulation and has become standard practice (26, 309, 399-403). Patients who undergo PCI >12 hours after the last subcutaneous dose of enoxaparin are usually treated with full-dose de novo anticoagulation with an established regimen (e.g., full-dose UFH or bivalirudin). Fondaparinux as the sole anticoagulant during PCI has been associated with catheter thrombosis, and use of an anticoagulant with anti-IIa activity is recommended when patients treated with fondaparinux undergo PCI (313-315). One suggested regimen is UFH 85 IU/kg IV if no GP IIb/IIIa inhibitor is used and 60 IU/kg IV if a GP IIb/IIIa inhibitor is used with UFH dosing based on the target-activated clotting time (314, 404) (Table 9) (26, 313-315).

Table 9. Dosing of Parenteral Anticoagulants During PCI

<table>
<thead>
<tr>
<th>Drug*</th>
<th>In Patients Who Have Received Prior Anticoagulant Therapy</th>
<th>In Patients Who Have Not Received Prior Anticoagulant Therapy</th>
</tr>
</thead>
</table>
| Enoxaparin | • For prior treatment with enoxaparin, if last SC dose was administered 8–12 h earlier or if <2 therapeutic SC doses of enoxaparin have been administered, an IV dose of enoxaparin 0.3 mg/kg should be given
• If the last SC dose was administered within prior 8 h, no additional enoxaparin should be given | • 0.5 mg/kg–0.75 mg/kg IV loading dose |
5.2. Timing of Urgent CABG in Patients With NSTE-ACS in Relation to Use of Antiplatelet Agents: Recommendations

Class I

1. **Non-enteric-coated aspirin (81 mg to 325 mg daily) should be administered preoperatively to patients undergoing CABG** (408-410). *(Level of Evidence: B)*

2. **In patients referred for elective CABG, clopidogrel and ticagrelor should be discontinued for at least 5 days before surgery** (23, 411-413) *(Level of Evidence: B)* and prasugrel for at least 7 days before surgery (8, 414). *(Level of Evidence: C)*

3. **In patients referred for urgent CABG, clopidogrel and ticagrelor should be discontinued for at least 24 hours to reduce major bleeding** (8, 412, 415-417). *(Level of Evidence: B)*

4. **In patients referred for CABG, short-acting intravenous GP IIB/IIIa inhibitors (eptifibatide or tirofiban) should be discontinued for at least 2 to 4 hours before surgery (418, 419) and abciximab for at least 12 hours before to limit blood loss and transfusion (389).** *(Level of Evidence: B)*

Class IIb

1. **In patients referred for urgent CABG, it may be reasonable to perform surgery less than 5 days after clopidogrel or ticagrelor has been discontinued and less than 7 days after prasugrel has been discontinued.** *(Level of Evidence: C)*

In-hospital CABG is performed in 7% to 13% of patients hospitalized with NSTE-ACS (420-422). Approximately one third of patients with NSTEMI undergo CABG within 48 hours of hospital admission (421). In these patients, CABG was performed at a median time of 73 hours after admission (interquartile range: 42 to 122) (421). In-hospital mortality in patients with NSTEMI undergoing CABG is approximately 3.7% (421).

Recommendations for management of patients treated with oral and intravenous antiplatelet agents who undergo CABG are given in the 2011 CABG CPG (23). Preoperative aspirin reduces operative morbidity and mortality, and CABG can be performed safely in patients on aspirin therapy with only a modest increase in
bleeding risk (23, 408-410). The use of P2Y\textsubscript{12} inhibitors in patients with NSTE-ACS is associated with an increase in post–CABG bleeding and the need for transfusion (293, 302, 411, 413, 423-425). Although it is recommended that clopidogrel and ticagrelor be discontinued at least 5 days before surgery and prasugrel at least 7 days before surgery in patients referred for elective CABG (23, 411-413), the timing of CABG in patients with NSTE-ACS treated with a P2Y\textsubscript{12} inhibitor (330) should reflect a balance of the potential increase in bleeding against the potential benefits of not delaying surgery 5 to 7 days. The risk of major bleeding complications is increased when CABG is performed <24 hours after discontinuation of clopidogrel (23, 416, 417). In patients who undergo CABG 1 to 4 days after discontinuation of clopidogrel, it appears that the incidence of life-threatening bleeding is not significantly increased, but an increase in blood transfusions is likely (23, 415, 416, 425, 426). In the TRITON-TIMI 38 trial (302), the incidence of CABG-related major bleeding was higher in patients treated with prasugrel than in patients treated with clopidogrel (23, 386). In the PLATO trial, the rates of major bleeding and transfusion requirements were similar between patients treated with ticagrelor and patients treated with clopidogrel (294). The more rapid recovery of platelet function in pharmacokinetic studies of ticagrelor did not translate to a lower risk of bleeding or lessen the need for transfusion compared with clopidogrel when CABG was performed early (i.e., <5 days) after drug discontinuation (23, 293, 412).

See Online Data Supplements 21 and 22 for more information on myocardial revascularization.

6. Late Hospital Care, Hospital Discharge, and Posthospital Discharge Care

6.1. General Principles (Cardioprotective Therapy and Symptom Management)

The goals of therapy after NSTE-ACS are to restore the patient to normal activities to the extent possible and to use the acute event to re-evaluate the plan of care, particularly lifestyle and risk factor modification. Aggressive risk factor modifications that can prolong survival should be the main goal of long-term management of patients with stable CAD. Patients presenting with NSTE-ACS represent a high-risk cohort in whom secondary cardiovascular disease prevention is likely to be particularly effective (Table 10). Clinicians have an opportunity to provide evidence-based care to this high-risk cohort and to aggressively treat the underlying atherosclerotic process through lifestyle modification and effective pharmacological therapies (427). In most cases, the inpatient anti-ischemic medical regimen should be continued after discharge, and the antiplatelet/anticoagulant medications should be changed to an outpatient regimen. The goals for continued medical therapy after discharge relate to potential prognostic benefits (primarily shown for antiplatelet agents, beta blockers, statins, and inhibitors of the renin-angiotensin aldosterone system, especially for LVEF <0.40). Added benefits are control of ischemic symptoms (nitrates, beta blockers, CCBs, and ranolazine) and treatment of major risk factors such as smoking, hypertension, dyslipidemia, physical inactivity, obesity, and diabetes mellitus (427). Selection
of a medical regimen should be individualized to each patient based on in-hospital findings, risk factors for CAD, drug tolerability, and recent procedural interventions. The mnemonic “ABCDE” (Aspirin, Antianginals, and ACE Inhibitors; Beta Blockers and BP; Cholesterol and Cigarettes; Diet and Diabetes Mellitus; Education and Exercise) is useful in guiding treatment (428).

6.2. Medical Regimen and Use of Medications at Discharge: Recommendations

Class I

1. Medications required in the hospital to control ischemia should be continued after hospital discharge in patients with NSTE-ACS who do not undergo coronary revascularization, patients with incomplete or unsuccessful revascularization, and patients with recurrent symptoms after revascularization. Titration of the doses may be required (427, 428). (Level of Evidence: C)

2. All patients who are post–NSTE-ACS should be given sublingual or spray nitroglycerin with verbal and written instructions for its use (429). (Level of Evidence: C)

3. Before hospital discharge, patients with NSTE-ACS should be informed about symptoms of worsening myocardial ischemia and MI and should be given verbal and written instructions about how and when to seek emergency care for such symptoms (429). (Level of Evidence: C)

4. Before hospital discharge, patients who are post–NSTE-ACS and/or designated responsible caregivers should be provided with easily understood and culturally sensitive verbal and written instructions about medication type, purpose, dose, frequency, side effects, and duration of use (429). (Level of Evidence: C)

5. For patients who are post–NSTE-ACS and have initial angina lasting more than 1 minute, nitroglycerin (1 dose sublingual or spray) is recommended if angina does not subside within 3 to 5 minutes; call 9-1-1 immediately to access emergency medical services (429). (Level of Evidence: C)

6. If the pattern or severity of angina changes, suggesting worsening myocardial ischemia (e.g., pain is more frequent or severe or is precipitated by less effort or occurs at rest), patients should contact their clinician without delay to assess the need for additional treatment or testing (429). (Level of Evidence: C)

7. Before discharge, patients should be educated about modification of cardiovascular risk factors (428). (Level of Evidence: C)

6.2.1. Late Hospital and Posthospital Oral Antiplatelet Therapy: Recommendations

Class I

1. Aspirin should be continued indefinitely. The maintenance dose should be 81 mg daily in patients treated with ticagrelor and 81 mg to 325 mg daily in all other patients (288-290). (Level of Evidence: A)

2. In addition to aspirin, a P2Y₁₂ inhibitor (either clopidogrel or ticagrelor) should be continued for up to 12 months in all patients with NSTE-ACS without contraindications who are treated with an ischemia-guided strategy. Options include:
 - Clopidogrel: 75 mg daily (289, 296) (Level of Evidence: B) or
 - Ticagrelor:[†] 90 mg twice daily (293, 294) (Level of Evidence: B)

3. In patients receiving a stent (bare-metal stent or DES) during PCI for NSTE-ACS, P2Y₁₂ inhibitor therapy should be given for at least 12 months (330). Options include:
 - Clopidogrel: 75 mg daily (296, 331) (Level of Evidence: B) or
 - Prasugrel:[‡] 10 mg daily (302) (Level of Evidence: B) or

[†]The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily (290).

[‡]Patients should receive a loading dose of prasugrel, provided they were not pretreated with another PY₁₂ receptor inhibitor.

[†]The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily (290).
• Ticagrelor: 90 mg twice daily (293) (Level of Evidence: B)

Class IIa

1. It is reasonable to use an aspirin maintenance dose of 81 mg per day in preference to higher maintenance doses in patients with NSTE-ACS treated either invasively or with coronary stent implantation (26, 331, 368, 385-388). (Level of Evidence: B)

2. It is reasonable to choose ticagrelor over clopidogrel for maintenance P2Y₁₂ treatment in patients with NSTE-ACS treated with an early invasive strategy and/or PCI (293, 294). (Level of Evidence: B)

3. It is reasonable to choose prasugrel over clopidogrel for maintenance P2Y₁₂ treatment in patients with NSTE-ACS who undergo PCI who are not at high risk for bleeding complications (302, 303). (Level of Evidence: B)

4. If the risk of morbidity from bleeding outweighs the anticipated benefit of a recommended duration of P2Y₁₂ inhibitor therapy after stent implantation, earlier discontinuation (e.g., <12 months) of P2Y₁₂ inhibitor therapy is reasonable (330). (Level of Evidence: C)

Class IIb

1. Continuation of DAPT beyond 12 months may be considered in patients undergoing stent implantation. (Level of Evidence: C)

6.2.2. Combined Oral Anticoagulant Therapy and Antiplatelet Therapy in Patients With NSTE-ACS

Class I

1. The duration of triple antithrombotic therapy with a vitamin K antagonist, aspirin, and a P2Y₁₂ receptor inhibitor in patients with NSTE-ACS should be minimized to the extent possible to limit the risk of bleeding. (Level of Evidence: C)

2. Proton pump inhibitors should be prescribed in patients with NSTE-ACS with a history of gastrointestinal bleeding who require triple antithrombotic therapy with a vitamin K antagonist, aspirin, and a P2Y₁₂ receptor inhibitor (26, 430, 431). (Level of Evidence: C)

Class IIa

1. Proton pump inhibitor use is reasonable in patients with NSTE-ACS without a known history of gastrointestinal bleeding who require triple antithrombotic therapy with a vitamin K antagonist, aspirin, and a P2Y₁₂ receptor inhibitor (26, 430, 431). (Level of Evidence: C)

Class IIb

1. Targeting oral anticoagulant therapy to a lower international normalized ratio (INR) (e.g., 2.0 to 2.5) may be reasonable in patients with NSTE-ACS managed with aspirin and a P2Y₁₂ inhibitor. (Level of Evidence: C)

The combination of oral antiplatelet therapy and oral anticoagulant therapy significantly increases the risk of bleeding. This risk varies widely, but on average, the addition of a single antiplatelet agent increased the risk of bleeding from an approximate range of 2% to 3% to 4% to 6%, whereas the addition of DAPT to oral anticoagulant therapy (“triple therapy”) increased the risk of bleeding from an approximate range of 4% to 6% to 10% to 14% (432-435). This risk was also related to the duration of triple therapy.
In patients with NSTE-ACS in whom there are indications for triple therapy, the benefit of such therapy in terms of prevention of stent thrombosis, thromboembolic events, and recurrent MI must be weighed against the risk of bleeding complications. Similarly, DAPT, in addition to anticoagulant therapy, requires consideration of the increased risk of bleeding. It is essential that therapeutic decision making in this critical area include discussion with the patient about the options, advantages, and limitations of available approaches.

Recommendations about the management of patients treated with triple therapy have been published in ACC/AHA CPGs and by other organizations (17, 26, 430, 433, 436). Although some organizations have recommended a target INR of 2.0 to 2.5 in patients with atrial fibrillation (AF) who require triple therapy (437), others continue to recommend a target INR of 2.0 to 3.0 (436, 438). The HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score has relevance in these deliberations (439). No prospective study to date has demonstrated that a target INR of 2.0 to 2.5 reduces bleeding complications.

Whenever possible, shorter durations of triple therapy are favored in preference to longer durations of triple therapy. In patients with NSTE-ACS who require oral anticoagulation for AF, mechanical heart valve, deep venous thrombosis, or other conditions, a bare-metal stent may offer the advantages of lower bleeding risk over a DES because of the potentially shorter duration of triple antithrombotic therapy. The WOEST (What is the Optimal Antiplatelet and Anticoagulant Therapy in Patients With Oral Anticoagulation and Coronary Stenting) trial is the first published study to address the question of optimal antiplatelet therapy in patients taking oral anticoagulant medication (440). WOEST was a randomized, open-label trial of 563 patients (approximately 25% of whom had NSTE-ACS) receiving oral anticoagulant therapy and undergoing coronary stenting. Patients randomized to single antiplatelet treatment with clopidogrel had significantly fewer bleeding complications and no increase in thrombotic events compared with those randomized to DAPT with aspirin and clopidogrel. Larger clinical trials are needed to compare double versus triple therapy in the setting of coronary stenting and NSTE-ACS. One such study that has been initiated is PIONEER AF-PCI (an Open-Label, Randomized, Controlled, Multicenter Study Exploring two Treatment Strategies of Rivaroxaban and a Dose-Adjusted Oral Vitamin K Antagonist Treatment Strategy in Subjects With Atrial Fibrillation who Undergo Percutaneous Coronary Intervention).

Although there are some data on therapy with aspirin, clopidogrel, and warfarin, there is sparse information on the use of newer P2Y12 inhibitors (prasugrel, ticagrelor), direct thrombin inhibitor (dabigatran), or factor-Xa inhibitors (rivaroxaban, apixaban) in patients receiving triple therapy. Prasugrel (302) and ticagrelor (412) produce a greater degree of platelet inhibition than clopidogrel and are associated with greater rates of bleeding (300, 302, 412, 441). These are important potential disadvantages in patients requiring triple therapy, a group in which the inherent risks of bleeding are significantly increased. (Overall bleeding risk was not increased with ticagrelor, although there was increased bleeding in certain subgroups on this drug (412)). Because there are no well-established therapies to reverse the anticoagulant effects of the newer oral antiplatelet
agents, caution is required when considering the use of these agents in patients who require triple therapy and are at significantly increased risk of bleeding. This admonition is especially important in elderly patients, a group in which bleeding risk is inherently increased (Section 7.1).

Proton pump inhibitors decrease the risk of gastrointestinal bleeding in patients treated with DAPT (431) and are used in patients treated with DAPT who have a history of gastrointestinal bleeding and those at increased risk of bleeding, which is associated with oral anticoagulation therapy even if there is no history of gastrointestinal bleeding (430). On the basis of these results, proton pump inhibitors are also used in patients receiving triple antithrombotic therapy who have a history of gastrointestinal bleeding. Although the clinical evidence that omeprazole and esomeprazole diminish the antiplatelet efficacy of clopidogrel is weak (430), the U.S. Food and Drug Administration has issued a warning to avoid concomitant use of these 2 proton pump inhibitors with clopidogrel (442).

6.2.3. Platelet Function and Genetic Phenotype Testing

Although higher platelet reactivity has been associated with a greater incidence of adverse events in patients undergoing stent implantation, a strategy of adjusting antiplatelet therapy based on routine platelet function testing has not been beneficial in reducing ischemic complications (26, 443-445). Similarly, a strategy of routine genetic phenotype testing has also not been beneficial and thus is not recommended (26, 446-448). A more detailed discussion of these issues and current recommendations about platelet function testing and genetic testing are in the 2011 PCI CPG (26).

6.3. Risk Reduction Strategies for Secondary Prevention

Secondary prevention is a critical aspect of the management of care for the survivor of NSTE-ACS. It has been clearly established that in this high-risk cohort, subsequent cardiovascular morbidity and mortality can be reduced by a comprehensive approach to favorably modifying patients’ risk profiles (27).

Secondary prevention comprises lifestyle changes, risk factor education, medical therapy, and, where appropriate, revascularization. These elements are discussed in Section 6.4. Despite the proven utility of secondary prevention, its implementation remains suboptimal, and enhanced application is a major goal in this patient population.

See Online Data Supplement 23 for additional information on risk reduction strategies.

6.3.1. Cardiac Rehabilitation and Physical Activity: Recommendation

Class I

1. All eligible patients with NSTE-ACS should be referred to a comprehensive cardiovascular rehabilitation program either before hospital discharge or during the first outpatient visit (449-452). (Level of Evidence: B)
The U.S. Public Health Service emphasizes comprehensive cardiac rehabilitation programs (449), and the 2011 secondary prevention CPG underscores referral to cardiac rehabilitation for survivors of ACS (27). Since 2007, referral to these programs has been designated a quality performance measure (453-455). Barriers to referral can be obviated by discussion with the patient and referral by the patient’s primary care clinician and/or cardiovascular caregiver. These comprehensive programs provide patient education, enhance regular exercise, monitor risk factors, and address lifestyle modification (456). Aerobic exercise training can generally begin 1 to 2 weeks after discharge in patients treated with PCI or CABG (457). Mild-to-moderate resistance training can be considered and started 2 to 4 weeks after aerobic training (458). Unsupervised exercise may target a heart rate range of 60% to 75% of maximum age-predicted heart rate based on the patient’s exercise stress test. Supervised training may target a higher heart rate (70% to 85% of age-predicted maximum) (457). Additional restrictions apply when residual ischemia is present. Daily walking can be encouraged soon after discharge for most patients. Resource publications on exercise prescription in cardiovascular patients are available (456, 457). Regular physical activity reduces symptoms in patients with cardiovascular disease, enhances functional capacity, improves other risk factors such as insulin resistance and glucose control, and is important in weight control (456). Questionnaires and nomograms for cardiac patients have been developed to guide exercise prescription if an exercise test is unavailable (459-462). See Section 6.4 and Table 10 for more information.

6.3.2. Patient Education: Recommendations

Class I
1. Patients should be educated about appropriate cholesterol management, BP, smoking cessation, and lifestyle management (15, 16, 18). *(Level of Evidence: C)*
2. Patients who have undergone PCI or CABG derive benefit from risk factor modification and should receive counseling that revascularization does not obviate the need for lifestyle changes (463). *(Level of Evidence: C)*

Results of testing should be discussed with the patient, the patient’s family, and/or the patient’s advocate in an understandable manner. Test results should be used to help determine the advisability of coronary angiography, the need for adjustments in the medical regimen, and the specifics for secondary prevention measures. See Section 6.4 and Table 10 for more information on plan of care.

6.3.3. Pneumococcal Pneumonia: Recommendation

Class I
1. The pneumococcal vaccine is recommended for patients 65 years of age and older and in high-risk patients with cardiovascular disease (464-466). *(Level of Evidence: B)*

Vaccination with the 23-valent pneumococcal polysaccharide vaccine is recommended for all adults ≥65 years of age. Adults of any age who are at increased risk, including smokers and those with asthma, should also be given the vaccine. Immunocompromised adults should receive the 13-valent conjugate vaccine in addition to the 23-valent vaccine (464-466). The influenza vaccine is discussed in Section 6.4.
6.3.4. NSAIDs: Recommendations

Class I
1. Before hospital discharge, the patient’s need for treatment of chronic musculoskeletal discomfort should be assessed, and a stepped-care approach should be used for selection of treatments. Pain treatment before consideration of NSAIDs should begin with acetaminophen, nonacetylated salicylates, tramadol, or small doses of narcotics if these medications are not adequate (17, 237). *(Level of Evidence: C)*

Class IIa
1. It is reasonable to use nonselective NSAIDs, such as naproxen, if initial therapy with acetaminophen, nonacetylated salicylates, tramadol, or small doses of narcotics is insufficient (237). *(Level of Evidence: C)*

Class IIb
1. NSAIDs with increasing degrees of relative COX-2 selectivity may be considered for pain relief only for situations in which intolerable discomfort persists despite attempts at stepped-care therapy with acetaminophen, nonacetylated salicylates, tramadol, small doses of narcotics, or nonselective NSAIDs. In all cases, use of the lowest effective doses for the shortest possible time is encouraged (234, 235, 237, 467). *(Level of Evidence: C)*

Class III: Harm
1. NSAIDs with increasing degrees of relative COX-2 selectivity should not be administered to patients with NSTE-ACS and chronic musculoskeletal discomfort when therapy with acetaminophen, nonacetylated salicylates, tramadol, small doses of narcotics, or nonselective NSAIDs provide acceptable pain relief (234, 235, 237, 467). *(Level of Evidence: B)*

Selective COX-2 inhibitors and other nonselective NSAIDs have been associated with increased cardiovascular risk, and the risk appears to be amplified in patients with established cardiovascular disease (234, 235, 467-469). In a large Danish observational study of patients with first MI (n=58,432), the HR and 95% CI for death were 2.80 (2.41 to 3.25) for rofecoxib, 2.57 (2.15 to 3.08) for celecoxib, 1.50 (1.36 to 1.67) for ibuprofen, 2.40 (2.09 to 2.80) for diclofenac, and 1.29 (1.16 to 1.43) for other NSAIDs (234). There were dose-related increases in risk of death and non–dose-dependent trends for rehospitalization for MI for all drugs (234, 467). An AHA scientific statement on the use of NSAIDs concluded that the risk of cardiovascular events is proportional to COX-2 selectivity and the underlying risk in the patient (237). Nonpharmacological approaches were recommended as the first line of treatment, followed by the stepped-care approach to pharmacological therapy, as shown in Figure 4.
ASA indicates aspirin; COX-2, cyclooxygenase-2; GI, gastrointestinal; NSAIDs, nonsteroidal anti-inflammatory drugs; and PPI, proton-pump inhibitor.
Modified from Jneid et al. (8).

6.3.5. Hormone Therapy: Recommendation

Class III: Harm

1. Hormone therapy with estrogen plus progestin, or estrogen alone, should not be given as new drugs for secondary prevention of coronary events to postmenopausal women after NSTE-ACS and should not be continued in previous users unless the benefits outweigh the estimated risks (17, 470-472). (Level of Evidence: A)

Although prior observational data suggested a protective effect of hormone therapy for coronary events, a randomized trial of hormone therapy for secondary prevention of death and MI (the HERS [Heart and Estrogen/Progestin Replacement] study) failed to demonstrate a beneficial effect (473). There was an excess risk for death and MI early after initiation of hormone therapy. The Women’s Health Initiative included randomized primary prevention trials of estrogen plus progestin and estrogen alone (472). Both trials were stopped early owing to an increased risk related to hormone therapy that was believed to outweigh the potential benefits of further study (470-472). It is recommended that postmenopausal women receiving hormone therapy at the time of a cardiovascular event discontinue its use and that hormone therapy should not be initiated for the primary or secondary prevention of coronary events. However, there may be other permissible indications for hormone therapy in postmenopausal women (e.g., treatment of perimenopausal symptoms such as flushing or prevention of osteoporosis) if the benefits are believed to outweigh the increased cardiovascular risk. Postmenopausal women who are >1 to 2 years past the initiation of hormone therapy who wish to continue such therapy for
another compelling indication should weigh the risks and benefits, recognizing the greater risk of cardiovascular events and breast cancer (combination therapy) or stroke (estrogen) (473).

6.3.6. Antioxidant Vitamins and Folic Acid: Recommendations

Class III: No Benefit

1. Antioxidant vitamin supplements (e.g., vitamins E, C, or beta carotene) should not be used for secondary prevention in patients with NSTE-ACS (474, 475). *(Level of Evidence: A)*

2. Folic acid, with or without vitamins B6 and B12, should not be used for secondary prevention in patients with NSTE-ACS (476, 477). *(Level of Evidence: A)*

Although there is an association of elevated homocysteine blood levels and CAD, a reduction in homocysteine levels with routine folate supplementation did not reduce the risk of CAD events in 2 trials (the NORVIT [Norwegian Vitamin Trial] and the HOPE [Heart Outcomes Prevention Evaluation] study) that included post–MI or high-risk stable patients (476-478) and produced poorer outcomes in another study (479). Additionally, in the NORVIT trial, there was a trend toward increased cardiovascular events (95% CI: 1.00 to 1.50; *p*=0.05) in the cohort receiving the combination of folic acid, vitamin B6, and vitamin B12; the authors cautioned against using the treatment for secondary prevention (476). Similarly, experience in large clinical trials with antioxidant vitamins has failed to demonstrate benefit for primary or secondary prevention (474, 475, 480).

See Online Data Supplement 23 for additional information on antioxidant vitamins and folic acid.

6.4. Plan of Care for Patients With NSTE-ACS: Recommendations

Class I

1. Posthospital systems of care designed to prevent hospital readmissions should be used to facilitate the transition to effective, coordinated outpatient care for all patients with NSTE-ACS (481-485). *(Level of Evidence: B)*

2. An evidence-based plan of care (e.g., GDMT) that promotes medication adherence, timely follow-up with the healthcare team, appropriate dietary and physical activities, and compliance with interventions for secondary prevention should be provided to patients with NSTE-ACS. *(Level of Evidence: C)*

3. In addition to detailed instructions for daily exercise, patients should be given specific instruction on activities (e.g., lifting, climbing stairs, yard work, and household activities) that are permissible and those to avoid. Specific mention should be made of resumption of driving, return to work, and sexual activity (452, 486, 487). *(Level of Evidence: B)*

4. An annual influenza vaccination is recommended for patients with cardiovascular disease (27, 488). *(Level of Evidence: C)*

Education of patients with NSTEMI and their families is critical and often challenging, especially during transitions of care. Failure to understand and comply with a plan of care may account for the high rate of AMI rehospitalization rates in the United States (489, 490). An important intervention to promote coordination is to provide patients and caregivers with a comprehensive plan of care and educational materials during the hospital stay that support compliance with evidence-based therapies (491-493). The posthospitalization plan of care for patients with NSTE-ACS (Table 10) should address in detail several complex issues, including medication
adherence and titration, timely follow-up, dietary interventions, physical and sexual activities, cardiac rehabilitation, compliance with interventions for secondary prevention, and reassessment of arrhythmic and HF risks. In addition, clinicians should pay close attention to psychosocial and socioeconomic issues, including access to care, risk of depression, social isolation, and healthcare disparities (494-496).

6.4.1. Systems to Promote Care Coordination

There has been improved understanding of the system changes necessary to achieve safer care (497). This includes adoption by all U.S. hospitals of a standardized set of “Safe Practices” endorsed by the National Quality Forum (498), which overlap with the National Patient Safety Goals espoused by The Joint Commission (499). Examples of patient safety standards for all patients after AMI include improved communication among clinicians, nurses, and pharmacists; medication reconciliation; careful transitions between care settings; and consistent documentation. The National Quality Forum has also endorsed a set of patient-centered “Preferred Practices for Care Coordination” (500), which detail comprehensive specifications that are necessary to achieve successful care coordination for patients and their families. Systems of care designed to support patients with NSTE-ACS, STEMI, and other cardiac diseases can result in significant improvement in patient outcomes.

Table 10 provides reference documents for multiple risk-reduction strategies for secondary prevention in the posthospital phase of NSTE-ACS. These include the 2013 ACC/AHA CPGs on management of blood cholesterol (18), obesity (16), and lifestyle (15) and the 2014 recommendations for management of hypertension (501), which were published during the development of this CPG. To provide the interventions and services listed in Table 10, appropriate resources must be used so that patients with MI have full access to evidence-based therapies and follow-up care. There is a growing emphasis on penalizing hospitals for avoidable hospital readmissions. It is imperative for health systems to work with clinicians, nurses, pharmacists, communities, payers, and public agencies to support the interventions that achieve comprehensive care. Several patient characteristics have been predictors of readmission after AMI (502, 503).

<table>
<thead>
<tr>
<th>Plan of Care</th>
<th>Resources/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medications</td>
<td></td>
</tr>
<tr>
<td>Antithrombotic therapies</td>
<td>• Section 6.1.2 and 6.2.2</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>• Sections 4.1.2.3</td>
</tr>
<tr>
<td>ACE inhibitors/ARBs/aldosterone antagonists</td>
<td>• Sections 4.2</td>
</tr>
<tr>
<td>CCBs</td>
<td>• Section 4.1.2.4</td>
</tr>
<tr>
<td>Statins</td>
<td>• 2013 Blood cholesterol CPG (18)</td>
</tr>
<tr>
<td>Discontinuation of antithrombotic therapies for elective surgical and medical procedures with increased risk of bleeding</td>
<td>• 2014 SIHD focused update (10)</td>
</tr>
<tr>
<td></td>
<td>• 2012 SIHD CPG (11)</td>
</tr>
<tr>
<td></td>
<td>• 2012 Management of AMI in patients with persistent STEMI CPG (19)</td>
</tr>
<tr>
<td></td>
<td>• 2011 Secondary prevention CPG (27)</td>
</tr>
<tr>
<td>Inappropriate use of analgesics (NSAIDs)</td>
<td>• 2007 Science Advisory on the prevention of premature discontinuation of DAPT in patients with coronary artery stents (504)</td>
</tr>
<tr>
<td>Use of PPIs</td>
<td>• 2010 Expert consensus document on PPIs and thienopyridines (430)</td>
</tr>
<tr>
<td>Risk factor modification/lifestyle interventions and physical activity/cardiac rehabilitation</td>
<td>• 2011 PCI CPG (26)</td>
</tr>
<tr>
<td>Smoking cessation</td>
<td>• Tobacco cessation toolkit (505)</td>
</tr>
<tr>
<td>Diet nutrition</td>
<td>• 2013 Lifestyle CPG (15)</td>
</tr>
<tr>
<td>Physical activity</td>
<td>• 2013 Lifestyle CPG (15)</td>
</tr>
<tr>
<td>Cardiorespiratory fitness (MET capacity)</td>
<td>• 2011 Secondary prevention CPG (27)</td>
</tr>
<tr>
<td>• 2011 Secondary prevention CPG (27)</td>
<td></td>
</tr>
<tr>
<td>• 2010 Performance measures on cardiac rehabilitation (454)</td>
<td></td>
</tr>
<tr>
<td>• 2012 Scientific statement on sexual activity and cardiovascular disease (231)</td>
<td></td>
</tr>
</tbody>
</table>

Management of comorbidities

Overweight/obesity	• 2013 Obesity CPG (16)
Statins	• 2011 Secondary prevention CPG (27)
Hypertension	• 2013 Lifestyle CPG (15)
Diabetes mellitus	• 2013 Blood cholesterol CPG (18)
HF	• 2014 Report on high BP (501)
Arrhythmia/arrhythmia risk	• 2013 Science advisory on high BP control (506)
• 2012 Focused update incorporated into the 2008 DBT CPG (20)	
• 2014 AF CPG (12)	

Psychosocial factors

Sexual activity	• 2012 Scientific statement on sexual activity and cardiovascular disease (231)
Gender-specific issues	• 2013 Consensus document on sexual counseling for individuals with cardiovascular disease and their partners (508)
Depression, stress, and anxiety	• 2007 Cardiovascular disease prevention in women CPG (475)
Alcohol use	• 2008 Science advisory on depression and coronary heart disease (509)
Culturally sensitive issues	• 2011 Secondary prevention CPG (27)
Return to work schedule	• 2009 Consensus report on a comprehensive framework and preferred practices for measuring and reporting cultural competency (510)

Clinician follow-up

Cardiologist	• 2011 Secondary prevention CPG (27)	
Primary care clinician	• 2013 Hospital to Home Quality Initiative (511)	
Advanced practice nurse/physician assistant	• 2013 Discharge counseling for patients with HF or MI (512)	
Pharmacists	• 2005 Recommendations for prevention and control of influenza (37)	
Other relevant medical specialists		
Electronic personal health records		
Influenza vaccination		

Patient/family education

| Plan of care for AMI | • 2010 CPG for cardiopulmonary resuscitation and emergency cardiovascular care—Part 9: postcardiac arrest care (31) |
7. Special Patient Groups

See Table 11 for summary of recommendations for this section.

7.1. NSTE-ACS in Older Patients: Recommendations

Class I

1. Older patients∗∗ with NSTE-ACS should be treated with GDMT, an early invasive strategy, and revascularization as appropriate (515-519). (Level of Evidence: A)

2. Pharmacotherapy in older patients with NSTE-ACS should be individualized and dose adjusted by weight and/or CrCl to reduce adverse events caused by age-related changes in pharmacokinetics/dynamics, volume of distribution, comorbidities, drug interactions, and increased drug sensitivity (515, 520-522). (Level of Evidence: A)

3. Management decisions for older patients with NSTE-ACS should be patient centered, and consider patient preferences/goals, comorbidities, functional and cognitive status, and life expectancy (515, 523-525). (Level of Evidence: B)

Class IIa

1. Bivalirudin, rather than a GP IIb/IIIa inhibitor plus UFH, is reasonable in older patients with NSTE-ACS, both initially and at PCI, given similar efficacy but less bleeding risk (396, 526-528). (Level of Evidence: B)

2. It is reasonable to choose CABG over PCI in older patients∗∗ with NSTE-ACS who are appropriate candidates, particularly those with diabetes mellitus or complex 3-vessel CAD (e.g., SYNTAX score >22), with or without involvement of the proximal LAD artery, to reduce cardiovascular disease events and readmission and to improve survival (529-534). (Level of Evidence: B)

In this CPG, “older adults” refers to patients ≥75 years of age (515). Older adults have the highest incidence, prevalence, and adverse outcomes of NSTE-ACS (9, 515-517, 535, 536). Older age is accompanied by

∗∗Those ≥75 years of age (see text).
comorbidities, polypharmacy, and age- and disease-related physiological changes that adversely impact NSTE-ACS presentation, management, and outcome. As older patients are under-represented in clinical trials, the recommendations in this CPG are largely supported by registry data and meta-analyses (516, 537).

Older patients with NSTE-ACS primarily present with chest pain but frequently have atypical symptoms. ECGs may be less diagnostic than in younger patients (517, 538). Older patients with NSTE-ACS derive the same or greater benefit from pharmacological therapies, interventional therapies, and cardiac rehabilitation as younger patients, but older patients receive significantly less GDMT than younger patients, even when adjusted for comorbidities (515-517, 535, 538, 539). In the ACSIS (Acute Coronary Syndrome Israeli Survey) registry, patients >80 years of age referred for early coronary angiography, compared with no angiography, had lower 30-day and 1-year mortality rates (540).

Age-related pharmacokinetics and pharmacodynamic changes can alter drug dosing, efficacy, and safety of many NSTE-ACS therapies, as can drug–drug interactions (Appendix 4, Table B) (515, 520, 521, 541, 542). CrCl or glomerular filtration rate (GFR) should be estimated initially and throughout care for all older patients with NSTE-ACS, and pharmaceutical agents should be renally and weight dose-adjusted to limit drug toxicity (especially bleeding risk), given the unreliability of serum creatinine to assess age-related renal dysfunction (515, 522, 526, 543-545) (Appendix 4, Table C). Bleeding in older patients with NSTE-ACS is multifactorial, resulting in narrower therapeutic windows (541, 542, 544, 546, 547).

In the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) study, excessive doses of UFH, LMWH, and GP IIb/IIIa inhibitors accounted for 15% of major bleeding, longer lengths of stay, and increased mortality (522, 548). Aspirin should be maintained at 81 mg per day (after initial stent implantation). Due to excess bleeding without clinical benefit, the U.S. Food and Drug Administration lists a Black Box warning that does not recommend administration of prasugrel to patients with NSTE-ACS who are ≥75 years of age or weigh <60 kg except in those at very high risk. A meta-analysis of 6 RCTs about the use of GP IIb/IIIa inhibitors in patients with NSTE-ACS reported no significant age-treatment interaction, although older women had significantly more adverse events (549). Bivalirudin appears safer for older patients with NSTE-ACS ± PCI compared with GP IIb/IIIa inhibitors plus UFH with less bleeding and similar efficacy (526, 550). AF is more common in older patients with NSTE-ACS, and triple therapy (DAPT and warfarin) entails a marked bleeding risk (551). In the WOEST (What is the Optimal Antiplatelet and Anticoagulant Therapy in Patients With Oral Anticoagulation and Coronary Stenting) study, it was found that in patients taking oral coagulants who required PCI, use of clopidogrel without aspirin was associated with a significant reduction in bleeding complications and no increase in thrombotic events (440). Nonetheless, practice should not be changed on the basis of this limited study alone.

Older patients with NSTE-ACS benefit as much or more than younger patients from an early invasive strategy compared with an ischemia-guided strategy (340, 341, 515, 518, 519). In a 5-year follow-up meta-
analysis of FRISC-II and RITA-3, an early invasive strategy versus an ischemia-guided strategy was associated with a significant reduction in death/MI and MI in patients ≥75 years of age but not in patients <65 years of age (518). Although the highest risk reduction in death/MI with an early invasive strategy occurred in those ≥75 years of age, this strategy was associated with a 3-fold bleeding risk (552). However, despite the overall favorable evidence for an early invasive strategy in older patients, age is the strongest risk factor for this group not undergoing an early invasive strategy (553).

PCI has increased in older patients, including the very elderly (≥90 years of age), with success rates similar to younger patients and declining complication rates, including major bleeding (515, 517, 526-528, 554). Several large registries report a greater RR reduction in mortality of older patients treated with revascularization versus medical therapy compared with those ≤65 years of age, despite increased comorbidities (517, 540, 554-556).

Operative mortality rates for CABG in patients ≥80 years of age with NSTE-ACS range from 5% to 8% (11% for urgent cases) and increase to approximately 13% at ≥90 years of age. Complications occur more frequently in older patients with CABG (557, 558). Length of stay averages 6 days longer in older patients than in patients <50 years of age, and discharge (to home [52%]) is less frequent than in younger patients (557). In a meta-analysis, off-pump CABG appeared to offer a potentially safer and more effective revascularization technique compared with on-pump CABG in older patients with NSTE-ACS (559). Older patients with NSTE-ACS with diabetes mellitus had a greater survival advantage with CABG (529). Evaluation tools can help identify older patients with NSTE-ACS whose risk and comorbidity profile predict mortality within 6 to 12 months and possibly guide a palliative approach (524).

See Online Data Supplement 24 for additional information on older patients.

7.2. HF: Recommendations

Class I

1. Patients with a history of HF and NSTE-ACS should be treated according to the same risk stratification guidelines and recommendations for patients without HF (14, 42-44, 75-81). (Level of Evidence: B)

2. Selection of a specific revascularization strategy should be based on the degree, severity, and extent of CAD; associated cardiac lesions; the extent of LV dysfunction; and the history of prior revascularization procedures (14, 138, 141, 333, 334, 337, 341, 560, 561). (Level of Evidence: B)

In patients with HF and NSTE-ACS, the plan of care should be implemented as in patients without HF using medical therapy and an early invasive approach, because patients with abnormal LV function are at increased risk of mortality and morbidity (562). HF itself may be associated with elevated serum troponin in the presence or absence of obstructive CAD. After angiography, risk stratification can be used to select revascularization strategies. The effect of surgical revascularization on improving survival has been most clearly demonstrated in
patients with both extensive CAD and LV dysfunction (356, 357, 563-567). Such patients should undergo testing to identify the severity and extent of ischemia and should in general be referred for coronary angiography. In selected patients with appropriate anatomy, PCI has been used (23, 568). In patients who have already undergone CABG or in whom the anatomy is not favorable for CABG, PCI has been performed using CPG-based PCI performance strategies if specific targeted areas that are amenable to PCI can be identified (26). If there is a large amount of ischemic territory and very poor LV function, percutaneous ventricular assist devices or, in less severe cases, an IABP can be used for support during the procedure (266, 569-573).

See Online Data Supplement 25 for additional information on HF.

7.2.1. Arrhythmias

Ventricular arrhythmias are common early after onset of NSTE-ACS, and not all require intervention. The mechanisms for these arrhythmias include continuing ischemia, hemodynamic and electrolyte abnormalities, reentry, and enhanced automaticity. Approximately 5% to 10% of hospitalized patients may develop ventricular tachycardia (VT)/ventricular fibrillation (VF), usually within 48 hours of presentation (574). The incidence of VF in otherwise uncomplicated AMI appears to have decreased within the past few years from >4% to <2%, of which 59% of patients had non–Q-wave MI (574). A study of 277 consecutive patients with NSTE-ACS who underwent cardiac catheterization within 48 hours found VT/VF occurring in 7.6% of patients, 60% of which developed within 48 hours after admission (575). Risk factors for VT/VF include HF, hypotension, tachycardia, shock, and low TIMI flow grade. Treatment consists of immediate defibrillation or cardioversion for VF or pulseless sustained VT. Early administration of beta blockers has been associated with reduction in incidence of VF (576). The prophylactic use of lidocaine is not recommended. Although VT/VF is associated with higher 90-day mortality risk, premature ventricular contractions not associated with hemodynamic compromise and accelerated ventricular rhythms do not confer higher mortality risks and do not require specific therapy other than maintaining electrolyte balance. NSTE-ACS nonsustained VT occurring >48 hours after admission indicates an increased risk of cardiac and sudden death, especially when associated with accompanying myocardial ischemia (577). Life-threatening ventricular arrhythmias that occur >48 hours after NSTE-ACS are usually associated with LV dysfunction and signify poor prognosis. RCTs in patients with ACS have shown consistent benefit of implantable cardioverter-defibrillator therapy for survivors of VT or VF arrest (578-582).

For other at-risk patients, especially those with significantly reduced LVEF, candidacy for primary prevention of sudden cardiac death with an implantable cardioverter-defibrillator should be readdressed ≥40 days after discharge (583). A life vest may be considered in the interim.

AF, atrial flutter, and other supraventricular arrhythmias may be triggered by excessive sympathetic stimulation, atrial stress due to volume overload, atrial infarction, pericarditis, electrolyte abnormalities, hypoxia, or pulmonary disease. AF is the most common of these arrhythmias and may develop in >20% of patients. AF is associated with shock, HF, stroke, and increased 90-day mortality (584). Management of AF
requires rate control and adequate anticoagulation according to the 2014 AF CPG (12). For hemodynamically unstable patients and those with continuing ischemia, treatment should be implemented according to the 2010 advanced cardiac life support CPGs (585).

Sinus bradycardia is especially common with inferior NSTEMI. Symptomatic or hemodynamically significant sinus bradycardia should be treated with atropine and, if not responsive, temporary pacing. The incidence of complete heart block is 1.0% to 3.7% in NSTEMI, based on anterior or posterior/inferior location, respectively (586). Atrioventricular block and bundle-branch block develop in approximately 5% of patients (587). High-degree atrioventricular block or bundle-branch block in anterior NSTEMI is more ominous because of a greater extent of myocardial injury and involvement of the conduction system (587).

First-degree atrioventricular block does not require treatment. High-grade atrioventricular block after inferior NSTEMI usually is transient, with a narrow QRS complex and a junctional escape rhythm that can be managed with an ischemia-guided strategy. Prophylactic placement of a temporary pacemaker is recommended for high-grade atrioventricular block, new bundle-branch block, or bifascicular block with anterior infarction. Indications for permanent pacing are reviewed in the 2012 device-based therapy CPGs (20).

7.2.2. Cardiogenic Shock: Recommendation

Class I

1. Early revascularization is recommended in suitable patients with cardiogenic shock due to cardiac pump failure after NSTE-ACS (560, 588, 589). *(Level of Evidence: B)*

AMI is the leading cause of cardiogenic shock. Early revascularization is a mainstay in the treatment of cardiogenic shock (560, 589). Compared with medical therapy, early revascularization is associated with improved 6-month mortality (560) and 13% absolute mortality reduction at 6 years (588). Urgent revascularization with CABG may be indicated for failed PCI, coronary anatomy not amenable to PCI, and at the time of surgical repair of a mechanical defect (e.g., septal, papillary muscle, free-wall rupture). Age alone is not a contraindication to urgent revascularization for cardiogenic shock (589, 590). Mortality after cardiogenic shock has steadily improved (591), including in older adults (589, 590), with 30-day mortality ranging from approximately 40% with milder forms of shock (268) to >45% with refractory shock (592). Approximately 30% of patients in the IABP-SHOCK (Intra-Aortic Balloon Pump in Cardiogenic Shock) II trial presented with NSTEMI (268), and 22% of patients in the TRIUMPH (Tilarginine Acetate Injection in a Randomized International Study in Unstable Acute Myocardial Infarction Patients With Cardiogenic Shock) trial had ST depression on presentation (592). Of the 23% of patients with ACS who had NSTEMI in the GRACE registry, 4.6% of patients experienced cardiogenic shock (593). Of the 2,992 patients in shock, 57% underwent cardiac catheterization, and in-hospital revascularization was performed in 47% of this group.

In-hospital mortality of all patients with shock was 59% (594). Patients with NSTEMI developed cardiogenic shock later than patients with STEMI, and had higher-risk clinical characteristics, more extensive CAD, and more recurrent ischemia and infarction before developing shock compared with patients with STEMI,
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

and shock developed later in patients with NSTEMI (151). Patients with NSTEMI constituted >17% of those in the SHOCK trial registry (595). They were also older and had more comorbidities but had comparable mortality to patients with STEMI. The left circumflex coronary artery was the culprit vessel in 30% of patients with NSTEMI, suggesting the presence of true posterior MI (595). Dopamine in patients with cardiogenic shock may be associated with increased mortality compared with norepinephrine (596). The use of percutaneous ventricular assist devices has been hampered by the need for interventional expertise, cost, and lack of supportive evidence (597). IABP has been used for decades (265, 598), and it may facilitate intervention in patients who are hemodynamically unstable, but it did not reduce mortality or secondary endpoints in 1 RCT of 598 patients with cardiogenic shock complicating AMI (268). Newer devices with higher levels of support have provided better hemodynamic support but without improved clinical outcomes compared with IABP (599, 600).

See Online Data Supplement 26 for additional information on cardiogenic shock.

7.3. Diabetes Mellitus: Recommendation

Class I

1. Medical treatment in the acute phase of NSTE-ACS and decisions to perform stress testing, angiography, and revascularization should be similar in patients with and without diabetes mellitus (138, 339, 601). (Level of Evidence: A)

CAD accounts for 75% of deaths in patients with diabetes mellitus; >30% of patients with NSTE-ACS have diabetes mellitus; and patients with NSTE-ACS and diabetes mellitus have more adverse outcomes (e.g., death, MI, readmission with ACS, or HF) during follow up (593, 602, 603). The latter may be related to increased plaque instability and comorbidities, including hypertension, LV hypertrophy, cardiomyopathy, HF, and autonomic dysfunction (603-605). Patients with diabetes mellitus and ACS have longer delays from symptom onset to presentation (593, 606, 607), which may be attributable to their atypical symptoms.

There is a U-shaped relationship between glucose levels and mortality in patients with diabetes mellitus and ACS (543). Both hyperglycemia and hypoglycemia have similar adverse effects on in-hospital and 6-month mortality. The urgency to aggressively control blood glucose has been moderated by the results of the NICE-SUGAR (Normoglycemia in Intensive Care Evaluation and Survival Using Glucose Algorithm Regimen) trial (608). In this study of patients admitted to medical and surgical intensive care units, intensive glucose control (target 81 mg/dL to 108 mg/dL) resulted in increased all-cause mortality and hypoglycemia compared with moderate glucose control (target <180 mg/dL). Blood glucose should be maintained at <180 mg/dL while avoiding hypoglycemia. There is no established role for the administration of glucose-insulin-potassium infusions in NSTE-ACS (609-611).

Although patients with diabetes mellitus and NSTE-ACS are at higher risk for in-hospital and longer-term events, they undergo less frequent revascularization procedures. In a multinational study of 6,385 patients with ACS, 25% of whom had diabetes mellitus, those with diabetes mellitus had more adverse risk profiles,
more atypical presentations, longer treatment delays, more HF, and renal insufficiency but underwent less angiography and revascularization (607). In the GRACE Registry (593) and other studies (606), patients with diabetes mellitus and NSTE-ACS in the United Kingdom (603) and Finland (612) had higher baseline risk profiles but received effective medical cardiac therapies and revascularization less frequently.

Although there are no RCTs of patients specifically diagnosed with diabetes mellitus and ACS, there are ample data on patients with diabetes mellitus treated with PCI or CABG (564, 565, 613-615). The largest RCT, the FREEDOM (Future Revascularization Evaluation in Patients With Diabetes Mellitus: Optimal Management of Multivessel Disease) trial (616), evaluated 1,900 patients (approximately 30% with “recent” [interval unspecified] ACS) with 2- or 3-vessel CAD randomized to a DES or CABG. At 5 years, there was a significant decrease in all-cause mortality (p=0.049; MI: p<0.001) associated with CABG. There was no specific analysis of outcomes in patients with “recent” (interval unspecified) ACS. CABG was also superior to PCI in reducing MACE in other trials (564, 613-615) (Appendix 4, Table D).

The importance of the severity and complexity of CAD was underscored in the SYNTAX trial, in which those with less severe and complex CAD had similar outcomes with PCI and CABG compared with those with more severe and complex disease, in which CABG improved outcomes, including survival (355, 565).

7.3.1. Adjunctive Therapy

A meta-analysis (6 trials: 23,072 patients without diabetes mellitus, 6,458 patients with diabetes mellitus) of the effect of GP IIb/IIIa platelet receptor inhibitors (abciximab, eptifibatide, and tirofiban) on mortality in NSTEMI revealed that for the entire patient group, a GP IIb/IIIa inhibitor was associated with reduced 30-day mortality (6.2% to 4.6%; p=0.007) (392). This benefit was particularly large in the 1,279 patients with diabetes mellitus who underwent PCI (4.0% to 1.2%; p=0.002). The ACUITY trial in ACS (13,819 patients, 3,852 with diabetes mellitus) reported that 30-day adverse clinical outcomes (death, MI, or unplanned revascularization) or major bleeding were increased in patients with diabetes mellitus (12.9% versus 10.6%; p<0.001) (617). Bivalirudin plus a GP IIb/IIIa inhibitor resulted in increased similar rates of the composite ischemia compared with heparin plus a GP IIb/IIIa inhibitor. Bivalirudin alone was associated with a similar increased rate of composite ischemia but less major bleeding (3.7% versus 7.1%; p<0.001).

Several studies evaluated the benefit of oral antiplatelet therapy during ACS in patients with diabetes mellitus. In TRITON-TIMI 38, patients with diabetes mellitus had a greater reduction in ischemic events without an observed increase in TIMI major bleeding with prasugrel compared with clopidogrel (618). In PLATO, ticagrelor compared with clopidogrel reduced ischemic events irrespective of diabetic status and glycemic control, without an increase in major bleeding (619).

See **Online Data Supplement 27** for additional information on diabetes mellitus.

7.4. Post–CABG: Recommendation

Class I
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

1. Patients with prior CABG and NSTE-ACS should receive antiplatelet and anticoagulant therapy according to GDMT and should be strongly considered for early invasive strategy because of their increased risk (67, 68, 141, 340-342). *(Level of Evidence: B)*

Although CABG reduces morbidity and mortality in selected patients with complex CAD, they remain at risk for development of disease progression of ungrafted native vessels or significant atherothrombotic disease in saphenous vein grafts and subsequent ACS. These patients constitute a higher-risk group because they have already undergone CABG, typically for more extensive CAD, and they have more comorbidities (620-624).

In the PURSUIT trial, 12% (1,134) of the patients had prior CABG and more adverse follow-up outcomes, including increased mortality, but had a benefit with epifibatide similar to those without prior CABG (622). Patients with prior CABG are less likely to undergo early catheterization after NSTEMI. In the Get With The Guidelines study of patients with NSTEMI, 18.5% had prior CABG and a lower likelihood of early invasive evaluation but had higher rates of guideline-recommended clopidogrel and bivalirudin therapy and lower rates of GP IIb/IIIa and anticoagulant therapy (625). In patients with prior CABG who develop NSTE-ACS that is related to an ungrafted native coronary vessel, treatment should follow GDMT (26).

Because patients with prior CABG presenting with ACS are a high-risk group with increased comorbid characteristics and high-risk anatomy, a strategy of early angiography should be implemented (unless clinically contraindicated), and these patients should receive optimal antiplatelet and anticoagulant therapy.

See Online Data Supplement 28 for additional information on post-CABG.

7.5. Perioperative NSTE-ACS Related to Noncardiac Surgery: Recommendations

Class I

1. Patients who develop NSTE-ACS following noncardiac surgery should receive GDMT as recommended for patients in the general population but with the modifications imposed by the specific noncardiac surgical procedure and the severity of the NSTE-ACS (626, 627). *(Level of Evidence: C)*

2. In patients who develop NSTE-ACS after noncardiac surgery, management should be directed at the underlying cause (21, 626-634). *(Level of Evidence: C)*

Patients with NSTE-ACS following noncardiac surgery should be managed according to the guidelines for patients in the general population, with risk stratification and guideline-based pharmacological and invasive management directed at the etiology (e.g., hypertension, tachycardia, HF, hypotension, sepsis, and anemia) with modifications based on the severity of NSTE-ACS and the limitations imposed by the noncardiac surgical procedure.

The definition of ACS has a substantial effect on reported incidence (178, 184, 635-644). Some patients may not be able to give a history of ischemic symptoms because of the noncardiac surgery. The criteria in the 2012 Third Universal Definition of MI should be applied (21). In patients at risk of ACS following noncardiac surgery, routine monitoring of troponins and ECGs may be performed. As the sensitivity of troponin assays improves, the frequency of identifying perioperative MI will increase. In the POISE (Perioperative Ischemic
Study Evaluation) trial (645), of 8,351 patients randomized to extended-release metoprolol versus placebo, 5.7% of patients in the control group had a perioperative MI typically occurring within 48 hours and often not associated with ischemic symptoms.

ACS in the setting of noncardiac surgery is associated with increased mortality. Several risk scores have been developed to determine the probability of mortality (646-648). A meta-analysis of the prognostic value of troponin and CK-MB after noncardiac surgery that included 14 studies enrolling 3,318 patients demonstrated that elevated troponin after surgery was an independent predictor of mortality both in the hospital and at 1-year follow-up (639). Markedly elevated troponins are associated with increased mortality compared with minimal troponin elevation, even though the latter still indicates a postoperative MI (184, 639, 641, 642). In patients with UA in whom the risks of bleeding with antiplatelet therapy outweigh the benefits, GDMT with beta blockers, nitrates, and ACE inhibitors should be optimized to achieve symptom control. In patients with a relative or absolute contraindication to antiplatelet or anticoagulant therapy, coronary angiography may be helpful to identify anatomy requiring revascularization after recovery from the noncardiac surgery.

7.6. CKD: Recommendations

Class I
1. CrCl should be estimated in patients with NSTE-ACS, and doses of renally cleared medications should be adjusted according to the pharmacokinetic data for specific medications (649, 650).
 (Level of Evidence: B)
2. Patients undergoing coronary and LV angiography should receive adequate hydration.
 (Level of Evidence: C)

Class IIa
1. An invasive strategy is reasonable in patients with mild (stage 2) and moderate (stage 3) CKD (649-652).
 (Level of Evidence: B)

CKD is a major risk factor for poor outcomes in patients with NSTEMI-ACS (652-657). Patients with impaired renal function have additional adverse baseline characteristics, including older age, a history of prior HF, and peripheral arterial disease. It is prudent to omit LV angiography in patients with CKD and assess LV function with echocardiography.

In an analysis from 3 ACS trial databases of 19,304 patients with NSTEMI, 42% (8,152 patients) had abnormal renal function based on serum creatinine and calculated CrCl; total mortality and mortality/MI were increased at 30 days and 180 days. CrCl was independently associated with mortality (HR: 0.81) and the risk of mortality/MI (HR: 0.93) (656). The VALIANT (Valsartan in Acute Myocardial Infarction) trial included 14,527 high-risk patients with AMI with LV dysfunction or HF and a serum creatinine level ≥1.5 mg/dL (658, 659). The Modification of Diet in Renal Disease equation was used, and patients were analyzed based on their estimated GFR. There was an increasing adjusted HR for both death and the composite endpoint of cardiovascular death, reinfarction, HF, stroke, or resuscitation after cardiac arrest with decreasing estimated GFR. For death, with a GFR <45.0 mL per minute/1.73 m², the adjusted HR was 1.70 compared with patients
with a GFR of 60.0 mL per minute/1.73 m² to 74.9 mL per minute/1.73 m² in whom the adjusted HR was 1.14. There are insufficient data on the benefit-to-risk ratio of an invasive strategy in patients with NSTE-ACS and advanced CKD (stages 4 and 5) (652). There is also less evidence-based medical therapy and revascularization data in patients with CKD because of the risk for contrast-induced nephropathy, increased need for dialysis, and increased mortality. Multiple studies have evaluated radiographic agents, including ionic versus nonionic media and isosmolar or low-osmolar agents.

The strength and consistency of relationships between specific isosmolar or low-osmolar agents and contrast-induced nephropathy or renal failure are insufficient for selection of low-osmolar and isosmolar media. Limitation of the risk of contrast-induced nephropathy is based on reduced contrast volume (660) and adequate hydration (661).

A recent meta-analysis of 5 RCTs evaluated 1,453 patients with NSTE-ACS and CKD, all with GFR <60 mL per minute/1.73 m² (651). Patients were analyzed according to baseline renal function: stage 3a, 3b, and stage 4 to 5. An invasive strategy was associated with a nonsignificant reduction in all-cause mortality and the composite of death or nonfatal MI. An early invasive strategy in patients with CKD and ACS reduced rehospitalization and resulted in a trend toward lower mortality and nonfatal reinfarction. The increased risk of mortality associated with mild, moderate, and severe CKD is evident across studies, and risks are increased as the gradient of renal dysfunction worsens (649-651, 662).

See Online Data Supplement 29 for additional information on CKD.

7.6.1. Antiplatelet Therapy

Patients with CKD with ACS are at increased risk for ischemic complications, including stent thrombosis and post–PCI ischemic events (663). They are also predisposed to higher bleeding complications, which, in addition to the lack of clinical trial data, result in their undertreatment with antiplatelet therapy. Patients with advanced CKD exhibit high residual platelet reactivity despite treatment with clopidogrel independent of the presence of diabetes mellitus (664). Hyporesponsiveness to thienopyridines is associated with increased adverse cardiovascular outcomes, including cardiovascular mortality (665), and higher dosing regimens of clopidogrel do not appear to further suppress adenosine diphosphate-induced platelet aggregation (664, 666).

Although prasugrel may be more efficient than doubling the dose of clopidogrel in achieving adequate platelet inhibition (667), no clinical studies have demonstrated its efficacy in patients with CKD with ACS. Ticagrelor, however, was studied in a prespecified analysis from the PLATO trial (668). In patients with an estimated GFR <60 mL per minute (nearly 21% of patients in PLATO with available central laboratory serum creatinine levels), ticagrelor significantly reduced the primary cardiovascular endpoint (17.3 % versus 22.0%; HR: 0.77; 95% CI: 0.65 to 0.90) compared with clopidogrel (667). Notably, this was associated with a 4% absolute risk reduction in all-cause mortality favoring ticagrelor and with no differences in major bleeding, fatal
bleeding, and non–CABG-related major bleeding events demonstrating its utility in patients with renal insufficiency.

7.7. Women: Recommendations

Class I

1. Women with NSTE-ACS should be managed with the same pharmacological therapy as that for men for acute care and for secondary prevention, with attention to weight and/or renally calculated doses of antiplatelet and anticoagulant agents to reduce bleeding risk (669-673). *(Level of Evidence: B)*

2. Women with NSTE-ACS and high-risk features (e.g., troponin positive) should undergo an early invasive strategy (141, 345, 346, 561). *(Level of Evidence: A)*

Class IIa

1. Myocardial revascularization is reasonable in pregnant women with NSTE-ACS if an ischemia-guided strategy is ineffective for management of life-threatening complications (674). *(Level of Evidence: C)*

Class III: No Benefit

1. Women with NSTE-ACS and low-risk features (see Section 3.3.1) should not undergo early invasive treatment because of the lack of benefit (141, 345, 346) and the possibility of harm (141). *(Level of Evidence: B)*

Women of all ages have higher rates of in-hospital and long-term complications of NSTE-ACS than men, including bleeding, HF, cardiogenic shock, acute renal failure, recurrent MI, stroke, and readmissions (670, 675, 676).

Women present later after symptom onset of NSTE-ACS and have higher rates of inappropriate discharges from the ED (671, 677, 678). Women more commonly report atypical symptoms than men (675, 679). Women presenting with chest pain are more likely than men to have either a noncardiac cause or cardiac causes other than obstructive epicardial coronary disease (108, 677, 680, 681). Women with NSTE-ACS with no apparent obstructive epicardial disease have a 2% risk of death or MI within 30 days and require secondary prevention and symptom management (682).

Women derive the same treatment benefit as men from aspirin, clopidogrel, anticoagulants, beta blockers, ACE inhibitors, and statins (385, 670-672, 675, 676, 683, 684). Despite worse outcomes, women with NSTE-ACS are underprescribed guideline-directed pharmacological therapy, both during the acute illness and at discharge (538, 685, 686). The basis for pharmacotherapy for women with NSTE-ACS with abnormal biomarkers and/or functional tests, but without significant obstructive epicardial disease, remains unclear (Section 7.13). In addition to risk factor modification, some studies support the benefit of imipramine, ranolazine, beta blockers, and/or ACE inhibitors to reduce adverse outcomes (687). Women with NSTE-ACS incur a higher rate of bleeding complications (672, 673) (Section 7.8) and renal failure. A risk score has been developed to attempt to reduce the bleeding risk in women with NSTE-ACS (688).

The decision for an early invasive versus an ischemia-guided strategy in women with NSTE-ACS is based on a meta-analysis (366) and post hoc gender analyses of clinical trials, including FRISC II, RITA-3, and
TACTICS-TIMI 18 (344, 346, 689). The Agency for Healthcare Research and Quality analysis of an early invasive versus ischemia-guided strategy (345) provides further evidence that an early invasive strategy should be reserved for women with positive troponins, as shown in TACTICS-TIMI 18 (346). Such women had a significant reduction of death and MI at 1 year with early invasive versus ischemia-guided strategy. Women with NSTE-ACS and no elevation in troponin who underwent an early invasive strategy had a nonsignificant increase in events, as did women with a low-risk TIMI score (OR: 1.59 for early invasive versus ischemia-guided strategy), prompting the Class III recommendation in this CPG.

The NCDR-ACTION registry reported increased complication rates of myocardial revascularization in women (https://www.ncdr.com/webncdr/action/). Women also have higher rates of contrast-induced nephropathy and vascular complications (673, 690, 691). Despite having fewer high-risk angiographic lesions, a higher percentage of normal LV function, and up to 25% angiographically normal coronary arteries, women with NSTE-ACS have a paradoxically higher rate of persistent angina, reinfarction, functional decline, and depression after PCI (141, 675, 677, 680, 682). Clinical trials (692, 693), and a meta-analysis (694) of DES for NSTE-ACS reported no gender differences in short- and long-term (up to 5 years) outcome, including target vessel revascularization, MACE, cardiac death, or MI. However, women were older and had more comorbidities than men at enrollment.

Women with NSTE-ACS referred for CABG are older with more comorbidities, which is reflected by higher periprocedural mortality, HF, bleeding, MI, and renal failure (686, 695, 696). Women required more periprocedural IABP, vasopressors, mechanical ventilation, dialysis, and blood products and had longer stays in the intensive care unit and hospital, higher rates of wound infection, depression, and longer recovery (549, 677).

An Agency for Healthcare Research and Quality meta-analysis of 10 RCTs through December 2011 reported no efficacy or safety difference between PCI and CABG for NSTE-ACS in men or women in 30-day or 1-year MACE (death/MI/stroke). At 2 years, the procedural success remained equal in women but favored CABG in men (p=0.002) (345, 564). The Agency for Healthcare Research and Quality reported similar outcomes in women with diabetes mellitus with PCI and CABG for NSTE-ACS at 7 years, but men with diabetes mellitus had fewer events with CABG. A prespecified gender analysis of the FREEDOM trial favored CABG over PCI for women with diabetes mellitus, although the difference was not as significant as it was for men (616).

Consistent with the European Society of Cardiology recommendations, myocardial revascularization should be reserved for pregnant women with NSTE-ACS and very serious complications unresponsive to medical therapy (674).

See Online Data Supplement 30 for more information on women.

7.8. Anemia, Bleeding, and Transfusion: Recommendations

Class I
All patients with NSTE-ACS should be evaluated for the risk of bleeding. *(Level of Evidence: C)*

Anticoagulant and antiplatelet therapy should be weight-based where appropriate and should be adjusted when necessary for CKD to decrease the risk of bleeding in patients with NSTE-ACS *(522, 697, 698).* *(Level of Evidence: B)*

Class III: No Benefit

1. A strategy of routine blood transfusion in hemodynamically stable patients with NSTE-ACS and hemoglobin levels greater than 8 g/dL is not recommended *(699-703).* *(Level of Evidence: B)*

Anemia in patients with ACS is associated with an increased risk for Holter monitor–detected recurrent ischemia and for MACE, with greater anemia correlating with greater risk *(704-708).* In 1 large analysis of multiple studies, the risk of adverse outcome was higher in patients with NSTE-ACS with hemoglobin levels <11 g/dL *(704).* The potentially detrimental effects of severe anemia include decreased myocardial oxygen delivery and increased MVO₂ related to maintenance of a higher cardiac output *(704, 709, 710).* Patients with anemia are less likely to be treated with aspirin, and patients with ACS and anemia are likely to have more bleeding complications with PCI *(711).* This has been correlated with increased short-term risk of MACE outcomes, including mortality; long-term risk remains controversial *(712-717).* The ACUITY study suggests that the risk of mortality associated with bleeding is at least as great as that associated with procedure-related or spontaneous MI *(718).*

Major bleeding is a coprimary endpoint in many trials and is a consideration when assessing the “net clinical benefit” of a new drug. A “universal definition of bleeding” has been proposed to assist clinicians *(547, 719-721).* The incidence of major bleeding in patients with ACS varies widely *(0.4% to 10%)* *(715, 722)* due to differing definitions of major bleeding, patient populations, anticoagulation regimens, and PCI or CABG. Factors in patients with ACS related to an increased bleeding risk include older age, female sex, lower body weight, history of prior bleeding and/or invasive procedures, anemia, use of GP IIb/IIIa inhibitors or thrombolytics, and CKD *(522, 711, 713-715, 722, 723).* Non–weight-based dosing of anticoagulants and dosing of antithrombin and antiplatelet medications that are not adjusted for CKD are associated with an increased risk of bleeding *(522, 697, 698).* Bleeding is related to adverse outcomes because it may be a marker of underlying disease, such as occult malignancy; leads to cessation of antithrombin and antiplatelet therapy; may prompt transfusion, which itself may have adverse effects; can cause hypotension; and, if intracranial, can be fatal *(724).* Proton pump inhibitors decrease the risk of upper GI bleeding, including in patients treated with DAPT. Proton pump inhibitors are used in patients with a history of prior GI bleeding who require DAPT and are an option in patients at increased risk of GI bleeding *(26, 430).*

Evaluation of the risk of bleeding includes a focused history of bleeding symptoms, predisposing comorbidities, evaluation of laboratory data, and calculation of a bleeding risk score *(688, 716, 725).* Approximately 15% of all patients with NSTE-ACS and 3% to 12% of those not undergoing CABG receive blood transfusion *(702).* Rates vary widely and are closer to the lower figure but increase in association with factors such as coronary intervention, anticoagulant/antithrombotic therapy, older age, female sex, anemia, renal
insufficiency, and frailty. Tissue oxygenation does not change or may actually decrease with transfusion (722). Blood transfusion in patients with ACS is associated with an increased risk of adverse outcome, including death (702-704). A restrictive transfusion strategy leads to an outcome that is at least as good, if not better, than a liberal transfusion strategy (699, 700). An analysis of a large ACS registry found no benefit from blood transfusion in patients with a nadir hematocrit >24% (702). In a meta-analysis of 10 studies of patients with AMI, transfusion versus no transfusion was associated with an increase in all-cause mortality (18.2% versus 10.2%; p<0.001) and subsequent MI rate (RR: 2.0; 95% CI: 1.06 to 3.93; p=0.03) (726). A restrictive approach to transfusion generally consists of no routine transfusion for a hemoglobin level >7 g/dL to 8 g/dL (699, 700, 727). A restrictive approach to blood transfusion is advocated by the American Association of Blood Banks (700) and the European Society of Cardiology (727). On the basis of data available at the time of publication, a strategy of routine liberal blood transfusion in hemodynamically stable patients with NSTE-ACS and mild to moderate anemia is not recommended.

See Online Data Supplement 31 for more information on anemia, bleeding, and transfusion.

7.9. Thrombocytopenia

The incidence of thrombocytopenia in patients with ACS varies from 1% to 13%. In 1 large prospective registry, one third of patients treated with prolonged heparin therapy developed some degree of thrombocytopenia (728). Independent risk factors for the development of thrombocytopenia include lower baseline platelet count, older age, ACS, cardiac or vascular surgery, intravenous UFH or both UFH and LMWH, duration of heparin therapy, and low body mass index (728-730). The risk of thrombocytopenia is increased in patients treated with abciximab and, to a lesser degree, with eptifibatide or tirofiban (731-734). Thrombocytopenia on presentation or related to antithrombotic therapy is associated with significantly increased risk of thrombotic events, MI, major bleeding, and in-hospital mortality in patients with and without ACS (728-731, 735-739). The OR for development of these endpoints with thrombocytopenia (compared to without thrombocytopenia) is 2 to 8. Data from the CATCH (Complications After Thrombocytopenia Caused by Heparin) registry identified a platelet count nadir of 125 × 109/L as a threshold, below which there is a linear augmentation in probability of bleeding (740). Results from CATCH highlighted that thrombocytopenia and heparin-induced thrombocytopenia are often not diagnosed (728). Thrombocytopenia is generally a contraindication for GP IIb/IIIa inhibitor therapy; direct thrombin inhibitors are often considered in preference to UFH or LMWH in patients with thrombocytopenia.

See Online Data Supplements 31 and 32 for additional information on anemia, bleeding, and transfusion.

7.10. Cocaine and Methamphetamine Users: Recommendations

Class I
1. Patients with NSTE-ACS and a recent history of cocaine or methamphetamine use should be treated in the same manner as patients without cocaine- or methamphetamine-related NSTE-ACS. The only exception is in patients with signs of acute intoxication (e.g., euphoria, tachycardia, and/or hypertension) and beta-blocker use, unless patients are receiving coronary vasodilator therapy. (Level of Evidence: C)

Class IIa
1. Benzodiazepines alone or in combination with nitroglycerin are reasonable for management of hypertension and tachycardia in patients with NSTE-ACS and signs of acute cocaine or methamphetamine intoxication (741-744). (Level of Evidence: C)

Class III: Harm
1. Beta blockers should not be administered to patients with ACS with a recent history of cocaine or methamphetamine use who demonstrate signs of acute intoxication due to the risk of potentiating coronary spasm. (Level of Evidence: C)

Cocaine exerts multiple effects on the cardiovascular system, which may precipitate ACS (48, 744, 745). Acute cocaine exposure results in increased BP, heart rate, endothelial dysfunction, and platelet aggregation, all of which may precipitate ACS. Cocaine’s direct vasoconstrictor effect can produce coronary vasospasm. Long-term use of cocaine results in progressive myocyte damage and accelerated atherosclerosis (48, 744, 745).

ACS in patients with a history of cocaine use should be treated in the same manner as patients without cocaine use (744). The exception is in patients with ACS in the presence of acute cocaine intoxication. Because cocaine stimulates both alpha- and beta-adrenergic receptors, administration of intravenous beta blockers may result in unopposed alpha stimulation with worsening coronary spasm (48, 132, 744-746). Evidence suggests it is safe to administer intravenous beta blockers in patients with chest pain and recent cocaine ingestion, although information is lacking about the effects of beta-blocker administration during the acute stages of cocaine intoxication (747, 748). Intravenous beta blockers should be avoided in patients with NSTE-ACS with signs of acute cocaine intoxication (euphoria, tachycardia, and/or hypertension). In these patients, benzodiazepines alone or in combination with nitroglycerin have been useful for management of hypertension and tachycardia due to their effects on the central and peripheral manifestations of acute cocaine intoxication (741-744).

Methamphetamine abuse is becoming increasingly common in the United States due to the ease of manufacturing and the lower cost of methamphetamines compared with cocaine (131, 749, 750). Methamphetamines may be ingested orally, inhaled, or used intravenously. Methamphetamine affects the central nervous system by simultaneously stimulating the release and blocking the reuptake of dopamine and norepinephrine (751). Like cocaine, methamphetamine exerts multiple effects on the cardiovascular system, all of which may precipitate ACS (131, 750-752). The acute effects of methamphetamine are euphoria, tachycardia, hypertension, and arrhythmias. MI may result from coronary spasm or plaque rupture in the presence of enhanced platelet aggregation. Long-term use of methamphetamine has been associated with myocarditis, necrotizing vasculitis, pulmonary hypertension, and cardiomyopathy (750-752). Because methamphetamine and cocaine have similar pathophysiological effects, treatment of patients with ACS associated with methamphetamine and cocaine use should theoretically be similar.
7.11. Vasosplastic (Prinzmetal) Angina: Recommendations

Class I
1. CCBs alone (753-757) or in combination with long-acting nitrates (755, 758) are useful to treat and reduce the frequency of vasosplastic angina. *(Level of Evidence: B)*

2. Treatment with HMG-CoA reductase inhibitor (759, 760), cessation of tobacco use (761, 762), and additional atherosclerosis risk factor modification (762, 763) are useful in patients with vasosplastic angina. *(Level of Evidence: B)*

3. Coronary angiography (invasive or noninvasive) is recommended in patients with episodic chest pain accompanied by transient ST elevation to rule out severe obstructive CAD. *(Level of Evidence: C)*

Class IIb
1. Provocative testing during invasive coronary angiography†† may be considered in patients with suspected vasosplastic angina when clinical criteria and noninvasive testing fail to establish the diagnosis (764-767). *(Level of Evidence: B)*

Vasosplastic (Prinzmetal) angina chest pain typically occurs without provocation, is associated with ST elevation, and usually resolves spontaneously or with rapid-acting nitroglycerin. Vasosplastic angina may also be precipitated by emotional stress, hyperventilation, exercise, or the cold. It results from coronary vasomotor dysfunction leading to focal spasm (768), which may occasionally be multifocal within a single vessel and rarely involves >1 vessel. Vasosplastic angina occurs with normal coronary arteries, nonobstructive CAD, and obstructive CAD, but prognosis is least favorable with the latter. ST elevation indicates transmural ischemia and corresponds to the distribution of the involved artery (769). A circadian variation is often present; most attacks occur in the early morning (770, 771). The most prominent coronary risk factor is smoking. Most episodes resolve without complications, but arrhythmias, syncope, MI, and sudden death can occur (772).

Nonpharmacological provocative tests, such as cold pressor and hyperventilation, have been used diagnostically; potent vasoconstrictors (e.g., acetylcholine) may be useful when noninvasive assessment is uninformative (764-767). Smoking, which exacerbates coronary vasospasm, should be proscribed, and CCBs are first-line therapies (642); long-acting nitrates are also effective and when combined with CCBs (755, 758). Statins improve endothelium-dependent vasodilation and can be useful in vasosplastic angina (759, 760). Magnesium supplementation and alpha-receptor blockers may be effective and can be added (755, 758).

7.12. ACS With Angiographically Normal Coronary Arteries: Recommendation

††Provocative testing during invasive coronary angiography (e.g., using ergonovine, acetylcholine, methylergonovine) is relatively safe, especially when performed in a controlled manner by experienced operators. However, sustained spasm, serious arrhythmias, and even death can also occur very infrequently. Therefore, provocative testing should be avoided in patients with significant left main disease, advanced 3-vessel disease, presence of high-grade obstructive lesions, significant valvular stenosis, significant LV systolic dysfunction, and advanced HF.
Class IIb
1. If coronary angiography reveals normal coronary arteries and endothelial dysfunction is suspected, invasive physiological assessment such as coronary flow reserve measurement may be considered (629, 773-776). (Level of Evidence: B)

ACS associated with angiographically normal or nonobstructive (<50% stenosis) coronary arteries (also referred to as syndrome X) may be related to coronary endothelial dysfunction (777); plaque rupture that may be evident only with intracoronary ultrasound (778); coronary vasospasm (779); and coronary artery dissection (780). Myocarditis may present with electrocardiographic and biomarker findings similar to ACS and can be distinguished by magnetic resonance imaging (781-783). Intracoronary ultrasound and/or optical coherence tomography to assess the extent of atherosclerosis and exclude obstructive lesions may be considered in patients with possible ACS and angiographically normal coronary arteries (778). If ECGs during chest pain are not available and coronary spasm cannot be ruled out, coronary angiography and provocative testing with acetylcholine, adenosine, or methacholine and 24-hour ambulatory ECG may be undertaken after a period of stabilization. Endothelial dysfunction is more common in women than in men (679, 777, 784-786), and chest pain is typical or atypical (785, 786). In the absence of a culprit coronary lesion, prognosis of coronary endothelial dysfunction and/or occult plaque rupture is favorable (765, 787).

Risk factor reduction and medical therapy with nitrates, beta blockers, and CCBs alone or in combination are considered for endothelial dysfunction (788-790). High doses of arginine have also been given (791). Imipramine or aminophylline have been used in patients with endothelial dysfunction for continued pain despite optimal medical therapy. In postmenopausal women, estrogen reverses acetylcholine-induced coronary arterial vasoconstriction, presumably by improving endothelium-dependent coronary vasomotion, and reduces frequency of chest pain (792). However, estrogen is not recommended because of its demonstrated increase in cardiovascular and other risks (793).

Spontaneous coronary artery dissection affects a young predominantly female population. Treatment of spontaneous coronary artery dissection with CABG or stenting is described to improve outcome (794), but high rates of stenting complications are reported (780).

7.13. Stress (Takotsubo) Cardiomyopathy: Recommendations

Class I
1. Stress (Takotsubo) cardiomyopathy should be considered in patients who present with apparent ACS and nonobstructive CAD at angiography. (Level of Evidence: C)
2. Imaging with ventriculography, echocardiography, or magnetic resonance imaging should be performed to confirm or exclude the diagnosis of stress (Takotsubo) cardiomyopathy (795-798). (Level of Evidence: B)
3. Patients should be treated with conventional agents (ACE inhibitors, beta blockers, aspirin, and diuretics) as otherwise indicated if hemodynamically stable. (Level of Evidence: C)
4. Anticoagulation should be administered in patients who develop LV thrombi. (Level of Evidence: C)

Class IIa
1. It is reasonable to use catecholamines for patients with symptomatic hypotension if outflow tract obstruction is not present. (Level of Evidence: C)
2. The use of IABP is reasonable for patients with refractory shock. (Level of Evidence: C)
3. It is reasonable to use beta blockers and alpha-adrenergic agents in patients with outflow tract obstruction. (Level of Evidence: C)

Class IIb
1. Prophylactic anticoagulation may be considered to inhibit the development of LV thrombi. (Level of Evidence: C)

Stress (Takotsubo) cardiomyopathy (also referred to as transient LV apical ballooning or Takotsubo cardiomyopathy) mimics NSTEMI or STEMI (799-803). There is no obstructive CAD, and the distribution of electrocardiographic changes and LV wall motion abnormalities usually includes >1 coronary artery territory (801). Cardiac troponin elevations are usually modest (798). The majority of cases occur in postmenopausal women, and presentation is typically precipitated by emotional or physical stress. Imaging by echocardiography, ventriculography (696), or magnetic resonance imaging (699) demonstrates characteristic hypokinesis or dyskinesis of the LV apex with basilar increased contractility. Variants include hypokinesis of the mid or base of the left ventricle (795), and right ventricular involvement is common (804). In the vast majority of patients, electrocardiographic and LV wall motion abnormalities normalize within 1 to 4 weeks, and recurrences are uncommon (805). The pathogenesis has been attributed to excess catecholamine release (803), coronary spasm, or small coronary vessel hypoperfusion (806).

Care is predominantly supportive and includes beta blockers, vasodilators, and catecholamines. The latter 2 interventions must be used cautiously, because they may induce outflow tract obstruction (800). If shock is present, IABP can be used. Prophylactic anticoagulation should be considered to prevent or treat LV thrombus (798).

7.14. Obesity

Obesity is associated with conditions such as dyslipidemia, diabetes mellitus, hypertension, arrhythmias, and HF that adversely affect ACS outcomes. In the MADIT (Multicenter Automatic Defibrillator Implantation)-II trial, there was an inverse relation between body mass index and both all-cause mortality and sudden cardiac death in patients with LV dysfunction after MI (807). In the SYNERGY trial of 9,837 patients with NSTEMI, mortality was lower in morbidly obese patients, consistent with the “obesity paradox” (808). The “obesity paradox” has not been clarified and is under continuing investigation. Standard approaches to weight reduction in obese patients are usually unsuccessful in producing large decreases in weight. A weight reduction study of obese and morbidly obese patients following AMI resulted in weight loss of only 0.5% in obese patients and 3.5% in morbidly obese patients after 1 year (809). Two drugs, controlled-release phentermine/topiramate (810) and
lorcaserin (811), are available for weight reduction but have not been studied in patients following NSTE-ACS. Bariatric surgery has been successful in reducing cardiovascular risk factors, including diabetes mellitus, hypertension, and dyslipidemia but has not been evaluated in post–ACS patients (812). The 2013 obesity CPG provides comprehensive strategies for weight reduction (16).

7.15. Patients Taking Antineoplastic/Immunosuppressive Therapy

Antineoplastic or immunosuppressive therapy may contribute to the development of NSTE-ACS. For example, antineoplastic agents such as gemcitabine, sorafenib sunitinib, and 5-fluorouracil have been associated with coronary artery spasm or stenosis (813, 814). Trastuzumab and possibly other anticancer drugs may alter biomarker levels (815). Antineoplastic agents can induce changes in the arterial wall (813), and modulators of inflammation may promote atherogenesis (816). In patients receiving these agents, it is prudent to communicate with the prescribing clinician about the necessity of their continuation during NSTE-ACS and future resumption.

Table 11. Summary of Recommendations for Special Patient Groups

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSTE-ACS in older patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat older patients (≥75 y of age) with GDMT, early invasive strategy, and</td>
<td>I</td>
<td>A</td>
<td>(515-519)</td>
</tr>
<tr>
<td>revascularization as appropriate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individualize pharmacotherapy in older patients, with dose adjusted by</td>
<td>I</td>
<td>A</td>
<td>(515, 520-522)</td>
</tr>
<tr>
<td>weight and/or CrCl to reduce adverse events caused by age-related changes in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pharmacokinetics/dynamics, volume of distribution, comorbidity, drug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interactions, and increased drug sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undertake patient-centered management for older patients, considering patient</td>
<td>I</td>
<td>B</td>
<td>(515, 523-525)</td>
</tr>
<tr>
<td>preferences/goals, comorbidities, functional and cognitive status, and life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expectancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalirudin rather than GP IIb/IIIa inhibitor plus UFH is reasonable for</td>
<td>IIa</td>
<td>B</td>
<td>(396, 526-528)</td>
</tr>
<tr>
<td>older patients (≥75 y of age), given similar efficacy but less bleeding risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is reasonable to choose CABG over PCI in older patients, particularly</td>
<td>IIa</td>
<td>B</td>
<td>(529-534)</td>
</tr>
<tr>
<td>those with DM or multivessel disease, because of the potential for improved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>survival and reduced CVD events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treat patients with a history of HF according to the same risk stratification</td>
<td>I</td>
<td>B</td>
<td>(14, 42-44, 75-81)</td>
</tr>
<tr>
<td>guidelines and recommendations for patients without HF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select a revascularization strategy based on the extent of CAD, associated</td>
<td>I</td>
<td>B</td>
<td>(14, 138, 313, 334, 337,</td>
</tr>
<tr>
<td>cardiac lesions, LV dysfunction, and prior revascularization</td>
<td></td>
<td></td>
<td>361, 560, 561)</td>
</tr>
<tr>
<td>Cardiogenic shock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommend early revascularization for cardiogenic shock due to cardiac pump</td>
<td>I</td>
<td>B</td>
<td>(560, 588, 589)</td>
</tr>
<tr>
<td>failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommend medical treatment and decisions for testing and revascularization</td>
<td>I</td>
<td>A</td>
<td>(138, 339, 601)</td>
</tr>
<tr>
<td>similar to those for patients without DM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post–CABG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommend GDMT antiplatelet and anticoagulant therapy and early</td>
<td>I</td>
<td>B</td>
<td>(67, 68, 141, 340-342)</td>
</tr>
<tr>
<td>invasive strategy because of increased risk with prior CABG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Perioperative NSTE-ACS

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Grade</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administer GDMT to perioperative patients with limitations imposed by noncardiac surgery</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Direct management at underlying cause of perioperative NSTE-ACS</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>CKD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate CrCl and adjust doses of renally cleared medications according to pharmacokinetic data</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Administer adequate hydration to patients undergoing coronary and LV angiography</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Invasive strategy is reasonable in patients with mild (stage 2) and moderate (stage 3) CKD</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manage women with the same pharmacological therapy as that for men for acute care and secondary prevention, with attention to weight and/or renally calculated doses of antiplatelet and anticoagulant agents to reduce bleeding risk</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Early invasive strategy is recommended in women with NSTE-ACS and high-risk features (troponin positive)</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Myocardial revascularization is reasonable for pregnant women if ischemia-guided strategy is ineffective for management of life-threatening complications</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Women with low-risk features (Section 3.3.1) should not undergo early invasive treatment because of lack of benefit and the possibility of harm</td>
<td>III: No Benefit</td>
<td>B</td>
</tr>
<tr>
<td>Anemia, bleeding, and transfusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate all patients for risk of bleeding</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Recommend that anticoagulant and antiplatelet therapy be weight-based or adjusted for CKD to decrease the risk of bleeding</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>There is no benefit of routine blood transfusion in hemodynamically stable patients with hemoglobin levels >8 g/dL</td>
<td>III: No Benefit</td>
<td>B</td>
</tr>
<tr>
<td>Cocaine and methamphetamine users</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manage patients with recent cocaine or methamphetamine use similarly to those without cocaine- or methamphetamine-related NSTE-ACS. The exception is in patients with signs of acute intoxication (e.g., euphoria, tachycardia, and hypertension) and beta-blocker use unless patients are receiving coronary vasodilator therapy.</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>It is reasonable to use benzodiazepines alone or in combination with NTG to manage hypertension and tachycardia and signs of acute cocaine or methamphetamine intoxication.</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Do not administer beta blockers to patients with recent cocaine or methamphetamine use who have signs of acute intoxication due to risk of potentiating coronary spasm.</td>
<td>III: Harm</td>
<td>C</td>
</tr>
<tr>
<td>Vasospastic (Prinzmetal) angina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommend CCBs alone or in combination with nitrates</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Recommend HMG-CoA reductase inhibitor, cessation of tobacco use, and atherosclerosis risk factor modification</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Recommend coronary angiography (invasive or noninvasive) for episodic chest pain with transient ST elevation to detect severe CAD</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Provocative testing during invasive coronary angiography* may be considered for suspected vasospastic angina when clinical criteria and noninvasive assessment fail to determine diagnosis</td>
<td>IIb</td>
<td>B</td>
</tr>
<tr>
<td>ACS with angiographically normal coronary arteries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive physiological assessment (coronary flow reserve measurement) may be considered with normal coronary arteries if endothelial dysfunction is suspected</td>
<td>IIb</td>
<td>B</td>
</tr>
<tr>
<td>Stress (Takotsubo) cardiomyopathy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Provocative testing during invasive coronary angiography (e.g., using ergonovine, acetylcholine, methylergonovine) is relatively safe, especially when performed in a controlled manner by experienced operators. However, sustained spasm, serious arrhythmias, and even death can also occur but very infrequently. Therefore, provocative tests should be avoided in patients with significant left main disease, advanced 3-vessel disease, presence of high-grade obstructive lesions, significant valvular stenosis, significant LV systolic dysfunction, and advanced HF.

ACE indicates angiotensin-converting enzyme; ACS, acute coronary syndrome; CABC, coronary artery bypass graft; CAD, coronary artery disease; CCB, calcium channel blocker; CKD, chronic kidney disease; COR, Class of Recommendation; CrCl, creatinine clearance; CVD, cardiovascular disease; DM, diabetes mellitus; GDMT, guideline-directed medical therapy; GP, glycoprotein; HF, heart failure; IABP, intra-aortic balloon pump; LOE, Level of Evidence; LV, left ventricular; MRI, magnetic resonance imaging; N/A, not available; NSTE-ACS, non–ST-elevation acute coronary syndrome; NTG, nitroglycerin; PCI, percutaneous coronary intervention; and UFH, unfractionated heparin.

8. Quality of Care and Outcomes for ACS—Use of Performance Measures and Registries

8.1. Use of Performance Measures and Registries: Recommendation

Class IIa
1. Participation in a standardized quality-of-care data registry designed to track and measure outcomes, complications, and performance measures can be beneficial in improving the quality of NSTE-ACS care (817-825). (Level of Evidence: B)

The development of national systems for ACS is crucial and includes the participation of key stakeholders to evaluate care using standardized performance and quality-improvement measures for ACS (819, 821). Standardized quality-of-care data registries include the NCDR Registry—Get With the Guidelines, the Get With the Guidelines quality-improvement program, the Acute Myocardial Infarction Core Measure Set, and performance measures required by The Joint Commission and the Centers for Medicare and Medicaid Services (817, 823-825). The AHA has promoted its Mission: Lifeline initiative to encourage cooperation among prehospital emergency medical services personnel and cardiac care professionals (817). The evaluation of ACS care delivery across traditional boundaries can identify problems with systems and enable application of modern quality-improvement methods (818, 820, 822). On a local level, registries as part of the Chronic Care Model were associated with improved outcomes in chronic diseases, including cardiovascular disease (826, 827).
9. Summary and Evidence Gaps

Despite landmark advances in the care of patients with NSTE-ACS since the publication of the 2007 UA/NSTEMI CPG (212), many emerging diagnostic and therapeutic strategies have posed new challenges. There is general acceptance of an early invasive strategy for patients with NSTE-ACS in whom significant coronary vascular obstruction has been precisely quantified. Low-risk patients with NSTE-ACS are documented to benefit substantially from GDMT, but this is often suboptimally used. Advances in noninvasive testing have the potential to identify patients with NSTE-ACS who are at intermediate risk and are candidates for invasive versus medical therapy.

Newer, more potent antiplatelet agents in addition to anticoagulant therapy are indicated irrespective of initial treatment strategy. Evidence-based decisions will require comparative-effectiveness studies of available and novel agents. The paradox of newer and more potent antithrombotic and anticoagulant drugs that reduce major adverse cardiac outcomes but increase bleeding risk occurs with greater frequency in patients with AF. Patients with AF who develop NSTE-ACS and receive a coronary stent are the population at risk from triple anticoagulant/antiplatelet therapy. This regimen has been reported to be safely modified by elimination of aspirin, a finding that requires confirmation.

Among the most rapidly evolving areas in NSTE-ACS diagnosis is the use of cardiac troponin, the preferred biomarker of myocardial necrosis. Although a truly high-sensitivity cardiac troponin is not available in the United States at the time this CPG was prepared, the sensitivity of contemporary assays continues to increase. This change is accompanied by higher rates of elevated cardiac troponin unrelated to coronary plaque rupture. The diagnostic quandary posed by these findings necessitates investigation to elucidate the optimal utility of this advanced biomarker. A promising approach to improve the diagnostic accuracy for detecting myocardial necrosis is measurement of absolute cardiac troponin change, which may be more accurate than the traditional analysis of relative alterations.

Special populations are addressed in this CPG, the most numerous of which are older persons and women. More than half of the mortality in NSTE-ACS occurs in older patients, and this high-risk cohort will increase as our population ages. An unmet need is to more clearly distinguish which older patients are candidates for an ischemia-guided strategy compared with an early invasive management strategy. An appreciable number of patients with NSTE-ACS have angiographically normal or nonobstructive CAD, a group in which women predominate. Their prognosis is not benign, and the multiple mechanisms of ACS postulated for these patients remain largely speculative. Clinical advances are predicated on clarification of the pathophysiology of this challenging syndrome.

A fundamental aspect of all CPGs is that these carefully developed, evidence-based documents cannot encompass all clinical circumstances, nor can they replace the judgment of individual physicians in management of each patient. The science of medicine is rooted in evidence, and the art of medicine is based on the
application of this evidence to the individual patient. This CPG has adhered to these principles for optimal management of patients with NSTE-ACS.

Presidents and Staff

American College of Cardiology
Patrick O’Gara, MD, FACC, President
Shalom Jacobovitz, Chief Executive Officer
William J. Oetgen, MD, MBA, FACC, Executive Vice President, Science, Education, and Quality
Amelia Scholtz, PhD, Publications Manager, Clinical Policy and Pathways

American College of Cardiology/American Heart Association
Lisa Bradfield, CAE, Director, Science and Clinical Policy
Emily Cottrell, MA, Quality Assurance Specialist, Science and Clinical Policy
Alexa Papaila, Specialist, Science and Clinical Policy

American Heart Association
 Elliot Antman, MD, FAHA, President
Nancy Brown, Chief Executive Officer
Rose Marie Robertson, MD, FAHA, Chief Science Officer
Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations
Marco Di Buono, PhD, Vice President, Science, Research, and Professional Education, Office of Science Operations
Jody Hundley, Production Manager, Scientific Publications, Office of Science Operations

Key Words: AHA Scientific Statements • acute coronary syndrome • angina, unstable • antiplatelet agents • coronary artery bypass graft • electrocardiography • ischemia • myocardial infarction • percutaneous coronary intervention • troponin.
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2014 AHA/ACC Guideline for the Management of Patients With Non–ST-Elevation Acute Coronary Syndromes

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezra A. Amsterdam (Chair)</td>
<td>University of California (Davis) Medical Center, Division of Cardiology—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
| Nanette K. Wenger (Vice Chair) | Emory University, School of Medicine—Professor of Medicine (Cardiology) | • Abbott
• Amgen
• AstraZeneca
• Gilead Sciences†
• Janssen Pharmaceuticals
• Medtronic
• Merck
• Pfizer | None | None | • Abbott†
• Eli Lilly†
• Gilead Sciences†
• Merck
• Pfizer† | None | None | All sections except 3.1.1, 3.4, 5.2, 6.3.1, 6.3.2, 6.3.6, 7.5, 7.6, 7.8, and 8. |
| Ralph G. Brindis | University of California, San Francisco—Department of Medicine and the Phillip R. Lee Institute for Health Policy Studies—Clinical Professor of Medicine | None | • Volcano Corp. | None | None | None | None | None |
| Donald E. Casey, Jr | Atlantic Health—Vice President of Health and Chief Medical Officer | None |
| Theodore G. Ganiats | University of California, San Diego School of Medicine—Executive Director of Health Services Research Center | None |
| David R. Holmes, Jr | Mayo Clinic—Consultant, Cardiovascular Diseases | None |
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Sponsors</th>
<th>Sections Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allan S. Jaffe</td>
<td>Mayo Clinic, Cardiovascular Division—Professor of Medicine</td>
<td>• Abbott • Alere • Amgen • Beckman-Coulter • Critical Diagnostics • ET Healthcare • Ortho Clinical Diagnostic • Radiometer† • Roche‡ • Thermo-Fisher‡ • Trinity</td>
<td>None None None None None All sections except 3.1, 3.1.1, 3.3, 4.1.2.1-4.1.2.3, 4.2, 4.3.1, 4.3.2, 4.5, 5.1, 5.2, 6.2.1, 6.3.1, 6.3.3, 6.3.6, 7.2.2, 7.5, 7.6, and 8.</td>
</tr>
<tr>
<td>Hani Jneid</td>
<td>Baylor College of Medicine—The Michael E. DeBakey VA Medical Center—Assistant Professor of Medicine</td>
<td>None</td>
<td>None None None None None None None None None None None</td>
</tr>
<tr>
<td>Rosemary F. Kelly</td>
<td>University of Minnesota—Professor of Surgery, VA Medical Center—Chief, Cardiac Surgery</td>
<td>None</td>
<td>None None None</td>
</tr>
<tr>
<td>Michael C. Kontos</td>
<td>Virginia Commonwealth University, Pauley Heart Center—Medical Director, Coronary Intensive Care Unit; Associate Professor, Internal Medicine</td>
<td>• Astellas • General Electric • Ikaria • Prevencio • Sanofi-aventis • Wellpoint/Anthem</td>
<td>None None None None None None None None None None None</td>
</tr>
<tr>
<td>Glenn N. Levine</td>
<td>Baylor College of Medicine—Professor of Medicine; Director, Cardiac Care Unit</td>
<td>None</td>
<td>None None None</td>
</tr>
<tr>
<td>Philip R. Liebson</td>
<td>Rush University Medical Center—McMullan-Eybel Chair of Excellence in Clinical Cardiology and</td>
<td>None</td>
<td>None None None</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Relationships</td>
<td>Acknowledgments</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Amsterdam EA, et al.</td>
<td>2014 AHA/ACC NSTE-ACS Guideline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debabrata Mukherjee</td>
<td>Professor of Medicine and Preventive Medicine</td>
<td>None</td>
<td>DCRI has numerous grants and contracts sponsored by industry that are relevant to the content of this CPG. Dr. Peterson participated in discussions but recused himself from writing or voting, in accordance with ACC/AHA policy. See comprehensive RWI table for a complete list of companies pertaining to this organization.</td>
</tr>
<tr>
<td>Eric D. Peterson</td>
<td>Duke University Medical Center—Fred Cobb, MD, Distinguished Professor of Medicine; Duke Clinical Research Institute—Director</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Marc S. Sabatine</td>
<td>Brigham and Women’s Hospital, Chairman—TIMI Study Group, Division of Cardiovascular Medicine; Harvard Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

None: All sections

Some sections: 3.1.1, 5.2, 6.3.1, 6.3.2, 7.5, 7.8, and 8.
This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the GWC during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of $\geq 5\%$ of the voting stock or share of the business entity, or ownership of \geq $10,000$ of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACC/AHA, a person has a relevant relationship IF: a) the relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) the company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) the person or a member of the person’s household, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

*Writing members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities may apply.

†Significant relationship.
‡No financial benefit.

ACC indicates American College of Cardiology, AHA, American Heart Association, BMS, Bristol-Myers Squibb; CPG, clinical practice guideline; DCRI, Duke Clinical Research Institute; NIH, National Institutes of Health; NYU, New York University; RWI, relationships with industry and other entities; TIMI, Thrombolysis In Myocardial Infarction; and VA, Veterans Affairs.
Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)—2014 AHA/ACC Guideline for the Management of Patients With Non–ST-Elevation Acute Coronary Syndromes

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deepak L. Bhatt</td>
<td>Official Reviewer—AHA</td>
<td>VA Boston Healthcare System—Professor of Medicine, Harvard Medical School; Chief of Cardiology</td>
<td>BMS/Pfizer, DCRI (BMS/Pfizer), DCRI (Eli Lilly), Eli Lilly</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca*, Bristol-Myers Squibb*, Ethicon*, The Medicines Company, Medtronic*, Sanofi-aventis*, Takeda†</td>
<td>Medscape Cardiology (Advisory Board)†, WebMD (Steering Committee)†</td>
<td>None</td>
</tr>
<tr>
<td>John E. Brush, Jr</td>
<td>Official Reviewer—ACC Board of Trustees</td>
<td>Eastern Virginia Medical School—Professor of Medicine, Chief of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John F. Robb</td>
<td>Official Reviewer—Dartmouth-Hitchcock Medical Center—Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Defendant, adverse drug</td>
<td>None</td>
</tr>
</tbody>
</table>
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

<table>
<thead>
<tr>
<th>ACC Board of Governors</th>
<th>Interventional Cardiology and Cardiac Catheterization Laboratories</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>reaction, 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarah A. Spinler</td>
<td>Official Reviewer—AHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philadelphia College of Pharmacy, University of the Sciences in Philadelphia—Professor of Clinical Pharmacy</td>
<td>• Bristol-Myers Squibb</td>
<td>• Daiichi-Sankyo</td>
<td>• Janssen Pharmaceuticals</td>
<td>• Merck</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Plaintiff, clopidogrel, 2013</td>
</tr>
<tr>
<td>Gorav Ailawadi</td>
<td>Organizational Reviewer—STS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Virginia Health System—Thoracic and Cardiovascular Surgery</td>
<td>• Abbott</td>
<td>• Atricure</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Srihari S. Naidu</td>
<td>Organizational Reviewer—SCAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winthrop University Hospital—Director, Cardiac Catheterization Laboratory</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert L. Rich, Jr</td>
<td>Organizational Reviewer—AAFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bladen Medical Associates—Family Physician</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mouaz H. Al-Mallah</td>
<td>Content Reviewer—ACC Prevention of Cardiovascular Disease Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>King Abdul-Aziz Cardiac Center—Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John A. Ambrose</td>
<td>Content Reviewer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of California San Francisco Fresno Department of Medicine—Professor of Medicine; Chief of Cardiology; Program Director, Cardiology Fellowship</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Page 98 of 150
| Name | Content Reviewer Information | Hospital of University of Perugia School of Medicine—Medical Director, Division of Cardiology | Bayer* | The Medicines Company | Merck Schering-Plough† | Pfizer | None | None | None | None | None | None
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Giuseppe Ambrosio</td>
<td>Content Reviewer—ACC Prevention of Cardiovascular Disease Committee</td>
<td></td>
</tr>
<tr>
<td>H. Vernon Anderson</td>
<td>Content Reviewer</td>
<td>University of Texas—Professor of Medicine, Cardiology Division</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Eli Lilly</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeffrey L. Anderson</td>
<td>Content Reviewer—ACC/AHA Task Force on Practice Guidelines</td>
<td>Intermountain Medical Center—Associate Chief of Cardiology</td>
<td>Sanofi-aventis</td>
<td>None</td>
<td>None</td>
<td>GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred S. Apple</td>
<td>Content Reviewer</td>
<td>University of Minnesota School of Medicine, Hennepin County Medical Center—Professor, Laboratory Medicine and Pathology</td>
<td>Abbott Diagnostics</td>
<td>None</td>
<td>None</td>
<td>Abbott Diagnostics—Pl†</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emmanouil S. Brilakis</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>UT Southwestern Medical School—Director, Cardiac Catheterization Laboratory, VA North Texas Healthcare System</td>
<td>Bridgepoint Medical/Boston Scientific*</td>
<td>None</td>
<td>None</td>
<td>Abbott Vascular</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthew J. Budoff</td>
<td>Content Reviewer—ACC Cardiovascular Imaging</td>
<td>Los Angeles Biomedical Research Institute—Program Director, Division of</td>
<td>None</td>
<td>AstraZeneca†</td>
<td>None</td>
<td>AstraZeneca†</td>
<td>None</td>
<td>AstraZeneca†</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>General Electric*</td>
<td>None</td>
<td>General Electric*</td>
<td>None</td>
<td>General Electric*</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plaintiff, cardiac treatment, 2013</td>
<td>None</td>
<td>Plaintiff, cardiac treatment, 2013</td>
<td>None</td>
<td>Plaintiff, cardiac treatment, 2013</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Content Reviewer—ACC Intervventional Section Leadership Council</td>
<td>Leadership Council</td>
<td>Cardiology and Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-------------------------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>James A. Burke</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>Lehigh Valley Health Network—Interventional Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robert H. Christenson</td>
<td>Content Reviewer—AACC</td>
<td>University of Maryland School of Medicine—Professor of Pathology; Professor of Medical and Research Technology; Director, Rapid Response Laboratory</td>
<td>None</td>
<td>None</td>
<td>• BG Medicine</td>
<td>• Critical Diagnostics</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joaquin E. Cigarroa</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>Oregon Health and Science University—Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marco A. Costa</td>
<td>Content Reviewer—ACC Cardiovascular Imaging Section Leadership Council</td>
<td>University Hospital for Cleveland—Cardiologist</td>
<td>• Abbott Vascular*</td>
<td>None</td>
<td>None</td>
<td>• Abbott Vascular*</td>
<td>• Boston Scientific*</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prakash C. Deedwania</td>
<td>Content Reviewer—ACC</td>
<td>University of California San Francisco—Cardiologist</td>
<td>• Amgen</td>
<td>None</td>
<td>None</td>
<td>• Pfizer</td>
<td>• Takeda Pharmaceuticals</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Financial relationships not related to ACC Intervventional Section Leadership Council
† Financial relationships not related to ACC Cardiovascular Imaging Section Leadership Council

AACC (President)†
Roche Diagnostics (University of Maryland School of Medicine)*
The Medicines Company
Catheterization and Cardiovascular Intervention (Editorial Board)†
Abbott
Cordis
Medtronic
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Affiliation</th>
<th>Relationship</th>
<th>Alzheimer's Association</th>
<th>AstraZeneca</th>
<th>Abbott Diagnostics†</th>
<th>Daiichi-Sankyo†</th>
<th>Pediatrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>James A. de Lemos</td>
<td>Content Reviewer</td>
<td>UT Southwestern Medical School—Associate Professor of Medicine; Director, Coronary Care Unit and Cardiology Fellowship</td>
<td>Diadexus</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Burl R. Don</td>
<td>Content Reviewer</td>
<td>University of California Davis—Professor of Medicine; Director of Clinical Nephrology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lee A. Fleisher</td>
<td>Content Reviewer</td>
<td>University of Pennsylvania Department of Anesthesiology—Professor of Anesthesiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary G. George</td>
<td>Content Reviewer—HHS</td>
<td>Centers for Disease Control and Prevention—Senior Medical Officer, Division for Heart Disease and Stroke Prevention</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Linda D. Gillam</td>
<td>Content Reviewer—ACC Cardiovascular Imaging Section Leadership Council</td>
<td>Morristown Medical Center—Professor of Cardiology, Vice Chair, Cardiovascular Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert A. Guyton</td>
<td>Content Reviewer—ACC/AHA Task Force on</td>
<td>Emory Clinic—Professor and Chief, Division of</td>
<td>Medtronic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Practice Guidelines</th>
<th>Cardiothoracic Surgery</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joerg Herrmann</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>None</td>
<td>Mayo Medical School—Internal Medicine and Cardiovascular Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Judith S. Hochman</td>
<td>Content Reviewer—ACC/AHA Task Force on Practice Guidelines</td>
<td>None</td>
<td>New York University School of Medicine, Division of Cardiology—Clinical Chief of Cardiology</td>
<td>GlaxoSmithKline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Janssen Pharmaceuticals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuling Hong</td>
<td>Content Reviewer—HHS</td>
<td>None</td>
<td>Centers for Disease Control and Prevention—Associate Director</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lloyd W. Klein</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>None</td>
<td>Rush Medical College—Professor of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frederick G. Kushner</td>
<td>Content Reviewer</td>
<td>None</td>
<td>Tulane University School of Medicine—Clinical Professor of Medicine; Heart Clinic of Louisiana—Medical Director</td>
<td>Abiomed</td>
<td>Cordis†</td>
<td>Eli Lilly*</td>
<td>Gilead</td>
<td>Johnson & Johnson</td>
<td>Medtronic</td>
<td>Eli Lilly*</td>
</tr>
<tr>
<td>Ehtisham Mahmud</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>None</td>
<td>University of California, San Diego—Professor of Medicine/Cardiology, Chief of Cardiovascular Medicine; Director, Interventional Cardiology and</td>
<td>Abiomed</td>
<td>Cordis†</td>
<td>Eli Lilly*</td>
<td>Gilead</td>
<td>Johnson & Johnson</td>
<td>Medtronic</td>
<td>Eli Lilly*</td>
</tr>
<tr>
<td>Name</td>
<td>Content Role</td>
<td>Institution/Position</td>
<td>Patents/Ownership</td>
<td>AstraZeneca†</td>
<td>Eli Lilly†</td>
<td>Sanofi-aventis†</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td>------------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlos Martínez-Sánchez</td>
<td>Content Reviewer—AIG</td>
<td>Cardiovascular Catheterization Laboratory</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Kristen Newby</td>
<td>Content Reviewer</td>
<td>Cardiology Society of Mexico—President</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patrick T. O’Gara</td>
<td>Content Reviewer</td>
<td>Duke University Medical Center—Associate Professor of Clinical Medicine</td>
<td>• Johnson & Johnson
• Daiichi-Sankyo</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narith Ou</td>
<td>Content Reviewer</td>
<td>Brigham and Women’s Hospital—Professor of Medicine, Harvard Medical School; Director, Clinical Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gurusher S. Panjrath</td>
<td>Content Reviewer—ACC Heart Failure and Transplant Section Leadership Council</td>
<td>Mayo Clinic—Pharmacotherapy Coordinator, Pharmacy Services</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajan Patel</td>
<td>Content Reviewer—ACC Cardiovascular Imaging Section</td>
<td>Ochsner Clinic Foundation—Interventional Cardiologist</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Patents/Ownership table does not include all patents or ownership information for each individual.
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institution</th>
<th>Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl J. Pepine</td>
<td>Content Reviewer</td>
<td>Shands Hospital at University of Florida—Professor and Chief, Division of Cardiovascular Medicine</td>
<td>• Lilly/Cleveland Clinic (DSMB)</td>
</tr>
<tr>
<td>Sunil V. Rao</td>
<td>Content Reviewer—ACC Interventional Section Leadership Council</td>
<td>Duke University Medical Center—Associate Professor of Medicine</td>
<td>• AstraZeneca • Daiichi-Sankyo • Eli Lilly • Terumo Medical • The Medicines Company</td>
</tr>
<tr>
<td>Pasala S. Ravichandran</td>
<td>Content Reviewer—ACC Surgeons’ Scientific Council</td>
<td>Oregon Health and Science University—Associate Professor</td>
<td>None</td>
</tr>
<tr>
<td>Michael W. Rich</td>
<td>Content Reviewer</td>
<td>Washington University School of Medicine—Professor of Medicine</td>
<td>None</td>
</tr>
<tr>
<td>Frank W. Sellke</td>
<td>Content Reviewer—ACC/AHA Task Force on Practice Guidelines</td>
<td>Brown Medical School, Rhode Island Hospital—Professor; Chief of Cardiothoracic Surgery</td>
<td>None</td>
</tr>
<tr>
<td>Alan Wu</td>
<td>Content Reviewer—AACC</td>
<td>San Francisco General Hospital and Trauma Center—Chief, Clinical Chemistry Laboratory</td>
<td>• Abbott • Singulex</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant to this document. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$10,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.
According to the ACC/AHA, a person has a relevant relationship IF: a) the relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) the company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) the person or a member of the person’s household, has a reasonable potential for financial, professional or other personal gain or loss as a result of the issues/content addressed in the document.

*Significant relationship.
†No financial benefit.

AAAHC indicates Accreditation Association for Ambulatory Health Care; AACC, American Association for Clinical Chemistry; AAFP, American Academy of Family Physicians; AHA, American Heart Association; AIG, Association of International Governors; BMS, Bristol-Myers Squibb; DCRI, Duke Clinical Research Institute; DSMB, data safety monitoring board; HHS, Health and Human Services; NHLBI, National Heart, Lung, and Blood Institute; NIH, National Institutes of Health; SCAI, Society for Cardiovascular Angiography and Interventions; STS, Society of Thoracic Surgeons; TIMI, Thrombolysis In Myocardial Infarction; and VA, Veterans Affairs.
Appendix 3. Abbreviations

ACE = angiotensin-converting enzyme
ACS = acute coronary syndrome
AF = atrial fibrillation
AMI = acute myocardial infarction
BP = blood pressure
CABG = coronary artery bypass graft
CAD = coronary artery disease
CKD = chronic kidney disease
CK-MB = creatine kinase myocardial isoenzyme
COX = cyclooxygenase
CPG = clinical practice guideline
CrCl = creatinine clearance
CT = computed tomography
DAPT = dual antiplatelet therapy
DES = drug-eluting stent
ECG = electrocardiogram
ED = emergency department
GDMT = guideline-directed medical therapy
GP = glycoprotein
GFR = glomerular filtration rate
GWC = guideline writing committee
HF = heart failure
IABP = intra-aortic balloon pump
IV = intravenous
LMWH = low-molecular-weight heparin
LV = left ventricular
LVEF = left ventricular ejection fraction
MACE = major adverse cardiac event
MI = myocardial infarction
MVO$_2$ = myocardial oxygen consumption
NSAID = nonsteroidal anti-inflammatory drug
NSTE-ACS = non–ST-elevation acute coronary syndromes
NSTEMI = non–ST-elevation myocardial infarction
PCI = percutaneous coronary intervention
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

RCT = randomized controlled trial
SC = subcutaneous
STEMI = ST-elevation myocardial infarction
UA = unstable angina
UFH = unfractionated heparin
VF = ventricular fibrillation
VT = ventricular tachycardia
Appendix 4. Additional Tables

Table A. Universal Classification of MI

<table>
<thead>
<tr>
<th>Type 1: Spontaneous MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous MI related to atherosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection with resulting intraluminal thrombus in ≥1 of the coronary arteries leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. The patient may have underlying severe CAD, but on occasion nonobstructive or no CAD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 2: MI secondary to ischemic imbalance</th>
</tr>
</thead>
<tbody>
<tr>
<td>In instances of myocardial injury with necrosis where a condition other than CAD contributes to an imbalance between MVO$_2$, e.g., coronary endothelial dysfunction, coronary artery spasm, coronary embolism, tachy-/bradyarrhythmias, anemia, respiratory failure, hypotension, and hypertension with or without LVH.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 3: MI resulting in death when biomarker values are unavailable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac death with symptoms suggestive of myocardial ischemia and presumed new ischemic electrocardiographic changes or new LBBB, but death occurred before blood samples could be obtained, before cardiac biomarker could rise, or in rare cases where blood was not collected for cardiac biomarker testing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 4a: MI related to PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI associated with PCI is arbitrarily defined by elevation of cTn values >5 × 99th percentile URL in patients with normal baseline values (<99th percentile URL) or a rise of cTn values >20% if baseline values are elevated and are stable or falling. In addition, either (i) symptoms suggestive of myocardial ischemia, (ii) new ischemic electrocardiographic changes or new LBBB, (iii) angiographic loss of patency of a major coronary artery or a side branch or persistent slow or no flow or embolization, or (iv) imaging demonstration of new loss of viable myocardium or new regional wall motion abnormality is required.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 4b: MI related to stent thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI associated with stent thrombosis is detected by coronary angiography or autopsy in the setting of myocardial ischemia and with a rise and/or fall of cardiac biomarker values with ≥1 value above the 99th percentile URL.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type 5: MI related to CABG</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI associated with CABG is arbitrarily defined by elevation of cardiac biomarker values >10 × 99th percentile URL in patients with normal baseline cTn values (<99th percentile URL). In addition, either (i) new pathological Q waves or new LBBB, or (ii) angiographically documented new graft or new native coronary artery occlusion, or (iii) imaging evidence of new loss of viable myocardium or new regional wall motion abnormality.</td>
</tr>
</tbody>
</table>

CABG indicates coronary artery bypass graft; CAD, coronary artery disease; cTn, cardiac troponin; LBBB, left bundle-branch block; LVH, left ventricular hypertrophy; MI, myocardial infarction; MVO$_2$, myocardial oxygen consumption; PCI, percutaneous coronary intervention; and URL, upper reference limit. Modified from Thygesen et al. (21).

Table B. Pharmacological Therapy in Older Patients With NSTE-ACS

<table>
<thead>
<tr>
<th>Age-Related Pharmacological Change</th>
<th>Clinical Effect</th>
<th>Dose-Adjustment Recommendations</th>
<th>Additional Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>General principles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ↓In renal function (CrCl*):</td>
<td></td>
<td>• Calculate CrCl in all pts—renal-dose accordingly</td>
<td>• Caution fall risk with ↓BP agents and diuretics</td>
</tr>
<tr>
<td>drug clearance, water/electrolyte balance</td>
<td>• Levels renally cleared drug</td>
<td>• Start at lowest recommended dose, titrate up slowly</td>
<td>• Monitor for ADR, especially delirium</td>
</tr>
<tr>
<td>• SCR unreliable measure of renal function in older adults</td>
<td>• Risk high/low electrolyte levels</td>
<td></td>
<td>• Frequent monitoring of renal function/electrolytes</td>
</tr>
<tr>
<td>• Change in body composition</td>
<td>• ↑Levels hydrophilic agents</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Amsterdam EA, et al.

2014 AHA/ACC NSTE-ACS Guideline

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Characteristics</th>
<th>Interactions</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA</td>
<td>Hydrophilic; levels ↑ with total body water; age-related ↑ plasma concentration for similar dose</td>
<td>↑ Bleeding risk with ↑ age, dehydration, frailty, diuretics</td>
<td>Maintenance = 81 mg/d (lowest possible dose)</td>
</tr>
<tr>
<td>Nitrates</td>
<td>↑ Sensitivity</td>
<td>↑ Hypotensive response with ↓ baroreceptor response</td>
<td>Lowest dose possible, especially if hypovolemic</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>↓ First-pass metabolism (some) with ↓ effect; enalapril effect</td>
<td>May have ↓ effect</td>
<td>May need ↑ dose</td>
</tr>
<tr>
<td>ARBs</td>
<td>No significant age-related changes</td>
<td>No age-related clinical changes</td>
<td>None</td>
</tr>
<tr>
<td>Alpha blockers</td>
<td>↑ Sensitivity; ↓ BP with ↑ baroreceptor response</td>
<td>↓ BP; OH</td>
<td>Avoid when possible</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>↓ Myocardial sensitivity (↓ postreceptor signaling), ↑ conduction system sensitivity</td>
<td>Bradycardia/heart block; ↓ BP effect vs. younger pts</td>
<td>May need ↑ dose with age</td>
</tr>
<tr>
<td>CCBs</td>
<td>DHPs (amlodipine; nifedipine)</td>
<td>Lipophilic; ↓ hepatic and overall clearance; ↑ fat storage; ↑ sinus node sensitivity; ↓ baroreceptor response to ↓ BP</td>
<td>Initiate low dose, titrate cautiously</td>
</tr>
<tr>
<td></td>
<td>Non-DHP (verapamil; diltiazem)</td>
<td>↓ Hepatic and overall clearance; less PR prolongation than DHP and with ↑ age; negative inotropy; ↓ SA node sensitivity and ↓ HR than DHP and with ↑ age; ↓ AV conduction with ↑ age; ↓ baroreceptor response to ↑ BP</td>
<td>Initiate low dose, titrate cautiously</td>
</tr>
<tr>
<td></td>
<td>Diuretics</td>
<td>↑ BP more than non-DHP and with ↑ age; edema hypotension, bradycardia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diuretic/natriuretic response, ↓ EC space, ↑ drug concentration if ↓ GFR; ↓ baroreceptor response to volume shifts</td>
<td>↑ Sensitivity; ↑ hypotension; risk hypokalemia/hypomagnesemia/hyponatremia; ↓ diuretic effect with ↓ GFR; risk hypovolemia-↑ thirst</td>
<td>May need ↑ doses if ↓ GFR; may need ↑ dose if coteracting with NSAIDs</td>
</tr>
<tr>
<td>Heparins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*CrCl should be calculated for all older pts because SCr level does not accurately reflect renal dysfunction: CrCl decreases with age 0.7 mL/min/y.

†These agents are not approved for NSTE-ACS but are included for management of pts with nonvalvular chronic atrial fibrillation.
Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Characteristics</th>
<th>Dosage/Adjustments</th>
<th>Monitoring/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFH</td>
<td>Hydrophilic; ↑concentration, especially if ↓lean body mass or ↓plasma proteins; ↑levels with ↑age</td>
<td>Weight-based 60 U/kg loading dose + 12 U/kg/h INF. Suggested max loading dose: 400 U and 900 U/h INF or 5,000 U loading dose/1,000 U/h if pt weight >100 kg</td>
<td>↑Bleeding with ASA; ↑bleeding risk with other AP, AT, and GP IIb/IIIa; vigilantly monitor aPTT</td>
</tr>
</tbody>
</table>
| **LMWH** | Cleared renally; more predictable dose response than UFH; not dependent on plasma protein levels; ↑levels with ↓lean body mass; ↑effect with ↑age | Enoxaparin: Weight-based 1 mg/kg SC q 12 h; CrCl* <30 mL/min—avoid or 1 mg/kg SC q 24 h; CrCl 30–60 mL/min: ↓75%; Dalteparin: Use caution in older pts with low body weight or renal insufficiency | • ↑Bleed with ASA
• Monitor anti-Xa; ↑bleeding with GP IIb/IIIa with ↑age |
| **Direct Thrombin Inhibitors** | **Bivalirudin** Cleared renally; more predictable dose response; not dependent on plasma protein levels
Fondaparinux Cleared renally | Significantly less bleeding in older pts, even with renal dysfunction vs. UFH + GP IIb/IIIa with similar efficacy
Renal/weight adjust; less bleeding but similar efficacy vs. enoxaparin in older pts with NSTE-ACS, even with mild to moderate renal dysfunction | CrCl <30 mL/min; 1 mg/kg/h; CrCl: 30 to 60 mL/min—less bleeding than UFH
Renal adjustment: CrCl <30—contraindicated; CrCl 30 to 60—preferred over enoxaparin |
| **P2Y₁₂ Inhibitors** | **Clopidogrel** Lipophilic; ↑HPR; ↑metabolism; ↑fat distribution; ↑to steady state (↑fat distribution/T½)
Prasugrel ↑19% Active metabolite >75 y of age
Ticagrelor None known | ↓Antiplatelet effect in some older pts
↑Bleeding risk | Maintenance: 75 mg (no ↑response to higher dose)
↓Effect with proton pump inhibitors; if HPR—may respond to prasugrel or ticagrelor |
<p>| GP IIb/IIIa Inhibitors | Abciximab N/A | Not recommended | N/A |</p>
<table>
<thead>
<tr>
<th>Medication</th>
<th>Dosage/renal status</th>
<th>Benefits/risks</th>
<th>Guidelines/considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eptifibatide</td>
<td>Weight/renally dosed</td>
<td>↑Bleeding risk</td>
<td>Weight-based: 180 mcg/kg loading dose + 2 mcg/kg/min INF; CrCl ≤ 50 mL/min: 1.0 mcg/kg/min INF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Weight-based: 12 mcg/kg loading dose + 0.14 mcg/kg/min INF; CrCl < 30 mL/min: 6 mcg/kg/min loading dose + 0.05 mcg/kg/min INF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Less benefit/more bleeding with ↑age</td>
</tr>
<tr>
<td>Tirofiban</td>
<td>Weight/renally dosed</td>
<td>↑Bleeding risk</td>
<td>In older pts with high bleeding risk, low-dose INF effective with ↓bleeding</td>
</tr>
<tr>
<td>Warfarin</td>
<td>↑Sensitivity; ↓20%–40% clearance; protein binding; ↑inhibition vitamin K-dependent clotting factors at same plasma levels with ↑age</td>
<td>↑Bleeding risk at lower INR; higher INR/dose with ↑age; ↑risk GI bleeding</td>
<td>• Loading: 4 mg/d x 4 d</td>
</tr>
<tr>
<td>New Oral AC†</td>
<td>N/A</td>
<td>N/A</td>
<td>• Maintain mean dose ↓ 0.4 mg/w/y of age</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>35% cleared renally; 65% hepatic (CYP3A4); ↑levels in hepatic and/or renal dysfunction and ↑age</td>
<td>↑Bleeding risk; not reversible</td>
<td>Contraindicated if CrCl < 15 mL/min</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>80% cleared renally; ↑plasma level with ↑age, especially ≥ 75 y</td>
<td>↑Bleeding risk; not reversible</td>
<td>If pt taking when admitted, stop—consider delaying angiogram/PCI until effect wanes, switch to UFH/dalteparin/bivalirudin/ fonaparinux; AP and DAPT ↑ bleeding 2× post-ACS—consider BMS and radial access. Avoid GP IIb/IIIa inhibitor if possible; ↑ thrombotic risk following discontinuation.</td>
</tr>
<tr>
<td>Apixaban</td>
<td>Hepatically cleared (minor CYP3A4); dose adjust if weight ≤ 60 kg; highly protein bound</td>
<td>↑Bleeding risk; not reversible</td>
<td>Some drug interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Monitor pt and renal function frequently; longest for effect to wane with ↓CrCl; ↑risk dyspepsia, GI bleeding</td>
</tr>
</tbody>
</table>

†Risk abnormal liver function tests
Table C. Age-Related Physiological Changes: Clinical Impact in Older Patients With NSTE-ACS

<table>
<thead>
<tr>
<th>Age-Related Change</th>
<th>Clinical Alteration</th>
<th>Clinical Impact in NSTE-ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑Central arterial stiffness</td>
<td>↑SBP/↓DBP; ↑LVH; ↓diastolic function; ↓coronary perfusion pressure; ↓ischemia/infarct threshold for tachycardia/hypertension with and without coronary obstructive disease; ↑PA pressure</td>
<td>↑Risk end-organ damage (cerebrovascular accident, AKI); ↑BP lability; ↑reinfarction/ischemia; orthostatic hypotension; ↑HF; ↑pulmonary edema</td>
</tr>
<tr>
<td>LV diastolic function</td>
<td>↑LA size; ↓early passive LV filling; ↑late LV filling and ↑LV EDP; ↑PA pressure</td>
<td>↑Risk AF; (↑pulmonary edema/↑CO), ↑DOE; ↑pulmonary edema with ↑HR/↑BP</td>
</tr>
<tr>
<td>↓Response to beta-adrenergic stimulation</td>
<td>↓HR/↓inotropic responsiveness to stress; resting systolic LV function unchanged with age</td>
<td>Hypotension, HF, ↓HR response</td>
</tr>
<tr>
<td>Conduction system changes</td>
<td>↓Sinus node cells; ↓AV conduction; ↑LBBB; and ↑RBBB</td>
<td>Difficult to interpret electrocardiographic MI/ischemia; ↑heart block; SSS; ↑SVT, ↑sensitivity to conduction system drugs</td>
</tr>
<tr>
<td>↓Volume regulating hormones</td>
<td>↓Na, K, and water regulation—BP lability</td>
<td>Altered electrolytes, ↑sensitivity to fluid therapy/diuretics</td>
</tr>
<tr>
<td>Renal changes</td>
<td>↓GFR (0.8 mL/min/y), ↓Na/K clearance, normal serum creatinine despite moderate to severe CKD, altered drug clearance; ↓urine concentrating ability</td>
<td>CrCl or eGFR must be calculated for drug dosing, ↑sensitivity to contrast nephropathy, ↑risk AKI</td>
</tr>
<tr>
<td>Fat-muscle redistribution</td>
<td>↑Third spacing of fluid, may alter drug storage; ↓VO2max</td>
<td>May alter fluid/drug dosing, decreased CO; DOE; early fatigability</td>
</tr>
<tr>
<td>↓Baroreceptor sensitivity</td>
<td>↑BP lability</td>
<td>Orthostatic hypotension, fall risk</td>
</tr>
<tr>
<td>Clotting factor/platelet function/hemostasis</td>
<td>↑Bleeding and clotting risk, ↑sensitivity to anticoagulants/antithrombins</td>
<td>↑Risk cerebrovascular accident/reinfarction/recurrent ischemia, bleeding, thrombosis, PE, DVT; may alter drug dosing/sensitivity; ↑stent thrombosis</td>
</tr>
</tbody>
</table>

AC indicates anticoagulants; ACE, angiotensin-converting-enzyme; ACS, acute coronary syndromes; ADR, adverse drug reactions; AKI, acute kidney injury; AP, antiplatelets; aPTT, activated partial thromboplastin time; ARB, angiotensin receptor blocker; ASA, aspirin; AT, antithrombins; AV, atrioventricular; BID, twice daily; BMS, bare-metal stent; BP, blood pressure; CCBs, calcium channel blockers; CrCl, creatinine clearance; DAPT, dual antiplatelet therapy; DHP, dihydropyridine; EC, extracellular; GFR, glomerular filtration rate; GI, gastrointestinal; GP, glycoprotein; HPR, high platelet reactivity; HR, heart rate; INF, infusion; INR, international normalized ratio; K⁺, potassium; LMWH, low-molecular-weight heparin; max, maximum; Mg, magnesium; N/A, not available; NSAIDs, nonsteroidal anti-inflammatory drugs; NSTE-ACS, non–ST-elevation acute coronary syndromes; OH, orthostatic hypotension; PCI, percutaneous coronary intervention; pts, patients; QD, once daily; SA, sinoatrial; SC, subcutaneous; SCr, serum creatinine; T½, half-life; and UFH, unfractionated heparin.
PE, pulmonary embolism; RBBB, right bundle-branch block, SBP, systolic blood pressure; SSS, sick sinus syndrome; SVT, supraventricular tachycardia; and VO$_2$ max, maximum oxygen consumption.
<table>
<thead>
<tr>
<th>Outcome</th>
<th>2 y</th>
<th>5 y</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCI</td>
<td>CABG</td>
<td>PCI</td>
</tr>
<tr>
<td>Number (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary composite†</td>
<td>121 (13.0)</td>
<td>108 (11.9)</td>
<td>200 (26.6)</td>
</tr>
<tr>
<td>Death from any cause</td>
<td>62 (6.7)</td>
<td>57 (6.3)</td>
<td>114 (16.3)</td>
</tr>
<tr>
<td>MI</td>
<td>62 (6.7)</td>
<td>42 (4.7)</td>
<td>98 (13.9)</td>
</tr>
<tr>
<td>Stroke</td>
<td>14 (1.5)</td>
<td>24 (2.7)</td>
<td>20 (2.4)</td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>9 (0.9)</td>
<td>12 (1.3)</td>
<td>73 (10.9)</td>
</tr>
</tbody>
</table>

*P values were calculated with the log-rank test on the basis of all available follow-up data (i.e., >5 y).
†The primary composite outcome was rate of death from any cause, MI, or stroke.
‡p=0.006 in the as-treated (non–intention-to-treat) analysis.
§p=0.16 by the Wald test of the Cox regression estimate for study-group assignment in 1,712 patients after adjustment for average glucose level after procedure.

CABG indicates coronary artery bypass graft; FREEDOM, Future Revascularization Evaluation in Patients With Diabetes Mellitus: Optimal Management of Multivessel Disease; MI, myocardial infarction; and PCI, percutaneous coronary intervention.
Modified with permission from Farkouh et al. (616).
References

Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

106. Fraker TD Jr, Fihn SD, Gibbons RJ, et al. 2007 chronic angina focused update of the ACC/AHA 2002 guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Writing Group to develop the focused

351. Larsson H, Areskog M, Areskog NH, et al. Should the exercise test (ET) be performed at discharge or one month later after an episode of unstable angina or non-Q-wave myocardial infarction? Int J Card Imaging. 1991;7:7-14.

Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

Amsterdam EA, et al. (2014) AHA/ACC NSTE-ACS Guideline

488. MMWR Prevention and Control of Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP) - United States, 2012-2013 Influenza Season. MMWR. 2012.

Amsterdam EA, et al.
2014 AHA/ACC NSTE-ACS Guideline

Ezra A. Amsterdam, Nanette K. Wenger, Ralph G. Brindis, Donald E. Casey, Jr., Theodore G. Ganiats, David R. Holmes, Jr., Allan S. Jaffe, Hani Jneid, Rosemary F. Kelly, Michael C. Kontos, Glenn N. Levine, Philip R. Liebson, Debabrata Mukherjee, Eric D. Peterson, Marc S. Sabatine, Richard W. Smalling and Susan J. Zieman

Circulation. published online September 23, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2014/09/22/CIR.0000000000000134.citation

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/09/23/CIR.0000000000000134.DC1
http://circ.ahajournals.org/content/suppl/2014/09/23/CIR.0000000000000134.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Author Relationships With Industry and Other Entities (Comprehensive)—2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes (July 2013)

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speakers Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ezra A. Amsterdam (Chair)</td>
<td>University of California (Davis) Medical Center, Division of Cardiology—Professor</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• California CABG Project</td>
<td>• American Journal of Cardiology†</td>
<td>None</td>
</tr>
</tbody>
</table>
| **Nanette K. Wenger (Vice Chair)** | Emory University, School of Medicine—Professor of Medicine (Cardiology) | • Abbott
• Amgen
• AstraZeneca
• Gilead Sciences*
• Janssen Pharmaceuticals
• Medtronic
• Merck
• Pfizer

None | None | • Abbott*
• Eli Lilly*
• Gilead Sciences*
• Merck
• NHLBI*
• Pfizer* | • ACC Extended Learning
• CCCOA
• Clinical Cardiology Review Editor
• Society for Women’s Health Research† | None |
| **Ralph G. Brindis** | University of California, San Francisco—Department of Medicine and the Phillip R. Lee Institute for Health Policy Studies—Clinical Professor of Medicine | • Ivivi Health Sciences

• Volcano Corp. | None | None | • ACC-NCDR(Senior Medical Officer, External Affairs)
• DAPT trial (Advisory Board)†
• California State Elective PCI Project (Advisory Board)†
• C-PORT Elective RCT† (DSMB)
• FDA Cardiovascular Device Panel†
• State of California | None |
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Roles</th>
<th>Health Dept: STEMI/PCI Work Group† (DSMB)</th>
<th>State of California OSHPD† (DSMB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donald E. Casey, Jr</td>
<td>Atlantic Health—Vice President of Health and Chief Medical Officer</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Theodore G. Ganiats</td>
<td>University of California, San Diego School of Medicine—Executive Director of Health Services Research Center</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David R. Holmes, Jr</td>
<td>Mayo Clinic—Consultant, Cardiovascular Diseases</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Allan S. Jaffe</td>
<td>Mayo Clinic, Cardiovascular Division—Professor of Medicine</td>
<td>• Abbott</td>
<td>None</td>
</tr>
<tr>
<td>Hani Jneid</td>
<td>Baylor College of Medicine—The Michael E. DeBakey VA Medical Center—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Rosemary F. Kelly</td>
<td>University of Minnesota—Division</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Developmental Activities</td>
<td>Other Relationships</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Michael C. Kontos | Virginia Commonwealth University, Pauley Heart Center—Medical Director, Coronary Intensive Care Unit; Associate Professor, Internal Medicine | • Astellas
• General Electric
• Ikaria
• Prevencio
• Quest Diagnostics
• Sanofi-aventis
• Wellpoint/Anthem
• Mission Lifeline Scientific Committee†
• Society of Chest Pain Centers†
• AHA†
• Eli Lilly†
• Merck †
• NIH†
• Novartis†
• Plaintiff, malpractice case with failure to treat properly, 2012 | None
None
None
None
None |
| Glenn N. Levine | Baylor College of Medicine—Professor of Medicine; Director, Cardiac Care Unit | None
None
None
None
None
None
None
None | None |
| Philip R. Liebson | Rush University Medical Center—McMullan-Eybel Chair of Excellence in Clinical Cardiology and Professor of Medicine and Preventive Medicine | None
None
None
None
None
None
None
None | None |
| Debabrata Mukherjee | Texas Tech University Health Sciences Center—Chief, Cardiovascular Medicine | None
None
None
None
None
None
None
None | None |
| Eric D. Peterson | Duke University Medical Center—Fred Cobb, MD, Distinguished Professor of Medicine; Duke Clinical Research Institute—Director | • Boehringer Ingelheim
• Genentech
• Janssen Pharmaceuticals
• Eli Lilly*
• Johnson & Johnson*
• Janssen Pharmaceuticals*
• DCRI‡
• Abbott*
• Amgen*
• AstraZeneca*
• Athera Biotechnologies* | None |
| Marc S. Sabatine | Brigham and Women's Hospital, Chairman—TIMI Study Group, | • Agerion
• Amgen
• AstraZeneca*
• Abbott*
• Amgen*
• AstraZeneca*
• Athera Biotechnologies* | None |
| Division of Cardiovascular Medicine; Harvard Medical School—Professor of Medicine | • Bristol-Myers Squibb*
• Canadian Cardiovascular Society
• Creative Educational Concepts
• Diasorin
• GlaxoSmithKline
• Health Sciences Media
• Merck
• Pfizer
• Sanofi-aventis
• Vertex
• Vox Media
• WebMD | • Bristol-Myers Squibb*
• BRAHMS*
• Critical Diagnostics*
• Daiichi-Sankyo*
• Eisai*
• Genzyme*
• GlaxoSmithKline*
• Intarcia*
• Nanosphere*
• NIH*
• Roche Diagnostics*
• Sanofi-aventis*
• Takeda* | • Daiichi-Sankyo*
• Gilead*
• GlaxoSmithKline*
• Johnson & Johnson*
• Merck*
• Muljibhai Patel Society for Research in Nepro-Urology*
• Proventys*
• Siemens*
• Singulex* |
| --- | --- | --- | --- |
| Richard W. Smalling | University of Texas, Health Science Center at Houston—Professor and Director of Interventional Cardiovascular Medicine; James D. Woods Distinguished Chair in Cardiovascular Medicine | • Gilead
• St Jude Medical
• Maquet
• Toshiba | None | None | None | None | • E-Va/Abbott Vascular
• Gilead
• St. Jude Medical
• Maquet-Datascpe
• Edwards Lifesciences | • Cordis*
• E-Valve*
• St. Jude |
| Susan J. Zieman | National Institute on Aging/NIH, Geriatrics Branch, Division of Geriatrics and Clinical Gerontology—Medical Officer | None | None | None | None | • American Geriatrics Society†
• AHA†
• NIH* | None | None | None |

This table represents all healthcare relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \(\geq 5\% \) of the voting stock or share of the business entity, or ownership of \(\geq 10,000 \) of the fair market value of the business entity; or if funds received by the person from the business entity exceed \(5\% \) of
the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Please refer to http://www.cardiosource.org/Science-And-Quality/Practice-Guidelines-and-Quality-Standards/Relationships-With-Industry-Policy.aspx for definitions of disclosure categories or additional information about the ACC Disclosure Policy for Writing Committees.

*Significant relationship.
†No financial benefit.
‡DCRI has numerous grants and contracts sponsored by industry. These include the following: Aastrom Biosciences; Abbott; Abiomed; Acom Cardiovascular; Adolor Corp; Advanced Cardiovascular Systems; Advanced Stent Technologies; Adynxx; Ajinomoto; Allergan; Amgen; Alnylam Pharma; Alpharma; Amylin Pharmaceuticals; Anadys; Anesiva; Angel Medical Systems; ANGES MG; Angiomedtrix; APT Nidus Center; ASCA Biopharma; Astellas Pharma; Asklepios; AstraZeneca; Atritech; Attention Therapeutics; Aventis; Baxter; Bayer; Berlex; BG Medicine; Biogen; Biolex Therapeutics; Biomarker Factory; Biosite; Boehringer Ingelheim Biogen; Boston Scientific; Bristol-Myers Squibb; BMS Pfizer; Carbomed; CardioDx; CardioKinetix; Cardiovascular Systems; Cardiovax; Celsion Corp; Centocor; Cerexa; Chase Medical; Conatus Pharmaceuticals; Conor Medsystems; Cortex; Corgentech; CSL Behring; CV Therapeutics; Daiichi Pharmaceuticals; Daiichi-Sankyo; Daiichi-Sankyo/Lilly; Dainippon; Datascipe; Dendreon; Dr. Reddy’s Laboratories; Eclipse Surgical Technologies; Edwards Lifesciences; Eisai; Endicor; EnteroMedics; Enzon Pharmaceuticals; Eli Lilly; Ethicon; Ev3; Evalve; F2G; Flow Cardia; Fox Hollow Pharmaceuticals; Fujisawa; Genetech; General Electric; General Electric Co.; General Electric Healthcare; General Electric Medical Systems; Genzyme Corp.; Genome Canada; Gilead Sciences; GlaxoSmithKline; Guidant Corp.; Heartscape Technologies; Hoffman-LaRoche; Hospira; Idera Pharmaceuticals; Ikaria; Imcor Pharmaceuticals; Immune; INFORMD; Inimex; Inspire Pharmaceuticals; Ischemix; Janssen; Johnson and Johnson; Jomed; Juventus Therapeutics; KAI Pharmaceuticals; King Pharmaceuticals; Kyowa Pharma; Luitpold; Mardil; MedImmune; Medscape; Medtronic Diabetes; Medtronic; Medtronic Vascular; Merck Group; MicroMed Technology; Millennium Pharmaceuticals; Mitsubishi Tanabe; Momenta; Nabtaiva; Neuron Pharmaceuticals; NitroMed; NovaCardia Inc; Novartis AG Group; Novartis Pharmaceuticals; Oncura; Orexigen; Ortho-McNeil-Jansen; OSI Eyetech; OSI Pharmaceuticals; Pfizer; Pharmacyclics; Pharmasset; Pharmos; Phyxius Pharmaceuticals; Pharsight; Pluristem Therapeutics; Portola Pharmaceuticals; Proventis; Radiant; Regado Biosciences; Rengeneron Pharmaceuticals; Roche Molecular Systems; Roche Group; Roche Diagnostic; Salix Pharmaceuticals; Sanofi-Pasteur; Sanofi-aventis; Santaris Pharmaceuticals; Schering-Plough; Scios; Siemens; Southwest Oncology Group; Spectranetics; Summit; Sunovion Pharmaceuticals; TAP Pharmaceutical Products; Tengion; The Medicines Company; Theravance; TherOx; Tethys Bioscience; Theregien; Three Rivers Pharmaceuticals; The EMMES Corporation; UCB; Valensis; Valleylab; Vertex; Vicor; and Wyeth.

ACC indicates American College of Cardiology; AHA, American Heart Association; AHRQ, Agency for Healthcare Research and Quality; CABG, coronary artery bypass graft; CCOCA, Council on Cardiovascular Care for Older Adults; C-PORT, Cardiovascular Patient Outcomes Research Team; DAPT, dual antiplatelet therapy; DCRI, Duke Clinical Research Institute; DSMB, data safety monitoring board; FDA, Food and Drug Administration; MI, myocardial infarction; NCDR, National Cardiovascular Data Registry; NIH, National Institutes of Health; NHLBI, National Heart, Lung, and Blood Institute; OSHPD; Office of Statewide Health Planning and Development; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; STEMI, ST-elevation myocardial infarction; TIMI, Thrombolysis In Myocardial Infarction; and VA, Veterans Affairs.
Data Supplement 1. Clinical Assessment and Initial Evaluation (Section 3.1)

<table>
<thead>
<tr>
<th>Title, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Patient Population</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Adverse Events</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antman EM et al. 2000 10938172 (1)</td>
<td>Develop a simple scoring system to predict the risk of death and ischemic events for pts with UA/NSTEMI</td>
<td>Retrospective, observational study; TIMI 11B pts not receiving UFH group test cohort (N=1,957); TIMI 11B pts receiving enoxaprin (N=1,953) and ESSENCE trial pts (N=3,171) validation cohort</td>
<td>Inclusion in TIMI 11B trial or ESSENCE trial</td>
<td>Not included in these trials</td>
<td>Adverse events defined as new or recurrent MI, severe recurrent ischemia requiring urgent revascularization, and death within 14 d of pt presentation; regression model selected the following 7 significant risk factors: age ≥ 65 y, ≥ 3 coronary risk factors, documented prior stenosis ≥ 50%, ST-segment deviation on initial ECG, ≥ 2 anginal events in prior 24 h, use of ASA within 7 d of presentation, and elevated serum markers; presence of factor was given 1 point and absence of risk factor given 0 points; rates of adverse events for TIMI score as follows: 0: 4.7%, 1: 8.3%; 3:13.2%; 4: 19.9%; 5:26.2%; 6/7: 40.9%</td>
<td>N/A</td>
<td>Regression model developed in pts with diagnosed ACS and was not designed to be applied indiscriminately to undifferentiated chest pain pts</td>
</tr>
<tr>
<td>Boersma E et al. 2000 10840005 (2)</td>
<td>Develop a model for predicting 30-d death and myocardial (re)infarction in pts without STE-ACS</td>
<td>Retrospective analysis of pts with NSTE-ACS enrolled in PURSUIT trial (N=9,461; 3.6% with 1st outcome)</td>
<td>Pts enrolled in PURSUIT trial; pts with STE on initial ECG</td>
<td>Pts not enrolled in PURSUIT trial</td>
<td>7 factors most predictive of death: age (adjusted (X^2=95)), heart rate ((X^2=32)), SBP ((X^2=20)), ST-segment depression ((X^2=20)), signs of HF ((X^2=18)), and cardiac markers ((X^2=15)), C-index for the mortality model was 0.814</td>
<td>N/A</td>
<td>Regression model developed in pts with diagnosed ACS and not designed to be applied indiscriminately to undifferentiated chest pain pts; difficult to calculate; original model requires preexisting programmed calculator; simplified version requires print-out of scoring system for each variable with corresponding figure to interpret data</td>
</tr>
<tr>
<td>Granger CB et al. 2003 14581255 (3)</td>
<td>Develop a regression model in pts with diagnosed ACS (including pts with UA/NSTEMI)</td>
<td>Retrospective observational study utilizing pts from GRACE (N=11,389; 509 deaths); validation set</td>
<td>Inclusion in GRACE or GUSTO-llb trial</td>
<td>Not included in these trials</td>
<td>Adverse event defined as in-hospital mortality; Regression model identified following 8 independent risk factors: age, Killip class, SBP, and elevated serum markers.</td>
<td>The discrimination ability of the simplified model was excellent with C-statistics of 0.63 in the derived database, 0.64 in the confirmation</td>
<td>N/A</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Population</td>
<td>Methods</td>
<td>Outcomes</td>
<td>Findings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chase M et al. 2006</td>
<td>Prospective</td>
<td>1,354 pts with chest pain</td>
<td>Validation of TIMI score in ED chest pain pts</td>
<td>Pts <30; cocaine use within 7 d</td>
<td>Increasing TIMI score associated with increasing rates of adverse outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon R et al. 2007</td>
<td>Retrospective</td>
<td>760 pts with undifferentiated chest pain</td>
<td>Compare GRACE and TIMI score in risk stratification of undifferentiated chest pain pts</td>
<td>Pts <20 y</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hess EP et al. 2010</td>
<td>Prospective</td>
<td>117 pts with chest pain</td>
<td>Prospective validation of modified TIMI risk</td>
<td>Pts with STE-AMI, hemodynamic instability, cocaine</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary:

- **STEMI (ST-elevation myocardial infarction) for inhospital mortality included a subsequent cohort of 3,972 pts enrolled in GRACES and 12,142 pts enrolled in GUSTO-llb trial.**
- ST-segment deviation, cardiac arrest during presentation, serum creatinine level, positive initial cardiac enzyme findings, and heart rate were included as independent risk factors.
- GRACE data set, and 0.79 in the GUSTO-llb database; OR for the 8 independent risk factors were: age (OR: 1.7 per 10 y), Killip class (OR: 2.0 per class), SBP (OR: 1.4 per 20 mmHg decrease), ST-segment deviation (OR: 2.4), cardiac arrest during presentation (OR: 4.3), serum creatinine level (OR: 1.2 per 1 mg/dL [88.4 μmol/L] increase), positive initial cardiac enzyme findings (OR: 1.6), and heart rate (OR: 1.3 per 30 beat/min increase).
- The incidence of 30-d death, AMI, and revasc according to TIMI score is as follows: TIMI 0, 1.7% (95% CI: 0.42–2.95); TIMI 1, 8.2% (95% CI: 5.27–11.04); TIMI 2, 8.6% (95% CI: 5.02–12.08); TIMI 3, 16.8% (95% CI: 10.91–22.62); TIMI 4, 24.6% (95% CI: 16.38–32.77); TIMI 5, 37.5% (95% CI: 21.25–53.75); and TIMI 6, 33.3% (95% CI: 0.100).
- GRACE AUC-ROC 0.80 (95% CI: 0.75–0.85). TIMI AUC-ROC 0.79 (95% CI: 0.74–0.85).
- Only 72% of eligible pts enrolled; 4.6% of pts without 30-d follow-up.
<table>
<thead>
<tr>
<th>Lee B et al. 2011 2198845</th>
<th>Compared GRACE, PURSUIT, and TIMI scores in risk stratification of chest pain pts</th>
<th>Prospective data collection for TIMI score; retrospective determination of PURSUIT and GRACE score (N=4,743; 319 pts with 1º outcome)</th>
<th>Chest pain pts>30 y who had ECG obtained and were enrolled in previous study utilizing TIMI score in risk stratification of chest pain pts</th>
<th>Pts in which scores were unable to be calculated due to incomplete data (e.g., no creatinine obtained)</th>
<th>TIMI and GRACE score outperformed the PURSUIT score in risk stratification of ED chest pain pts</th>
<th>N/A</th>
<th>The AUC for TIMI was 0.757 (95% CI: 0.728-0.785); GRACE, 0.728 (95% CI: 0.701-0.755); and PURSUIT, 0.691 (95% CI: 0.662-0.720)</th>
<th>Retrospective nature of comparison of TIMI score to GRACE and PURSUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanchis J et al. 2005 16053956</td>
<td>Develop a risk score for ED pts with chest pain</td>
<td>Retrospective (N=646; 6.7% with 1º endpoint)</td>
<td>Chest pain pts presenting to ED undergoing evaluation for ACS who subsequently were admitted to chest pain unit</td>
<td>Significant STE or depression on initial ECG; abnormal Tn; not admitted to chest pain unit</td>
<td>1º endpoint: 1-y mortality or MI; point): 4 factors were found to be predictive of 1º endpoint and were assigned following score: chest pain score ≥10 points: 1 point, ≥2 pain episodes in last 24 h; 1 point, age≥67 y: 1 point; IDDM: 2 points, and prior PCI: 1 point. Pts were classified in 5 categories of risk (0, 1, 2, 3, 4, >4) with direct correlation of increasing rates of 1º outcome with risk score</td>
<td>N/A</td>
<td>Accuracy of score was greater than that of the TIMI risk score for the 1º (C-index of 0.78 vs. 0.66; p=0.002) and 2º (C-index of 0.70 vs. 0.66; p=0.1) endpoints</td>
<td>Small study size; selection bias towards more healthy pts as study population limited to pts admitted to chest pain unit; chest pain component of score is not easily calculated</td>
</tr>
<tr>
<td>Reference</td>
<td>Year</td>
<td>Study Design</td>
<td>Population</td>
<td>Criteria</td>
<td>Prediction Rule</td>
<td>Outcome</td>
<td>CI for Prediction Rule Not Supplied</td>
<td>Rule Developed Retrospectively</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Christensen J et al. 2006</td>
<td>2006</td>
<td>Prospective cohort with retrospective creation of decision rule (N=766; 165 with 1st outcome)</td>
<td>Pts presenting to ED with chest pain between 7 am-10 pm h <25, traumatic or radiologically evident cause of CP, enrolled in study in previous 30 d, or had terminal noncardiac illness</td>
<td>T1 outcome MI or definite UA Prediction rule: if pt had normal initial ECG, no Hx CAD, age<40 y, and normal baseline CK-MB<3.0 ng/mL, or no increase in CK-MB or Tn at 2 h, 30-d ACS; prediction rule 98.8% sens and 32.5% spec</td>
<td>CI for prediction rule not supplied</td>
<td>N/A</td>
<td></td>
<td>Prediction rule developed retrospectively; not supplied, but exceed the threshold of allowed 2% miss rate; 2% miss rate not standard of care in United States</td>
</tr>
<tr>
<td>Backus BE et al. 2010</td>
<td>2010</td>
<td>Retrospective analysis of prospective database (N=880; 158 with 1st outcome)</td>
<td>Pts admitted to 'cardiology' ED STE on initial ECG T1 outcome was a composite of AMI, PCI, CABG, and death within 6 wk of initial presentation</td>
<td>Rates of 1st outcome seen with increasing score: 0-3; 0.1%; 4-6: 11.6%; 7-10: 65.2%</td>
<td>N/A</td>
<td>Hx, ECG, and Tn were independent predictors of the combined endpoint (p<0.0001). Avg HEART score in the no endpoint group was 3.8±1.9; pts with at least 1 endpoint 7.2 ±1.7 (p<0.0001). C-stat 0.697</td>
<td>Retrospective; weighting of the elements of HEART Score arbitrarily assigned and not based on likelihood ratio analysis or regression analysis</td>
<td></td>
</tr>
<tr>
<td>Pesmirre et al. 2012</td>
<td>2012</td>
<td>Retrospective analysis of prospective database (N=2,148; 315 with 1st outcome)</td>
<td>Pts presenting to ED with chest pain undergoing evaluation for ACS STE on initial ECG; chest pain in the presence of TAAR, pts with pulmonary edema, pts with chest pain deemed not to require any cardiac workup (obvious nonischemic chest pain and absence of risk factors or pre-existing disease that would prompt screening workup) T1 outcome was 30-d ACS defined as MI, PCI, CABG, life-threatening cardiac complications, or death within 30 d of initial presentation</td>
<td>Increasing HEARTS; score was associated with increasing risk of 30-d ACS; likelihood ratio analysis revealed significant discrepancies in weight of the 5 individual elements shared by the HEART and HEARTS score</td>
<td>N/A</td>
<td>HEARTS; score outperformed the HEART score as determined by comparison of areas under the receiver operating characteristic curve for 30-d ACS (0.901 vs. 0.813; 95% CI difference in areas, 0.064–0.110)</td>
<td>Retrospective; utilized older-generation Tn</td>
<td></td>
</tr>
<tr>
<td>Hess EP et al. 2012</td>
<td>2012</td>
<td>Retrospective analysis of prospective database (N=2,718 pts; 336 with adverse events)</td>
<td>Pts presenting to ED with chest pain in whom Tn value was obtained STE-AMI, hemodynamic instability, cocaine use, terminal illness, or pregnancy T1 outcome defined as MI, PCI, CABG, or cardiac death within 30d of initial presentation</td>
<td>Prediction rule consisted of the absence of 5 predictors: ischemic ECG changes, Hx of CAD, pain typical for ACS; initial or 6-h Tn</td>
<td>N/A</td>
<td>Rule was 100% sens (95% CI: 97.2–100.0%) and 20.9% spec (95% CI: 16.9–24.9%) for a cardiac event within 30 d</td>
<td>Rule developed retrospectively; only 82% of eligible pts enrolled</td>
<td></td>
</tr>
</tbody>
</table>
Data Supplement 2. Risk Stratification (Section 3.3)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values OR: HR: RR: & 95 CI:</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antman 2000 10938172(1)</td>
<td>Development of original score to risk stratify pts presenting with ACS</td>
<td>Multisite RCTs, TIMI-11 B and ESSENCE</td>
<td>N/A</td>
<td>Clinical ACS, ECG changes, and elevated biomarkers</td>
<td>Planned revasc, bleeding risks, and correctable cause for angina</td>
<td>N/A</td>
<td>All-cause mortality, new or recurrent MI, severe ischemia leading to revasc</td>
<td>N/A</td>
</tr>
<tr>
<td>Pollack 2006 16365321(13)</td>
<td>Validation in ED population with chest pain</td>
<td>Convenience sample N=3,320 without new STE</td>
<td>N/A</td>
<td>Chest Sx and ECG obtained</td>
<td>New STE</td>
<td>N/A</td>
<td>Death/MI/revasc over 30 d</td>
<td>In-hospital and 14-d events</td>
</tr>
<tr>
<td>Go 2011 21691204(14)</td>
<td>Attempt to add creatinine to TIMI risk score</td>
<td>Single center N=798</td>
<td>N/A</td>
<td>Ischemic Sx within 48 h</td>
<td>STEMI</td>
<td>N/A</td>
<td>CV death, MI, urgent revasc or Sx, and elevated biomarkers</td>
<td>N/A</td>
</tr>
<tr>
<td>Huynh 2008 19960136(15)</td>
<td>Across all ACS spectrum</td>
<td>Multicenter RCT with N=1,491 from angiographic arm</td>
<td>N/A</td>
<td>NSTE-ACS and STEMI</td>
<td>N/A</td>
<td>6-mo death and MI</td>
<td>N/A</td>
<td>2 mm ST deviation increased risk and risk was less regardless of score with less</td>
</tr>
<tr>
<td>Boersma 2000 10840005(2)</td>
<td></td>
<td>Multicenter RCT-Pursuit</td>
<td>N/A</td>
<td>NSTE-ACS</td>
<td>STE</td>
<td>N/A</td>
<td>Death and MI</td>
<td>N/A</td>
</tr>
<tr>
<td>Eagle 2004 15187054(16)</td>
<td>Original GRACE validation</td>
<td>Registry N=17,141</td>
<td>N/A</td>
<td>All ACS</td>
<td>N/A</td>
<td>6-mo all-cause mortality</td>
<td>N/A</td>
<td>p<0.25 into multivariate model</td>
</tr>
</tbody>
</table>
ACS indicates acute coronary syndrome; APACHE, Advantageous Predictors of Acute Coronary Syndromes Evaluation trial; BNP, B-type natriuretic peptide; CV, cardiovascular; ECG, electrocardiograph; ED, emergency department; ESSENCE, Efficacy and Safety of Strepplakinose and Tissue Plasminogen Activator for Occluded Coronary Arteries trial; hs-cTn, high sensitivity cardiac troponin; hs-cTnT, high sensitivity troponin T; LVEF, left ventricular ejection fraction; MASCARA, Manejo del Síndrome Coronario Agudo. Registro Actualizado; MI, myocardial infarction; N/A, not applicable; NSTE, non-ST-elevation; NSTE-ACS, non-ST-elevation acute coronary syndrome; Participlation rate of MIs was only 80% but similar to median of similar participation studies.

Data Supplement 3. Cardiac Injury Markers and the Universal Definition of AMI (Section 3.4)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thysgesen 2012 229589620</td>
<td>Definition of MI</td>
<td>Guideline</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Roger 2006 169008764</td>
<td>Prospective Evaluation of new criteria for Dx of MI</td>
<td>Prospective community based epidemiologic study</td>
<td>Identification of MI using TrT vs. CK-MB and CK compared with WHO and ARIC criteria</td>
<td>County residents with TrT ≤0.03 ng/mL identifying MI</td>
<td>Lower TrT values</td>
<td>N/A</td>
<td>Identification of MI 538 MI with TrT; 327 with CK; 427 with CK-MB</td>
<td>74% increase TrT vs. CK (95% CI: 66%–79%) 41% inc TrT vs. CK-MB (95% CI: 37%–46%)</td>
</tr>
<tr>
<td>Hamm 2000 108804242</td>
<td>Classification of UA</td>
<td>Reclassification based on Tr levels</td>
<td>Angina at rest within 48-h Class IIIB into Tr+ and Tr-</td>
<td>N/A</td>
<td>N/A</td>
<td>30-day risk of death 20% in IIIB Tr+, <2% in IIIB Tr-</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Title</th>
<th>Design</th>
<th>Population</th>
<th>Outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kavsak 2006</td>
<td>2006</td>
<td>Impact of new classification of MI on Tr using CK-MB vs. TnI</td>
<td>Retrospective analysis using CK-MB vs. TnI for MI defined by 258 pts with ACS</td>
<td>2 SPS SS CK-MB, TnI ≥20% change using 99% Tr cutoff</td>
<td>AMI prevalence MONICA CK-MB 19.4% AHA 19.8%, TnI to 35.7%</td>
<td>N/A</td>
</tr>
<tr>
<td>Eggers 2006</td>
<td>2006</td>
<td>Effects of new UDMI on misdiagnosis with single evaluation of Tr</td>
<td>Retrospective evaluation of stable community sample (995) and post-AMI pts (1380) with Tr<99th percentile</td>
<td>Evaluation of single Tr in stable population</td>
<td>Stable community population Stable 3-mo post-MI pts</td>
<td>Evidence of clinical instability</td>
</tr>
<tr>
<td>Goodman 2006</td>
<td>2006</td>
<td>Diagnostic and prognostic impact of new UDMI</td>
<td>Multicenter observational prospective Registry (GRACE) 26,267 pts with ACS</td>
<td>Use of CK and Tn neg 16,797 vs. CK-MB and Tn 10,719 for hospital mortality, 14,063 vs. 8,785 for 6-mo mortality</td>
<td>>18y with possible ACS with ECG abnormal or CAD history, CK, CK-MB, Tn.</td>
<td>CK CK-MB Tn Follow up for 6 mo</td>
</tr>
<tr>
<td>Eggers 2011</td>
<td>2011</td>
<td>Clinical implications of relative change in cTnl levels with chest pain</td>
<td>Retrospective study of 454 pts with ACS within 24 h of admission with 5.8-y follow-up</td>
<td>UDMI with prespecified cTnl changes from ≥20%, 50%, 100%</td>
<td>cTnl <99th percentile cTnl levels</td>
<td>Peak cTnl level ≥99th percentile positive change ≥20% in 160 pts 25 pts had no AMI by ESC/ACC criteria</td>
</tr>
<tr>
<td>Mills 2012</td>
<td>2012</td>
<td>Evaluation of ACS pts using cTnl diagnostic threshold and ≥99th percentile on Dx and risk for future events</td>
<td>Retrospective cohort study with 1-y follow-up of 2,992 consecutive pts with suspected ACS</td>
<td>Study groups: cTnl <0.012, 0.012–0.049, and ≥0.50 (99th percentile) with C of V ≥20% vs. previous diagnostic criteria</td>
<td>cTnl ACS Noncardiac chest pain, tachyarrhythmia, anemia. Severe Valve HD, HOCM, pericarditis, cocaine use</td>
<td>cTnl values 1-y outcomes based on cTnl subgroups: 0.012–0.049 had higher mortality and re-MI than <0.012 (13% vs. 3%) Increase in Dx of MI based on new criteria by 47% Compared with ≥0.050, Tr 0.012–0.049 had a higher risk profile, but less likely to be investing for AMI p<0.001 for 1-y outcome of 0.012–0.049 vs. <0.012 Not a prospective study. Tn levels of 0.012-0.049 were considered "normal" and not repeated. Possible myocardial ischemia due to noncardiac illness.</td>
</tr>
<tr>
<td>TRITON-TIMI 38 Bonaca 2012</td>
<td>2012</td>
<td>Association between new and recurrent MI using new UDMI classification system and risk of death</td>
<td>Prospective cohort analysis of 13,608 pts with ACS undergoing PCI TRITON-TIMI 38 study</td>
<td>Follow-up of recurrent MI vs. no follow-up MI and risk of death at 6 mo</td>
<td>Types 1, 2, 3, 4, 5 MI</td>
<td>Cardiogenic shock or any condition that was associated with decreased survival over 15 mo Tr used preferentially for recurrent MI and CK-MB for peri-PCI MI</td>
</tr>
</tbody>
</table>

Note: This table provides a summary of key findings from various studies related to the use of biomarkers in the diagnosis and prognosis of myocardial infarction (MI). The studies highlighted include the impact of new classification of MI on diagnostic criteria, the effects of new UDMI on misdiagnosis, and the diagnostic and prognostic implications of cTnl levels with chest pain. Additionally, studies on the evaluation of ACS pts using cTnl diagnostic thresholds, the association between new and recurrent MI using new UDMI classification systems, and the association between new and recurrent MI using new UDMI classification systems and risk of death are presented.
Data Supplement 4. Cardiac Troponins (Section 3.4.3)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Primary Endpoint & Results</th>
<th>Secondary Endpoint & Results</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple 2009 19299542(29)</td>
<td>Dx, accuracy of cTnI for early detection of AMI and risk prediction for adverse events</td>
<td>Prospective cohort study 381 with possible ACS</td>
<td>VITROS Tnl-ES assay 2x vs. clinical Dx of AMI</td>
<td>Sx suggestive of ACS in ED</td>
<td>No 2nd Tn level</td>
<td>Tn assay at admission and 6 h later for delta change</td>
<td>Sens and spec for MI from admission and delta change (see p values)</td>
<td>Sens increased from admission to 6-h cTnI and ROC from 0.82–0.96 (p<0.001)</td>
<td>Risk stratification improved by 30(^{\text{th}}) Delta to initial cTnI >99(^{\text{th}}) percentile. Risk of death/follow-up MI within 60 d</td>
</tr>
<tr>
<td>Bonaca 2010 20447535(30)</td>
<td>Px implication of low-level inclusion in Hs-cTnI in possible ACS</td>
<td>Prospective multi study 4,513 with NST-ACS</td>
<td>+ or – hs-cTnI 99(^{\text{th}}) percentile for death/MI in 30 d</td>
<td>NST-ACS</td>
<td>Shock, ST-elevation, revasc before random</td>
<td>Baseline cTnI with cutoff at 99(^{\text{th}}) percentile</td>
<td>+cTnI higher risk of death/MI at 30 d than - cTnI 6.1% vs. 2.0% p<0.001</td>
<td>Pts with low-level increases 0.04-1.0 at <risk than cutoff of 0.04 (5.0% vs. 2.0%); p=0.001</td>
<td>Risk of death 12 mo vs. <0.04 ug/L 6.4% vs. 2.4%; p=0.005</td>
</tr>
<tr>
<td>Kontos 2010 21095267(31)</td>
<td>NSTEMI with +Tn but -CK-MB in treatment and outcomes</td>
<td>Post hoc data base analysis 16,064 with NSTEMI</td>
<td>Tr+ MB- vs. Tr+ MB+</td>
<td>Present within 24 h of Sx with NSTEMI</td>
<td>No STEMI</td>
<td>Biomarkers on admission, Tr and CK-MB</td>
<td>Treatment and in-hospital outcomes. In-hospital mortality lower in MB pts</td>
<td>MB- were older and had more comorbidities. p<0.01 and fewer intervals</td>
<td>In-hospital mortality: MB+ 4.9 vs. 3.8 MB- p<0.02</td>
</tr>
</tbody>
</table>
Stratification of accuracy and risk size with MRI for infarct 72 h TnI for cTnI with performance of MRI infarct size with MRI for infarct size 1 h TnI and TnI at admission and daily to 96 h. Except for admission values, all TnI at various times correlated with infarct size. Estimation of infarct mass on d 4 was lower for NSTEMI than STEMI r=0.75 STEMI r=0.36 NSTEMI. cTnT at d 4 showed highest correlation and performed as well as peak cTnT and AUC r=0.66 vs. r=0.65 vs. r=0.69. Possible poor timing of sampling with NSTEMI and visualization problems with MRI in NSTEMI vs. STEMI. Final Dx of AMI by in house Tn, biasing biomarker assays toward Tn High proportion of MI vs. other studies. 12 and 72-h TnI available only on 37 pts and 64 pts. Only 19 NSTEMI. Data larger than on previous studies of Tn MRI correlations. Further studies need to determine whether 2–3 h changes can provide adequate Dx and prognostic information.
Reichlin 2011

Diagnostic accuracy of absolute value relative changes in cTn

Prospective multicenter

836 with ACS

Absolute value relative changes in cTn

Sx suggesting AMI

STEMI, terminal kidney failure

HS-TnT and cTnI ultra at admission and 1 h and 2 h

ROC at 2-h higher for absolute than relative changes

ROC absolute cutoff 2 h

0.007 μg/L hs and 0.020 μg/L for ultra

ROC absolute change

HS-TnT 0.95 (95% CI: 0.92–0.98) vs. relative change 0.76 (95% CI: 0.70–0.83) p<0.001

Observation cannot quantify clinical benefit of results

Aldous 2012

Early means of hs-TnT vs. conventional cTnT in NSTE-ACS

Prospective cohort

909, and 205 with AMI

NSTE-ACS with conventional and hs-TnT assays

NSTE-ACS

STEMI <18 y, unable to follow-up

HS-TnT and conservative TnT at admission, 2 h and 6-12 h

Dx of MI on admission at 2 h

Hs-sens 92.2% and spec of 79.7%

Mortality at 1 y

Hs superior to conventional

Death 5.4 (95% CI: 2.7–10.7) and HF 27.8 (95% CI: 6.6–116.4)

Hs TnT 95% CL for MI

Dx at 2 h

Sens (95% CI: 88.1%–95.0%) spec (95% CI: 78.6–80.5)

Blood samples not taken beyond 2 h.

Used cTnI as gold standard for Dx of MI

Aldous 2012

Kinetic changes on hs-cTnI in ACS and non-ACS

Prospective cohort

784 NSTE-165

Pts with ACS with hs-TnT vs. non-ACS with hs-TnT above 99th percentile

ACS with 2nd blood draw within 6-h Non-ACS with 2 blood draws

STEMI or LBBB

HS-TnT-ACS and non-ACS with elevated hs-TnT2 blood draw within 6 h

Absolute delta vs. relative delta

ROC-optimized value 6.9 ng/L was sup to rel change ≥20%

Predicted value of absolute change 82.8%

-Predicted 93.0%

ROC for absolute change added value for entire ACS cohort vs. relative change.

p<0.0001

Relative changes confined to 5 h, not 24 h.

Not all pts received angiography

Data Supplement 5. CK-MB, MB Isosforms and Myoglobin, Compared With Troponins (Section 3.4.4)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Primary Endpoint & Results</th>
<th>Secondary Endpoint & Results</th>
<th>P Values, OR; HR; RR & 95 CI</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple 1999</td>
<td>Use of triage panel of TnT, CK-MB, and myoglobin for AMI detection</td>
<td>Multicenter prospective study 152</td>
<td>Comparison of myoglobin, TnI and CK-MB for sens and spec</td>
<td>Pts in ED with ACS</td>
<td>Triage panel biomarkers to evaluate ROC for AMI pred</td>
<td>Concordance for detection or rule-out of MI TnI >99% CK-MB >81% Myoglobin >89%</td>
<td>Sens/Spec TnI: 98/100 CK-MB: 95/61 Myoglobin: 81/92</td>
<td>ROC values TnI: 0.97 CK-MB: 0.905 Myoglobin: 0.818 diff p<0.05</td>
<td>Does not address reinfarction or AMI presenting after 72 h</td>
</tr>
<tr>
<td>TACTICS-TIMI 18 Kleiman 2002</td>
<td>CK-MB vs. TnI to predicted cardiac risk and benefit in AMI invasive strategy</td>
<td>Multicenter prospective study 2,220</td>
<td>CK-MB elevated in 826. With CK-MB, TnI elevated in 361</td>
<td>1st 24 h of chest pain</td>
<td>Invasive or conservative strategy with CK-MB and TnT for 30-d and 180-d risk.</td>
<td>CV events 30 d of 180 d Event rates 2e as high with CK-MB+ value – benefit in invasive with Tr+, but CK-</td>
<td>No evidence of interaction between CK-MB elevation and strategy on 30-d and 180-d endpoints</td>
<td>OR benefit of invasive strategy CK-TT+ 30 d: 0.13 (95% CI: 0.04–0.39) 180 d: 0.29 (95% CI: 0.16–0.52)</td>
<td>Small group analysis–hypothesis generating</td>
</tr>
</tbody>
</table>
Di Chiara 2010
Pred value of TnI vs.
Prospective
55 STEMI and 5
AMI + reperfusion
No pacemakers,
Tnl and CK-MB at
Tn at 72 h most accurate
N/A
Tnl.
Blood samples every

Retrospective cohort
724
All CK-MB- and Tnl+
Clinical UA
including Class Illa
N/A
Using Tnl with normal
CK and CK-MB for 2-
y risk evaluation
2-y all-cause mortality
20% with Tn>0.5 ug/L,
8% with <0.5 ug/L
N/A
2-y mortality Tn>0.5
vs. <0.5
HR 2.59 (95% CI:
1.66–4.05); p<0.001
Study did not evaluate serial ECGs
for dynamic changes

Sallach 2004
15464666(4)
Sens of myoglobin with
normal TnI in AMI
Prospective
cohort
817
Myoglobin and Tnl
Possible AMI with
normal Tnl (27)
Incomplete biomarker panel
or noncardiac
Myoglobin Dx of MI
with normal Tnl
Increase myoglobin of 20
ng/mL from 0-90 min
max diagnostic utility with
–myoglobin and Tnl at
admission
Combination sens
change myoglobin+ Tnl
at 90 min
97.3%
Change Myoglobin
>20
90 min
Sens: 83.3%, 88.6%
spec: 99.5% –
Predicted value for
AMI
Relatively small
number of AMIs.
Predetermined values of myoglobin
not evaluated

Aviles 2002
12372579(43)
Long term Pk
in UA with elevated
Tnl and normal CK-
MB and CK
Retrospective
cohort
724
All CK-MB- and Tnl+
Clinical UA
including Class Illa
N/A
Using Tnl with normal
CK and CK-MB for 2-
y risk evaluation
2-y all-cause mortality
20% with Tn>0.5 ug/L,
8% with <0.5 ug/L
N/A
2-y mortality Tn>0.5
vs. <0.5
HR 2.59 (95% CI:
1.66–4.05); p<0.001
Study did not evaluate serial ECGs
for dynamic changes

Eggers 2004
15459585(44)
Value of adding
myoglobin to Tnl to
exclude AMI
Prospective cohort
197
Tnl and CK-MB
Chest pain >15
min in past 24 h
STE
Tnl and Myoglobin
for exclusion of MI
Tnl highest sens of all
markers at all-time pts.
Tnl 0.07 ug/L cutoff
sens: 30 min=93%, 2 h=98%,
3 h=100%
Tnl sens 93% spec
81% at 2-h
CMB 79%
Myoglobin 67%
Relatively small
group.
Relatively long delay
time from pain to
admission

Storrow 2006
17112933(45)
Associated among
discordant Tn, CK, and
CM-MB chest
pain evaluation
Multicenter
prospective registry
1,814
Discordant CK-MB/Tn
113
includes MB with
normal CK 239
Possible ACS
Transfer
or ECG for
routine purposes
CK-MB and Tn
with evaluation of
significance of
discordant values
OR for AMI vs. Tr
ICK-
MB-both positive: 26.6
Tn+ 4.8
CK-MB+ 2.2
CK-MB+/ICK-
MB-both positive: 26.6
Tn+ 4.8
CK-MB+ 2.2
N/A

CRUSADE
Nevby 2006
18412853(46)
Frequency and
implications of
discordant CK-MB
and Tn in ACS
Multicenter
prospective
29,357
22,687 Tn+
20,506 CK-MB+
3,502 both
2.988 only CK+
5,349 only Tn +
High-risk NSTE-ACS
N/A
CK-MB and Tn during
1e 36 h of ACS
to evaluate discordance
Adjusted OR for hospital
mortality
CK-MB+/Tnl +: 1.53
CK-MB+/Tnl-: 1.15
CK-MB+/Tnl- 1.02
CK-MB+/Tnl-:
2.68 (95% CI: 18.0–
39.3) Tn+/CK-MB-:
4.8 (95% CI: 3.4–6.6)
CK-MB+ 2.2 (95% CI: 1.7–2.8)
N/A

Kavasek 2007
17306781(47)
Effect of Tn on
myoglobin and CK-
MB isofoms in ACS
Retrospective
cohort
228
CK-MB isofoms, myoglobin and Accu
Tnl
Possible ACS
N/A
CK-MB , myoglobin and
Tnl to compare
utility in R/O MI <6 h
assays
Clinical sens for AMI:
For both myoglobin and
CK-MB Dec. in
ESC/ACC
MI def
N/A
WHO MI def:
sen >90%
ESC/ACC def:
Both sen>70%
Using Tnl assay
Insufficient time
before remeasuring Tnl

Jaffery 2008
19061710(9)
Myoglobin and Tnl
Pred of long-term
mortality in ACS
Retrospective
cohort
951
Tnl, myoglobin, and
CK-MB
Possible ACS
N/A
Tnl, Myoglobin, and
CK-MB at
presentation with
ACS
+Tnl and +Myoglobin,
but not +CK-MB
Pred. 5-y all-cause
mortality
N/A
+Tnl
1.7 (95% CI: 1.3–2.3)
+Myoglobin:
1.6 (95% CI: 1.2–2.1)
+MB: NS
Single center,
Tnl assay no longer in
use.
No peak levels
of markers recorded

Storrow 2006
17112933(45)
Discordant CK-MB/Tn
113
includes MB with
normal CK 239
Possible ACS
Transfer
or ECG for
routine purposes
CK-MB and Tn
with evaluation of
significance of
discordant values
OR for AMI vs. Tr
ICK-
MB-both positive: 26.6
Tn+ 4.8
CK-MB+ 2.2
CK-MB+/ICK-
MB-both positive: 26.6
Tn+ 4.8
CK-MB+ 2.2
N/A

CRUSADE
Nevby 2006
18412853(46)
Frequency and
implications of
discordant CK-MB
and Tn in ACS
Multicenter
prospective
29,357
22,687 Tn+
20,506 CK-MB+
3,502 both
2.988 only CK+
5,349 only Tn +
High-risk NSTE-ACS
N/A
CK-MB and Tn during
1e 36 h of ACS
to evaluate discordance
Adjusted OR for hospital
mortality
CK-MB+/Tnl +: 1.53
CK-MB+/Tnl-: 1.15
Only CK-MB+:
3.0%
Only Tn: 4.5%
CK-MB+/Tnl-:
1.53 (95% CI: 1.18–
1.98)
CK-MB+/Tnl-:
1.15 (95% CI: 0.86–
1.54) NS
CK-MB+/Tnl-:
1.02 (95% CI: 0.75–
1.38) NS
Used individual labs
for ULN.
No account for timing
of positive markers

Kavasek 2007
17306781(47)
Effect of Tn on
myoglobin and CK-
MB isofoms in ACS
Retrospective
cohort
228
CK-MB isofoms, myoglobin and Accu
Tnl
Possible ACS
N/A
CK-MB , myoglobin and
Tnl to compare
utility in R/O MI <6 h
assays
Clinical sens for AMI:
For both myoglobin and
CK-MB Dec. in
ESC/ACC
MI def
N/A
WHO MI def:
sen >90%
ESC/ACC def:
Both sen>70%
Using Tnl assay
Insufficient time
before remeasuring Tnl

Jaffery 2008
19061710(9)
Myoglobin and Tnl
Pred of long-term
mortality in ACS
Retrospective
cohort
951
Tnl, myoglobin, and
CK-MB
Possible ACS
N/A
Tnl, Myoglobin, and
CK-MB at
presentation with
ACS
+Tnl and +Myoglobin,
but not +CK-MB
Pred. 5-y all-cause
mortality
N/A
+Tnl
1.7 (95% CI: 1.3–2.3)
+Myoglobin:
1.6 (95% CI: 1.2–2.1)
+MB: NS
Single center,
Tnl assay no longer in
use.
No peak levels
of markers recorded

Di Chiara 2010
Pred value of TnI vs.
Prospective
55 STEMI and 5
AMI + reperfusion
No pacemakers,
Tnl and CK-MB at
Tn at 72 h most accurate
N/A
Tnl.
Blood samples every

2014 NSTE-ACS Guideline Data Supplements

© American Heart Association, Inc and American College of Cardiology Foundation
Data Supplement 6. Bedside Testing for Cardiac Biomarkers (Section 3.4.4)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/ Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR/ HR/ RR & 95 CI</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>20568136 (10)</td>
<td>CK-MB for infarct size with CMR</td>
<td>cohort 60</td>
<td>NSTEMI TnI, CK-MB</td>
<td>clips, peak markers on admission</td>
<td>admission and serially up to 96 h from Sx onset</td>
<td>estimate of predischarge infarct volume</td>
<td></td>
<td>0.84 (95% CI: 0.75–0.91) CK-MB: 0.42 (0.19–0.62) p=0.02</td>
</tr>
<tr>
<td>ACTION-GWTG Registry Chin 2012 22434769 (48)</td>
<td>Prognostic value of CK-MB vs. Tn in AMI</td>
<td>Retrospective registry 26,854</td>
<td>Peak CK-MB and TnI in AMI</td>
<td>Peak values below lab ULN</td>
<td>Both peak CK-MB and TnI for in-hospital mortality</td>
<td>Both peak CK-MB and TnI are independently associated with hospital mortality CK-MB > TnI</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Ilva 2005 15667582 (12)</td>
<td>Novel TnI in early risk stratification in ACS</td>
<td>Prospective cohort 531</td>
<td>Standard TnI novel TnI myoglobin</td>
<td>Biomarkers at 0 h, 1-12 h and 24 h after admission</td>
<td>Absence of 1 or more biomarkers</td>
<td>Comparison of 3 biomarkers at times indicated</td>
<td>MII within 3 h of presentation: 50% by novel TnI and only 11.5% by reference TnI assay, (p<0.001) 44% by myoglobin (p=NS)</td>
<td></td>
</tr>
<tr>
<td>Volz 2012 21129891 (13)</td>
<td>Can Tn alone be used for initial AMI screening with elimination of CK-MB</td>
<td>Retrospective cohort 11,092</td>
<td>TnT and CK-MB</td>
<td>All pts with TnT in ED with correspond CK-MB</td>
<td>Initial nonnegative Tn</td>
<td>CK-MB+ with TnT- to determine value on AMI screening</td>
<td>Novel TnI+ in 27.5%, standard TnI in 17.5%, (p=0.010) and myoglobin+ in 24.1% (p=0.067) ROC: novel TnI 0.937, ref TnI 0.775, myoglobin 0.762 (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Lim 2011 21282125 (49)</td>
<td>CK-MB vs. Tn in Dx of AMI after PCI</td>
<td>Prospective cohort 32</td>
<td>TnI and CK-MB</td>
<td>PCI and CMR imaging baseline and 7 d</td>
<td>CK-MB and TnI after PCI to determine Dx of AMI</td>
<td>Only small min of TnI had CMR abnormal CK-MB+ closely approximate CMR injury</td>
<td>ROC for detection of new MI CK-MB: 0.97 TnI: 0.985 NS, but poor TnI specific 22% TnI 93% CK-MB</td>
<td></td>
</tr>
</tbody>
</table>

ACC indicates American College of Cardiology; ACS, acute coronary syndrome; AMI, acute myocardial infarction; CK, creatine kinase; CK-MB, creatine kinase MB; CK-T+, creatine kinase troponin positive; CMR, cardiovascular magnetic resonance; CRP, C-reactive protein; CV, cardiovascular; Dx, diagnosis; ECG, electrocardiograph; ED, emergency department; ESC, European Society of Cardiology; MI, myocardial infarction; Myo, myoglobin; N/A, not applicable; NSTE-ACS, Non-ST elevation acute coronary syndrome; NS, not significant; NSTEMI, non-ST segment myocardial infarction; OR, odds ratio; PCI, percutaneous coronary intervention; Pred, predicted; pts, patients; Px, prognosis; ROC, receiver operator curve; SAA, serum amyloid A protein; Sens, sensitivity/sensitivities; Spec, specificity/specificities; STEMI, ST segment elevation MI; Tn, troponin; Tn+, positive troponin, Tn-, negative troponin; TNF, tumor necrosis factor; Tnl, troponin I; TnT, troponin T; TrT, troponin T; UA, unstable angina; ULN, upper limit normal; and WHO, World Health Organization.

Data Supplement 7. 2014 NSTE-ACS Guideline Data Supplements
<table>
<thead>
<tr>
<th>Study</th>
<th>Reference</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Primary Endpoint & Results</th>
<th>Safety Endpoint & Results</th>
<th>Secondary Endpoint & Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamm 1997</td>
<td>93651239(50)</td>
<td>Bedside evaluation of TnT and Tnl in acute chest pain</td>
<td>Prospective cohort 773</td>
<td>TnT vs. Tnl for Dx of MI and 30-d events +TnT 123 +Tnl 171</td>
<td>Acute chest pain <12 h without STE</td>
<td>STE or AMI within 2 wk</td>
</tr>
<tr>
<td>Van Domburg 2000</td>
<td>109602129(51)</td>
<td>Long-term prognostic significance of bedside TnT</td>
<td>Prospective cohort 163</td>
<td>TnT, CK-MB, myoglobin 98 TnT + <12 h 48 + baseline 50 positive 3–12 h 2 positive 12-96 h</td>
<td>Suspected ACS</td>
<td>MI within previous wk</td>
</tr>
<tr>
<td>Amadio 2007</td>
<td>17429289(52)</td>
<td>POC Tnl at 99th percentile cutoff for diagnostic accuracy of MI</td>
<td>Retrospective cohort 516</td>
<td>Higher vs. lower TnT cutoffs and Dx of AMI 70 Tnl+</td>
<td>Suspected angina or AMI</td>
<td>STE-ACS or LBBB</td>
</tr>
<tr>
<td>DISPO-ACS Ryan 2009</td>
<td>18691799(53)</td>
<td>POC length of stay in ED</td>
<td>Multi-institute prospective study 2,000</td>
<td>Bedside Tn testing + central lab Central lab only 1,000 in each arm</td>
<td>Suspected ACS with biomarkers</td>
<td>Tachyarrhythmia or ECG AMI</td>
</tr>
<tr>
<td>CRUSADE Takakuwa 2009</td>
<td>1974349(54)</td>
<td>Use patterns of POC testing for Tn in NSTE-ACS</td>
<td>Retrospective multi-institutional 12,604</td>
<td>POC with Tnl+ vs. Tnl− 6,185 +POC result 6,419 negative POC result</td>
<td>POC Tn in NSTE-ACS</td>
<td>Death within 24 h Hospital with 30 pts. Infrequent percentage use of bedside Tn</td>
</tr>
<tr>
<td>Birkhahn 2011</td>
<td>20625623(55)</td>
<td>POC vs. core lab testing for time saving and cost/benefit</td>
<td>Prospective cohort 151</td>
<td>POC and core lab testing of TnT Tnl+ in 12 pts</td>
<td>Suspected ACS with 2 TnT 6 h apart</td>
<td>STE, ECG, or lack of serial biomarkers</td>
</tr>
<tr>
<td>Study</td>
<td>Date</td>
<td>Design</td>
<td>Patients, Methodology</td>
<td>Primary Endpoint</td>
<td>Comparator</td>
<td>Results</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>Schamhorst 2011</td>
<td>21350097(56)</td>
<td>Prospective cohort 137</td>
<td>POC evaluation Tn, CK-MB, myoglobin, for rapid detection of +test 37+ ACS: 7 UA 26 NSTEMI 4STEMI</td>
<td>Suspected NSTEMI STE on AD ambulance to hospital</td>
<td>POC Tn values T0–T12 h and sens/spec for MI at 99% cutoff At T2 Sens: 87% Spec: 100% +PV: 100% −PV: 96%</td>
<td>N/A</td>
</tr>
<tr>
<td>ASPECT Than 2011</td>
<td>21435709(57)</td>
<td>Multicenter prospective observation study 3,582</td>
<td>POC evaluation Tn, CK-MB, Myoglobin 3260 ADP+ 270 ADP– 3,582 30d follow-up</td>
<td>Suspected ACS STE ACS, Noncoronary chest pain</td>
<td>ADP use of POC Tn, CK-MB, and myoglobin with 30-d follow-up Major CV events at 30 d ADP Sens 99.3%</td>
<td>ADP class. 9.8% low risk. Major adverse event in only 0.9% For 30-d events TIMI + ECG Sens: 98.1% Spec: 14.6% +PV: 88.3%</td>
</tr>
<tr>
<td>GUSTO-IV Venge 2010</td>
<td>21095269(58)</td>
<td>Prospective cohort 1,069</td>
<td>2 POC vs. 2 central laboratory assays cTnI</td>
<td>All pts in ED with Tn assays</td>
<td>Tn assays with 99th percentile URL cutoffs 99th percentile cutoffs: central lab cutoffs identified more pts with high cTnI and predicted higher % deaths</td>
<td>N/A</td>
</tr>
<tr>
<td>[RAPAC] Bradburn 2012</td>
<td>21617159(10)</td>
<td>Multicenter prospective analysis 2,243</td>
<td>POC vs. central lab assays at 6 hospitals</td>
<td>Suspected, but not proven AMI at 6 hospitals. Proven MI by ECG, high-risk ACS, known CAD, serious noncoronary pathology, recurrent chest pain</td>
<td>POC or std care with CK-MB, myoglobin, and Tn biomarkers Difference in proportion of pts successfully discharged. POC led to higher proportion in 4, lower in 1 and equivocal in 1.</td>
<td>N/A</td>
</tr>
<tr>
<td>[RAPAC] Fitzgerald 2011</td>
<td>21569168(59)</td>
<td>Multicenter prospective analysis 2,243</td>
<td>Std care 1,118 POC 1,125</td>
<td>Suspected, but not proven AMI at 6 hospitals. Proven MI by ECG, high-risk ACS, known CAD, serious noncoronary pathology, recurrent chest pain</td>
<td>POC or std care with CK-MB, myoglobin, and Tn biomarkers POC associated with higher ED costs, coronary care costs, and cardiac intervention costs, but lower general pts costs</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Comparison of POC with Std care in different hospitals using POC:

- **Prospective cohort 1,069:** POC vs. 2 central laboratory assays cTnI
- **All pts in ED with Tn assays:** N/A
- **Tn assays with 99th percentile URL cutoffs:** 99th percentile cutoffs: central lab cutoffs identified more pts with high cTnI and predicted higher % deaths
- **POC vs. central lab assays at 6 hospitals:** Suspected, but not proven AMI at 6 hospitals. Proven MI by ECG, high-risk ACS, known CAD, serious noncoronary pathology, recurrent chest pain
- **POC or std care with CK-MB, myoglobin, and Tn biomarkers:** Difference in proportion of pts successfully discharged. POC led to higher proportion in 4, lower in 1 and equivocal in 1.

Comparison of POC with Std care in different hospitals using POC:

- **Prospective cohort 1,069:** POC vs. 2 central laboratory assays cTnI
- **All pts in ED with Tn assays:** N/A
- **Tn assays with 99th percentile URL cutoffs:** 99th percentile cutoffs: central lab cutoffs identified more pts with high cTnI and predicted higher % deaths
- **POC vs. central lab assays at 6 hospitals:** Suspected, but not proven AMI at 6 hospitals. Proven MI by ECG, high-risk ACS, known CAD, serious noncoronary pathology, recurrent chest pain
- **POC or std care with CK-MB, myoglobin, and Tn biomarkers:** Difference in proportion of pts successfully discharged. POC led to higher proportion in 4, lower in 1 and equivocal in 1.

Comparison of POC with Std care in different hospitals using POC:

- **Prospective cohort 1,069:** POC vs. 2 central laboratory assays cTnI
- **All pts in ED with Tn assays:** N/A
- **Tn assays with 99th percentile URL cutoffs:** 99th percentile cutoffs: central lab cutoffs identified more pts with high cTnI and predicted higher % deaths
- **POC vs. central lab assays at 6 hospitals:** Suspected, but not proven AMI at 6 hospitals. Proven MI by ECG, high-risk ACS, known CAD, serious noncoronary pathology, recurrent chest pain
- **POC or std care with CK-MB, myoglobin, and Tn biomarkers:** Difference in proportion of pts successfully discharged. POC led to higher proportion in 4, lower in 1 and equivocal in 1.
<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type / Size (N)</th>
<th>Interventions vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: ¼ 95 CI:</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRISC Lindahl 2000 11038118 (60)</td>
<td>Multiple biomarkers as long-term risk predictors for CV death</td>
<td>Multi-institution prospective 917</td>
<td>TN (CRP, Fibrinogen)</td>
<td>UA or possible MI within 72 h</td>
<td>Increased risk of bleeding (dialrepan trial)</td>
<td>Biomarker samples at 0 h, 12 h, 24 h</td>
<td>Cardiac death at 37 mo Multivariate analysis TN and CRP independently predicted of mortality</td>
<td>Highest tertile of CRP significant for mortality. Lowest 2 terities NS difference ¼=0.001 3¼ vs. 2¼ tertile</td>
</tr>
<tr>
<td>TACTICS-TIMI18 Sabatine 2002 11956114 (61)</td>
<td>Use of multiple biomarkers to predict MACE in NSTE-ACS</td>
<td>Multi-institution prospective 450 (OPUS-TIMI 16) 1,635 (TACTICS-18)</td>
<td>TNl, CRP, BNP in combination vs. each alone</td>
<td>Possible ACS within 72 h</td>
<td>Age <18 y pregnancy, significant comorbidities, bleeding tendency</td>
<td>3 biomarkers at enrollment</td>
<td>Death/MI/HF at 6 mo Number of elevated biomarkers include prediction of outcome</td>
<td>30-d mortality RR 0 Biomarker+: 1 1 Biomarker+: 1.5 2 Biomarker+: 3.5 3 Biomarker+: 6 p=0.014</td>
</tr>
<tr>
<td>HOPE Blankenberg 2006 16831981 (62)</td>
<td>9 Biomarkers to evaluate improved CV risk in a 2¼ d prevention population</td>
<td>Multicenter prospective 3,199</td>
<td>Evaluation of CRP fibrinogen, IL-6, TNF 1, 2, sI-A 1, sI-A 1, BNP, IL-1 RA microalbuminuria, individually for MACE</td>
<td>Hx of CAD, stroke, PAD, diabetes</td>
<td>HF, low LV EF, nephropathy MI, or stroke 4 wk before enrollment</td>
<td>9 biomarkers on enrollment</td>
<td>Combined events 4.5 y Significant relations: BNP, sI-A, Microalbuminuria, s-I RA-1, fibrinogen</td>
<td>Only inclusion of BNP provided info above that from traditional risk factors</td>
</tr>
<tr>
<td>McCann 2008 19592446 (63)</td>
<td>Role of novel biomarkers in AMI Dx</td>
<td>Multicenter prospective 664</td>
<td>Multiple biomarker comparisons including cTnT, H-FABP, BNP, hs-CRP, D-dimer, MPO, MMP-9, PAPP-A, sCD4L0</td>
<td>Chest pain =24 h to 2 CCUs</td>
<td>Transfer from other hospital thrombolitics or antiocoagulant</td>
<td>Biomarkers on entry</td>
<td>Dx of AMI only H-FABP cTnT and combined approach improved –PV –PV H-FABP 75% cTnT¼90% Either¼97% (95% CI: 91%–99%)</td>
<td>Sens H-FABP: 73%; Sens cTnT: 55% On admission p=0.043. Combined improved sens: 65%; ps0.04 vs. individual values</td>
</tr>
<tr>
<td>FRISC Eggers 2009 (64) 19608034 (64)</td>
<td>Risk predicted by multiple biomarkers in NSTE-ACS</td>
<td>Multicenter retrospective analysis 877</td>
<td>Evaluated: cTnT, BNP, CRP, estimated GFR</td>
<td>NSTE-ACS</td>
<td>Bleeding risk, high creatinine, PCI in previous 6 mo, decision for PCI before randomization</td>
<td>Biomarkers at enrollment, 6 wk, and 6 mo</td>
<td>5-y follow-up BNP strongest predictor for mortality</td>
<td>BNP: 6 wk: 1.5 p=0.001 6 mo: 1.4 p=0.001</td>
</tr>
<tr>
<td>ARCHIFELAGI Multiple biomarkers</td>
<td>Multicenter</td>
<td>Evaluated 9</td>
<td>NSTE-ACS</td>
<td>Biomarkers at STE-ACS</td>
<td>Biomarkers for IL-6 AUC significant</td>
<td>IL-6: 1.69 (95% CI: 1.2–2.3)</td>
<td>Post-hoc analysis;</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Key Points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Beygui 2010** 20729649(65) | for risk in NSTE-ACS prospective trial Post hoc analysis 440
Biomarkers: CRP, IL-6, MPO, PL-22, MMP-9, IMA, sCD40L, BNP, aldosterone, cTnI
Planned corresponding interval, CHF, hypotension, low creatinine Cl
Randomization | Ischemia/HF at 2 mo IL-6 corresponding with ischemia BNP, aldosterone MMP-9 for HF
Improved model for ischemia, 3 biomarkers + for HF improved performance models for HF
BNP: 3.2 (95% CI: 2.0–5.0)
Aldo: 1.57 (95% CI: 1.1–2.6)
MMP-9: 0.64 (95% CI: 0.46–0.88)
Only 2-mo follow-up
Selected group of pts.
No indication of severity of HF. |
| **Manhneke 2011** 22197217(66) | Elucidating complex interactions between circulated biomarkers following AMI
Multicenter prospective trial 236
37 biomarkers AMI complicated by HF Not Stated
Biomarkers median 3 d after AMI Dx
2 sets of biomarkers corresponded with risk for death and combined death/reinfarction
Natriuretic peptides among others provided significant contribution to risk assessment
Of 5 sets of biomarkers only 2 sets showed significant prediction
Limited number pts
Relatively small number events
Blood Time frame 1 d–10 d post-MI |
| **Bhardwaj 2011** 21835268(67) | Assess role of 5 biomarkers in Dx in ACS
Prospective cohort 318
Evaluated: BNP, IMA, H-FABP, hs-TnI, FFAu vs. cTnI
Possible ACS Multiple including ESRD, thrombolytic agents, noncardiac chest pain
Biomarkers at presentation Compared with cTnT, diagnostic information increased with BNP, FFAu, hs-TnI, but not IMA and H-FABP
+PV cTnT: 65%
hs-TnI: 50%
FFAu: 40%
IMA: 17%
H-FABP: 26% |
| **MERLIN-TIMI Scirica 2011** 21185350(68) | Incremental prognostic value of multiple biomarkers in NSTE-ACS
Multicenter prospective 4,352
cTnI BNP CRP MPO Possible ACS STE-ACS ESRD CV Shock Short life expectancy
Biomarkers at presentation Including all biomarkers only BNP and cTnI associated with 12-mo CV death Only TnI with reinfarction
Addition of biomarkers to reference for CV death/HF:
BNP: 0.076
BNP: 0.790Ref: 0.749 |
| **CAPTURE Oemrawingsih 2011** 21558475(69) | Predictive value of 7 Biomarkers in NSTE-ACS
Multicenter prospective 1,090
Hs-CRP MPO sCD40L IL-10 TnT PIGF PAPP-A Possible NSTE-ACS
Ischemia >48 h from enrollment Biomarkers after last episode of angina
4-y MI/death A multimarker model of TnT, IL-10, MPO, and PIGF predicted 4-y rates:
6.0% (all normal) 35.8% (3+ abnormal)
TnT: 1.8 (95% CI: 1.2–2.6)
IL10: 1.7 (95% CI: 1.1–2.6)
PIGF: 1.9 (95% CI: 1.3–2.8)
CRP: 1.0 NS
sCD40L: 1.2 NS
MPO: 1.5 (95% CI: 1.1–2.1)
PAPP-A: 1.1 NS
Admission levels of +TnT:
HR: 1.8
IL-10:HR: 1.7
PIGF:HR: 1.9
+Myoglobin-HR: 1.5
Significant prediction for outcomes in multivariate analysis
Not adjudicated data for MI Dx
No info on long-term medications |
| **FAST II FASTER I Eggers 2011** 22456003(70) | Predictive of MI with multiple biomarkers Combines with hs-TnT
Retrospective cohort 360
Hs-TnT + h-FABP copeptin NSTEMI (retrospective Classification) STEMI
Biomarkers at enrollment Hs-TnT greater accuracy in Dx of AMI than H-FABP and copeptin
No increase in C-statistic for hs-TnT by combining with H-FABP 0.85 or with copeptin 0.84
C-statistics
Hs-TnT: 0.84
H-FABP: 0.80
p<0.04
Retrospective, small sample, from 2 different studies.
No serial biomarkers |

© American Heart Association, Inc and American College of Cardiology Foundation
<table>
<thead>
<tr>
<th>Study</th>
<th>Title</th>
<th>Design</th>
<th>Population</th>
<th>Biomarkers</th>
<th>Outcome</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meune 2012 22507551(71)</td>
<td>Multimarker evaluation in suspected AMI with undetectable cTnT levels</td>
<td>Retrospective multi-institution 325 with undetectable cTnT</td>
<td>cTnT-15 biomarkers including CK-MB and MPO</td>
<td>ACS with undetectable cTnT at 0 h and 6 h.</td>
<td>Detectable cTnT at entry</td>
<td>Biomarkers at 6 h from enrollment</td>
</tr>
<tr>
<td>Schaub 2012 22057878(72)</td>
<td>Markers of plaque instability use in AMI Dx and risk</td>
<td>Prospective multicenter 398</td>
<td>Multimarkers: Hs-cTnT cTnT MPO PAPP-A CRP MRP 8/14</td>
<td>Possible ACS</td>
<td>ESRD</td>
<td>Biomarkers at presentation</td>
</tr>
<tr>
<td>Weber 2008 18355657(73)</td>
<td>Prognosis, value of BNP with normal TnT in ACS</td>
<td>Prospective multicenter 2,614 From 2 center registries 1,131 and 1,483</td>
<td>BNP vs. TnT</td>
<td>Coherite different, 1 higher risk (1,131) and the other lower risk (1,483) analyzed separately</td>
<td>PCI within 6 mo, or C and for reperfusion cancer, autoimmune inflammatory disease</td>
<td>Biomarkers at entry</td>
</tr>
<tr>
<td>Wiviott 2004 14769678(74)</td>
<td>Gender and biomarkers in ACS</td>
<td>Multicenter prospective trial off 1,865 pts in TACTICS-TIMI 18, 34% were women</td>
<td>Multiple biomarker analysis Men vs. women</td>
<td>Women with ACS with criteria for PCI. Randomized to invasive vs. conservative strategies</td>
<td>No criteria for PCI</td>
<td>Biomarkers at entry: TnT CNB CRP BNP</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; AUC, area under the curve; BNP, B-type natriuretic peptide; CAD, coronary artery disease; CHF, congestive heart failure; CRP, C-reactive protein; cTn, cardiac troponin; cTnT, cardiac troponin T; CCI, cardiac care unit; CV, cardiovascular; Dx, diagnosis; ESRD, end stage renal disease; FFAu, unbound free fatty acids; GDF-15, growth differentiation factor-15; GP-BB, glycoprotein phospholipase-BB; GRF, growth hormone releasing factor; H-FABP, heart type fatty acid binding protein; HF, heart failure; HS, high sensitivity; HS-CRP, high sensitivity C-reactive protein; HS-TnI, high sensitivity troponin I; Hs-cTnT, high sensitivity cardiac troponin T; Hx, history; IL, interleukin; IL-1 RA, interleukin-1 receptor antagonist; IMA, ischemia-modified albumin; LV, left ventricle; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; MMP-9, matrix metalloproteinase-9; MPO, myeloperoxidase; MRPro/8/14, myeloid related protein 8/14; MR-pro-ADM, midregional pro-adrenomedullin; N/A, not applicable; NS, not significant; NST-ACS, non-ST-segment acute coronary syndrome; NSTE-ACS, Non-ST-Segment-Elevation Acute Coronary Syndrome; OPUS-TIMI, orbofiban in
patients with unstable coronary syndromes; PAD, Peripheral Artery Disease; PAPP-A, pregnancy- associated plasma protein-A; PCI, percutaneous coronary intervention; PI GF, placent a growth factor; PL-22, secretory type II phospholipase-22; pts, patients; PV, predictive value; RA, rheumatoid arthritis; ROC, receiver operating curve; RR, relative risk; sCD40L, soluble CD40; Sens, sensitivities; sIAM, soluble intercellular adhesion molecule-1; sIRA, soluble intercellular adhesion molecule-1; Spec, specificities; STEMI, ST-elevation myocardial infarction; TACTICS, Thrombolysis and Counterpulsation to Improve Cardiogenic Shock Survival; TIMI, Thrombolysis In Myocardial Infarction; Tn, troponin; TnI, troponin I; TnT, troponin T; and UA, unstable angina.

Data Supplement 8. Discharge from ED or Chest Pain Unit (Section 3.5.1)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Primary Endpoint (efficacy) and Results</th>
<th>Safety Endpoint and Results</th>
<th>Secondary Endpoint and Results</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEER, Farkouh, 1998 9862943(75)</td>
<td>Evaluate utility of CPU management of low-risk pts with CP</td>
<td>Single-center, prospective RCT</td>
<td>424</td>
<td>212</td>
<td>Intermediate risk, UA</td>
<td>MI, instability marked ST changes</td>
<td>6-h CPU observation followed by pre-D/C ETT or Ex-MPI with early D/C if negative</td>
<td>Routine hospital admission</td>
<td>No significant diff in early (30 d) and late (6 mo) MI, death, CHF, CVA, card arrest in-hospital admission vs. CPU pts</td>
<td>Same as 1st endpoint</td>
<td>CPU pts: Fewer follow-up ED visits, cardiac tests (p<0.003). (Also, median LOS in CPU 9.2 h)</td>
<td>No significant diff in early 30-d/late 6-mo cardiac events. Fewer repeat ED visits, cardiac tests (p<0.003)</td>
<td>Relatively small single-center, tertiary care with extensive expertise/resource s; Pts 95% white. No. ETT/Nuc pts not given. Study not blinded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROMIO Gomez, 1996 8752791(76)</td>
<td>Test rapid R/O MI to $/time/$</td>
<td>Single-center, prospective RCT</td>
<td>100</td>
<td>50</td>
<td>N/A</td>
<td>CP low-risk for MI (Goldman), stable, nonischemic ECG, injury marker data not required</td>
<td><30 y, >7% MI prob (Goldman), ECG, ischemia, VT, AV Bl, new BBB, BP >220/120, unstable</td>
<td>Rapid rule-out MI protocol in ED: Serial ECGs and CK-MB q 3-h x 4. If negative, PD-ETT</td>
<td>Routine hospital admn</td>
<td>No diff in low 30-d cardiac events. ITT analysis: LOS shorter, $ less in ED rule-out pts with MI</td>
<td>No MI missed</td>
<td>Echo substudy: low incremental value in rapid rule-out patients with MI</td>
<td>Admission vs. rapid rule-out: LOS 14 h vs. 27 h; p<0.0001; Initial cost: $2,089 vs.$1,108; p>0.0001; 30-d cost: $2,253 vs.$1,237</td>
<td>Small single center study, not blinded, shorter follow-up, hospital charges, and costs not equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amsterdam, 2002 12106928(77)</td>
<td>Utility of immediate ETT in triage of ED CP pts</td>
<td>Observation al, single-center</td>
<td>1,000</td>
<td>1,000</td>
<td>N/A</td>
<td>Nontraumatic CP, negative ECG, marker, no arrhythmia, stable, Hx CVD not excluded</td>
<td>Abnormal ECG, positive marker, clinically unstable</td>
<td>Immediate ETT, Max/Sx/Sign limited</td>
<td>N/A</td>
<td>No adverse effects of ETT. No deaths at 30 d.</td>
<td>No MACE at 6 mo in pts who did not have ACS at index visit. Approx 40 min total time for scan and interpret.</td>
<td>N/A</td>
<td>ETT performed by specially trained MDs (Noncardiologist), 7 d/12 h function. Limitation: Includes only pts able to do ETT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Type</td>
<td>Population</td>
<td>Endpoints</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Udeshi, 2002 12460092(78)</td>
<td>Does addition of rest MPI improve ED triage of low-risk CP pts to admission or D/C from ED</td>
<td>Prospective Multicenter (n=7) RCT</td>
<td>2,475 1,215</td>
<td>Suspected acute ischemia (CP or equivalent) present within ≤3 h, nonischemic ECG, ≥30 y</td>
<td>Hx of MI, non-Dx ECG</td>
<td>Rest SPECT Trc 99m sestamibi, results to ED for use in clinical decision-making</td>
<td>Usual ED strategy in each institution's ED</td>
<td>MPI: Admission rate <UC (RR: 0.87; 95% CI: 0.81–0.93; p<0.001)</td>
<td>No adverse effects of MPI except radiation and longer time to discharge from ED in negative scan pts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trippi, 1997 9283518(79)</td>
<td>Evaluate utility of DSE telemedicine triage of low-risk pts with CP in ED</td>
<td>Prospective, single-center, DSE by nurse and sonographer</td>
<td>173 screened, 139 eligible and received DSE (24 no DSE dt LV wall motion abnormal)</td>
<td>ROMI, negative markers, NL ECG, No Hx CVD, initially: pts obs'v'd 12 h; later, neg DSE: direct D/C from ED</td>
<td>No Hx CAD, screened for exclusions by nurse (not specified) (LV wall motion abnormal = exclusion)</td>
<td>DSE by nurse & sonographer Card present; later cardiol available. DSE telemetry to Card, Dx to ED. Follow-up confirm. ECG</td>
<td>N/A</td>
<td>3-mo follow-up: NPV for ACS 98.5%, PPV 51.5%. Agreement TeleEcho/conv ential Echo kappa 0.78; 95% CI: 0.65–0.90</td>
<td>54.7% Sx with DSE: test terminated for PVCs=6.3%; CP, nausea, SOB common Sx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bholasingh, 2003 12598071(80)</td>
<td>Study prognostic value of DSE in low-risk CP pts</td>
<td>Prospective single-center, blinded. ED MDs blinded to DSE results.</td>
<td>377 of 557 eligible pts received DSE, No DSE: 119 ACS, 34 other serious Dis., 24 rest LV abn.</td>
<td>≥18 y, non-Dx ECG, present within 6 h of CP, neg cTt.</td>
<td>Arrhythmias, HF, severe HTN, serious noncard disease</td>
<td>DSE after 12-h observation, 6.9% (26/377) pts had Pos DSE</td>
<td>N/A</td>
<td>6-mo follow-up: 1º endpoints: Neg DSE 4% (1 death), Pos DSE 30.6% (1 death); OR 10.7; 95% CI: 4.0–28.8; p<0.0001</td>
<td>All DSE completed within 24 h of admission; follow-up 100%; 19.9% protocol terminated dx't ECG changes, CP, arrhythmia, severe HTN, hypotension.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROMICAT, Hoffman, 2009 19406338(81)</td>
<td>Utility of CCTA in acute CP pts</td>
<td>Observation al cohort study</td>
<td>368 368</td>
<td>CP, neg initial Tn, nonischemic ECG</td>
<td>Hx CAD: stent or CABB, renal discharge</td>
<td>CCTA before admission, results not</td>
<td>N/A</td>
<td>Pts without CAD: NPV for ACS at 6</td>
<td>1 ACS in absence of + CCTA showing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Data Supplement 9. Nitrates (Section 4.1.2.1)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of Study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Primary Endpoint (efficacy) and Results</th>
<th>Safety Endpoint and Results</th>
<th>Secondary Endpoint and Results</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrosio G., 2010</td>
<td>Investigate whether</td>
<td>Multicenter registry</td>
<td>52,693</td>
<td>10,555 (20%) pts on</td>
<td>42,138 (80%) (nitrate-naive) pts on</td>
<td>Clinical history of ACS</td>
<td>Pts with non-CV causes for the Chronic nitrates on Nitrate-naive Chronic nitrate use was</td>
<td>N/A</td>
<td>Antecedent nitrate use was Chronic nitrate use remained</td>
<td>Registry data– No data on dose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Participants</td>
<td>Exclusion Criteria</td>
<td>Intervention</td>
<td>Primary Endpoint</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahmarian, 1998</td>
<td>Multicenter RCT</td>
<td>291 pts surviving a A-QMI</td>
<td>Severe CHF, persistent hypotension, sustained VT, high-degree AVB, UA, significant noncardiac illness, or either a requirement for or known intolerances</td>
<td>Intermittent NTG patch therapy initiated within 1 wk after AMI and continued for 6 mo (0.4, 0.8, and 1.6 mg/h)</td>
<td>Change in ESVI was significantly reduced with 0.4 mg/h NTG patches</td>
<td>Both ESVI and EDVI were significantly reduced with 0.4 mg/h NTG patches (<11.4 mL/m² and -11.6 mL/m², p<0.03)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIS-4, 1995</td>
<td>RCT</td>
<td>58,050 pts</td>
<td>Within 24 h of onset of suspected AMI with no clear contraindications at the clinician’s discretion (e.g., conditions)</td>
<td>1 mo of oral controlled-release mononitrate</td>
<td>NS difference in 5-wk mortality (mononitrate vs. PC)</td>
<td>Greater effect early after starting treatment No effect on any subgroup studied (age, sex, previous MI, ECG on 5-wk mortality: mononitrate vs. PC) 7.34% vs. 17.4% vs. 14.4%, p<0.0001 for all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Participants</td>
<td>Exclusions</td>
<td>Primary Outcome</td>
<td>Secondary Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GISSI-3, 1994 (87)</td>
<td>Multicenter RCT</td>
<td>19,394 AMI pts within 24 h of Sx onset and no clear indications for or against the study treatments</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yusuf, 1988 (88)</td>
<td>Meta-analysis (10 RCTs)</td>
<td>2,000 AMI pts—exclusions of individual trials</td>
<td>N/A</td>
<td>N/A</td>
<td>PC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitrates (IV for the 1st 24 h, then transdermal GTN 10 mg daily)

No effect of nitrate on 6-wk mortality; OR: 0.94 (95% CI: 0.84–1.05)

No effect of nitrates on the combined outcome measure of mortality and severe ventricular dysfunction.

Systematic combined administration of lisinopril and GTN produced significant reductions in overall mortality (OR: 0.83; 95% CI: 0.70–0.97) and in the combined endpoint, OR: 0.85; 95% CI: 0.76–0.94).

The trend toward reduction in cardiac events with nitrate therapy reached statistical significance among the elderly and women. Significant reductions in 6-wk mortality and combined outcome with lisinopril.

6-wk mortality: GTN vs. PC: OR: 0.94; 95% CI: 0.84–1.05

Combined outcome: GTN vs. PC: OR: 0.94; 95% CI: 0.87–1.02

No excess of unfavorable clinically-relevant events in the treated groups was reported. 2D echo data were available only for 14,209 pts (73%)

50%–60% had open label nitrate therapy.

Contraindications were specified not by the protocol, but by the responsible clinician.

References

1º indicates primary; 2D, two-dimensional; ACS, acute coronary syndrome; AMI, acute myocardial infarction; A-QMI, acute Q-myocardial infarction; AVB, auriculoventricular block; CAD, coronary artery disease; CHF, congestive heart failure; CK-MB, creatine kinase-MB; CV, cardiovascular; Dx, diagnosis; ECG, electrocardiogram; EDVI, end-diastolic volume index; ESVI, end-systolic volume index; GTN, glyceryl trinitrate; GRACE, Global Registry of Acute Coronary Events; HF, heart failure; IV, intravenous; LV, left ventricular;
Data Supplement 10. Analgesic Therapy (Section 4.1.2.2)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of Study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR & 95% CI</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iakobishvili, 2011</td>
<td>Determine the impact of IVM on outcomes of pts with ADHF with and without ACSs</td>
<td>Observational registry</td>
<td>2,336</td>
<td>218 (9.3%)</td>
<td>2,118 (90.7%)</td>
<td>Consecutive pts with ADHF participating in a national HF survey</td>
<td>N/A</td>
<td>IVM</td>
<td>No IVM</td>
<td>IVM associated with higher unadjusted (11.5% vs. 5.0%) and adjusted in-hospital mortality using logistic regression analysis</td>
<td>IVM increased in-hospital mortality</td>
</tr>
<tr>
<td>Iakobishvili, 2010</td>
<td>Assess the 30-d outcomes stratified by IVNs use among pts enrolled in a national survey of pts with STEMI and NSTE-ACS</td>
<td>Multicenter retrospective analysis from the ACSIS 2008 database</td>
<td>993 pts with NSTE-ACS</td>
<td>97 (9.8%)</td>
<td>896 (90.2%)</td>
<td>Consecutive pts presenting with ACS to any of 26 CCU and cardiology wards in Israel</td>
<td>Pts transferred to another institution</td>
<td>IVM</td>
<td>No IVN</td>
<td>No diff in 30-d mortality with IVN use. Using propensity adjustment (95 matched NSTE-ACS pairs): 30-d death rate (2.2% for pts receiving IVNs vs. 6.3%; p=0.16)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Only a minority of pts were treated with IVN.
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Study Design</th>
<th>Participants</th>
<th>Primary Endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>Freemantle et al., 1999</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>Subgroup analysis that excluded high-risk pts showed mortality benefit of BB: 0.95 [0.90-0.99]</td>
<td>BB therapy showed lower hospital mortality 6-mo mortality also lower</td>
</tr>
<tr>
<td>2006</td>
<td>Emery, 2006</td>
<td>Observational</td>
<td>NSTEMI</td>
<td>Hospital mortality Killip III/IV 0.42-0.81</td>
<td>BB therapy showed lower hospital mortality 6-mo mortality also lower</td>
</tr>
<tr>
<td>2008</td>
<td>Al Reesi</td>
<td>Prospective multicenter trial</td>
<td>1,926 MI pts</td>
<td>Reduced CV death, MI by 45%, SCD by 50%</td>
<td>Only 68% of post-MI pts ideal candidates for BB</td>
</tr>
<tr>
<td>2003</td>
<td>Janosi et al., 2003</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>Total mortality p<0.0001, MACE p=0.0001</td>
<td>BB therapy showed lower hospital mortality 6-mo mortality also lower</td>
</tr>
<tr>
<td>2008</td>
<td>Pryden, 2008</td>
<td>BB vs. PC or alternative Rx</td>
<td>Metoprolol 696 PC 697</td>
<td>Metoprolol or PC for 1 y.</td>
<td>Metoprolol or PC for 1 y.</td>
</tr>
<tr>
<td>1983</td>
<td>Hjalmarson</td>
<td>BB effects in post-MI with CHF</td>
<td>Multi-institute prospective trial</td>
<td>MI >0.28 d Contraindicated to BB.</td>
<td>MI >0.28 d Contraindicated to BB.</td>
</tr>
<tr>
<td>1999</td>
<td>Freemantle et al.</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>Subgroup analysis that excluded high-risk pts showed mortality benefit of BB: 0.95 [0.90-0.99]</td>
<td>BB therapy showed lower hospital mortality 6-mo mortality also lower</td>
</tr>
<tr>
<td>1983</td>
<td>Pryden</td>
<td>Occurrence of ventricular tachyarrhythmias in suspected AMI with BB.</td>
<td>Prospective multicenter 2,395</td>
<td>Metoprolol 696 PC 697</td>
<td>Metoprolol IV or PC or alternative Rx</td>
</tr>
<tr>
<td>1966</td>
<td>Multi-institute</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>BB vs. PC or control group</td>
<td>BB vs. PC or control group</td>
</tr>
<tr>
<td>1999</td>
<td>Freemantle et al.</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>BB vs. PC</td>
<td>BB vs. PC</td>
</tr>
<tr>
<td>1983</td>
<td>Pryden</td>
<td>Occurrence of ventricular tachyarrhythmias in suspected AMI with BB.</td>
<td>Prospective multicenter 2,395</td>
<td>BB vs. PC or control group Roughly 50% each</td>
<td>BB vs. PC or control group Roughly 50% each</td>
</tr>
<tr>
<td>2008</td>
<td>Al Reesi</td>
<td>Effect of BB use within 72 h of MI on 6-wk mortality vs. PC</td>
<td>Metanalysis 18 studies 74 643 1966-2007</td>
<td>BB vs. PC or control group</td>
<td>BB vs. PC or control group</td>
</tr>
<tr>
<td>2003</td>
<td>Janosi et al.</td>
<td>BB effects in post-MI with CHF</td>
<td>Multi-institute prospective trial 1,926</td>
<td>MI >0.28 d Contraindicated to BB.</td>
<td>MI >0.28 d Contraindicated to BB.</td>
</tr>
<tr>
<td>1999</td>
<td>Freemantle et al.</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>BB vs. PC</td>
<td>BB vs. PC</td>
</tr>
<tr>
<td>2008</td>
<td>Al Reesi</td>
<td>Effect of BB use within 72 h of MI on 6-wk mortality vs. PC</td>
<td>Metanalysis 18 studies 74 643 1966-2007</td>
<td>BB vs. PC or control group</td>
<td>BB vs. PC or control group</td>
</tr>
<tr>
<td>2003</td>
<td>Janosi et al.</td>
<td>BB effects in post-MI with CHF</td>
<td>Multi-institute prospective trial 1,926</td>
<td>MI >0.28 d Contraindicated to BB.</td>
<td>MI >0.28 d Contraindicated to BB.</td>
</tr>
<tr>
<td>1999</td>
<td>Freemantle et al.</td>
<td>Meta-analysis of early BB trials in MI</td>
<td>>55 RCT of over 73,000 pts</td>
<td>BB vs. PC</td>
<td>BB vs. PC</td>
</tr>
<tr>
<td>2008</td>
<td>Al Reesi</td>
<td>Effect of BB use within 72 h of MI on 6-wk mortality vs. PC</td>
<td>Metanalysis 18 studies 74 643 1966-2007</td>
<td>BB vs. PC or control group</td>
<td>BB vs. PC or control group</td>
</tr>
<tr>
<td>2003</td>
<td>Janosi et al.</td>
<td>BB effects in post-MI with CHF</td>
<td>Multi-institute prospective trial 1,926</td>
<td>MI >0.28 d Contraindicated to BB.</td>
<td>MI >0.28 d Contraindicated to BB.</td>
</tr>
<tr>
<td>Secondary Preview</td>
<td>Acute or Past AMI</td>
<td>Long-term: 24,974 pts</td>
<td>Significant Reduction</td>
<td>Long-term: 0.77 (95% CI: 0.69–0.85) and withdrawal.</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Dangir, 2001</td>
<td>11356434</td>
<td>99</td>
<td>Outcomes of carvedilol in AMI with LV dysfunction</td>
<td>Multicenter randomized PC controlled 1,959</td>
<td>Carvedilol 975 PC 984</td>
</tr>
<tr>
<td>Chen, 2005</td>
<td>15708698</td>
<td>(101)</td>
<td>Effect of adding BB to current std therapies in AMI</td>
<td>Multicenter randomized PC controlled 45,852</td>
<td>Metoprolol 22,929 PC 22,923</td>
</tr>
<tr>
<td>Ellis, 2003</td>
<td>14562669</td>
<td>(102)</td>
<td>BB therapy in ACS PCI ± abciximab</td>
<td>Pooled data from 5 RCTs 2,894</td>
<td>939 BB 955 No BB</td>
</tr>
<tr>
<td>McMurray, 2005</td>
<td>15708698</td>
<td>(102)</td>
<td>Effect of BB in reducing arrhythmias added to ACEi</td>
<td>Multicenter PC controlled 1,959</td>
<td>975 carvedilol 984 PC</td>
</tr>
<tr>
<td>Miller, 2007</td>
<td>17679127</td>
<td>(103)</td>
<td>Impact of early use of BB in ACS</td>
<td>Multi-institutional retrospective analysis 72,054 at 509 hospitals</td>
<td>82.5% received acute BB vs. no BB</td>
</tr>
<tr>
<td>Brandier, 2010</td>
<td>20078433</td>
<td>(104)</td>
<td>Literature review to determine BB effects on outcome in ACS</td>
<td>Meta-analysis of RCTs 72,249 18 articles</td>
<td>Early BB 36,173 pts with/without PC 36,076</td>
</tr>
</tbody>
</table>
Data Supplement 12. Calcium Channel Blockers (Section 4.1.2.4)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of Study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Interventio n</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gibson, 1986 3526151 (106)</td>
<td>Effect of diltiazem on NQMI.</td>
<td>Multicenter double-blind randomized</td>
<td>576</td>
<td>Diltiazem 287</td>
<td>PC 289</td>
<td>NQMI > 50 m ischemic pain or ST changes</td>
<td>Q waves or conduction disturbances AV block</td>
<td>Bradycardia, Cardiac shock</td>
<td>Diltiazem 24–72 h from admission Up to 14 d</td>
<td>PC 14–d reinfarction 9.3% in PC 5.2% in Diltiazem Reduced by diltiazem</td>
</tr>
<tr>
<td>Lubsen, 1987 2887097 (107)</td>
<td>Efficacy of BB and CCB in UA in a CCU</td>
<td>Multicenter PC control</td>
<td>338</td>
<td>Combination of nifedipine and metoprolol</td>
<td>PC</td>
<td>UA not previously on BB</td>
<td>AMI</td>
<td>Nifedipine, metoprolol, or combination</td>
<td>PC</td>
<td>Ischemia or progression to MI in 48 h. Only pretreatment with BB showed favorable effects with nifedipine.</td>
</tr>
<tr>
<td>Gibson, 1987 3303886</td>
<td>Px effect of diltiazem on recurrent</td>
<td>Multicenter double-blind</td>
<td>576</td>
<td>Diltiazem 287</td>
<td>PC 289</td>
<td>Confirmed NQMI</td>
<td>Q waves or conduction disturbances</td>
<td>Diltiazem 24–72 h from</td>
<td>PC</td>
<td>Incidence of early recurrent ischemia</td>
</tr>
<tr>
<td>(108)</td>
<td>ischemia</td>
<td></td>
<td></td>
<td>AV block</td>
<td>Bradycardia</td>
<td>Cardio shock</td>
<td>admission</td>
<td>Up to 14 d</td>
<td>decreased by</td>
<td>CCB</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Held, 1989</td>
<td>CCB effect on events</td>
<td>Meta-analysis of 28 trials</td>
<td>19,000</td>
<td>8,870 CCB</td>
<td>8,889 control</td>
<td>MI 22 trials UA 6 trials</td>
<td>CHF</td>
<td>Hypotension AV block (most common)</td>
<td>CCB usually early in ACS</td>
<td>Control</td>
</tr>
<tr>
<td>Moss, 1991</td>
<td>Diltiazem and long-term outcome</td>
<td>Multicenter PC control</td>
<td>2,464</td>
<td>No HTN Diltiazem: 760 PC: 762</td>
<td>Hypertension Diltiazem: 471 PC: 471</td>
<td>MI treated with diltiazem with or without hypertension</td>
<td>CHF</td>
<td>Hypotension AV block</td>
<td>Diltiazem at ACS for 12-52 mo</td>
<td>PC for same time period</td>
</tr>
<tr>
<td>Furberg, 1995</td>
<td>Meta-analysis of nifedipine trials on outcome</td>
<td>Meta-analysis of 16 studies</td>
<td>8,350</td>
<td>Nifedipine 4,171</td>
<td>Control 4,183</td>
<td>Nifedipine 2nd prevention trials with mortality data</td>
<td>No randomization</td>
<td>Nifedipine 12 AMI 3 UA 1 SA Short-acting</td>
<td>PC</td>
<td>Effect on mortality Nifedipine increased mortality by 16% Dose related</td>
</tr>
<tr>
<td>Rengo, 1996</td>
<td>Effect of verapamil on mortality after AMI</td>
<td>Multicenter prospective trial</td>
<td>1,073</td>
<td>Verapamil 531</td>
<td>PC 542</td>
<td>Dx of AMI</td>
<td>Contraindication to verapamil Hx of severe HF</td>
<td>Long acting Verapamil 7-21 d after AMI 360 mg qd for 24 mo</td>
<td>PC For 24 mo</td>
<td>Total mortality and CV deaths. No diff between groups</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Country</td>
<td>Subjects</td>
<td>Intervention</td>
<td>Comparator</td>
<td>Duration</td>
<td>Main Outcome</td>
<td>Other Details</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Smith, 1998</td>
<td>1998</td>
<td>Long-term outcome BB + CCB in UA</td>
<td>Retrospective cohort</td>
<td>247</td>
<td>Diltaiazem 198</td>
<td>BB 50</td>
<td>At discharge with UA Dx</td>
<td>MI or stroke during hospitalization</td>
<td>Monotherapy CCB for 1-7 y</td>
<td>Monotherapy BB for 1-7 y</td>
</tr>
<tr>
<td>Pepine, 1996</td>
<td>1996</td>
<td>Safety of CCB in CV disease</td>
<td>Meta-analysis 14 randomized parallel group studies</td>
<td>4,000 person y</td>
<td>Verapamil PC</td>
<td>Randomized studies of verapamil and PC from AMI</td>
<td>No randomization or control group</td>
<td>Verapamil PC</td>
<td>Outcomes with CCBs after MI: No diff in deaths Decreased nonfatal MI Decreased death/reinfarction</td>
<td>Data too limited for pts with hypertension No evidence for increased harm with verapamil</td>
</tr>
<tr>
<td>DAVIT Danish study, 1984</td>
<td>1984</td>
<td>6 mo and 12 mo mortality after AMI with verapamil</td>
<td>Multicenter prospective study</td>
<td>3,498</td>
<td>Verapamil roughly 50%</td>
<td>PC roughly 50%</td>
<td>AMI</td>
<td>HF, AV block, severely disabling diseases, treatment with BB or CCB</td>
<td>Verapamil 120 tid for 6 mo</td>
<td>PC for 6 mo</td>
</tr>
<tr>
<td>DAVIT II Danish study, 1990</td>
<td>1990</td>
<td>18 mo mortality rates and major CV events with verapamil after AMI</td>
<td>Multicenter prospective trial</td>
<td>1,775</td>
<td>Verapamil 878</td>
<td>PC 897</td>
<td>AMI</td>
<td>HF, AV block, severely disabling diseases, treatment with BB or CCB</td>
<td>Verapamil 360 mg qd from 2nd wk of AMI and up to 18 mo</td>
<td>PC for same period</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Table 13. Other Anti-Ischemic Interventions (Ranolazine) (Section 4.1.2.5)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of Study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>Safety Endpoint and Results</th>
<th>Secondary Endpoint and Results</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson SR, 2009 19389561 (117)</td>
<td>Evaluate the efficacy and safety of ranolazine in pts with prior chronic SA</td>
<td>Substudy from a multinational RCT</td>
<td>3,565</td>
<td>1,789</td>
<td>1,776</td>
<td>Pts with NSTE-ACS within 48 h of ischemic Sx (between Oct 2004-Feb 2007)</td>
<td>Eligibility criteria: ≥18 y; Sx of myocardial ischemia; at least 1 moderate-high-risk indicator</td>
<td>Cardiogenic shock, persistent STE, successful revasc before randomization, clinically significant hepatic disease, ESRD requiring dialysis, treatment with agents known to prolong the QT interval, ECG abnormal levels interfering with Holter interpretation, life expectancy <12 mo</td>
<td>Ranolazine</td>
<td>PC</td>
<td>1º endpoint (CV death, MI, recurrent ischemia) was less frequent with ranolazine (HR: 0.86; 95% CI: 0.75–0.97; p=0.017) (Follow-up was a median of 350 d)</td>
<td>Symptomatic documented arrhythmias (2.9% vs. 2.9%; p=0.92) and total mortality (6.2% vs. 6.4%; p=0.96) were similar with ranolazine or PC.</td>
<td>CV death or MI did not differ between treatment groups (HR: 0.97; 95% CI: 0.80–1.16; p=0.71)</td>
</tr>
<tr>
<td>Scirica, 2007 17304441</td>
<td>Assess the potential</td>
<td>Sub-study from a 6,351</td>
<td>3,162</td>
<td>3,189</td>
<td>Pts with NSTE-ACS</td>
<td>Cardiogenic shock</td>
<td>Ranolazine</td>
<td>PC</td>
<td>Ranolazine was associated (numerically, but not statistically)</td>
<td>Lower incidence of pauses ≥3 s VT ≥8 beats (5.3% vs. 8.3%; p=0.017)</td>
<td>Substudy of a RCT that did not meet its 1º endpoint (exploratory) Randomization was not stratified by Hx of prior angina, small diffs in clinical characteristics between those randomized to ranolazine or PC exist.</td>
<td>18.0% vs. 21.6%; p=0.03 0.80 (95% CI: 0.64–0.99) not met</td>
<td>assumption, not the case for the Tarone-Ware test</td>
</tr>
</tbody>
</table>

2º indicated secondary; ACS, acute coronary syndrome; AMI, acute myocardial infarction; AV, atrioventricular; BB, beta-blocker; BP, blood pressure; CAD, coronary artery disease; CCB, calcium channel blocker; CCL, cardiac care unit; CHF, congestive heart failure; CV, cardiovascular; diff, difference(s); Dx, diagnosis; HF, heart failure; Hx, history; HTN, hypertension; LV, left ventricular; MI, myocardial infarction; NQMI, Non-Q Wave myocardial infarction; NS, not/t significant; PC, placebo; pts, patients; Px, prognosis; qd, once daily; RAAS, Renin-Angiotensin-Aldosterone System; SA, stable angina; t.i.d., three times daily; and UA, unstable angina.
Determine the efficacy and safety of ranolazine during long-term treatment of pts with NSTE-ACS Multinational RCT 6,560 3,279 3,281 Pts with NSTE-ACS within 48 h of ischemic Sx (between Oct 2004 and Feb 2007) Eligibility criteria: ≥18 y; Sx of myocardial ischemia; at least 1 moderate-high-risk indicator Cardiogenic shock, persistent STE, successful revascularization, clinically significant hepatic disease, ESRD requiring dialysis, treatment with agents known to prolong the QT interval, ECG abnormal levels interfering with Holter interpretation, life expectancy <12 mo Ranolazine (initiated IV followed by oral extended-release 1000 mg 2× daily) PC No diff in total mortality with ranolazine vs. PC (HR: 0.99; 95% CI: 0.80–1.22) No diff in QTc prolongation requiring dose reduction: 0.9% in pts receiving ranolazine vs. 0.3% in PC, p NS No difference in symptomatic arrhythmias (ranolazine: 3.0% vs. PC: 3.1%; p=0.84) No diff in the major 2º endpoint (CV death/MI/ severe recurrent ischemia), or in the composite of CV death/MI. Ranolazine was associated with reduced recurrent ischemia: 13.9% vs. 16.1%; HR: 0.87; 95% CI: 0.76–0.99; p=0.03). 1º efficacy endpoint (ranolazine vs. PC): HR: 0.92; 95% CI: 0.83–1.02 Given the statistically NS result for the 1º endpoint, all additional efficacy analyses, although prespecified, should be considered as de facto exploratory 915 and 736 pts discontinued the study Rx in the ranolazine and PC arms, respectively.

1º indicates primary; 2º, secondary; ACS, acute coronary syndrome; AF, atrial fibrillation; CV, cardiovascular; diff, difference; ECG, electrocardiograph; ESRD, end-stage renal disease; Hx, history; IV, intravenous; MI, myocardial infarction; NS, not significant; NSTE, non-ST-elevation; NSTE-ACS, non-ST-elevation acute coronary syndrome; pts, patients; RCT, randomized controlled trial; revasc, revascularization; Rx, prescription; SA, stable angina; STE, ST-elevation; Sx, symptoms; SVT, sustained ventricular tachycardia; and VT, ventricular tachycardia.
Table: Inhibitors of the Renin-Angiotensin-Aldosterone System (Section 4.2)

Data Supplement 14

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Type</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Primary Endpoint (Efficacy) and Results</th>
<th>Safety Endpoint and Results</th>
<th>Secondary Endpoint and Results</th>
<th>P Values, OR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAVE Pfeffer, 1992 1386652 (120)</td>
<td>Captopril on events in AMI with LV dysfunction</td>
<td>Multi-institute prospective</td>
<td>2,231</td>
<td>Captopril 1,119</td>
<td>PC 1,116</td>
<td>3 d after AMI LVEF ≤ 4% 21–79 y.</td>
<td>Captopril for 42 mo</td>
<td>PC All-cause mortality reduced in captopril group vs. PC (20% vs. 25%) Reduction of MACE by 21%</td>
<td>No prospective safety evaluators</td>
<td>Reduction of CV death by ACEI 37% Reduction of severe HF by 22% Reduction of recurrent MI by 25%</td>
<td>All-cause mortality reduction by ACEI 19% (95% CI: 3%– 32%); p=0.019 MACE: 21% (95% CI: 5–35); p=0.014 CV deaths 37% (95% CI: 20–50); p<0.001 Recurrent MI: 25% (95% CI: 5–40); p=0.015</td>
</tr>
<tr>
<td>Ambrosioni, 1995 7990904 (121)</td>
<td>ACEI for short-term events</td>
<td>Multi-institute prospective</td>
<td>1,556</td>
<td>Zofenopril 772</td>
<td>PC 784</td>
<td>CCU with AMI</td>
<td>Contraindication to ACEI ACEI for 6 wk</td>
<td>PC 6-wk death or severe HF reduced by 34% with ACEI</td>
<td>N/A 1-y death rate reduced by ACEI 29%; p=0.011</td>
<td>6-wk death reduction: 34% (95% CI: 8%– 54%); p=0.018 MACE: 46% (95% CI: 11–71); p=0.018</td>
<td>Side effects: 6.8% PC, 8.6% ACEI No use of initial IV ACEI to see beneficial or adverse effects.</td>
</tr>
<tr>
<td>CONSENSUS II Swedberg, 1992 1495520 (122)</td>
<td>Long-term reduction in mortality with ACEI</td>
<td>Multi-institute prospective</td>
<td>6,090</td>
<td>Enalapril 3,044</td>
<td>PC 3,046</td>
<td><24 h after onset of chest pain with ECG/ enzyme changes</td>
<td>Enalapril for 6 mo</td>
<td>PC 1- and 6-mo mortality unchanged with enalapril vs. PC 7.2% vs. 6.3% 1 mo 11.0% vs. 10.2% 6 mo</td>
<td>Death due to HF 4.3% ACEI 3.2% PC p=0.06</td>
<td>Change in therapy due to HF increased in PC group. p=0.006 NS diff in reinforcements or rehospitalizatio n due to HF</td>
<td>Mortality: p=0.26</td>
</tr>
<tr>
<td>ACEI MI Coll. Group 1998 9631869 (123)</td>
<td>Use of ACEI in early AMI</td>
<td>Meta-analysis of 4 clinical trials</td>
<td>98,496</td>
<td>ACEI roughly 1/2</td>
<td>PC roughly 1/2</td>
<td>AMI-early short-term trials>1,000 pts</td>
<td>Smaller trials, no control group</td>
<td>ACEI from 28–42 d</td>
<td>30-d mortality reduction 7% by ACEI</td>
<td>Hypotension less common in ACEI vs. controls 9.3 vs. 17.6%</td>
<td>Absolute benefit highest in Killip 2, 3 anterior MI 30-d mortality reduction 7% (95% CI: 2%– 11%); p<0.004 HF reduction 14.6% vs. 15.2%</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Table 1: Effect of Treatment on Mortality

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment</th>
<th>Population</th>
<th>Baseline</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Risk Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIREX Hall, 1997</td>
<td>Cumulative Mortality 3 y after end of AIRE trial of MI with HF</td>
<td>603 in initial AIRE trial of 15 mo</td>
<td>RAMII 302</td>
<td>AMI with evidence of HF</td>
<td>Clinical instability, contraindication to ACEI, HF of valvular or congenital HD, need for open label ACEI \</td>
<td>Ramipril beginning 2-9 d after admission and up to 15 mo with 3-yr follow-up poststudy</td>
</tr>
<tr>
<td>Squire, 2010</td>
<td>Benefit of BNP in use of ACEI in ACS</td>
<td>Observation cohort study retrospective</td>
<td>1,725</td>
<td>ACEI in all or ARB in some cases</td>
<td>Various levels of BNP</td>
<td>ACEI or ARB median serum BNP 528 d follow-up</td>
</tr>
<tr>
<td>Pfeiffer, 2003</td>
<td>Effect of ACEI and ARB combination in AMI with HF/LV Dysfunction</td>
<td>Multicenter prospective trial</td>
<td>14,703</td>
<td>Valsartan 4,909</td>
<td>AMI 0.5–10 d HF and/or LVEF <0.35 by echo or <0.40 by RN</td>
<td>Low BP mean Creatinine >2.5</td>
</tr>
<tr>
<td>Pitt, 2003</td>
<td>Effect of eplerenone in AMI with LV dysfunction</td>
<td>Multicenter prospective trial</td>
<td>6,632</td>
<td>Eplerenone 3,319</td>
<td>AMI 3-14 d after AMI LVEF ≤0.40 CHF on ACEI, BB, K+ sparing diuretics use: Creatinine >2.5 K+≥5 meq/L</td>
<td>Eplerenone mean follow-up 16 mo</td>
</tr>
</tbody>
</table>

Notes:
- **BNP**: B-type natriuretic peptide
- **ACEI**: Angiotensin-converting enzyme inhibitor
- **ARB**: Angiotensin receptor blocker
- **AMC**: Acute myocardial infarction
- **HF**: Heart failure
- **CV**: Cardiovascular
- **MACE**: Major adverse cardiovascular events
- **HR**: Hazard ratio
- **CI**: Confidence interval
- **N/A**: Not applicable

© American Heart Association, Inc and American College of Cardiology Foundation
<table>
<thead>
<tr>
<th>Year</th>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Follow-up</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Gheorghiade</td>
<td>Retrospectiv analysis of prospective multicenter trial</td>
<td>6,332; 827 with subsequent hospital readmission</td>
<td>Eplerenone 3,319</td>
<td>Reduction of death or rehospitalization by eplerenone</td>
</tr>
<tr>
<td>2012</td>
<td>Rossignol</td>
<td>Prospective cohort study</td>
<td>100</td>
<td>Eplerenone 50</td>
<td>Change in LV systolic volume after covariate adjusted volume fell by 6.1±2.7 mL/m² vs. PC</td>
</tr>
<tr>
<td>2011</td>
<td>Wei, 2009</td>
<td>Multicenter study of eplerenone effects on LV after MI</td>
<td>6,080</td>
<td>Eplerenone 3,055</td>
<td>Interaction between diuretic effects and K+ sparing effects of eplerenone and benefit of CV outcome</td>
</tr>
<tr>
<td>2011</td>
<td>Rossignol, 2012</td>
<td>Multicenter prospective trial</td>
<td>5,792</td>
<td>Eplerenone 2,918</td>
<td>Serial changes in eGFR EP had a decline in eGFR from 1st mo and persisted throughout study</td>
</tr>
<tr>
<td>1994</td>
<td>GISSI-3, 1994</td>
<td>Multicenter prospective trial</td>
<td>18,885</td>
<td>Lisinopril 9,435</td>
<td>Deaths and combined deaths and LV dysfunction</td>
</tr>
</tbody>
</table>

Effect of eplerenone on readmission hospital stay after MI with LV dysfunction

Mechanism of eplerenone benefit in AMI

Eplerenone effects on renal function after AMI

Effect of ACEI on mortality and LV function
<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type / Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Adverse Events</th>
<th>Study Limitations</th>
</tr>
</thead>
</table>
| ISIS-4, 1995 7661937(86) | Effect of ACEI on 5-wk mortality after AMI | Multicenter prospective trial | 58,050 Captopril 29,028 | PC 29,022 | In CCU within 24 h of chest pain | Hypotension, cardiogenic shock, fluid depletion Captopril 50 mg bid for 28 d | PC 5-wk mortality lower with ACE inhibitor | Rates of hypotension increased with ACEI, renal dysfunction No excess of deaths with lower BPs on ACEI | Somewhat fewer deaths 1st 2 d of treatment with ACEI vs. PC | 5-wk mortality 7.19% ACI vs. 7.69% PC 2p=0.02 | Possible competing effects of magnesium and nitrates in regard to results

ACS indicates acute coronary syndrome; ACEI, angiotensin-converting enzyme inhibitor; AIRE Trial, Acute Infarction Ramipril Efficacy Trial; AMI, acute myocardial infarction; ARB, angiotensin receptor blocker; AV block, atrioventricular block; BB, beta blocker; bid, twice a day; BNP, B-type Natriuretic Peptide; BP, blood pressure; CCU, cardiac care unit; CHF, congestive heart failure; CV, cardiovascular; diff, difference(s); D/C, discharge; ECG, electrocardiograph; eGFR, estimated glomerular filtration rate; EP, eplerenone; HD, heart disease; HF, heart failure; IV, intravenous; LV, left ventricular; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac events; MI, myocardial infarction; MMP-2, matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-9; MRI, magnetic resonance imaging; NS, no(t) significance; NSTE-ACS, non-ST-elevation acute coronary syndrome; NT-pro-BNP, N-terminal pro-brain natriuretic peptide; PC, placebo; pts, patients; RN, radionuclide; and TTE, transthoracic echocardiography.

Data Supplement 15. Oral and Intravenous Antiplatelet Therapy in Patients With Likely or Definite NSTE-ACS Treated With Initial Invasive or Conservative Strategy (Section 4.3.1)
<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Methods</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURE / Yusuf 2001 11519503 (133)</td>
<td>Compare efficacy and safety of the early and long-term use of clopidogrel plus ASA with those of ASA alone in pts with ACS and no STE</td>
<td>Randomized, double-blind, PC trial N=12,562 pts, Clopidogrel vs. PC in addition to ASA</td>
<td>Pts with major bleeding 3.7% vs. 2.7%, p=0.001 RR: 1.38</td>
<td>Clopidogrel was not associated with excess rate of any other type of adverse event that necessitated discontinuation of study drug</td>
</tr>
<tr>
<td>PLATO / Mahaffey 2011 21709065 (134)</td>
<td>Prespecified subgroup analysis showed significant interaction between treatment and region (p=0.045), with less effect of ticagrelor in NA than in ROW. Exploratory analyses performed to identify potential explanations for observed region-by-treatment interaction.</td>
<td>Observed regional interaction driven by interaction of randomized treatment with 76% of NA pts in US compared with ROW pts (p=0.01 vs. p=0.045 for interaction using NA). Analyses focus on comparison of US and ROW, with Canadian pts included in ROW group.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Gremmel 2010</td>
<td>Investigate age dependency of Prospective observational Clopidogrel and age</td>
<td>Pts on dual antiplatelet therapy, Known acetylsalicylic acid or LD of 300 mg (n=116; 60.7%) ADP-inducible platelet reactivity increased</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
CAPRIE 1996
19818001
(135)
clopidogrel mediated platelet inhibition

19818001
(135)
clopidogrel mediated platelet inhibition

study N=191 pts

after angioplasty and stenting for CVD
clopidogrel intolerance (allergic reactions and gastrointestinal bleeding), therapy with VKA (warfarin, phenprocoumon and acenocoumarol), treatment with ticlopidine, dipyridamol or NSAID, a family or personal Hx of bleeding disorders, malignant paraproteinemias, myeloproliferative disorders or heparin-induced thrombocytopenia, severe hepatic failure, known qualitative defects in thrombocyte function, a major surgical procedure within 1 wk before enrollment, a platelet count <100,000 or >450,000 1L-1 and hematocrit <30%.

or 600 mg (n=50; 26.2%) of clopidogrel prior intervention followed by 75 mg of clopidogrel odPts received daily acetylsalicylic acid therapy (100 mgqd).

linearly with age after adjustment for CV risk factors, type of intervention, medication, CRP and renal function (using LTA 0.36% of maximal aggregation per y, 95% CI: 0.08–0.64%; p=0.013; using the VerifyNow P2Y₁₂ assay 3.2 P2Y₁₂ reaction units (PRU) per y, 95% CI: 1.98–4.41 PRU; p<0.001. ADP-inducible platelet reactivity significantly higher in pts 75 y or older compared with younger pts (p=0.003 for LTA and p<0.001 for VerifyNow P2Y₁₂ assay). High on-treatment residual ADP-inducible platelet reactivity significantly more common among pts 75 y or older (p=0.02 for LTA and p<0.001 for VerifyNow P2Y₁₂ assay).

there were no major differences in terms of safety

reported adverse experiences in the clopidogrel and ASA groups judged to be severe included rash (0.26% vs. 0.10%), diarrhoea (0.23% vs. 0.11%), upper gastrointestinal

© American Heart Association, Inc and American College of Cardiology Foundation
recent ischaemic stroke, recent MI, or PAD.

angiography;Pts unlikely to be discharged after qualifying event; Severe comorbidity likely to limit pts life expectancy to less than 3 y. Uncontrolled hypertension, Scheduled for major surgery, Contraindications to study drugs; Women of childbearing age not using reliable contraception, Currently receiving investigation drug; Previously entered in other clopidogrel studies.

0.3-16.5). Corresponding on-treatment analysis yielded RR reduction of 9.4%.

discomfort (0.97% vs. 1.22%), intracranial haemorrhage (0.33% vs. 0.47%), and gastrointestinal haemorrhage (0.52% vs. 0.72%). 10 pts (0.10%) in clopidogrel group with significant reductions in neutrophils (<1.2 x 10(9)/L) and 16 (0.17%) in ASA group.

Provide diagnostic strategy for evaluating and treating pts with ASA sensitivity, with additional consideration for issues specific to pts with CAD.

Prevalence of ASA-exacerbated respiratory tract disease approximately 10% and for ASA-induced urticaria prevalence varies 0.07% to 0.2% of general population. ASA sensitivity most often manifested as rhinitis and asthma or urticaria/angioedema induced by cross-reacting NSAID that inhibit cyclooxygenase 1. 1st mechanism of sensitivity less often related to drug-specific IgE antibody production leading to
urticaria/angioedema and rarely to anaphylaxis. Most pts with acetylsalicylic acid sensitivity are able to undergo desensitization therapy safely and successfully except in cases of chronic idiopathic urticaria. Experience with acetylsalicylic acid desensitization in pts with CAD very limited.

TRITON – TIMI 38
Wiviott 2007
17982182
(138)

Compare regimens of prasugrel and clopidogrel
N=13,608 pts with ACS with scheduled PCI

Prasugrel n=6813 (60 mg LD and 10 mg qd maintenance dose) or Clopidogrel n=6795 (300 mg LD and 75 mg qd maintenance dose), for 6-15 mo

Pts with UA NSTEMI, TIMI risk score ≥3, either ST-segment deviation of 1 mm or more or elevated levels of a cardiac biomarker of necrosis. Pts with STEMI could be enrolled within 12 h after onset of Sx if 1st PCI was planned or within 14 d after receiving medical treatment for STEMI

Increased risk of bleeding, anemia, thrombocytopenia, a Hx of pathologic intracranial findings, or use of any thienopyridine within 5 d before enrollment.

Prasugrel or clopidogrel

Death from CV causes, nonfatal MI, or nonfatal stroke

12.1% clopidogrel vs 9.9% prasugrel

Rates of MI

9.7% clopidogrel vs. 7.4% prasugrel; p<0.001

Urgent target-vessel revasc

3.7% vs. 2.5%; p<0.001

Stent thrombosis

2.4% vs. 1.1%; p<0.001

Major bleeding

2.4% prasugrel vs. 1.8% clopidogrel

HR: 1.32; 95% CI: 1.03–1.68; p=0.03

Rate of life-threatening bleeding

1.4% vs. 0.9%; p=0.01

Including Stent thrombosis and composite of death from CV causes, nonfatal MI, nonfatal stroke, or rehospitalization due to a cardiac ischemic event.

Rate of MI with subsequent death from CV causes

0.7% vs. 0.4% HR: 0.58; CI:0.36 - 0.93; p=0.02

N/A

p<0.001

HR: 0.81

CI: 0.73 - 0.90

More pts treated with prasugrel 2.5% vs. 1.4% clopidogrel; p<0.001

Discontinued the study drug owing to adverse events related to hemorrhage; rate of serious adverse events not related to hemorrhage was similar 22.5% vs 22.8% p=0.52

More pts treated with prasugrel 2.5% vs. 1.4% clopidogrel; p<0.001
Determine whether ticagrelor is superior to clopidogrel for the prevention of vascular events and death in broad population of pts presenting with ACS.

N=18,624 pts with ACS with or without STE

Hospitalized for ACS with or without STE; with an onset of Sx during the previous 24 h. Pts who had ACS NSTE at least 2 of the following 3 criteria had to be met: ST changes on ECG indicating ischemia; positive test of biomarker, indicating myocardial necrosis; one of several risk factors (age≥60 y; previous MI or CABG; CAD with stenosis of ≥50% in at least 2 vessels; previous ischemic stroke, TIA, carotid stenosis of at least 50% or cerebral revasc; DM; PAD; chronic renal dysfunction, defined as a creatinine clearance of <60 ml/min per 1.73 m2 of body surface area with STE in the following 2 inclusion

Any contraindication against the use of clopidogrel, fibrinolytic therapy within 24 h before randomization, a need for oral anticoagulation therapy, an increased risk of bradycardia, and concomitant therapy with a strong cytochrome P-450 3A inhibitor or inducer

Ticagrelor or clopidogrel

Composite of death from vascular causes, MI, or stroke 9.8% of pts receiving ticagrelor vs 11.7% clopidogrel (HR: 0.84; 95% CI: 0.77–0.92; p<0.001).

Major bleeding 11.6% vs 11.2%, p=0.43 ticagrelor was associated with a higher rate of major bleeding not related to CABG 4.5% vs. 3.8%, p=0.03, including more instances of fatal intracranial bleeding and fewer of fatal bleeding of other types

MI alone 5.8% vs. 6.9%, p=0.005
Death from vascular causes 4.0% vs. 5.1%, p=0.001
Stroke alone 1.5% vs. 1.3%, p=0.22
The rate of death from any cause 4.5% vs. 5.9%, p<0.001

Discontinuation of the study drug due to adverse events 7.4% ticagrelor vs 6.0% clopidogrel p<0.001
Dyspnea 13.8% vs. 7.8%, Higher incidence of ventricular pauses in 1 wk but not at 30 d in ticagrelor group than clopidogrel group

Geographic differences between populations of pts or practice patterns influenced the effects of the randomized treatments

Nonfatal bleeding 1.1% vs. 0.9%, HR: 1.25; p=0.23
Fatal bleeding 0.4% vs. 0.1%, p<0.002

Major bleeding 11.6% vs 11.2%, p=0.43 ticagrelor was associated with a higher rate of major bleeding not related to CABG 4.5% vs. 3.8%, p=0.03, including more instances of fatal intracranial bleeding and fewer of fatal bleeding of other types

MI alone 5.8% vs. 6.9%, p=0.005
Death from vascular causes 4.0% vs. 5.1%, p=0.001
Stroke alone 1.5% vs. 1.3%, p=0.22
The rate of death from any cause 4.5% vs. 5.9%, p<0.001

Discontinuation of the study drug due to adverse events 7.4% ticagrelor vs 6.0% clopidogrel p<0.001
Dyspnea 13.8% vs. 7.8%, Higher incidence of ventricular pauses in 1 wk but not at 30 d in ticagrelor group than clopidogrel group
<p>| Mehta 2010 | Clopidogrel and ASA are widely used for pts with ACS and those undergoing PCI. However, evidence-based guidelines for dosing have not been established for either agent. | N=25,086 pts | Pts randomly assigned to double-dose clopidogrel received 600 mg LD followed by 150 mg od d 2-7. Pts assigned to standard-dose clopidogrel received 300 mg LD before angiography followed by 75 mg od days 2-7. D 8-30 both double-dose and standard-dose groups received 75 mg of clopidogrel od. Pts randomly assigned to lower-dose ASA received 75-100 mg daily on d 2-30. Those | ≥18 ynd presented with a NSTE, ACS or STE MI. Either ECG changes compatible with ischemia or elevated levels of cardiac biomarkers; coronary angiographic assessment, with plan to perform PCI as early as possible but no later than 72 h after randomization | Increased risk of bleeding or active allergy to clopidogrel or ASA | Time to CV death, MI, or stroke whichever occurred 1º, up to 30 d. Primary outcome occurred in 4.2% of pts assigned to double-dose clopidogrel compared with 4.4% assigned to standard-dose clopidogrel HR: 0.94, 95% CI: 0.83–1.06 p=0.30 NS difference between higher-dose and lower-dose ASA respect to 1º outcome 4.2% vs. 4.4% HR: 0.97; 95% CI: 0.86–1.09; p=0.61 | Major bleeding occurred in 2.5% of pts in double-dose group and 2.0% in standard-dose group HR: 1.24; 95% CI: 1.05–1.46; p=0.01 NS difference between higher-dose and lower-dose ASA with respect to major bleeding (2.3% vs. 2.3%; HR: 0.99; 95% CI: 0.84–1.17; p=0.30). | Composite of death from CV causes, MI, stroke, or recurrent ischemia; the individual components of 1º outcome; death from any cause; Definite or probable stent thrombosis. Double-dose clopidogrel associated with significant reduction in 2º outcome of stent thrombosis among the 17,263 pts who underwent PCI (1.6% vs. 2.3%; HR: 0.68; 95% CI: 0.55–0.85; p=0.001). | p=0.30 HR=0.94 CI=0.83–1.06 | N/A | Nominally significant reduction in 1º outcome was associated with use of higher-dose clopidogrel in subgroup of 17,263 study participants who underwent PCI after randomization (69%). Test for interaction between pts who underwent PCI and those who did not undergo PCI (p=0.03) did not meet prespecified threshold of p=0.01 for subgroup interactions. 13 prespecified subgroup analyses were performed for the clopidogrel dose comparison; this |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plato James 2011 21685437 (141)</td>
<td>Evaluate efficacy and safety outcomes in pts in PLATElet inhibition and pts outcomes (PLATO) trial who at randomization were planned for a non-invasive treatment strategy.</td>
<td>Randomized N=5216 pts</td>
<td>Ticagrelor n=2601 vs clopidogrel n=2615</td>
<td>Admitted to hospital with STE ACS scheduled for PCI or NSTE-ACS, with onset of Sx during the previous 24 h. At least two of the following three criteria were required for NSTE-ACS: STE depression or transient elevation of at least 1 mm in ≥2 contiguous leads; a positive biomarker indicating myocardial necrosis; and 1 additional risk indicator, including age >60 y, previous MI or CABG, CAD, previous ischaemic stroke, TIA, carotid stenosis, cerebral revasc, DM, PAD, or chronic renal dysfunction</td>
<td>Contraindication to clopidogrel, fibrinolytic treatment within 24 h, need for oral anticoagulation treatment, need for dialysis, and clinically important anaemia or thrombocytopenia</td>
</tr>
<tr>
<td>ISAR-REACT 2 Kastrati 16539398 (142)</td>
<td>Assess whether abciximab is associated with clinical benefit in high-risk pts with ACS undergoing PCI after</td>
<td>Randomized N=2,022 pts</td>
<td>Abciximab n=1012 vs PCn=1010</td>
<td>High-risk ACS pts undergoing PCI</td>
<td>STE-AMI</td>
</tr>
</tbody>
</table>

Cannot exclude possibility that greater benefit from abciximab might have been present had therapy been initiated.
Pretreatment with 600 mg of clopidogrel

<table>
<thead>
<tr>
<th>PURSUIT Trial 2010</th>
<th>Inhibition of platelet aggregation with eptifibatide would have incremental benefit beyond that of heparin and ASA in reducing frequency of adverse outcomes in pts with ACS who did not have persistent STE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double blind N=10,048 pts</td>
<td>Bolus and infusion of eptifibatide or PC n=1487 low-dose eptifibatide group n=4722 high-dose eptifibatide group n=4739 PC group</td>
</tr>
<tr>
<td>Pts who had presented with ischemic chest pain within previous 24 h and who had either ECG changes indicative of ischemia (but not persistent STE) or high serum concentrations of CK-MB isoenzymes</td>
<td>Persistent STE of more than 1 mm, active bleeding or a Hx of bleeding diathesis, gastrointestinal or genitourinary bleeding within 30 d before enrollment, systolic blood pressure above 200 mmHg or diastolic blood pressure above 110 mmHg, a Hx of major surgery within the previous 6 wk, a Hx of nonhemorrhagic stroke within previous 30 d or any Hx of hemorrhagic stroke, renal failure, pregnancy, the planned administration of platelet GP IIb/IIIa receptor inhibitor or thrombolytic agent, or receipt of</td>
</tr>
<tr>
<td>Eptifibatide or PC bolus dose of 180 mcg/kg of body weight, followed by infusion of 1.3 mcg/kg/min or bolus dose of 180 mcg/kg followed by infusion of 2.0 mcg/kg/min or bolus and infusion of PC</td>
<td>Composite of death and nonfatal MI occurring up to 30 d after index event compared with PC group. Eptifibatide group had 1.5% absolute reduction in incidence of 1st endpoint (14.2% vs. 15.7% in PC group; p=0.04) Effect was consistent in most major subgroups except for women (odds ratios for death or nonfatal MI, 0.8 (95% CI: 0.7-0.9) in men and 1.1 (95% CI: 0.9-1.3) in women</td>
</tr>
<tr>
<td>Bleeding complications More red-cell transfusions among the pts treated with eptifibatide 11.6% vs. 9.2%; RR: 1.3; 95% CI: 1.1-1.4</td>
<td></td>
</tr>
<tr>
<td>Study would be stopped in lower-dose group after independent DSMB conducted interim review of safety data, provided the higher dose had acceptable safety profile. After 3,218 pts been</td>
<td></td>
</tr>
<tr>
<td>Bleeding was more common in eptifibatide group, although there was no increase in the incidence of hemorrhagic stroke.</td>
<td></td>
</tr>
</tbody>
</table>

Heparin, 70 U/kg or PC (PC bolus and infusion of 12 h, plus heparin bolus, 140 U/kg). All pts received clopidogrel 600 mg at least 2 h prior to procedure as well as need for transfusion.

Mortality from all causes within 30 d after the index event, a 1st or recurrent MI within 30 d, composite endpoint (death or nonfatal MI) at 96 h and 7 d

P=0.04

earlier prior to the cath lab
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRISM-PLUS (1998)</td>
<td>Double-blind</td>
<td>N=1915 pts</td>
<td>Tiopiban, heparin, or tiopiban plus heparin</td>
<td>Prolonged anginal pain or repetitive episodes of angina at rest or during minimal exercise in previous 12 h and new transient or persistent ST-T ischemic changes on ECG, or elevation of plasma levels of CK and CK-MB fraction</td>
</tr>
<tr>
<td>Eptifibatide, tirofiban, or tiopiban plus heparin</td>
<td>STE lasting more than 20 min, thrombolysis in previous 48 h, coronary angioplasty within previous 6 h or bypass surgery within previous mo, angina caused by identifiable factors, a Hx of a platelet disorder or thrombocytopenia, active bleeding or a high risk of bleeding, and stroke within previous y. Pts who had serum creatinine values above 2.5 mg/dL (220 μmol/L) or a platelet count below 150,000/m3</td>
<td>Death, MI, or refractory ischemia within 7 d lower among pts who received tiopiban plus heparin than among those who received heparin alone (12.9% vs. 17.9%; RR: 0.68; 95% CI: 0.53–0.88; p=0.004). Study was stopped prematurely for group receiving tiopiban alone because of excess mortality at 7 d (4.6%, compared with 1.1% for pts treated with heparin alone)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EARLY ACS Giugliano 2009</td>
<td>Randomized</td>
<td>N=9492 pts</td>
<td>Early, routine administration of Eptifibatide n=4722 vs. delayed Eptifibatide n=4684</td>
<td>Composite of death, MI, or recurrent ischemia requiring urgent revasc or occurrence of thrombotic complication during PCI at 96 h (12% ±SD) of 71.3±20 h, during which time coronary angiography and angioplasty were performed when indicated after 48 h</td>
</tr>
<tr>
<td>ACS NSTEMI undergoing invasive strategy</td>
<td>Pts ACS NSTEMI undergoing invasive procedure</td>
<td>N/A</td>
<td>Early, routine administration of Eptifibatide or delayed Eptifibatide after angiography but before the pts underwent PCI</td>
<td></td>
</tr>
</tbody>
</table>

Convergence of use of epifibatide during PCI in 2 study groups probably reduced the difference in efficacy. Could not assign pts to strict PC group since guidelines |
<table>
<thead>
<tr>
<th>BRILINTA™ (ticagrelor) tablets</th>
<th>BRILINTA is indicated to reduce rate of thrombotic CV events in pts with ACS, UA, NSTEMI or STEMI</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily maintenance dose of ASA, coadministered with BRILINTA, should not exceed 100 mg</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Increased risk of bleeding</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Decreased efficacy with BRILINTA (ticagrelor) in</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<p>| ACUITY subgroup analysis | Assess anticoagulation with the direct thrombin inhibitor bivalirudin during PCI in individuals with moderate- and high-risk ACS | Randomized N=7789 pts | n=2561 heparin (unfractionated or enoxaparin) plus GP IIb/IIIa inhibitors | n=2609 bivalirudin plus GP IIb/IIIa inhibitors | n=2619 bivalirudin alone | Pts undergoing PCI after angiography, new ST-segment depression; raised TnI, TnT, or CK-MB isoenzyme; known CAD; or all 4 other UA risk criteria defined by TIMI study group | Included - STE AMI or shock; bleeding diathesis or major bleeding episode within 2 wk; thrombocytopenia; CrCl <30 mL/min | Heparin (unfractionated or enoxaparin) plus GP IIb/IIIa inhibitors, bivalirudin plus GP IIb/IIIa inhibitors, or bivalirudin alone | 30-d endpoints of composite ischemia (death, MI, or unplanned revasc for ischemia), major bleeding, and net clinical outcomes (composite ischemia or major bleeding) Bivalirudin plus GP IIb/IIIa inhibitors vs. heparin plus GP IIb/IIIa inhibitors - composite ischemia 9% vs. 8%; major bleeding 8% vs. 7%; net clinical outcomes 15% vs. 13% | N/A | N/A | Composite ischemia p=0.16; major bleeding p=0.32; net clinical outcomes p=0.1 | N/A | Randomization occurred before angiography, study drugs were administered at median of 4 h before PCI. PCI subgroup represents subset of 56% of all pts enrolled in ACUITY, and randomization was not stratified by treatment assignment |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Intervention</th>
<th>Primary Outcome</th>
<th>Comparison</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUSTO IV-ACS Ottervange 2003 12551868 (148)</td>
<td>Investigate long term effects of GP IIb/IIIa inhibitor abciximab in pts with ACS without STE who were not scheduled for coronary intervention</td>
<td>Randomized N=7800 pts n=2612 abciximab for 48 h n=2596 PC</td>
<td>Pts with ACS without persistent STE including NSTEMI and UA ≤ 21 y and should have had ≥2 episodes of angina lasting at least 5 min within 24 h before admission. Either abnormal cardiac TnT or TnI test or ≥0.5 mm of transient or persistent ST-segment depression.</td>
<td>Abciximab for 24-h (0.25 mg/kg bolus followed by 0.125 mcg/kg/min infusion up to max of 10 mcg/min for 24 h), followed by 24-h PC infusion; abciximab for 48 h (same bolus and infusion for total duration of 48 h); matching PC (bolus and 48-h infusion)</td>
<td>Death (of any cause) or MI within 30 d</td>
<td>Follow-up data obtained up to 1 y for 7746 pts (99.3%). Overall 1-y mortality rate 8.3% (649 pts). 1-y mortality was 7.8% PC, 8.2% in the 24-h abciximab, and 9.0% in 48-h abciximab</td>
</tr>
<tr>
<td>PCI-CURE Melita 2001 11520521 (149)</td>
<td>Find out whether in addition to ASA pretreatment with clopidogrel followed by long-term therapy after PCI is superior to strategy of no pretreatment and short-term therapy for only 4 wk after PCI</td>
<td>Randomized N=2658 pts clopidogrel (n=1313) or PC (n=1345)</td>
<td>Composite of CV death, MI, or urgent target-vessel revasc within 30 d of PCI. 4.5% vs. 6.4% Long-term administration of clopidogrel after PCI associated with a lower rate of CV death, MI, or any revasc (p=0.03), and of CV death or MI (p=0.047). Overall (including events before and after PCI) there was 31% reduction CV death or MI (p=0.002). Less use of GP IIb/IIIa inhibitor in clopidogrel group (p=0.001)</td>
<td>Clopidogrel vs. PC</td>
<td>At follow-up, there was NS difference in major bleeding between groups p=0.64</td>
<td></td>
</tr>
</tbody>
</table>

Combination with ASA doses exceeding 100 mg
<p>| Petersen 2004 18056526 (150) | Systematically evaluate endpoints of all-cause death and nonfatal MI, transfusion, and major bleeding observed in the 6 randomized controlled trials comparing enoxaparin and UFH in treatment of ACS | N/A | All 6 RCTs comparing enoxaparin and UFH in NSTE ACS were selected for analysis | N/A | Enoxaparin is more effective than UFH in preventing combined endpoint of death or MI (NS difference found in death at 30 d for enoxaparin vs UFH (3.0% vs. 3.0%; OR: 1.00; 95% CI: 0.85-1.17). Statistically significant reduction in combined endpoint of death or nonfatal MI at 30 d observed for enoxaparin vs. UFH in overall trial populations (10.1% vs 11.0%; OR: 0.91; 95% CI: 0.83-0.99). Statistically significant reduction in combined endpoint of death or MI at 30 d observed for enoxaparin in populations receiving no prerandomization antithrombin therapy (8.0% vs 9.4%; OR: 0.81; 95% CI: 0.70-0.94). | N/A | NS difference found in blood transfusion (OR: 1.01; 95% CI: 0.89-1.14) or major bleeding (OR: 1.04; 95% CI: 0.83–1.30) 7 d after randomization | N/A | 10.1% vs 11.0% OR: 0.81 CI: 0.83–0.99 | N/A | Systematic overviews do not replace RCTs but provide important insights through analyses of totality of data. Trial populations are not identical with respect to baseline characteristics, duration of study treatment, time to revasc, or use of concomitant medical therapies in management of UA/NSTEMI ACS. Imprecision exists in frequency of events as protocols for data collection and definitions of efficacy and safety events varied among studies. Not having the individual pt data from all trials precluded more sophisticated... |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Design</th>
<th>Methods</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINCIPAL TIMI 44
Wiviott 2007
18056526 (150)</td>
<td>Compare prasugrel with clopidogrel</td>
<td>Randomized, double-blind, 2-phase crossover study, N=201 subjects</td>
<td>Prasugrel compared with high-dose clopidogrel in pts ≥18 y and scheduled to undergo cardiac catheterization with planned PCI for MI, any thienopyridine within 5 d, GP IIb/IIIa inhibitor within 7 d or planned use (bailout was permitted), high risk of bleeding, thrombocytopenia, or anemia. Planned PCI for immediate treatment of MI, any thienopyridine within 5 d, GP IIb/IIIa inhibitor within 7 d or planned use (bailout was permitted), high risk of bleeding, thrombocytopenia, or anemia.</td>
<td>1º endpoint of LD phase: prasugrel 60 mg vs. clopidogrel 600 mg was IPA with 20 μmol/L ADP at 6 h (IPA at 6 h significantly higher in subjects receiving prasugrel (mean±SD; 74.8±13.0%) compared with clopidogrel (31.8±21.1%); p<0.0001).</td>
</tr>
<tr>
<td>TRILOGY ACS
Roe 2012
22920930 (151)</td>
<td>Evaluate whether ASA plus prasugrel is superior to ASA plus clopidogrel for long term therapy in pts with UA or MI who were <75 y</td>
<td>Double-blind, randomized trial, N=7243 pts <75 y
N=2083 pts ≥75 y</td>
<td>ASA: prasugrel (10 mg daily) vs. clopidogrel (75 mg qd). Low dose 5 mg of prasugrel versus 75 mg of clopidogrel. ACS consisting of UA or MI without STE. Pts were eligible if selected for final treatment strategy of medical management without revascularization within 10 d after index event. Pts required to have at least one of four risk criteria: an age ≥60 y, presence of DM, previous MI, or previous revascularization. Hx of TIA or stroke, PCI or CABG within the previous 30 d, renal failure requiring dialysis, and concomitant treatment with an oral anticoagulant.</td>
<td>Death from CV causes, MI, or stroke among pts <75 y occurred in 13.9% of prasugrel group and 16.0% of the clopidogrel group (HR prasugrel group: 0.91; 95% CI: 0.79–1.05; p=0.21). Rates of severe and intracranial bleeding similar in 2 groups in all age groups. NS between group differences in frequency of nonhemorrhagic serious adverse events. Prespecified analysis of multiple recurrent ischemic events (all components of 1º endpoint) suggested lower risk for prasugrel among pts <75 y (HR: 0.85; 95% CI: 0.72–1.00; p=0.04).</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Treatment</td>
<td>Results</td>
<td>Conclusion</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>PLATO</td>
<td>Randomized, double-blind, active control</td>
<td>Ticagrelor n=9235 or clopidogrel n=9186 in addition to ASA</td>
<td>Pts admitted to hospital with either STE or NSTE-ACS</td>
<td>PLATO major bleeding (11.6 vs. 11.2%; p=0.43), TIMI major bleeding (7.9 vs. 7.7%, p=0.56) and GUSTO severe bleeding (2.9 vs. 3.1%, p=0.22)</td>
</tr>
<tr>
<td>Valgimigli</td>
<td>Meta analysis of 31 studies involving 20,006 pts</td>
<td>12,874 comparing tirofiban vs. heparin plus EP or bivalirudin alone, and 7132 vs. abciximab</td>
<td>Pts undergoing treatment for various CAD conditions</td>
<td>Compared with abciximab, mortality at 30 d did not differ (OR: 0.90; 95% CI: 0.53–1.54; p=0.70) In overall group tirofiban tended to increase the composite of death or MI (OR=1.18; 95% CI: 0.96–1.45; p=0.11)</td>
</tr>
<tr>
<td>ACUITY</td>
<td>Randomized N=9207 pts</td>
<td>Routine upstream (n=4605) deferred selective (n=4602) GP</td>
<td>Moderate- and high-risk ACS pts undergoing invasive-treatment strategy</td>
<td>Included STE AMI or shock; bleeding diathesis or major bleeding within 2 wk; thrombocytopenia; CrCl <30 mL/min</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Data Supplement 16. Combined Oral Anticoagulant Therapy and Antiplatelet Therapy in Patients With Definite NSTE-ACS (Section 4.3.2)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/ Size (n)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR; RR: & 95 CI</th>
<th>Adverse Events</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURE Yusuf 2001 (133) 11519503</td>
<td>Compare the efficacy and safety of early and long-term use of clopidogrel plus ASA with that of ACS alone in pts with ACS and no STE</td>
<td>Randomized double-blind, PC-controlled trial 12,562 pts</td>
<td>Clopidogrel vs. ASA</td>
<td>Pts were eligible for the study hospitalized within 24 h after the onset of STE and did not have STE</td>
<td>Clopidogrel (300 mg immediately followed by 75 mg once daily) vs. ASA in addition to ASA</td>
<td>Death from CV causes, nonfatal MI, or stroke 9.3% vs. 11.4%</td>
<td>p<0.001 RR: 1.38</td>
<td>p<0.001 RR: 0.80 95% CI: 0.72 — 0.90</td>
<td>Clopidogrel not associated with excess rate of any other type of adverse event that necessitated discontinuation of study drug</td>
</tr>
<tr>
<td>ASPECT-2 van Es 2002</td>
<td>Investigate whether ASA or OACs is more</td>
<td>Randomized N=999 pts</td>
<td>LDASAS n=336, Coumadin-high intensity OAC</td>
<td>Men or nonpregnant women admitted with Established indications for treatment with OAC</td>
<td>LDASAS, high intensity OAC, or combined LDASAS</td>
<td>1st occurrence of MI, stroke, or death 9% vs. 5% vs. 5%</td>
<td>Major bleeding 1% ASA, 1% on OAC</td>
<td>N/A</td>
<td>ASA vs. coumadin HR: 0.55 95% CI:</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Subjects</td>
<td>Interventions</td>
<td>Outcomes</td>
<td>Findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAAS ten Berg 2001 (157) 11319192</td>
<td>Retrospective</td>
<td>N=530 pts</td>
<td>ASA plus coumarins</td>
<td>Thrombotic events - death, MI, target lesion revascularization, and thrombotic stroke; early thrombotic events; bleeding complications</td>
<td>ASA (300 mg LD; then 100 mg qd) and coumarins (acenocoumarol or Sintrom at 6 mg on 1 d, 4 mg on 2 d, 2 mg on 3 d and after)</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karjalainen 2008 (156) 18346963</td>
<td>Retrospective</td>
<td>n=523 pts</td>
<td>All consecutive pts on warfarin therapy referred for PCI in 4 centers with a main policy to IAC before PCI and in 3 centers with a long experience on UAC during PCI</td>
<td>Major bleeding, access-site complications, and MACE (death, MI, target vessel revascularization, and stent thrombosis); Major bleeding 5.0% vs. 1.2%, p=0.02 and after adjusting for propensity score OR: 1.0; 95% CI: 1.0-15.3; p=0.05; Access-site complications 11.3% vs. 5.0%, p=0.01</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective in the long term after ACS, and whether the combination of ASA and OAC offers greater benefit than either of these agents alone, without excessive risk of bleeding

- n=325, combined LDASA and coumadin-moderate intensity OAC
- n=332, combined LDASA and coumadin-moderate intensity OAC

AMIMI or UA within preceding 8 wk

Contraindications for the study drug, planned revascularization procedure, serious comorbidity, increased risk of bleeding, abnormal blood platelets or erythrocytes, anemia, history of stroke, and inability to adhere to the protocol

ASA vs. coumadin

HR: 0.55; 95% CI=0.30-1.00; p=0.0479

ASA vs. combined

HR: 0.50; CI: 0.27-0.92; p=0.03

ASA vs. combined

HR: 0.50; CI: 0.27-0.92; p=0.03

2014 NSTE-ACS Guideline Data Supplements
until intervention) started 1 wk before intervention. Target INR 2.1-4.8 during angioplasty and 6 mo follow-up. INR was measured on the morning before PTCA and daily thereafter until discharge. Episodes (1.3%), and 10 false aneurysms (1.9%) 61 late thrombotic events occurred (11.6%). Optimal AC was an independent predictor of late thrombotic events (RR: 0.33; 95% CI: 0.19-0.57) and was associated with a 0.21 mm (95% CI: 0.17-0.42) larger vessel lumen 6 mo.

<table>
<thead>
<tr>
<th>ACCF/ACG/AHA report</th>
<th>Bhatt 2008 (158)</th>
<th>Not a study but a report with recommendations</th>
<th>N/A</th>
</tr>
</thead>
</table>
| Ruiz-Nodar 2009 (159) | 19246502 | Evaluate the safety and efficacy of use of DES vs. BMS in a cohort of pts with AF. | Retrospective cohort study N=604 pts | DES (n=207) vs. BMS (n=207) | Pts with AF who had undergone PCI with stent | N/A | DES or BMS | All bleeding episodes, thromboembolism, and MACE; i.e. death, AMI, TVF. Incidence density of MACE as well as the incidence of all-cause mortality in both groups was similar. Higher incidence of major bleeding in DES group (2.26 vs. 1.19/10,000 d of exposure; p=0.03) | Major bleeding was higher in the DES group (2.26 vs. 1.19/10,000 d of exposure; p=0.03) Rate of definitive and probable thrombosis was similar in both DES and BMS groups (0.43 vs. 0.06/10,000 d of exposure, p=0.09) | N/A | N/A | N/A | N/A | Limited by its registry design and as well as being the experience of only 2 European centers; study may not be adequately powered enough to detect diff in clinical outcomes; the retrospective design of the study could explain an underreporting of minor
<table>
<thead>
<tr>
<th>Publication</th>
<th>Study Design</th>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lip 2010</td>
<td>Not a study but a summary report</td>
<td>Full consensus document comprehensively reviews published evidence and presents consensus statement on ‘best practice’ antithrombotic therapy guideline for management of antithrombotic therapy in AF pts</td>
<td>N/A</td>
</tr>
<tr>
<td>WARSS Mohr 2001</td>
<td>Investigate whether warfarin, which is effective and superior to ASA in the prevention of cardiogenic embolism, would also prove superior in the prevention of recurrent ischemic stroke in pts with a prior noncardioembolic ischemic stroke</td>
<td>Multicenter, double-blind, randomized</td>
<td>N/A</td>
</tr>
<tr>
<td>CARS Peverill 1997</td>
<td>Commentary</td>
<td>Fixed low-dose warfarin (1-3 mg) combined ASA (80 mg)</td>
<td>N/A</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Participants</td>
<td>Intervention</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Rossini 2008 (163) 19064015</td>
<td>Assess long-term outcomes associated with the use of triple-therapy in pts undergoing coronary stenting and evaluate how these may be affected by targeting INR values to the lower therapeutic range</td>
<td>N=102</td>
<td>Triple antiplatelet therapy ASA and clopidogrel and OAC n=102</td>
</tr>
<tr>
<td>Sarafoff 2008 (164) 18624903</td>
<td>Investigate the efficacy and safety of 2 regimens of antithrombotic AC therapy in pts who present for DES implantation whilst on OAC</td>
<td>N=515 pts</td>
<td>n=306 pts continued OAC (triple therapy) and n=209 pts discontinued OAC (dual therapy)</td>
</tr>
</tbody>
</table>

1º indicates primary; AC, anticoagulants; ACS, acute coronary syndrome; AF, atrial fibrillation; AMI, acute myocardial infarction; ASA, aspirin; BAAAS, Balloon Angioplasty and Anticoagulation Study; BMS, bare metal stents; CV, cardiovascular; DES, drug-eluting stents; diff, difference(s); GOS, Glasgow Outcome Scale; GP, glycoprotein; HF, heart failure; Hx, history; IAC, interrupted anticoagulation; INR, International normalized ratio; IV, intravenous; LDASA, low-dose aspirin; MACE, major adverse cardiac events; MI, myocardial infarction; MACE, mortality; N/A, not applicable; NTE, not applicable; OAC, oral anticoagulants; OR, odds ratio; SRAT, Study of Reporting Acute Coronary Syndrome Therapies; TIMI, Thrombolysis in Myocardial Infarction; TVR, target vessel revascularization; TX, therapy.
Data Supplement 17. Parenteral Anticoagulant and Fibrinolytic Therapy (Section 4.3.3)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type / Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Adverse Events</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATO Mahaffey 2011 (134) 21709065</td>
<td>Prespecified subgroup analysis showed significant interaction between treatment and region (p=0.045), with less effect of ticagrelor in North America than in rest of world. Additional exploratory analyses performed to identify potential explanations for observed region by treatment interaction.</td>
<td>Observed regional interaction driven by interaction of randomized treatment with 78% of North American pts in US compared with the ROW pts (p=0.01 vs. p=0.045 interaction using NA), analyses focus on comparison of US and rest of world with Canadian pts included in the rest of world group.</td>
<td>Reasons for interaction explored independently by 2 statistical groups.</td>
<td>N/A</td>
<td>Regional interaction could arise from chance alone. Results of 2 independently performed analyses identified underlying statistical interaction with ASA maintenance dose as possible explanation for regional difference. Lowest risk of CV death, MI, or stroke with ticagrelor compared with clopidogrel associated with low maintenance dose of concomitant ASA.</td>
<td>Cox regression analyses performed to quantify how much of regional interaction could be explained by pt characteristics and concomitant treatments, including ASA maintenance therapy. Landmark Cox regressions at 8 timepoints evaluated association of selected factors, including ASA dose, with outcomes by treatment. Systematic errors in trial conduct ruled out. Given large number of subgroup analyses performed and that result numerically favoring clopidogrel in at least 1 of 4 prespecified regions could occur with 32% probability, chance alone cannot be ruled out. More pts in US (53.6%) than rest of world (17.7%)</td>
<td>N/A</td>
<td>Both Cox regression with maintenance dose and landmark techniques showed pts taking low-dose maintenance ASA, ticagrelor associated with better outcomes compared with clopidogrel with statistical superiority in ROW and similar outcomes in US cohort.</td>
<td>N/A</td>
</tr>
<tr>
<td>Study</td>
<td>Description</td>
<td>N</td>
<td>Treatment Details</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| PLATO Wallentin 2009 (139) | Determine whether ticagrelor is superior to clopidogrel for prevention of vascular events and death in broad population of pts presenting with ACS | N=18,624 | Pts with ACS with or without STE | Hospitalized for ACS, with or without STE, with onset of Sx during the previous 24 h. Pts who had ACS NSTE, at least two of following three criteria had to be met: ST changes on ECG indicating ischemia; positive test of biomarker indicating myocardial necrosis; or one of several risk factors (age ≥60 y; prev MI or CABG; CAD with stenosis of ≥50% at least 2 vessels; prev ischemic stroke, TIA, carotid stenosis ≥50%, or cerebral revasc; DM; PAD; chronic renal dysfunction, defined as CrCl of <60 mL/min per 1.73 m² of body surface area). With STE following two inclusion criteria had to be met: persistent STE ≥0.1 mV at least 2 contiguous leads or new LBBB, and intention to perform 1º PCI. | Contraindication against use of clopidogrel, fibrinolytic therapy within 24 h before randomization, need for oral anticoagulation therapy, increased risk of bradycardia, and concomitant therapy with strong cytochrome P-450 3A inhibitor or inducer. | Ticagrelor or clopidogrel | Composite of death from vascular causes, MI, or stroke. With ≥9 of pts receiving ticagrelor vs. 11.7% clopidogrel (HR: 0.84; 95% CI: 0.77–0.92; p=0.001). Major bleeding 11.6% vs. 11.2%, p=0.43 Ticagrelor associated with higher rate of major bleeding not related to CABG 4.5% vs. 3.8%, p=0.03, including more instances of fatal intracranial bleeding and fewer fatal bleeding of other types. Death from vascular causes 4.0% vs. 5.1%, p=0.001 Stroke alone 1.5% vs. 1.3%, p=0.22 Rate of death from any cause 4.5% vs. 5.9%, p=0.001. Major bleeding 5.8% vs. 6.9%, p=0.005 Death from vascular causes 4.0% vs. 5.1%, p=0.001 Stroke alone 1.5% vs. 1.3%, p=0.22 Rate of death from any cause 4.5% vs. 5.9%, p=0.001. | Minor bleeding 11.6% vs. 11.2%, p=0.43 Ticagrelor associated with higher rate of major bleeding not related to CABG 4.5% vs. 3.8%, p=0.03, including more instances of fatal intracranial bleeding and fewer fatal bleeding of other types. Death from vascular causes 4.0% vs. 5.1%, p=0.001 Stroke alone 1.5% vs. 1.3%, p=0.22 Rate of death from any cause 4.5% vs. 5.9%, p=0.001. | Minor bleeding 5.8% vs. 6.9%, p=0.005 Death from vascular causes 4.0% vs. 5.1%, p=0.001 Stroke alone 1.5% vs. 1.3%, p=0.22 Rate of death from any cause 4.5% vs. 5.9%, p=0.001. | Discontinuation of study drug due to adverse events 7.4% ticagrelor vs. 6.0% clopidogrel p=0.01 Dyspnea was 13.8% vs. 7.8% Higher incidence of ventricular pauses in 1 wk but not at 30 d in ticagrelor group than in clopidogrel group. | Geographic differences between populations of pts or practice patterns influenced effects of the randomized treatments.
Clopidogrel and ASA widely used for pts with ACS and those undergoing PCI. Evidence-based guideline for doing not yet been established for either agent.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>Participants</th>
<th>Comparator</th>
<th>Comparison</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACUITY</td>
<td>Randomized</td>
<td>n=2561</td>
<td>Heparin (unfractionated or enoxaparin) plus GP IIb/IIIa inhibitors n=2609</td>
<td>Included - STE AMI or shock; bleeding diathesis or major bleeding episode within 2 wk; thrombocytopenia; CrCl<30 mL/min</td>
<td>Heparin (unfractionated or enoxaparin) plus GP IIb/IIIa inhibitors, bivalirudin plus GP IIb/IIIa</td>
</tr>
</tbody>
</table>

Increased risk of bleeding or active bleeding and known allergy to clopidogrel or ASA

2×2 factorial design pts randomly assigned in double-blind fashion to double-dose regimen of clopidogrel or to standard-dose regimen. 2nd component of factorial design, pts were randomly assigned in open label fashion to higher-dose ASA or lower-dose ASA.

Time to CV death, MI, or stroke, whichever occurred 1st, up to 30 d. Primary outcome occurred in 4.2% of pts assigned to double dose clopidogrel as compared with 4.4% assigned to standard-dose clopidogrel (HR: 0.94; 95% CI: 0.83–1.06; p=0.30).

Major bleeding occurred in 2.5% of pts in double dose group and in 2.0% in standard-dose group (HR: 1.24; 95% CI: 1.05–1.46; p=0.01).

No significant difference between higher-dose and lower-dose ASA with respect to 1º outcome (4.2% vs. 4.4%; HR: 0.97; 95% CI: 0.86–1.09; p=0.61)

Composite of death from CV causes, MI, stroke, or recurrent ischemia; individual components of 1º outcome: death from any cause; Definite or probable stent thrombosis. Double-dose clopidogrel associated with significant reduction in 2º outcome of stent thrombosis among the 17,263 pts who underwent PCI (1.6% vs. 2.3%; HR: 0.68; 95% CI: 0.55–0.85; p=0.001).

ACSITY subgroup analysis

Assess anticoagulatio n with direct thrombin inhibitor bivalirudin during PCI in

Randomized n=7789 pts

Pts undergoing PCI after angiography, ST depression; raised Tn, TnT, or CK-MB isozyme; known CAD; or all 4 other UA risk criteria as defined by TIMI study

Included - STE AMI or shock; bleeding diathesis or major bleeding episode within 2 wk; thrombocytopenia; CrCl<30 mL/min

Heparin (unfractionated or enoxaparin) plus GP IIb/IIIa inhibitors, bivalirudin plus GP IIb/IIIa

30-d endpoints of composite ischemia (death, MI, or unplanned revasc for ischemia), major bleeding, and net clinical outcomes

N/A

N/A

Composite ischemia p=0.16; major bleeding p=0.32; net clinical outcomes p=0.1

Randomization occurred before angiography, study drugs were administered at median of 4 h before PCI. PCI

© American Heart Association, Inc and American College of Cardiology Foundation
| Petersen 2004 (165) | N/A | Systematic overview N=21946 pts ESSENCE, A to Z, and SYNERGY, TIMI 11B, ACUTE II, and INTERACT performed using random effects empirical Bayes model | All 6 RCT comparing enoxaparin and unfractionated heparin in NSTE ACS selected for analysis | N/A | N/A | Combined endpoint of death or MI: enoxaparin more effective than UFH in preventing combined endpoint of death or MI. NS difference found in death at 30 d for enoxaparin vs UFH (3.0% vs 3.0%; OR: 1.00; 95% CI: 0.85–1.17). Statistically significant reduction in combined endpoint of death or nonfatal MI at 30 d observed for enoxaparin vs. UFH in overall trial populations (10.1% vs. 11.0%; OR: 0.91; 95% CI: 0.83–0.99). Statistically significant reduction in combined endpoint of death or MI at 30 d also observed for enoxaparin in populations receiving no prerandomization antithrombin therapy | NS difference was found in blood transfusion (OR: 1.01; 95% CI: 0.89–1.14) or major bleeding (OR, 1.04; 95% CI: 0.83–1.30) at 7 d after randomization | N/A | 10.1% vs. 11.0% OR: 0.91 CI: 0.83-0.99 | N/A | Systematic overviews do not replace RCT but provide important insights through analyses of totality of the data. Trial populations are not identical with respect to baseline characteristics, duration of study treatment, the time to revasc or the use of concomitant medical therapies in management of UA/NSTEMI ACS. Some imprecision exists in frequency of events as protocols for data collection and definitions of efficacy and safety events varied among populations. |

Table:

| Individuals with moderate- and high-risk ACS. | Bivalirudin plus GP IIb/IIIa inhibitors, or n=2619 bivalirudin alone. | Group | Inhibitors, or bivalirudin alone | Composite ischemia or major bleeding | Bivalirudin plus GP IIb/IIIa inhibitors vs. heparin plus GP IIb/IIIa inhibitors - composite ischemia 9% vs. 8%; major bleeding 8% vs. 7%; net clinical outcomes 15% vs. 13% | Subgroup represents subset of 56% of all pts enrolled in ACUITY, randomization not stratified by treatment assignment. |
| Hochman 1999 (166) 10426845 | Evaluate regimens that reduced heparin dosage for low body weight on weight adjusted basis in prospective, nonrandomize d cohort pts with UA and MI who did not receive thrombolytic agents | Nonrandomize d N=80 pts | Heparin Group 1 n=23 Group 2 n=19 Group 3 n=38 | Pts admitted with UA and NSTEMI | Exclusion criteria included Hx of bleeding, Coumadin or thrombolytic therapy, and failure to comply exactly with dosing regimen | Standard (group 1) non weight adjusted 5000-U IV bolus/1000 U/hr infusion. 2 weight adjusted heparin regimens group 2 70 U/kg IV bolus; 15 U/kg/hr pts <70 kg and a fixed 5000-U IV bolus/1000 U/hr for pts who weighed ≥70 kg) (group 3) 80 U/kg IV bolus, 12 U/kg/hr infusion pts <70 kg and capped 4000-U IV bolus; 900 U/hr infusion pts ≥70 kg. | Proportion of pts achieving a target aPTT at 6 h. Pts treated with lower dose of weight adjusted heparin group 2 more often within the target range for aPTT at 6 h (34% vs. 5% vs. 0%) required fewer heparin infusion changes (1.0 ± 1.0 vs. 1.9 ± 1.0 vs. 2.0 ± 0.9) within 1st 24 h compared with other regimens. Pts in groups 1 and 2 above target range at 6 h (95% and 84% compared with 48% in group 3) | N/A | Proportion of pts achieving a target aPTT at 24 h and number of times heparin dose adjusted within 1st 24 h. 52% pts in group 1 within target range compared with 79% in group 2 and 74% in group 3 significantly fewer changes in infusion rate required over 24 h period in group 3 compared with other regimens (1.05 ± 1.0 for group 3 vs. 2. ± 0.9 for group 1 vs. 1.9 ± 1.0 in group 2; p<0.0005). | Significantly higher proportion of pts above target range in groups 1 (95%) and 2 (84%) versus group 3 (47%) (p<0.0005) | No major complications in any group | Pts not randomly assigned, and the 2 weight adjusted regimens were not concurrently tested. At initiation of 2nd weight-adjusted nomogram the target aPTT changed to 45-70 s from 50-75 s |

<p>| Garcia 2012 (167) 22315264 | Pharmacology of approved parenteral anticoagulants including indirect anticoagulants, UFH, LMWH, fondaparinux, and danaparoid, and direct Parenteral Anticoagulants Evidence-Based Clinical Practice Guidelines | N/A |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Primary Endpoint</th>
<th>Secondary Endpoint</th>
<th>Key Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI 11B Antman 1999 (168) 10517729</td>
<td>Randomized N=3910 pts</td>
<td>UFH n=1957 vs. enoxaparin n=1953</td>
<td>Pts with UA/NQMI ischemic discomfort of >5 min duration at rest; Hx of CAD (abnormal coronary angiogram, prior MI, CABG surgery, or PTCA), ST deviation, or elevated serum cardiac markers</td>
<td>Planned revascularization within 24 h, treatable cause of angina, evolving Q-wave MI, Hx of CABG surgery within 2 mo or PTCA within 6 mo, treatment with continuous infusion of UFH for >24 h before enrollment, Hx of heparin-associated thrombocytopenia with or without thrombosis, and contraindications to antiocoagulation</td>
</tr>
<tr>
<td>OASIS-5 trial Mehta 2007 (169) 17964037</td>
<td>Double-blind, randomized 20,078 pts</td>
<td>n=1,414 subcutaneous fondaparinux 2.5 mg od or n=1,420 subcutaneous enoxaparin 1 mg/kg bid</td>
<td>Pts with UA or NSTEMI; at least 2 of following criteria: age >60 y, positive cardiac biomarkers, or ECG changes compatible with ischemia.</td>
<td>Contraindication to low molecular weight heparin, hemorhagic stroke within last 12 mo, indication for anticoagulation other than ACS, revascularization procedure already performed for qualifying event, and severe renal insufficiency</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation

62
<table>
<thead>
<tr>
<th>OASIS-5 Yusuf (170) 1637863</th>
<th>Compare the efficacy and safety of fondaparinux and enoxaparin in high-risk pts with UA or NSTEMI</th>
<th>Randomized, double-blind, double-dummy trial N=20,078 pts</th>
<th>n=10,057 fondaparinux vs. n=10,021 enoxaparin</th>
<th>Pts with UA or NSTEMI, ≥60 y, elevated level of troponin or CK-MB isoenzyme, or ECG changes indicative of ischemia.</th>
<th>Contraindications to low molecular weight heparin, recent hemorrhagic stroke, indications for anticoagulation other than ACS or serum creatinine level of ≥3 mg/dL (265 μmol/L)</th>
<th>Fondaparinux (2.5 mg d) or enoxaparin (1 mg/kg od) for mean of 8 d</th>
<th>Death, MI, or refractory ischemia at 9 d</th>
<th>Rate of major bleeding at 9 d markedly lower with fondaparinux than with enoxaparin (217 events) 2.2% vs. 412 events 4.1%; HR: 0.52; p<0.001</th>
<th>Modest.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUTURA/ OASIS-8 Steg 2010 (171) 20309923</td>
<td>Compare safety of 2 UFH regimens during PCI in high-risk pts with NSTE</td>
<td>Double-blind randomized parallel group N=2,026 pts</td>
<td>Low-dose UFH n=1024 vs. standard-dose UFH n=1002</td>
<td>Pts undergoing PCI within 72 h Hx consistent with new or worsening ischemia, occurring at rest or with minimal activity; <21 y; contraindications to UFH or fondaparinux; contraindications for angiography; pts IV low-dose UFH, 50 U/kg, regardless of use of GpIb-IIIa inhibitors or standard-dose</td>
<td>Composite of major bleeding, minor bleeding, or major vascular access-site complications up to 48 h after PCI</td>
<td>Major bleeding or minor bleeding Major bleeding no difference in minor bleeding</td>
<td>Composite of major bleeding at 48 h 5.8% vs. 3.9%; OR: 1.19; 95% CI: 1.00-2.28; p=0.05 death, MI, or target</td>
<td>Death, MI, or refractory ischemia; and individual components of composite outcomes at 30 d and at end of study NS trend toward lower value in fondaparinux group at 30 d (805 vs. 864, p=0.13) and at end of study (1222 vs. 1308, p=0.06). Fondaparinux associated with significantly reduced number of deaths at 30 d (295 vs. 352; p=0.02) and at 180 d (574 vs. 638; p=0.05)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
acs initially treated with fondaparinux

enrollment within 48 h of most recent Sx; planned coronary angiography, with PCI if indicated, within 72 h; at least 2 of following criteria: >60 y, TnT or Tnl or CK-MB above upper limit of normal; ECG changes compatible with ischemia

requiring urgent coronary angiography due to refractory or recurrent angina associated with dynamic ST changes, HF, life-threatening arrhythmias, hemodynamic instability; treatment with other injectable anticoagulants hemorrhagic stroke within 12 mo; indication for anticoagulation other than aacs; women pregnant, breastfeeding, or of childbearing potential not using contraception; life expectancy <6 mo; receiving experimental pharmacological agent; revasc procedure for qualifying event already performed; creatinine clearance < 20 mL/min.

UFH, 85 U/kg (60 U/kg with GpIIb-IIIa inhibitors), adjusted by blinded ACT

4.7% vs. 5.8% OR: 0.80; 95% CI: 0.54–1.19; p=0.27 0.7% vs. 1.7% OR: 0.40; 95% CI: 0.16–0.97; p=0.04

vessel revasc within 30 d

4.5% vs. 2.9%; OR: 1.58; 95% CI: 0.98–2.53; p=0.06

bleeding from use of low-dose UFH.

Based on observed 5.8% event rate of 1st endpoint, a sample size of 11,542 pts needed to have 80% power to detect 20% RR reduction

Determine commonality of mechanisticall y consistent, stable, and specific phenotype of

N=400

Group 1 (n=40) received regular, immediate release ASA response was assessed 8 h after dosing. Group 2 (n=210) Healthy, nonsmoking volunteers (aged 18–55 y)

N/A

Single oral dose of 325-mg immediate release ASA or enteric coated ASA

Pharmacological resistance to ASA is rare; study failed to identify single case of true drug resistance. Variable absorption caused high frequency of apparent N/A

Pseudoresistance, reflecting delayed and reduced drug absorption, complicates enteric coated but not immediate release ASA

N/A N/A N/A
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>End Points</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUTURA/ OASIS 8 Slag (173)</td>
<td>21146654</td>
<td>Evaluate safety of 2-dose regimens of adjunctive IV UFH during PCI in high-risk pts with NSTE-ACS initially treated with fondaparinux and referred for early coronary angiography.</td>
<td>UA or NSTEMI; be enrolled within 48 h of the onset of most recent episode of Sx; planned coronary angiography with PCI if indicated within 72 h of enrolment; at least 2 of following: age ≥60 y, TnT or TnI or CK-MB above upper limit of normal; ECG changes compatible with ischemia.</td>
<td>Age <21 y; contraindication to UFH or fondaparinux; contraindication for angiography or PCI; subjects requiring urgent (<120 min) coronary angiography because of refractory or recurrent angina associated with dynamic ST changes, HF, life-threatening arrhythmias, and hemodynamic instability; subjects already receiving treatment with other injectable anticoagulants for treatment of qualifying event, unless the last dose was ≥8 h for LMWH, ≥60 min for bivalirudin, ≥90 min for UFH; hemorrhagic stroke</td>
</tr>
</tbody>
</table>

UA or NSTE-ACS initially treated with fondaparinux and referred for early coronary angiography. | 4,000 high-risk pts treated with fondaparinux as initial medical therapy. Within cohort, 2,000 pts undergoing PCI enrolled into double-blind international randomized parallel-group trial evaluating standard ACT-guided doses of IV UFH versus a non-ACT-guided weight-adjusted low dose. | N/A | Composite of peri-PCI major bleeding, minor bleeding, or major vascular access site complications | N/A |

Notes:
- **IFUSA** evaluated safety of 2-dose regimens of adjunctive IV UFH during PCI in high-risk pts with NSTE-ACS initially treated with fondaparinux and referred for early coronary angiography.
- **IFUSA** included 4,000 high-risk pts treated with fondaparinux as initial medical therapy. Within cohort, 2,000 pts undergoing PCI enrolled into double-blind international randomized parallel-group trial evaluating standard ACT-guided doses of IV UFH versus a non-ACT-guided weight-adjusted low dose.
- **IFUSA** assessed the response to single dose of 325 mg enteric coated ASA (up to 49%) but not to immediate release ASA (0%).
within last 12 mo; indication for anticoagulation other than ACS; pregnancy, women who are breastfeeding or childbearing potential who are not using effective method of contraception; comorbid conditions with life expectancy <6 mo; currently receiving an experimental pharmacologic agent; revascularization procedure for qualifying event already performed; and severe renal insufficiency

| ACUITY Stone 2006 (174) | Examine usefulness of bivalirudin as part of early invasive strategy with optimal antiplatelet therapy in pts with acs | Randomized N=13,819 pts | n=4603 UFH or enoxaparin plus a GP IIb/IIIa inhibitor | n=4604 bivalirudin plus GP IIb/IIIa inhibitor | n=4612 bivalirudin alone | Pts with Sx of UA lasting ≥10 min within preceding 24 h eligible for enrollment if one or more following criteria were met: new ST-segment depression or transient elevation of at least 1 mm; elevations in the TnI, TnT, CK-MB levels; known CAD; or all four other variables for predicting TIMI risk scores for UA. | Mi associated with acute STE or shock; bleeding diathesis or major bleeding episode within 2 wk before episode of angina; thrombocytopenia; a calculated creatinine clearance rate of <30 mL/min; recent administration of abciximab, warfarin, fondaparinux, fibrinolytic agents, bivalirudin, ≥2 doses of LMWH; and allergy to any study | UFH or enoxaparin plus a GP IIb/IIIa inhibitor, bivalirudin plus a GP IIb/IIIa inhibitor, or bivalirudin alone | Composite ischemia endpoint (death, MI, or unplanned revascularization for ischemia), major bleeding, and net clinical outcome, defined as combination of composite ischemia or major bleeding. Bivalirudin plus GP IIb/IIIa inhibitor, as compared with heparin plus GP IIb/IIIa inhibitor, associated with noninferior 30-d rates of composite ischemia | N/A | N/A | N/A | N/A | Logistic complexities of trial necessitated an open-label design, introduced potential for bias; 59% of study cohort presented with NSTEMI. Significant proportion of pts pretreated with either UFH or LMWH before randomization; 25% noninferiority margin used may |
| Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group | Systematic overview of effects of treatment on mortality and on major morbidity in various pt categories in 9 trials designed to randomize >1000 pts with AMI between fibrinolytic | N=58600 pts | All trials of fibrinolytic therapy vs. control that randomized >1000 pts with suspected AMI GISSI-1, ISAM, AIMS, ISIS-2, ASSET, USIM, ISIS-3, EMERAS, LATE | N/A | Streptokinase, anistreplase, tPA, urokinase | Deaths during 1st 5 wk and major adverse events occurring during hospitalization 10.5% deaths 1.0% strokes 0.7% major non-cerebral bleeds Fibrinolytic therapy excess of deaths during 0-1 d (especially among pts presenting >12 h after Sx and in the elderly) | N/A | Benefit in 45,000 pts presenting with STE or BBB irrespective of age, sex, blood pressure, HR, or previous MI or D greater earlier treatment began Relation between benefit and delay from Sx onset indicated highly significant absolute | N/A | Fibrinolytic therapy associated with 4 extra strokes per 1000 during 0-1 d | N/A |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |

Fibrinolytic Therapy: A collaborative overview of effects on mortality and on major morbidity in various patient categories in 9 trials designed to randomize >1000 patients with acute myocardial infarction (AMI) between fibrinolytic and control therapies. All trials randomized >1000 patients with suspected AMI GISSI-1, ISAM, AIMS, ISIS-2, ASSET, USIM, ISIS-3, EMERAS, LATE. Outcomes include deaths during the first 5 weeks and major adverse events occurring during hospitalization. In total, 58,600 patients were included. Summary results indicate a 10.5% excess of deaths in fibrinolytic therapy compared to control. In addition, a 1% increase in strokes and a 0.7% increase in major non-cerebral bleeds was observed. Fibrinolytic therapy was associated with a 4 extra strokes per 1000 patients during the first day.
| Therapy and control – GISSI-1, ISAM, AIMS, ISIS-2, ASSET, USIM, ISIS-3, EMERAS, LATE | Randomized using 2×2 factorial design N=1473 Pts | Compare TPA vs. PC as initial therapy and an early invasive strategy (early coronary arteriography followed by revascularization when anatomy was suitable) vs. early conservative strategy (coronary arteriography followed by revascularization if initial medical therapy failed). | Treatable cause of UA, experienced MI within preceding 21 d, undergone coronary arteriography within 30 d, PTCA within 6 mo, CABG anytime, or if, at enrollment, were in pulmonary edema, had SBP >180 mm Hg or DBP >100mm Hg, contraindication to thrombolytic therapy or heparin, LBBB, coexistent severe illness, woman of child-bearing potential, receiving oral anticoagulants. | TPA versus PC Early invasive strategy vs. early conservative strategy | TPA-PC comparison (death, MI, or failure of initial therapy at 6 wk) occurred in 54.2% of the TPA-treated pts and 55.5% of PC-treated pts (p=NS). Fatal and nonfatal MI after randomization (reinfarction in NQMI pts) occurred more frequently in TPA-treated pts (7.4%) than in PC-treated pts (4.9%, p=0.04, Kaplan-Meier estimate). | N/A | Endpoint for comparison of the two strategies (death, MI, or unsatisfactory SX-limited exercise stress test at 6 wk) occurred in 18.1% of pts assigned to the early conservative strategy and 16.2% of pts assigned to the early invasive strategy (p=NS). | N/A | 4 intracranial hemorrhages occurred in TPA-treated group vs. none in PC treated group (p=.06). | N/A |

TAMI III – TIMI IIIB

1994 (176) 8149520

Systematic overview of randomized

2000 (147)

Eikelboom

| Meta-analysis 12 trials, n=17,157 pts | UFH or LMWH or PC | Trials had to be randomized; include pts with UA or NQMI; and Studies were excluded: Randomized | UFH or LMWH or PC | Composite of death or MI at 7 d (OR: 0.53 95% CI: 0.38–0.73); 1st safety outcome major bleeding | 2nd outcomes of interest were recurrent angina | N/A | N/A | Large numbers of pts randomized to receive short-
<table>
<thead>
<tr>
<th>ACCF/ACG/AHA report</th>
<th>ACCF/ACG/AHA 2008 Expert Consensus Document on Reducing the Gastrointestinal Risks of Antiplatelet Therapy and NSAID Use</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karjalainen 2008 (156)</td>
<td>18346963</td>
<td>N/A</td>
</tr>
<tr>
<td>Determine safety and efficacy of various periprocedural antithrombotic strategies in pts on long-term OAC with warfarin undergoing PCI. Assess safety of Retrospective analysis n=523 pts</td>
<td>IAC and UAC group</td>
<td>N/A</td>
<td>IAC vs. UAC</td>
<td>Major bleeding, access-site complications, and major adverse cardiac events (death, MI, target vessel revasc, and stent thrombosis) Major bleeding 5.0% vs. 1.2%, p=0.02 and after adjusting for propensity score (OR:3.9, 95% CI: 1.0–15.3, p=0.05)</td>
<td>N/A</td>
<td>IAC vs. UAC</td>
<td>Major bleeding, stroke, access-site complications</td>
<td>Inherent limitations of retrospective study including individual risk-based decision making in treatment choices; outcome assessment not blinded; sample size may not be sufficient to cover term therapy who did not continue therapy long term may have reduced power of studies to detect significant difference. Pts who did not receive long-term LMWH were those at highest risk for recurrent events.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study intensity and duration of anticoagulatio n as predictors of thrombotic and bleeding events</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>N=530 pts</td>
<td>ASA plus coumarins</td>
<td>Pts who were prospectively randomized to use of coumarins as part of BAAS study</td>
<td></td>
</tr>
<tr>
<td>ASA (LD, 300 mg; then 100 mg qd) and coumarins (acenocoumarol or Sintrom at 6 mg 1 d, 4 mg on 2 d, 2 mg on 3 d and after until intervention) started 1 wk before intervention</td>
<td></td>
</tr>
<tr>
<td>Target INR was 2.1-4.8 during angioplasty and 6-mo follow-up INR measured on morning before PTCA and daily after until discharge</td>
<td></td>
</tr>
<tr>
<td>Thrombotic events - Death, MI, target lesion, revascularization, and thrombotic stroke: 17 early thrombotic events (3.2%), 7 early bleeding episodes (1.3%), and 10 false aneurysms (1.9%). 61 late thrombotic events occurred (11.6%). Optimal anticoagulation an independent predictor of late thrombotic events (RR: 0.33; 95% CI: 0.19-0.57) and associated with 0.21 mm (95% CI: 0.17-0.42) larger vessel lumen at 6 mo</td>
<td></td>
</tr>
<tr>
<td>BAAS ten Berg 2001 (157) 11319192</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>small but clinically significant differences in bleeding and thrombotic complications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluate the safety and indicators of efficacy of four dose regimens of dabigatran etexilate compared with PC when given in addition to dual antiplatelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double-blind, PC-controlled, dose-escalation trial</td>
</tr>
<tr>
<td>Pts age ≥18 y, hospitalized with NSTEMI or STEMI within last 14 d, and receiving treatment with dual antiplatelet therapy (ASA and clopidogrel or another thienopyridine), ≥1 risk factor for subsequent CV complications: age ≥65 y, DM on treatment, previous MI, LBBB, Ongoing or planned treatment with VKAs, severe disabling stroke within previous 6 mo or any stroke within previous 14 d, conditions associated with increased risk of bleeding such as major surgery (including bypass)</td>
</tr>
<tr>
<td>Dabigatran initially one of two lower doses (50 mg bid n=369 and 75 mg bid) n=368 vs. PC n=371 N=406 110 mg dose in 2nd stage n=347 150 mg dose group in third stage</td>
</tr>
<tr>
<td>Composite of major or clinically relevant minor bleeding during 6 mo treatment period.Composite of major or clinically relevant minor bleeding events 3.5, 4.3, 7.9, and 7.8% in respective 50, 75, 110, and 150 mg dabigatran groups, compared with 2.2%</td>
</tr>
<tr>
<td>RE-DEEM Oldgren 2011 (177) 21551462</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Treatment in pts with recent STEMI or NSTEMI

- Treatment in pts with recent STEMI or NSTEMI at high risk of new ischaemic CV events.

<table>
<thead>
<tr>
<th>Congestive HF requiring treatment or LVEF 40%, PAD, moderate renal insufficiency (CrCl ≥30–60 mL/min), or no revasc for the index event.</th>
</tr>
</thead>
</table>

Surgery in previous mo, Hx of severe bleeding, gastrointestinal haemorrhage with in past y, gastroduodenal ulcer in previous 30 d, fibrinolytic agents within 48 h of study entry, uncontrolled hypertension, haemoglobin <10 g/dL or platelet count, 100 × 10⁹/L, normal coronary arteries at angiogram for index event, congestive HF New York Heart Association Class IV, and severe renal impairment (CrCl <30 mL/min). |

In the PC group, p<0.001 for linear trend. 96 1º outcome events, compared with PC a dose dependent increase with dabigatran, HR 1.77 (95% CI: 0.70–4.50) for 50 mg; HR=2.17 (95% CI: 0.88–5.31) for 75 mg; HR=3.92 (95% CI: 1.72–8.95) for 110 mg; and HR=4.27 (95% CI: 1.86–9.81) for 150 mg. Compared with PC, D-dimer concentrations reduced in all dabigatran dose groups by average of 37 and 45% at wk 1 and 4, respectively (p<0.001). |

Uchino 2012 (178) 22231617

- Searched PubMed, Scopus, and Web of Science for randomized controlled trials of dabigatran that reported on MI or ACS as 2º outcomes.

- Meta-analysis: Seven trials were selected N=30,514

- Fixed-effects M-H used to evaluate the effect of dabigatran on MI or ACS. Expressed associations as OR and 95% CIs.

- Dabigatran was significantly associated with higher risk of MI or ACS than seen with agents used in control group (dabigatran, 237 of 20 000 [1.19%] vs. control, 83 of 10 514 [0.79%]; ORM-H, 1.33; 95% CI: 1.03–1.71; p=.03).

- Dominant effect of RE-LY trial on results of meta-analysis. Other 6 trials had cohort sizes of 515-3451 with durations of ≤6mo. In RE-LY, 18,113 participants monitored for median of 2 y. Owing to sample size and duration of study, RE-LY comprised 59% of the cohort and
| Alexander 2011 (179) 21780946 | Determine whether in high-risk pts with ACS benefit of apixaban in reducing ischemic events outweigh increased risk of bleeding. | Randomized, double-blind, PC-controlled N=7392 | n=3705 apixaban, 5 mg bid vs. n=3687 PC | ACS (MI, NSTEMI, STEMI, or UA) within previous 7 d, Sx of MI lasting 10 mo or more with pt at rest plus either elevated levels of cardiac biomarkers or dynamic ST-segment depression or elevation of ≥0.1 mV. 2 or more of the following high-risk characteristics: age ≥65 y, DM, MI within previous 5 y, cerebrovascular disease, peripheral vascular disease, clinical HF or LVEF of <40% in association with index event, impaired renal function with calculated creatinine clearance <60 ml/min and no revasc after index event. | N/A | Apixaban 5 mg bid PC, in addition to standard antiplatelet therapy | CV death, MI, or ischemic stroke | Median follow-up of 241 d 7.5% pts assigned to apixaban 7.9% assigned to PC HR=0.95; 95% CI: 0.80-1.11; p=0.51 | Major bleeding according to TIMI definition occurred in 1.3% pts who received apixaban and in 0.5% pts who received PC HR=2.59; CI, 1.50-4.46; p=0.001. Greater number of intracranial and fatal bleeding events occurred with apixaban than PC. | N/A | P=0.51 HR=0.95 CI=0.80-1.11 | N/A |

| Mega 2012 (180) 22077192 | N/A | Double-blind, PC-controlled trial N=15,526 pts | bid doses of either 2.5 mg or 5 mg of rivaroxaban or PC | Within 7 d after hospital admission for ACS. Condition of pts needed to be stabilized before enrollment with initial management strategies (e.g., revasc) completed | N/A | bid doses of either 2.5 mg or 5 mg of rivaroxaban or PC | Composite of death from CV causes, MI, or stroke. Rivaroxaban compared with PC, 8.9% and 10.7% (HR in rivaroxaban group, 0.84; 95% CI: 0.74-0.96; p=0.008), significant improvement for both bid 2.5-mg dose (9.1% vs. 10.7%, p=0.02) and bid 5 mg dose (8.8% vs. 10.7%, p=0.03). Compared with PC, rivaroxaban increased rates of major bleeding not related to CABG (2.1% vs. 0.6%, p=0.001) and intracranial hemorrhage (0.6% vs. 0.2%, p=0.009), without bid 2.5-mg dose of rivaroxaban reduced rates of death from CV causes (2.7% vs. 4.1%, p=0.002) and from any cause (2.9% vs. 4.5%, p=0.002). | N/A | P=0.008 HR=0.84 CI=0.74-0.96 | Rates of adverse events that were not related to bleeding similar in rivaroxaban and PC groups | N/A |
| Eerenberg 2011 (182) 21900088 | Evaluated potential of PCC to reverse anticoagulant effect of rivaroxaban and dabigatran | Randomized, double-blind, PC-controlled N=12 | Rivaroxaban 20 mg bid (n=6) or dabigatran 150 mg bid(n=6) | Twelve healthy male subjects | N/A | Rivaroxaban 20 mg bid (n=6) or dabigatran 150 mg bid: (n=6) for 2.5 d followed by either single bolus 50 IU/kg PCC or similar volume of saline. After washout period procedure | Rivaroxaban induced significant prolongation of prothrombin time (15.8±1.3 vs. 12.3±0.7 s at baseline; p<0.001) that was immediately and completely reversed by PCC (12.6±1.0). | N/A | N/A | N/A | N/A | No major or clinically relevant bleeding complications occurred during treatment, no serious adverse events. Small size of study population accounting for variation in results of a few coagulation tests. No measurements performed between 6-24 h after infusion of|
repeated with other anticoagulant treatment. p(0.001); Endogenous thrombin potential inhibited by rivaroxaban (51±22%; baseline, 92±22%; p<0.002) normalized with PCC (11±26%; p<0.001), saline had no effect. Dabigatran increased activated partial thromboplastin time, ECT, and thrombin time. Administration of PCC did not restore these coagulation tests.

1st indicates primary; 2nd, secondary; ACCF, American College of Cardiology Foundation; ACS, acute coronary syndrome; ACT, activated clotting time; ACUITY, Acute Catheterization and Urgent Intervention Triage strategy; ACUTE II, Assessment of Cardioversion Using Transesophageal Echocardiography; ADP, adenosine diphosphate; AGC, AHA, American Heart Association; AIMS, APSAC Intervention Mortality Study; aPTT, Activated Partial Thromboplastin Time; ASA, aspirin; ASSET, Anglo-Scandinavian Study of Early Thrombolysis; BID, twice daily; CAD, coronary artery bypass graft; CI, confidence interval; CK, creatine kinase; CK-MB, creatine kinase-MB; CRP, C-reactive protein; DBP, diastolic blood pressure; DM, diabetes mellitus; ECG, electrocardiography; ECT, ecarin clotting time; EMERAS, Estudio Multicentrico Estreptoquinasa Republicas de America del Sur; ESSENCE, Efficacy and Safety of Subcutaneous Enoxaparin in Non-Q wave Coronary Events; FUTURA, The Fondaparinux Trial With Unfractionated Heparin During Revascularization in Acute Coronary Syndromes; GISSI-1, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico acute-1; GP, glycoprotein; HF, heart failure; HR, hazard ratio; Hx, history; IAC, Interrupt anticoagulant; IgE, Immunoglobin E; ISAM, Intravenous Streptokinase in Acute Myocardial Infarction; ISIS, International Study of Infarct Survival; INTERACT, Intensive blood pressure reduction in acute cerebral haemorrhage trial; ISAM, Intravenous Streptokinase in Acute Myocardial Infarction; IV, intravenous; LATE, Late Assessment of Thrombolytic Efficacy Study; LBBB, left bundle-branch block; LD, loading dose; LMWH, low molecular weight heparins; LVEF, left ventricular ejection fraction; MH, Mantel-Haenszel test; MI, myocardial infarction; NQMI, non-Q-wave myocardial infarction; NS, not significant; NSAID, nonsteroidal anti-inflammatory drugs; NSTE, non-ST elevation; NSTEMI, non-ST-elevation myocardial infarction; OAC, Oral anticoagulation; OASIS, Organization for the Assessment of Strategies for Ischemic Syndromes; OD, once daily; OR, odds ratio; PAD, peripheral arterial disease; PC, placebo; PCC, prothrombin complex concentrate, PCI, percutaneous coronary intervention; PLATO, Platelet Inhibition and Patient Outcomes trial; pts, patients; RCT, randomized clinical trials; Revasc, revascularization; RE-LY, Randomized Evaluation of Long-Term Anticoagulant Therapy Trial; ROW, rest of the world; RR, relative risk; SBP, systolic blood pressure; STE, ST elevation; STEMI, ST-elevation myocardial infarction; Sx, symptoms; TIMI, thrombolysis in Mi; Tnl, troponin I; TrT, troponin T; TPA, UA, unstable angina; UAC, Uninterrupted anticoagulation; UFH, unfractionated heparin; US, United States; and USIM, Urochinasi per via Sistemica nell'Infarto Miocardico.

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type / Size (n)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI IIIB, 1994 8149520 (176)</td>
<td>To determine the effects of an early invasive strategy on clinical</td>
<td>RCT 1,473</td>
<td>Intervention: 740; Comparator: 733</td>
<td>Chest discomfort at rest caused by ischemia that lasted >5 min but <6 h. The discomfort must have occurred within 24 h of the onset of symptoms</td>
<td>The protocol called for pts assigned to the early invasive strategy to have cardiac catheterization, LVA, and coronary angiography</td>
<td>Dabigatran vs. placebo</td>
<td>Death, postrandomization MI, or an unsatisfactory ETT performed at the time of the 6-</td>
<td>None</td>
<td>Analyses for differences and interactions in the results of invasive vs. conservative strategies for death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pts were excluded if they had a treatable cause of UA, had experienced a MI within the preceding 21 d, had undergone angiography</td>
<td>Primary Endpoint & Results</td>
<td>Safety Endpoint & Results</td>
<td>Secondary Endpoint & Results</td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td>24 h of enrollment and accompanied by objective evidence of ischemic HD, i.e., either new or presumably new ECG evidence of ischemia in at least 2 contiguous leads or documented CAD coronary arteriography within 30 d, PTCA within 6 mo, CABG at any time, or if, at enrollment, they were in pulmonary edema, had a systolic arterial pressure >180 mmHg or a diastolic pressure >100 mmHg, a contraindication to thrombolytic therapy or heparin. LBBB, a coexistent severe illness, were a woman of child-bearing potential, or were receiving OAC. arteriography 18-48 h after randomization carried out only after failure of initial therapy wk visit or MI were carried out on several prespecified subgroups strategy vs. 18.1% of those assigned to the early conservative strategy (p=NS) d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATE, 1998 Mccullogh et al, (183) 9741499</td>
<td>To determine if early revasc favorably affects clinical outcomes in pts with suspected AMI</td>
<td>RCT 201</td>
<td>Intervention: 201; Comparator: 90</td>
<td>Exclusion criteria were Sx lasting for more than 24 h or an absolute indication or contraindication to cardiac catheterization</td>
<td>Subjects randomized to triage angiography were taken as soon as possible directly to the catheterization laboratory from the ED. All triage angiography pts underwent catheterization within 24 h of arrival to the hospital</td>
<td>Subjects randomized to the conservative arm were admitted to a monitored bed and received continued medical therapy and noninvasive evaluation encouraged by the protocol</td>
<td>Composite endpoint of all recurrent ischemic events or death None</td>
<td>2º endpoints including LOS and hospital costs The composite endpoint of all recurrent ischemic events or death occurred in 14 (13%) and 31 (34%), yielding a 45% risk reduction (95% CI 27-59%, p=0.0002) High crossover rate (60%). No long-term benefit in cardiac outcomes compared with conservative medical therapy with revasc prompted by recurrent ischemia</td>
<td></td>
</tr>
<tr>
<td>VANQWISH, Boden et al 1998 (184) 9832444</td>
<td>To compare an invasive with a conservative strategy in pts with acute NQMI</td>
<td>RCT 920</td>
<td>Intervention: 462; Comparator: 458</td>
<td>Eligible pts had to have evolving AMI, a level of (CK-MB isoenzymes that was more than 1.5× the ULN for the hospital, and no new abnormal Q waves</td>
<td>Pts were excluded if they had serious coexisting conditions, ischemic complications that placed them at very high risk while in the CCU (persistent or</td>
<td>Pts assigned to the early invasive strategy underwent coronary angiography as the initial diagnostic test soon after randomization. Thereafter, the</td>
<td>Death or nonfatal MI Major procedural complications after coronary angiography or myocardial revasc Overall mortality A total of 152 1º endpoint events occurred in the invasive-strategy group, as did 139 cardiac events in the The trial was conducted before coronary stents or platelet GP IIb/IIIa receptor antagonists were widely available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FRISC II, 1999

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRISC II, 1999</td>
<td>Prospective, randomized, multicenter trial</td>
<td>2,457</td>
<td>1,222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pts were eligible for inclusion if they had Sx of ischaemia that were increasing or occurring at rest, or that warranted the suspicion of AMI, with the last episode within 48 h</td>
<td>Exclusion criteria were raised risk of bleeding episodes, anaemia, or indication for or treatment in the past 24 h with thrombolysis, angioplasty in the past 6 mo, being on a waiting list for coronary revasc, other acute or severe CD, renal or hepatic insufficiency, known clinically relevant osteoporosis, other severe illness, hypersensitivity to randomized drugs, anticipated difficulties with cooperation or participation in this or another clinical trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Non-invasive treatment included coronary angiography within a few d of enrollment, aiming for revasc within 7 d of the start of open-label treatment | | Composite endpoint of death and MI after 6 mo | | | | | |

Bleeding | Total death, MI, Sx of angina, need for late coronary angiography and revasc, bleeding episodes, and stroke | There was a significant 22.0% relative and 2.7% absolute decrease in death and MI in the invasive compared with the non-invasive group after 6-mo RR: 0.78 (95% CI: 0.62–0.98), p=0.031 | | | | |

Revasc window of 7 d longer than actual contemporary practice

TACTICS - TIMI 18, 2001

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACTICS - TIMI 18, Cannon et al 2001</td>
<td>Prospective, randomized, multicenter trial</td>
<td>2,220</td>
<td>1,114 vs. Comparator: 1,106</td>
<td>Pts ≥18 y if they had had an episode of angina (with an accelerating pattern or prolonged [>20 min] or recurrent episodes at rest or Persistent STE, 2º angina, a Hx of PCI or CAB grafting within the preceding 6 mo, factors associated with an increased risk of Pts assigned to the early invasive strategy were to undergo coronary angiography between 4 h and 48 h after randomization and revasc when Pts assigned to the early conservative strategy were treated medically and, if their condition was Combined incidence of death, nonfatal MI, and rehospitalization for an ACS at 6 mo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bleeding | Death, death or MI, fatal or nonfatal MI, rehospitalization for MI | At 6 mo, the rate of the 1º endpoint was 15.9% with use of the early invasive strategy and Study excluded pts with severe comorbid conditions or other serious systemic illness | | | | |

© American Heart Association, Inc and American College of Cardiology Foundation
with minimal effort) within the preceding 24 h, were candidates for coronary revasc, and had at least 1 of the following: a new finding of ST-segment depression of at least 0.05 mV, transient (<20 min) STE of at least 0.1 mV, or T-wave inversion of at least 0.3 mV in at least 2 leads; elevated levels of cardiac markers; or coronary disease, as documented by a Hx of catheterization, revasc, or M

| VINO, Spacek et al 2002 (120) 11792138 | To compare 1st d angiography/angioplasty vs. early conservative therapy of evolving MI without persistent STE | RCT 131 | Intervention: 64 vs. Comparator: 67 | Rest ischaemic chest pain, lasting <20 min, within the last 24 h before randomization; ECG evidence of AMI without STE (ST-segment depressions minimally 0.1 mm in at least 2 contiguous leads and/or negative T waves or documented old LBBB/RBBB; CK-MB higher than 1.5× X ULN and/or positive Tnl assay | Unstable post-infarction angina pectoris resistant to maximal pharmacotherapy; cardiogenic shock; acute LBBB or RBBB or STE >2 mm in 2 leads; OMI or IV thrombolysis >1 h; coronary angioplasty or bypass surgery >6 mo; any concomitant disease which may have possible influence on 1-y Px; lack of pt cooperation | 1st d angiography/angioplasty treatment strategy guidelines were characterized by a coronary angiogram as soon as possible after randomization followed by immediate coronary angioplasty of the culprit coronary lesion + stent implantation whenever suitable | Conservative treatment strategy guidelines were characterized by initial medical treatment with coronary angiography and subsequent revasc only in the presence of recurrent myocardial ischaemia | Composite of death or nonfatal RMI 6 mo after the randomization | None | Length of the initial hospitalization and the number of subsequent hospitalizations for UAP | The primary endpoint (death/reinforcement) at 6 mo occurred in 6.2% vs. 22.3% (p<0.001). 6 mo mortality in the 1st d angiography/angioplasty group was 3.1% vs. 13.4% in the conservative group (p=0.03). | Small sample size, interventions were done in only one high volume tertiary center |

<p>| RITA-2, Fox et al, 2002 | To compare interventional | RCT 1,810 | Intervention: 895 vs. | Pts were eligible for inclusion if they had All those with probable evolving | Pts assigned to the interventional treatment | Pts assigned to the conservative | The coprimary trial endpoints | Bleeding | Death, MI, refractory angina | At 4 mo, 86 (9.6%) of 895 | Primary endpoint driven by reduction |</p>
<table>
<thead>
<tr>
<th>Comparator: 915</th>
<th>To compare an early invasive strategy to a selectively invasive strategy for pts who have ACS without STE and with an elevated cTnT level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention: 604 vs. Comparator: 596</td>
<td>Eligible pts had to have all 3 of the following: ≥5x of ischemia that were increasing or occurred at rest, with the last episode occurring no more than 24 h before randomization; an elevated cTnT level (≥0.03 μg/L); and either ischemic changes as assessed by ECG (defined as ST-segment depression or transient STE exceeding 0.05 mV, or T-wave inversion of ≥0.2 mV in ≥2 contiguous leads) or evidence of CAD. Exclusion criteria were an age ≥18 y or <80 y, STEMI in the past 48 h, an indication for primary PCI or fibrinolysis therapy, hemodynamic instability or overt CHF, the use of oral anticoagulant drugs in the past 7 d, fibrinolytic treatment within the past 96 h, PCI within the past 14 d, a contraindication to treatment with PCI or GP IIb/IIIa inhibitors, recent trauma or risk of bleeding, hypertension despite antianginal and antithrombotic medication, or CK or CK-MB concentrations ≥2× the ULN before randomization. Those with ≥2× the ULN before randomization and PCI within the past 48 h, an indication for primary PCI or fibrinolysis therapy, or CK or CK-MB concentrations ≥2× the ULN before randomization and PCI within the past 48 h were excluded. Also excluded were those with MI within the previous mo, PCI in the preceding 12 mo, or CABG at any time. Pts assigned to the early invasive strategy were scheduled to undergo angiography and PCI when appropriate on the basis of the coronary anatomy. Pts assigned to the selectively invasive strategy were treated medically. These pts were scheduled to undergo angiography and subsequent revascularization if they had refractory angina despite optimal medical treatment, hemodynamic or rhythm instability, or clinically significant ischemia on the predischarge ECG. The primary endpoint was a composite of death, RMI, or rehospitalization for angina within 1 y after randomization. The estimated cumulative rate of the primary endpoint was 22.7% in the group assigned to early invasive management and 21.2% in the group assigned to selectively invasive management (RR: 0.97; 95% CI: 0.87-1.33; p=0.33). Percentage of pts free from anginal Sx.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparator: 1215</th>
<th>To compare the selective invasive strategy to a conservative strategy for pts who have ACS without STE and with an elevated cTnT level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention: 1204 vs. Comparator: 1196</td>
<td>Eligible pts had to have all 3 of the following: ≥5x of ischemia that were increasing or occurred at rest, with the last episode occurring no more than 24 h before randomization; an elevated cTnT level (≥0.03 μg/L); and either ischemic changes as assessed by ECG (defined as ST-segment depression or transient STE exceeding 0.05 mV, or T-wave inversion of ≥0.2 mV in ≥2 contiguous leads) or evidence of CAD. Exclusion criteria were an age ≥18 y or <80 y, STEMI in the past 48 h, an indication for primary PCI or fibrinolysis therapy, hemodynamic instability or overt CHF, the use of oral anticoagulant drugs in the past 7 d, fibrinolytic treatment within the past 96 h, PCI within the past 14 d, a contraindication to treatment with PCI or GP IIb/IIIa inhibitors, recent trauma or risk of bleeding, hypertension despite antianginal and antithrombotic medication, or CK or CK-MB concentrations ≥2× the ULN before randomization. Those with ≥2× the ULN before randomization and PCI within the past 48 h were excluded. Also excluded were those with MI within the previous mo, PCI in the preceding 12 mo, or CABG at any time. Pts assigned to the selectively invasive strategy were scheduled to undergo antiplatelet treatment with PCI or enoxaparin (as for the conservative group) when appropriate on the basis of the coronary anatomy. The primary endpoint was a combined rate of death, nonfatal MI, or refractory angina at 4 mo; and a combined rate of death or nonfatal MI at 1 y after randomization. Percentage of pts free from anginal Sx.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparator: 915</th>
<th>To compare the early invasive strategy to a conservative strategy for pts who have ACS without STE and with an elevated cTnT level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention: 915 vs. Comparator: 891</td>
<td>Eligible pts had to have all 3 of the following: ≥5x of ischemia that were increasing or occurred at rest, with the last episode occurring no more than 24 h before randomization; an elevated cTnT level (≥0.03 μg/L); and either ischemic changes as assessed by ECG (defined as ST-segment depression or transient STE exceeding 0.05 mV, or T-wave inversion of ≥0.2 mV in ≥2 contiguous leads) or evidence of CAD. Exclusion criteria were an age ≥18 y or <80 y, STEMI in the past 48 h, an indication for primary PCI or fibrinolysis therapy, hemodynamic instability or overt CHF, the use of oral anticoagulant drugs in the past 7 d, fibrinolytic treatment within the past 96 h, PCI within the past 14 d, a contraindication to treatment with PCI or GP IIb/IIIa inhibitors, recent trauma or risk of bleeding, hypertension despite antianginal and antithrombotic medication, or CK or CK-MB concentrations ≥2× the ULN before randomization. Those with ≥2× the ULN before randomization and PCI within the past 48 h were excluded. Also excluded were those with MI within the previous mo, PCI in the preceding 12 mo, or CABG at any time. Pts assigned to the early invasive strategy were scheduled to undergo angiography and PCI when appropriate on the basis of the coronary anatomy. The primary endpoint was a composite of death, RMI, or rehospitalization for angina within 1 y after randomization. The estimated cumulative rate of the primary endpoint was 22.7% in the group assigned to early invasive management and 21.2% in the group assigned to selectively invasive strategy group during the initial hospitalization, and 79% and 54%, respectively, within 1 y after randomization. Percentage of pts free from anginal Sx.</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation 78
a documented Hx of CAD as evidenced by previous MI, findings on previous coronary angiography, or a positive exercise test treatment (i.e., systolic pressure >180 mmHg or diastolic pressure >100 mmHg), weight <120 kg, or inability to give informed consent

exercise test.

Italian Trial J Am Coll Cardiol Intv 2012;5:906-16) (189) 22995877

To determine the risk vs. bebefut ratio of an EA approach in elderly pts with NSTE-ACS

RCT 313 Intervention: 154 vs. Comparator: 159

Eligible were pts with NSTE-ACS and an age of ≥75 y, with cardiac ischemic Sx at rest within 48 h before randomization, together with ischemic ECG changes and/or elevated levels of either Tn or CK-MB

Excluded were pts with 2º causes of myocardial ischemia, ongoing myocardial ischemia or HF despite optimized therapy, PCI or CABG within 30 d before randomization, serum creatinine >2.5 mg/dL, a cerebrovascular accident within the previous mo, recent transfusions, gastrointestinal or genitourinary bleeding within 6 wk before randomization, platelet count 90,000 cells/l, ongoing oral anticoagulation, severe obstructive lung disease, malignancy, or neurological deficit limiting follow-up

Pts enrolled in the trial were randomly assigned to either: 1) an EA strategy of coronary angiography within 72 h and, when indicated, coronary revasc by either PCI or CABG according to coronary anatomy, pt preference, and local skills; or 2) IC therapy

IC therapy, in which case pts had to be managed with medical therapy, and coronary angiography during index hospital stay was allowed in the case of refractory ischemia, myocardial (re)infarction, HR of ischemic origin, or malignant ventricular arrhythmias

The primary endpoint was the composite of death, MI, disabling stroke, and repeat hospital stay for CV causes or severe bleeding within 1 y

Bleeding

Individual components of the primary endpoint The outcome occurred in 43 pts (27.9%) in the EA group and 55 (34.6%) in the IC group (HR: 0.80; 95% CI: 0.5–1.19; p=0.26)

The main limitation of this study is its relative lack of power, because our original sample size was amended due to slow enrollment

© American Heart Association, Inc and American College of Cardiology Foundation

1º indicates primary; 2º, secondary; ACS, acute coronary syndrome; AMI, acute myocardial infarction; CAB, coronary artery bypass; CABG, coronary artery bypass graft; CAD, coronary artery disease; CCU, cardiac care unit; CD, cardiac disease; CHF, congestive heart failure; CK, creatine kinase; CK-MB, creatine kinase-MB; cTnT, cardiac troponin T; CV, cardiovascular; EA, early invasive; ECG, electrocardiograph; ETT, exercise treadmill test; GP, glycoprotein; HD, heart disease; HF, heart failure; Hx, history; IC, initially conservative; IV, intravenous; LBBB, left bundle branch block; LOS, length of stay; LV, left ventricular; LVA, left ventricular angiography; MI, myocardial infarction; NQMI, Non Q-wave myocardial infarction; NS, no(t) significant; OAC, oral anticoagulants; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; pts, patients; Px, prognosis; QMI, Q-wave myocardial infarction; RBBB, right bundle branch block; RCT, randomized controlled trial; revasc, revascularization; RMI, recurrent MI; RNV, radionuclide ventriculogram; STE, ST-segment elevation; Sx, symptom(s); TIMI, thrombolysis in MI; Tnl, troponin I; UA, unstable angina; UAP, unstable angina pectoris; UCAD, unstable coronary artery disease; and ULN, upper limits of normal.
Data Supplement 19. Comparison of Early Versus Delayed Angiography (Section 4.4.4.1)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Safety Endpoint & Results</th>
<th>Secondary Endpoint & Results</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISAR-COOL, Neumann et al 2003 14506118 (190)</td>
<td>To test the hypothesis that prolonged antithrombotic pretreatment improves the outcome of catheter intervention in pts with acute unstable coronary syndromes compared with early intervention</td>
<td>RCT 410</td>
<td>Intervention: 207 vs. Comparator: 203</td>
<td>Pts with AP at rest or with minimal exertion, with the last episode occurring ≥24 h before study entry</td>
<td>With the early intervention strategy, investigators performed coronary angiography as soon as possible, at least within 6 h, during which time antithrombotic pretreatment was instituted</td>
<td>With the prolonged antithrombotic pretreatment strategy, investigators continued pretreatment for at least 3 d, to a max of 5 d, after which all pts underwent coronary angiography</td>
<td>Composite 30-d incidence of large nonfatal MI or death from any cause</td>
<td>Bleeding, thrombocytopenia</td>
<td>Death, nonfatal MI</td>
<td>1st endpoint was reached in 11.6% (3 deaths, 21 infarctions) of the group receiving prolonged antithrombotic pretreatment and in 5.9% (no deaths, 12 infarctions) of the group receiving early intervention (RR: 1.96; 95% CI: 1.01–3.82; p=0.04)</td>
<td>Small sample size</td>
</tr>
<tr>
<td>TIMACS, Mehta et al, 2009 (191) 19458363</td>
<td>To study efficacy of an early invasive strategy (within 24 h of presentation) compared with delayed invasive strategy (anytime 36 h after presentation)</td>
<td>RCT 3,031</td>
<td>Intervention: 1,593 vs. Comparator: 1,438</td>
<td>Presentation to a hospital with UA or MI without STE within 24 h after onset of Sx and if 2 of the following 3 criteria for increased risk are present: age ≥80 y, cardiac biomarkers above ULN, or results on ECG compatible with ischemia (i.e., ST-segment depression ≥1 mm or transient</td>
<td>Among pts who were randomly assigned to the early-intervention group, coronary angiography was to be performed as rapidly as possible and within 24 h after randomization</td>
<td>Pts who were assigned to the delayed-intervention group underwent coronary angiography after a min delay of 36 h after randomization</td>
<td>Composite of death, MI, or stroke at 6 mo</td>
<td>Bleeding</td>
<td>1st occurrence of the composite of death, MI, or refractory ischemia and the composite of death, MI, stroke, refractory ischemia, or repeat intervention at 6 mo</td>
<td>At 6 mo, 1st outcome (death, new MI, or stroke) occurred in 9.6% of pts in the early-intervention group, as compared with 11.3% in the delayed-intervention group (HR: 0.85; 95% CI: 0.68-1.06; p=0.15)</td>
<td>The trial may have been relatively underpowered. Heterogeneity was observed in the 1st endpoint, with pts in the highest tertile experiencing a sizeable risk reduction and suggesting a potential advantage of</td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
1º indicates primary; 2º, secondary AP, angina pectoris; ECG, electrocardiograph; IQR, interquartile range; MB, myocardial infarction; NSTE, non-ST-elevation myocardial infarction; pts, patients; RCT, randomized controlled trial; revasc, revascularization; RR, relative risk; STE, ST-segment elevation; Sx, symptom(s); TIMI, thrombolysis in myocardial infarction; Tn, troponin; TnI, troponin I; UA, unstable angina; and UA/NSTEMI, unstable angina/non-ST-elevation MI.

To test whether aggressive reperfusion following AMI in the era of fibrinolysis leads, or positive Tn, thrombolytic therapy in the preceding 24 h.

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Comparator:</th>
<th>Intervention:</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOARD, Montalescot et al (192)</td>
<td>N/A</td>
<td>RCT 352</td>
<td>Presence of at least 2 of the following: ischemic Sx, ECG abnormalities in at least 2 contiguous leads, or positive Tn, TIMI risk score 3</td>
<td>Hemodynamic or arrhythmic instability requiring urgent catheterization, chronic oral anticoagulation, or thrombolytic therapy in the preceding 24 h</td>
<td>An immediate invasive strategy</td>
<td>Primary endpoint was peak Tn value during hospitalization</td>
<td>The primary endpoint did not differ between the 2 strategies (median IQR TnI value, 2.1 [0.3-7.1] ng/mL vs. 1.7 [0.3-7.2] ng/mL in the immediate and delayed intervention groups, respectively; p=0.70)</td>
<td>Immediate (at a median of 70 min) vs. delayed (at a median of 21 h) angiography and revasc in UA/ NSTEMI pts conferred no advantage with regard to the primary endpoint</td>
</tr>
<tr>
<td>DANAMI-2, Valeur et al 2004 (193)</td>
<td>N/A</td>
<td>Post hoc subgroup analysis of RCT 1,164</td>
<td>In the DANAMI-2 study, pts with STEMI were randomized to 1º angioplasty (PCI) or fibrinolysis</td>
<td>N/A</td>
<td>N/A</td>
<td>1º endpoint was a composite of death and re-infarction</td>
<td>ST-depression was predictive of the clinical outcome (RR: 1.57 [1.00-2.48]; p<0.05) in multivariable analysis, there was a significant association between ST-depression and outcome in the fibrinolysis group (RR: 1.95 [1.11-3.44]; p<0.05), but not in the 1º PCI group (RR: 1.06 [0.47-2.36]; p=NS). However, the p-value for interaction was 0.15.</td>
<td>Post hoc analysis. Exercise capacity was a strong prognostic predictor of death and re-infarction irrespective of treatment strategy, whereas the prognostic significance of ST-depression seems to be strongest in the fibrinolysis-treated pts.</td>
</tr>
<tr>
<td>INSPIRE, Mahmarian et al 2006</td>
<td>N/A</td>
<td>Cohort study 728 pts</td>
<td>The study cohort consisted of 728 stabilized pts 18 y of age</td>
<td>N/A</td>
<td>Event rates were assessed within prospectively</td>
<td>Pt risk and subsequent therapeutic</td>
<td>Total cardiac events/death and reinfarction significantly increased within each INSPIRE</td>
<td>Investigators did not track the percentage of eligible pts who were</td>
</tr>
<tr>
<td>COSTAMI-II, Decidari et al (194) 15657220</td>
<td>To compare in a prospective, randomized, multicenter trial the relative merits of predischarge exercise ECG and early pharmacological stress echocardiography concerning risk stratification and costs of treating pts with uncomplicated AMI</td>
<td>RCT</td>
<td>262</td>
<td>Intervention: 132; Comparator: 130</td>
<td>262 pts from 6 participating centers with a recent uncomplicated MI were randomly assigned to early (d 3-5) pharmacological stress echocardiography (n=132) or conventional predischarge (d 7-9) maximum Sx limited exercise ECG (n =130)</td>
<td>Exclusion criteria were age >75 y, serious arrhythmias (VF, SVT, or fixed 2nd or 3rd degree AV blocks), LBBB, pericarditis, insufficient acoustic window, and poor short-term Px because of concomitant disease</td>
<td>Pharmacological stress echocardiography</td>
<td>Maximum Sx limited exercise ECG</td>
</tr>
</tbody>
</table>

1º indicates primary; 2º, secondary; ADSPECT, adenosine Tc-99m sestamibi single-photon emission computed tomography; AMI, acute myocardial infarction; AV, atrioventricular; DANAMI-2, Danish Multicenter Study of Acute Myocardial Infarction 2; ECG, electrocardiograph; EF, ejection fraction; ET, exercise test; INSPIRE, Investigating New Standards for Prophylaxis in Reduction of Exacerbations; LBBB, left bundle branch block; LV, left ventricular; LVEF, left ventricular ejection fraction; NS, non-significant; NQAMI, non-Q-wave myocardial infarction; PCI, percutaneous coronary intervention; PDS, perfusion defect size; pts, patients; Px, prognosis; QAMI, Q-wave myocardial infarction; RCT, randomized controlled trial; revasc, revascularization; STEMI, ST-elevation myocardial infarction; SVT, sustained ventricular tachycardia; Sx, symptom (s); UA, unstable angina; and VF, ventricular fibrillation.
Data Supplement 21. RCTs and Relevant Meta-Analyses of GP IIb/IIIa Inhibitors in Trials of Patients With NSTE-ACS Undergoing PCI (Section 5)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Study Drug / Comparator</th>
<th>Population</th>
<th>Primary Endpoint</th>
<th>Results</th>
<th>Statistics</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective (stable) and urgent (ACS) patients enrolled (without routine clopidogrel pretreatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPILOG (196)</td>
<td>Abciximab vs. PC</td>
<td>2,792 pts with stable ischemia or UA</td>
<td>Death, MI or UTVR at 30 d</td>
<td>5.2% vs. 11.7% HR: 0.43</td>
<td>95% CI: (0.30-0.60); p<0.001</td>
<td>N/A</td>
</tr>
<tr>
<td>Acute high risk (without routine clopidogrel pretreatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPTURE (197)</td>
<td>Abciximab vs. PC</td>
<td>1,265 pts with “refractory UA” undergoing PCI 18-24 h after diagnostic catheterization</td>
<td>Death, MI or UTVR at 30 d</td>
<td>11.3% vs. 15.9%</td>
<td>p=0.012</td>
<td>Significant reduction in MI rate both before and during PCI with abciximab therapy. No diff in 6-mo composite endpoint</td>
</tr>
<tr>
<td>EPIC (198)</td>
<td>Abciximab vs. PC</td>
<td>Pts at high risk for abrupt vessel closure</td>
<td>Death, MI, UTVR, IABP, or unplanned stent placement at 30 d</td>
<td>Bolus only: 11.4% Bolus + infusion: 8.3% PC: 12.8%</td>
<td>p=0.009 overall; p=0.008 for bolus + infusion vs. PC</td>
<td>N/A</td>
</tr>
<tr>
<td>RESTORE (199)</td>
<td>Tirofiban (std dose) vs. PC</td>
<td>2,139 pts with ACS undergoing PTCA or DCA</td>
<td>Death, NFMI, UTVR, or stent placement at 30 d</td>
<td>10.3% vs. 12.2%</td>
<td>p=0.160</td>
<td>Composite endpoint was statistically lower at 2 and 7 d follow-up (but not at the 30-d 1º endpoint)</td>
</tr>
<tr>
<td>Acute high risk or mixed study population (with routine clopidogrel pretreatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISAR-REACT 2 (142)</td>
<td>Abciximab vs. PC</td>
<td>2,022 “high-risk” ACS pts undergoing PCI</td>
<td>Death, MI or UTVR at 30 d</td>
<td>8.9% vs. 11.9% RR: 0.75</td>
<td>p=0.03</td>
<td>RR: 0.71 in +Tn pts; RR: 0.99 in -Tn pts</td>
</tr>
<tr>
<td>ADVANCE (200)</td>
<td>Tirofiban (high-dose) vs. PC</td>
<td>202 pts undergoing elective or urgent PCI (1/3 with stable angina; 1/2 with ACS)</td>
<td>Death, NFMI, UTVR or bailout GPI therapy at median of 185 d</td>
<td>20% vs. 35% HR: 0.51</td>
<td>p=0.01</td>
<td>95% CI: 0.29–0.88; propensity matched analysis HR: 0.67 (95% CI: 0.51–0.88; p=0.04)</td>
</tr>
<tr>
<td>**Pannu Meta-analysis (201)</td>
<td>GP IIb/IIIa vs. PC</td>
<td>5,303 pts undergoing PCI</td>
<td>Death, MI or TVR</td>
<td>OR: 0.84</td>
<td>95% CI: 0.58–1.22; p=0.35</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1º indicates primary; ACS, acute coronary syndrome; DCA, directional coronary atherectomy; diff, difference; GP, glycoprotein; GPI, glycoprotein IIb/IIIa inhibitors; IABP, intraaortic balloon pump; MI, myocardial infarction; NFMI, nonfatal myocardial infarction; PC, placebo; PCI, percutaneous coronary intervention; PTCA, percutaneous transluminal coronary angioplasty; pts, patients; RR, relative risk; std, standard; Tn, troponin; +Tn, positive troponin; -Tn, negative troponin; TVR, target vessel revascularization; UA, unstable angina; and UTVR, urgent target vessel revascularization.

Data Supplement 22. Studies of Culprit Lesion Versus Multivessel (Culprit and Nonculprit) PCI in Patients with NSTE-ACS (Section 5)

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim of Study</th>
<th>Type of Study</th>
<th>Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brener SJ, 2008</td>
<td>To compare outcomes of culprit only PCI to multivessel PCI in NSTE-ACS pts</td>
<td>Post hoc database analysis</td>
<td>105,866 pts NCDR database</td>
<td>Multiple endpoints analyzed</td>
<td>Procedural success: 91% culprit PCI vs. 88% multivessel PCI (p<0.001) In-hospital mortality: 1.3% culprit PCI vs. 1.2% multivessel PCI (p=0.09; adjusted OR: 1.11; 95% CI: 0.97–1.27)</td>
<td></td>
</tr>
<tr>
<td>Shishibehor MH, 2007</td>
<td>Examination of the safety and efficacy of nonculprit multivessel</td>
<td>Post hoc database analysis</td>
<td>1,240 pts NSTE-ACS pts in institutional</td>
<td>Death, MI or TVR Median follow-up 2.3 y</td>
<td>Multivessel PCI associated with lower death/MI/TVR rate; adjusted HR: 0.80 (95% CI: 0.64–0.99; p=0.04); propensity matched analysis HR: 0.67 (95% CI: 0.51–0.88; p=0.004)</td>
<td></td>
</tr>
</tbody>
</table>
PCI with culprit-only PCI in pts with NSTE-ACS database

Post hoc database analysis

609 pts NSTE-ACS pts in institutional database MACE at 1 y

MACE lower with multivessel PCI than culprit vessel PCI (9.45% vs. 16.34%; p=0.02; no OR given) Revascular lower with multivessel PCI than culprit vessel PCI (7.46 vs. 13.86%; p=0.04; no OR given) No diff in death or death/MI between groups

Zapata GO, 2009 (204) 19515083

To investigate MACE at 1-y follow-up in pts with NSTE-ACS and multivessel CAD who underwent either culprit vessel PCI or multivessel PCI

Retrospective database review with additional pt follow-up

151 pts NSTE-ACS pts treated at a tertiary care institute Multiple endpoints analyzed

Compared to multivessel PCI, culprit lesion only PCI resulted in:

- More pts with residual angina (22.8% vs. 9.9%; p=0.041; no OR given)
- More pts required further PCI (17.5% vs. 7.0%; p=0.045; no OR given)
- Trend towards more readmissions for UA
- Greater use of long-term antianginal medications (52.6% vs. 38.0%; p=0.043; no OR given)

Palmer ND, 2004 (205) 15152143

Compare short and medium-term outcomes of complete revasc PCI vs. culprit revasc in NSTE-ACS pts

Retrospective database review with additional pt follow-up

151 pts NSTE-ACS pts treated at a tertiary care institute Multiple endpoints analyzed

Compared to multivessel PCI, culprit lesion only PCI resulted in:

- More pts with residual angina (22.8% vs. 9.9%; p=0.041; no OR given)
- More pts required further PCI (17.5% vs. 7.0%; p=0.045; no OR given)
- Trend towards more readmissions for UA
- Greater use of long-term antianginal medications (52.6% vs. 38.0%; p=0.043; no OR given)

Brener, 2002 (206) 12231091

To compare 30-d and 6-m outcome in NSTE-ACS pts undergoing PCI with (1) 1 VD and culprit PCI; (2) multivessel disease and culprit PCI; and (3) multivessel disease and multivessel PCI

Post hoc trial analysis

427 pts NSTE-ACS pts in TACTICS-TIMI 18

In-hospital and 6-mo MACE NS diff between the 3 groups at either 30-d or 6-mo follow-up for any of the endpoints: death; MI; and MACE

ACS indicates acute coronary syndrome; CAD, coronary artery disease; diff, difference(s); MACE, major adverse coronary events; MI, myocardial infarction; NCDR, National Cardiovascular Data Registry; NS, no(t) significance; NSTE, non-ST-elevation; NSTE-ACS, non-ST-elevation acute coronary syndrome; PCI, percutaneous coronary intervention; pts, patients; revasc, revascularization; TACTICS, Treat Angina with Tirofiban and Determine Cost of Therapy with an Invasive or Conservative Strategy; TACTICS-TIMI, Treat Angina with Tirofiban and Determine Cost of Therapy with an Invasive or Conservative Strategy-Thrombolysis In Myocardial Infarction; TIMI, Thrombolysis in Myocardial Infarction; UA, unstable angina; VD, vascular disease; and TVR, target vessel revascularization.

6.3.1 Physical activity

Munk, 2009 (207) 19853690

To evaluate high intensity interval training on in-stent restenosis following PCI for stable or UA

RCT

40 20 20

Had PCI with implantation of a stent History of MI or CABG, significant valvular heart disease, >80 y, inability to give informed consent, inability to participate in High-intensity interval training program Usual care, no exercise intervention

Restenosis was smaller in the treatment group (0.10 mm) compared to the control group (0.39) p-value (0.01) N/A

Peak oxygen uptake increased by 16.8% (T) and 7.8% (C) (p<0.01). Flowmediated dilation improved by 5.2% (T) and - 0.1% (C) (p=0.01).

Unknown

Limitations: small sample size and large interquartile ranges; heterogeneity of stents implanted. There were no serious training-related adverse events.
Depression and other psychological conditions

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Follow-up</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tisminetzky 2011 (208)</td>
<td>2,029</td>
<td>Placebo vs. cognitive behavioral therapy</td>
<td>3 y</td>
<td>Decreased levels of high-sensitivity C-reactive protein by 0.4 mg/L (T) and increased by 0.1 mg/L (C) (p=0.03 for trend)</td>
</tr>
</tbody>
</table>

6.3.4 Nonsteroidal anti-inflammatory drugs

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee, 2007 (209)</td>
<td>APPROVe=2586 APC=2035</td>
<td>Celecoxib vs. rofecoxib</td>
<td>No significant differences in CV events</td>
</tr>
</tbody>
</table>

6.3.6 Antioxidant vitamins and folic acid

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galan, 2010 (210)</td>
<td>G1=622 (Vitamin B + PC) G2 = 633 (omega 3 + PC) G3 = 620 (vitamin B + omega 3)</td>
<td>Vitamin B: 560 mg 5-methyltetrahydrofolate, 3 g B-6, 20 mg B-12 Omega 3: 600 mg of eicosapentaenoic acid and docosahexaenoic acid at a ratio of 2:1</td>
<td>Significant 2nd endpoints: Vitamin B use associated with fewer strokes (HR: 0.57; 95% CI: 0.33-0.97; p=0.04); and a higher risk of death from any cause (HR: 1.55; 95% CI: 1.07–2.25; p=0.02)</td>
</tr>
</tbody>
</table>
To determine the effect of folic acid supplementation on prevention of ACS

RCT 240 116 124

UA or NSTEMI in previous 2 wk

Hemodynamic instability, liver disease, renal disease, <18 y, pregnant, Hemoglobin <10 g/dL, high-output failure, inability to provide adequate self-care, malignancy or any terminal illness, and geographic location

1 mg folic acid, 400mcg B12, 10 mg B6 daily

PC

Re-hospitalization and composite of death, nonfatal ACS, and re-hospitalization were significantly increased in the treatment group

N/A

N/A

RR (95% CI), p value all-cause mortality 1.18 (0.68-2.04), 0.54

Nonfatal ACS 1.28 (0.64-2.54), 0.5

Re-hospitalization 5.11 (1.14-23.0), 0.016

Composite Endpoint 1.20 (1.00-1.44), 0.04

Limitations: small sample size; compliance rate=60%; adverse events in treatment group: skin irritation, dyspnea, dizziness

ACS indicates acute coronary syndrome; APC, Adenoma Prevention with Celecoxib trial; APPROVe, Adenomatous Polypl Prevention on Vioxx trial; CABS, coronary artery bypass graft; CV, cardiovascular; Dx, diagnosis; ID, identification; MI, myocardial infarction; N/A, not applicable; NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; PCP, primary care physician; Pts, patients; RCT, randomized controlled trials; and UA, unstable angina.

Data Supplement 24. Older Patients (Section 7.1)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Interventio n</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander 2007 (212) 17502590</td>
<td>Summarize evidence on pt heterogeneity, clinical presentation, and treatment of NSTE-ACS in relation to age (65-74, 75-84, and 85 y)</td>
<td>Summary or 5 pooled NSTE-ACS clinical trials and 3 large NSTE-ACS registries to assess and grade evidence and provide descriptive finding and compare pts in clinical trials vs those not Clinical Trials n=34266 (18.1% ≥75 y); Registries n=114572 (38.3% ≥75 y)</td>
<td>N/A</td>
<td>N/A</td>
<td>Clinical trial and registry specific- pooled (VIGOUR) included GUSTO Iib, PARAGON A and B, PURSUIT, GUSTO IV-ACS Registries=NR MI 2-4, CRUSADE, GRACE</td>
<td>Clinical trial and registry specific</td>
<td>Clinical trial specific</td>
<td>Clinical trial specific</td>
<td>Too numerous to list</td>
<td>Serum creatinine inadequately assesses age-related renal function decline - CrCl should be calculated in all older NSTE-ACS pts. Excess bleeding related to excess AP/AAT dose</td>
<td>Summarizes available evidence of presentation, treatment and outcomes of OA in RCTs and registries. Too numerous to list</td>
</tr>
<tr>
<td>Gale 2012</td>
<td>Assess difference in risk factors, presentation, management and outcomes across age groups and trends over 7 y in MI pts in United Kingdom</td>
<td>Mixed-effects regression analysis using data from MINAP registry in United Kingdom. Comparison across older age groups and over 7 y</td>
<td>N=616 011 ACS pts: age <55 =23%;55 - 64y=20%; 65-74 y=40%; 75-84 y=39%; ≥85 y=29%</td>
<td>N/A</td>
<td>ACS pts in National Audit registry with outcomes linked to national database. Pts included if met ACS definition on admission (diagnosis was adjudicated but did not exclude pt if not ACS).</td>
<td>Missing data or follow-up</td>
<td>N/A</td>
<td>Compared to younger NSTE-ACS pts, older pts had sig higher in-pt mortality rates, longer rates of stay and were prescribed less GDMT (med and procedures) despite same or better efficacy vs. young. These age discrepancies have decreased over time.</td>
<td>N/A</td>
<td>Too numerous to list include effect of age on presenting symptoms, comorbidities, use of GDMT, PCI, outcome, and trends over time.</td>
<td>© American Heart Association, Inc and American College of Cardiology Foundation</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Devil 2008</td>
<td>Determine whether increasing age impacts in-hosp and 6-mo outcome of revasc therapy in high-risk NSTE-ACS pts</td>
<td>Retrospectively multiple logistic regression on NSTE-ACS pts in GRACE registry by age groups</td>
<td>N=18466 NSTE-ACS pts (27% 70-80 y ‘elderly’;16% >80 y very elderly)</td>
<td>Data assessed by use of GDMT and early invasive treatment (cath with appropr revasc) by 3 age groups</td>
<td>In-hospital and 6-mo outcomes compared for age group and by intervention</td>
<td>Pts who underwent revasc during initial hospitalizatio classified as high-risk pts (STEMI data also reported but omitted here)</td>
<td>Pts with non-CV causes for the clinical presentation such as trauma, surgery, or aortic aneurism, were excluded.</td>
<td>Pts who underwent revasc during initial hospitalizatio classified as high-risk pts with dynamic ECG changes or recurrent ischemia regardless of timing of revasc strategy</td>
<td>Medical therapy types were specifically recorded for comparison. Age and intervention strategy were compared.</td>
<td>In NSTE-ACS pts, revasc vs. medical therapy sig lowered 6-mo MACE (stroke, death, MI) and 6-mo mortality. Older NSTE-ACS pts were sig less likely to undergo revasc (and GDMT) than younger pts.</td>
<td>N/A</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Participants</td>
<td>Methods</td>
<td>Outcomes</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danman 2012</td>
<td>2012</td>
<td>(215) 21930723</td>
<td>To assess the impact of early invasive vs. early conservative strategy on long term outcomes (5 y) in older NSTE-ACS pts</td>
<td>Meta-analyses of FRISC II, ICTUS and RITA-3 studies</td>
<td>N=5467 NSTE-ACS pts (51.3% <65 y, 33.3% 65-74 y, 15.3% ≥75 y)</td>
<td>Early invasive: <65 y=1383 65-75 y=901 ≥75 y=437 Selective invasive (EC): <65 y=1424 65-75 y=920 ≥75 y=402 Pts enrolled in FRISC II, ICTUS and RITA-3 with follow-up data were included.</td>
<td>Those with missing data for specific analyses Routine invasive strategy defined as card cath within 24-48 h in ICTUS trial, within 72 h in RITA-3 trial and within 7 d with subsequent revasc when appropriate. Initial medical treatment with card angio and revasc only if refractory angina despite OMT, hemodynamic instability or positive stress (ICTUS and FRISC II) Routine invasive strategy sig reduced 5-y MACE (death/MI in 65-74 y and ≥76 y but not in those <65 y). Routine invasive strategy sig higher in older pts: <65 y=1.7%, 65-74 y=2.2%, ≥75 y=6.1% (p<0.001 for trend). Bleeding rates higher in each age group with Routine invasive vs. Selective Invasive strategy but all p>0.1. In-hosp bleeding rates sig higher than for men but sample size small (esp ≥75 y) underpowered for gender and age analyses. The benefits were smaller for women than for men but sample size small (esp ≥75 y) underpowered for gender and age analyses.</td>
<td>Trials had different time windows for routine invasive strategy (up to 7 d in FRISC II) and other between trial heterogeneity exists.</td>
<td>95% CI 0.37–0.72, 70-80 OR=0.38,95 CI 0.26–0.54; >80 y OR=0.68,95 CI 0.49–0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bach 2004</td>
<td>2004</td>
<td>(216) 15299215</td>
<td>To assess impact of age and early invasive vs. initial conservative strategy on outcomes in NSTE-ACS pts</td>
<td>Prespecified subgroup analyses by age strata of TACTICS TIMI 18, a RCT</td>
<td>Early invasive: <65 y=623 ≥65 y=491 Early Conservative: <65 y=635 ≥65 y=471 Pts with NSTE-ACS eligible for card cath/revasc.</td>
<td>Coronary angiography 4-48 h after randomization and have revasc when appropriate. All pts received ASA 325 mg, UFH and tirofiban. Pl received ASA 325 mg, UFH and tirofiban, treated medically and, if stable, underwent ETT before discharge. Card angio in pts w failure of OMT or stress-induced ischemia.</td>
<td>Among pts ≥75 y, Early Invasive vs. Initial Conservative strategy conferred an absolute reduction (10.8% vs. 21.6%, p=0.016) and relative reduction of 56% in death or MI at 6 mo. RR=0.61 in death/MI at 6 mo for Early Major bleeding rates higher with Early Invasive vs. Initial Conservative strategy in pts ≥75y (16.6% vs. 6.5%; p=0.009); Sig higher minor bleeding rates and transfusions w Early Invasive vs. Initial Conservative Sig reduction in 30-d outcomes of MI, death/MI, ACS Rehosp and MACE for NSTE-ACS pts ≥75 y (none were sig for pts <65 y)</td>
<td>The benefits of earlier invasive therapy were not observed in older pts, particularly in those <75 y. The benefits were smaller for women than for men but sample size small (esp ≥75 y) underpowered for gender and age analyses.</td>
<td>95% CI 0.72–1.06, 70-80 OR=0.29–0.67, 95% CI 0.18–0.45; >80 y OR=0.54–0.83, 95% CI 0.34–0.85.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Invasive vs. Initial Conservative in NSTE-ACS pts ≥65 y but no sig diff in 6-mo outcome seen in pts <65 y in ≥75 y (0.50–1.11) MACE RR=0.75 (0.54–1.03) None of 6 mo outcomes sig in NSTE-ACS pt <65 y

<table>
<thead>
<tr>
<th>Yourman (217) 22235089</th>
<th>Assess quality and limitations of prognostic indices for mortality in older adults through systematic review.</th>
<th>Extensive literature review of prognostic indices for mortality (6 m-5 y) in pts age ≥80 y</th>
<th>N=21,593 titles reviewer</th>
<th>N/A</th>
<th>N/A</th>
<th>N/A</th>
<th>16 prognostic indices identified predicting overall mortality (6 m-5 y) in diff pt groups/ settings including community, nursing home and hospital. 2 were validated.</th>
<th>N/A</th>
<th>Reports potential sources of bias for each measure</th>
<th>Identified mortality predictors for older adults need additional external validation but may be useful in comparing efficacy of treatment/intervention recommendat ion (time to benefit) vs. life expectancy in older pts.</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenning 2012 (218) 22530044</td>
<td>Compare utility of palliative care prognostic tool GSF and GRACE score, to help identify patients approaching EoL</td>
<td>Single site study of consecutive pts admitted with NSTE-ACS pts-compared 12-mo outcome vs. prog tool estimate of EoL care.</td>
<td>N=172 NSTE-ACS pts, of these compared n=40 pts identified by GSF with n=32 by GRACE score</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>172 consecutive, unselected pts admitted for NSTE-ACS to urban hosp over 8 wk</td>
<td>N/A</td>
<td>N/A</td>
<td>GSF identified 40 pts (23%) meeting criteria for approaching EoL (GSF+ older, more comorb vs. GSF-). 1-y mortality: GSF+ vs. GSF- (20% vs. 7%, p=0.03). GRACE identified 32 (19%) pts with ≥10% risk of</td>
<td>N/A</td>
</tr>
</tbody>
</table>
death within 6 mo. GRACE score at discharge highly predictive of 12-mo mortality and associated with readmission during subseq y. Improved by adding prev hosp adm and prev stroke hx.

PPV=44%

This is a very relevant expert/consensus opinion paper, but is not a study which can be put into a data supplement table.

This reference is an extensive review and summary of major PD/PK changes with aging and their relevance to CV drugs. However, it is not amenable to list in data supplement format.

This reference is an extensive review and summary of major PD/PK changes with aging and their relevance to CV drugs. However, it is not amenable to list in data supplement format.

Investigation of relationship between UFH, LMWH and GPI excess dosing and major outcomes

Retrospectiv e exploratory analysis of CRUSADE registry

N=30,136 NSTE-ACS pts in CRUSADE registry who had received AT agents

Pts with missing weight (n=826) or missing creatinine clearance (n=1120) data excluded from dosing calculations that required these variables. Pt who were transferred or underwent CABG excluded from bleeding anal.

N/A

42% of NSTE-ACS pts received ≥1 initial dose of AT agent outside rec range. Excess doses per agent: UFH=32.8%, LMWH=13.8% and GPI=26.8%. Excess dose assoc with older age, female, low body wt, DM and CHF. Pt who received excess AT dose had higher

15% of major bleeding in NSTE-ACS pts attributable to excess AT dosing

Higher adjust mortality in those receiving excess vs. recomm dose of GPI (OR=1.50, 95% CI 1.01-2.17). LOS sig longer in pts given excess vs. rec doses of UFH, LMWH and GPI.

Adjusted OR for major bleeding with excess dosing (vs. no excess dosing): UFH: OR: 1.08 (0.94-1.26) LMWH: OR: 1.39 (1.11-1.74) GPI: OR: 1.36 (1.10-1.68)

Dosing categories based on weight and renal function dosing (dependent on recorded data) studied population may vary from those with missing data in addition to limited generalizability to general NSTE-ACS pts in real world, esp older.

© American Heart Association, Inc and American College of Cardiology Foundation
Lincoff 2003 (223)	Determine efficacy of bivalirudin +GPI vs. GPI+UFH for PCI on periprocedural ischemia and bleeding	RCT, double-blind trial in pts undergoing urgent or elective PCI-prespecified for non-inferiority	N=6010	Bival+GPI vs. UFH+GPI	30 y pts undergoing PCI with approved device	PCI performed as reperfusion therapy for AMI, poorly controlled Htn, unprotected LM, PCI w/ past mi, risk for bleeding, serum Cr >4 mg/dL, prior heparin tx.	Bivalirudin 0.75 mg/kg bolus + 1.75 mg/kg/hr inf during PCI with provisional GPI Pts received ASA and thienopyridine for ≥ 30 d post PCI	UFH 65 U/kg bolus + GPI (abciximab or eptifibatide) Pts received ASA and thienopyridine for ≥ 30 d post PCI	Provisional GPI given to 7.2% Bl pts. Noninferiority statistically achieved in 30 d endpoint: MI/death/ revasc/ in-hosp major bleeding between BIV+GPI vs. UFH+GPI	In Hosp major bleeding rates sig lower in Biv+GPI vs. UFH+GPI (2.4% vs 4.1%, p<0.001)	30 d death/MI/reva sc: no diff in MACE BIV+GPI vs. UFH+GPI (OR=0.90, p=0.4)	30 d death/MI/revasc/hosp major bleeding:no diff in MACE in BIV/GPI v UFH+GPI (OR=0.92, p=0.32).	Included elective PCI – NSTE-ACS pts approx. 42% each arm + 30% each stress test; 13% ≥75 y
Lopes RD, 2009 (224)	Evaluate impact of age on antithrombotic strategy and outcomes in moderate and high-risk NSTE-ACS pts	Pre-specified analysis of 30-d and 1-y outcomes in 4 age groups, overall and among those undergoing PCI	Of 13,819 ACUTY pts, 3,655 (26.4%) were <55 y, 3,940 (28.5%) were 55-64 y, 3,783 (27.4%) were 65-74 y, and 2,441 (17.7%) were ≥75 y.	Of the pts in each age group (prev column), 1/3 were randomized to receive HEP+GPI	Of the pts in each age group (4th column), 1/3 were randomized to receive bival alone	NSTE-ACS pts at moderate or high risk for adverse clinical outcomes at 30 d. All pts underwent cath w/ 72 h of admission	Pts excluded for any of following: STEMI, recent bleeding, CrCl <30 mg/dL, thrombocytopenia, shock, recent use of abciximab, warfarin, fondaparinux, bival, LMWH, fibrinolytics	Bivalirudin alone All pts- ASA+ mtn Clopidogrel post PCI × 1 y Clopidogrel load per invest					
									Bivalirudin+ GPI- randomized (2x2 factorial) to upstream or cath lab GPI admin Heparin +GPI randomized (2x2 factorial) to upstream or cath lab GPI admin All pts- ASA+ mtn Clopidogrelpost PCI × 1 y Clopidogrel load per invest	Mortality and composite ischemic outcomes at 30 d and 1 y were not statistically different in pts randomized to bivalirudin alone or randomized to heparin with GP IIb/IIa inhibitors across all age categories. Major bleeding increased in each age group regardless. Major bleeding rates were higher in PCI pts in the age groups: 3.4%, 5.1%, 5.5%, and 11.8%, for ages <55, 55-64, 65-74, and ≥75 y, respectively. Rates were signif lower in those treated w Bivalirudin alone in each age group	Older pts had more comorb, were more often female, weighed less, and had more hypertension, prior cerebral vascular disease, renal insufficiency (creatinine clearance ≤50 mL/min), and prior CABG	Number needed to treat with bivalirudin alone to avoid 1 major bleeding event was lower in pts ≥75 y (23 overall and 16 for PCI-treated pts) than in any other age group.	N/A
Lemesle G., 2009 (225) 19360860

Analyze impact of replacing heparin with bivalirudin in octogenaria ns undergoing PCI on post-procedure hemorrhage and 6-mo mortality.

Single center retrospective observational analyses of consecutive pts ≥80 y who underwent PCI

N=2766
N=1,207 (43.6%) received bivalirudin

Consecutive pts ≥80 y at single center who underwent PCI/stent from 2000-2007

None

Bivalirudin (dose not reported) at operator’s discretion. GPI given at operator’s discretion. ACT target >250 s

All pts received ASA 325 mg, clopidogrel ≥300 mg load then 75 mg qd mtn advised for 1 y

UFH (dose not reported) at operator’s discretion. GPI given at operator’s discretion. ACT target >250 s

All pts received ASA 325 mg, clopidogrel ≥300 mg load then 75 mg qd mtn advised for 1 y

Overall inhospital bleeding and 6-mo mortality rates were 4.6% and 11.8%, respectively. Bival vs. UFH reduced 6 mo mor t (8.8% vs. 13.4%, p=0.003). Bival was associated with less in-hospital bleeding rate (2.2% vs. 6.8%, p<0.001).

After propensity score matching, bival sig reduced periproct bleeding vs. UFH (HR=0.38, 95% CI=0.22–0.65, p=0.001). Bival vs. hep reduced 6 mo MACE (10.1% vs. 20.2%, p<0.001)

In-hospital major bleeding assoc with 6-mo mortality HR=2.5, 95%CI=1.6–3.9, p=0.001)

Non-randomized observational study. Does not reported. Differences in baseline characteristics-propensity analyses used.

Summan F, 2012 (226) 22478002

To explore feasibility and safety of PCI via transradial approach and intraprocedural bivalirudin in >70 y MI pts

Retrospective analysis of data from consecutive ACS pts >70 y with Early Invasive strategy via transradial approach with bivalirudin as AT regimen.

N=64 pts (22 male; 52 pts >80 y) STEM=53, NSTEMI=31

All pts were treated with bivalirudin and via transradial approach

None

Bivalirudin bolus dose of 0.75 mg/kg immediately followed by continuous infusion of 1.75 mg/kg/h. All pts received ASA 300 mg, clopidogrel 600 mg, UFH bolus and infusion in emer dept – stopped 6 h prior to PCI

Transradial approach successful in 100%, manual thrombus aspir in 52% of NSTEMI pts. Transfusions=0, sign bleeding event=1 (GI bleed), in-patient mort=0,30 d MACE=5 (6%, 1 death, 2 MIs, 2 TLR)

N/A

N/A

N/A

N/A

Pilot feasibility study in very elderly cohort. Single center, no comparison group.

McKellar SH, 2008 (227) 18825133

To assess pt characteristics, procedural success, Systematic review and meta-analyses of 68 studies of CABG studies

N=66 studies (65,376 pts, 56% male) 35 CABG studies 32 PCI studies

Studies which included baseline characteristic and outcomes Studies that reported combined CABG and valve operations or CABG without additional procedure (i.e. valve

PCI with last enrollment 1997

30-d mort CABG vs. PCI (7.2% v 5.4%), 1-y survival: CABG=86%

3 y survival CABG 78% (74%–82%) v PCI 78% (68%–87%), 5

Greater number of reintervention s post PCI vs. CABG.

Univariate analysis showed that CABG, male gender, Clinical trials comparing PCI vs. CABG enrolled younger pts of lower risk with less
| Kimura T, 2008 (228) 18824755 | Assess long-term outcomes between PCI vs. CABG in younger and older pts (≥75 y) | Retrospective analyses of multi-center registry (CREDO-Kyoto) of consecutive pts undergoing 1st PCI or N=9,877 enrolled, 5420 PCI (3712, CABG: 1708) had multivessel disease without left main | CAGB=1,708 ≥75 y (21%) ≥80 y (6%) PCI=3,712 ≥75 y (27%) ≥80 y (12%) Consecutive pts undergoing 1st PCI or CABG and excluding those pts with AMI within wk before index procedure. Pts undergoing concomitant valvular, left ventricular, or major vascular operation were excluded from the current analysis. Pts with disease of the left main N/A N/A ≥75 y of age: 3-y survival adjusted for baseline char favored CABG (HR for death PCI vs. CABG HR=1.23 (0.99–1.53, p=0.06), but not for younger pts Stroke rate higher in 4 y follow-up in CABG vs PCI ≥75 y Adj HR for death PCI vs. CABG prespecified subgroups: DM HR= 1.85 (1.1–3.12) p=0.02 All-cause death cum 75 y of age: 3-y survival adjusted for baseline char favored CABG HR for death PCI vs. CABG HR=1.23 (0.99–1.53, p=0.06), but Nonrandomized observational study. Meta-analyses performed in BMS era, non-urgent cases only

| complication and outcomes of ≥80 y who undergo PCI vs. CABG coronary revasc in ≥80 y (subgroup anal by revasc type) in ≥80 y undergoing revascularization (PCI vs. CABG) with 30-d survival (English lang) studies where baseline clinical data or outcomes were not reported separately were excluded. replacement, last enrolled 1996 (83%–88%) vs. PCI 87% (84%–91%) y survival CABG 68% (62%–73%) v PCI 62% (46%–77%), multivessel disease, and abnormal LVEF predicted 30-d mortality. Being treated more recently, having nonelective status, and having DM were protective. The only univariate predictor of decreased survival at 1 y was CABG (p=0.005); a more recent date of enrollment (p=0.003) and diabetes (p<0.001) were protective factors. | comorbidities, 65 of 66 studies observational, Older studies w/o DES

© American Heart Association, Inc and American College of Cardiology Foundation 2014 NSTE-ACS Guideline Data Supplements
<table>
<thead>
<tr>
<th>N=1693 (57% 2VCAD, 42.3% 3VCAD)</th>
<th>CABG=991 (2VCAD=443, 3VCAD=548)</th>
<th>PCI=702 (2VCAD=532, 3VCAD=170)</th>
<th>Pts included were 80-89 y with 2 or 3 VCAD (>70% stenosis); eligible for 1st PCI or CABG. (BARI criteria)</th>
<th>Pts undergoing emergent procedure or <24 h of MI, those with left main disease, or sig valve disease.</th>
<th>N/A</th>
<th>BMS era</th>
</tr>
</thead>
</table>
| N/A | CABG more freq male, had more PVD and CHF and less renal failure and prior MI. N=1693 (57% 2VCAD, 42.3% 3VCAD) | In-hospital mortality: PCI=3.0% vs. CABG= 5.9% (p=0.005). 6-mo survival: CABG vs. PCI (HR, 0.68; p=0.016). 3VCAD (HR=1.32; p=0.005). | | | N/A | CABG pts were more freq male, had more PVD and CHF and less renal failure and prior MI. N=1693 (57% 2VCAD, 42.3% 3VCAD) | In-hospital mortality: PCI=3.0% vs. CABG= 5.9% (p=0.005).

References

1. Dacey LJ, 2007 (229) 18036905

2. Indicates secondary; 2VCAD, double-vessel coronary artery disease; 3VCAD, triple-vessel coronary artery disease; ACC-NCDR indicates American College of Cardiology National Cardiovascular Data Registry; ACE, angiotensin-converting enzyme; ACS, acute coronary syndromes; ACUITY, Acute Catheterization and Urgent Intervention Triage Strategy; AMI, acute myocardial infarction; AP, antiplatelet; ASA, aspirin; AT, antithrombins; BARI, Bypass Angioplasty Revascularization Investigation; BEIR, Biological Effects of Ionizing Radiation; BMS, bare metal stent; CHF, congestive heart failure; CABG, coronary artery bypass graft; CAD, coronary artery disease; CANRACE, Canadian Registry of Acute Coronary Events; cath, catheterization; CHF, congestive heart failure; CR, creatinine; CRI, creatinine clearance; CREDO-Kyoto, Coronary Revascularization Demonstrating Outcome Study in Kyoto; CRUSADE, Can Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines; CT, computed tomography; CTCA, Cancer Treatment Centers of America; DES, drug-eluting stent; DM, diabetes mellitus; ED, end of life; EPR, electronic patient record; EPS, electrophisiology study; ETT, Exercise tolerance testing; FRISC, Framingham and Fast Revascularization During Instability in Coronary Artery Disease; GDMT, guideline-directed medical therapy; GI, gastrointestinal; GP, glycoprotein; GPI, glycoprotein IIb/IIIa inhibitors; GRACE, Global Registry of Acute Coronary Events; GSF, Gold Standards Framework; GUSTO, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries; HF, heart failure; HTN, hypertension; Hx, history; ICTUS, Invasive versus Conservative Treatment in Unstable Coronary Syndromes; LAR, life attributable risk; LBBB, left bundle branch block; LOS, length of stay; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac event; Mi, myocardial infarction; MINAP, Myocardial Ischaemia National Audit Project; MPI, myocardial perfusion imaging; MUGA, Multigated Wall Motion Study; N/A, not applicable; NPV, negative predictive value; NS, not significant; NRTI, National Registry of Myocardial Infarction; NSTE-ACS, non-ST-elevation acute coronary syndrome; NSTEMI, non-
<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (n)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boersma 2000 (2) 10840005</td>
<td>Develop a model for predicting 30-d death and myocardial (re)infarction in pts without STE-ACS</td>
<td>Retrospective analysis of pts with NSTE-ACS enrolled in PURSUIT trial (n=9,461; 3.6% with 1ª outcome)</td>
<td>N/A</td>
<td>Pts enrolled in PURSUIT trial</td>
<td>Pts not enrolled in PURSUIT trial; pts with STE on initial ECG</td>
<td>N/A</td>
<td>1ª outcome: 30-d death; 2ª outcome: composite of 30-d death and myocardial (re)infarction; More than 20 variables were found to be predictive of 1ª and 2ª outcomes</td>
<td>N/A</td>
<td>There were 7 factors most predictive of death: age (adjusted $\chi^2=95$), heart rate ($\chi^2=32$), SBP ($\chi^2=20$), ST-segment depression ($\chi^2=20$), signs of HF ($\chi^2=18$), and cardiac markers ($\chi^2=15$); The C-index for the mortality model was 0.814</td>
</tr>
</tbody>
</table>

Granger 2003 (3) | Develop a regression | Retrospective | N/A | Inclusion in GRACE or Not included in these trials | N/A | Adverse event defined as in- | N/A | N/A | N/A | The discrimination ability of the | N/A | Regression model | Develop a regression model | Retrospective observational study |
A model in patients with diagnosed ACS (including pts with STEMI) for in-hospital mortality was developed in patients with diagnosed ACS (including STEMI pts) and was not designed to be applied indiscriminately to undifferentiated chest pain pts; difficult to calculate; original model requires pre-existing programmed calculator; simplified version requires print-out of scoring system for each variable with corresponding nomogram.

The regression model identified the following 8 independent risk factors: age, Killip class, SBP, ST-segment deviation, cardiac arrest during presentation, serum creatinine level, positive initial cardiac enzyme findings, and heart rate.

The simplified model was excellent with C-statistics of 0.83 in the derived database, 0.84 in the confirmation GRACE data set, and 0.79 in the GUSTO-IIb database; OR for the 8 independent risk factors were: age (OR: 1.7 per 10 y), Killip class (OR: 2.0 per class), SBP (OR: 1.4 per 20 mmHg decrease), ST-segment deviation (OR: 2.4), cardiac arrest during presentation (OR: 4.3), serum creatinine level (OR: 1.2 per 1 mg/dL [88.4 μmol/L] increase), positive initial cardiac enzyme findings (OR: 1.6), and heart rate (OR: 1.3 per 30 beat/min increase).

The observation set included a subsequent cohort of 3,972 pts enrolled in GRACES and 12,142 pts enrolled in GUSTO-IIb trial; hospital mortality; Regression model identified the following 8 independent risk factors: accounte d age, Killip class, SBP, ST-segment deviation, cardiac arrest during presentation, serum creatinine level, positive initial cardiac enzyme findings, and heart rate.

In pts with diagnosed ACS (including pts with STEMI) for in-hospital mortality utilizing pts from GRACE (n=11,389; 509 deaths); validation set included a subsequent cohort of 3,972 pts enrolled in GRACES and 12,142 pts enrolled in GUSTO-IIb trial.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Study Title</th>
<th>Study Design</th>
<th>Study Population</th>
<th>Interventions</th>
<th>Comparator</th>
<th>Follow-up</th>
<th>Bleeding</th>
<th>Combined Incidence of Death, MI, or Rehospitalization</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle 2004 (16)</td>
<td></td>
<td>Original GRACE validation</td>
<td>Registry N=17,141</td>
<td>All ACS</td>
<td>6-mo all-cause mortality</td>
<td>N/A</td>
<td>N/A</td>
<td>p<0.25 into multivariate model</td>
<td>N/A</td>
<td>Registry data, 200 pts without 6 mo follow-up</td>
<td>Original GRACE validation</td>
<td>Registry N=17,141</td>
</tr>
<tr>
<td>Eggers 2010 (17)</td>
<td></td>
<td>Incremental prognostic value of multiple biomarkers in NSTE-ACS</td>
<td>Single center trial of 453 chest pain pts</td>
<td>Possible ACS</td>
<td>Biomarkers at presentation</td>
<td>All-cause mortality at 6 mo</td>
<td>NT-proBNP not additive, cystatin minimally and GDF-15 helpful</td>
<td>ROC analysis</td>
<td>N/A</td>
<td>Small but 92 deaths.</td>
<td>Incremental prognostic value of multiple biomarkers in NSTE-ACS</td>
<td>Single center trial of 453 chest pain pts</td>
</tr>
<tr>
<td>Cannon 2001 (186)</td>
<td></td>
<td>To compare an early invasive strategy to a more conservative approach</td>
<td>Prospective, randomized, multicenter trial 2,220</td>
<td>Persistent STE, 2º angina, Hx of PCI or CAB grafting within preceding 6 mo, factors associated with increased risk of bleeding, LBBB or paced rhythm, severe CHF or cardiogenic shock, serious systemic disease, a serum creatinine level of <2.5 mg/dL (221 μmol/L), or current participation in another study of an investigational drug or device</td>
<td>Pts assigned to early invasive strategy were to undergo coronary angiography between 4 h and 48 h after randomization and revasc when appropriate on the basis of coronary anatomical findings</td>
<td>Pts assigned to early conservative strategy were treated medically and, if their condition was stable, underwent an exercise-tolerance test (83% of such tests included nuclear perfusion imaging or echocardiographic performed according to the protocol of the institution) before being discharged</td>
<td>Combined incidence of death, nonfatal MI, and rehospitalization for MI</td>
<td>At 6 mo, the rate of the 1º endpoint was 15.9% with use of the early invasive strategy and 19.4% with use of the conservative strategy (OR: 0.78; 95% CI: 0.62-0.97; p=0.025).</td>
<td>Study excluded pts with severe comorbid conditions or other serious systemic illness</td>
<td>To compare an early invasive strategy to a more conservative approach</td>
<td>Prospective, randomized, multicenter trial 2,220</td>
<td></td>
</tr>
<tr>
<td>de Winter 2005 (188)</td>
<td>To compare an early invasive strategy to a selectively invasive strategy for pts who have ACS without STE and with an elevated cTnT level</td>
<td>RCT 1,200</td>
<td>Intervention: 604 vs. Comparator: 596</td>
<td>Eligible pts have all 3 of the following: Sx of ischemia that were increasing or occurred at rest, with the last episode occurring no more than 24 h before randomization; elevated cTnT level (≥0.03 μg/L); and either ischemic changes as assessed by ECG (defined as ST-segment depression or transient STE exceeding 0.05 mV, or T-wave inversion of at least 0.3 mV in at least 2 leads; elevated levels of cardiac markers; or coronary disease, as documented by Hx of cath, revasc, or M</td>
<td>Exclusion criteria were an age >18 y or <80 y, STEMI in past 48 h, indication for 1º PCI or fibrinolytic therapy, hemodynamic instability or overt CHF, the use of oral anticoagulant drugs in past 7 d, fibrinolytic use within past 96 h, PCI within the past 14 d, contraindication to treatment with PCI or GP IIb/IIIa inhibitors, recent trauma or risk of bleeding, hypertension, or M</td>
<td>Pts assigned to early invasive strategy were scheduled to undergo angiography within 24-48 h after randomization and PCI when appropriate on the basis of the coronary anatomy</td>
<td>Pts assigned to the selectively invasive strategy were treated medically. Pts were scheduled to undergo angiography and subsequent revasc only if they had refractory angina despite optimal medical treatment, hemodynamic or rhythmic instability, or clinically significant ischemia on the predischarge exercise test.</td>
<td>1º endpoint was composite of death, RMI, or rehospitalization for angina within 1 y after randomization</td>
<td>Bleeding</td>
<td>Percentage of pts free from anginal Sx</td>
<td>Estimated cumulative rate of 1º endpoint was 22.7% in the group assigned to early invasive management and 21.2% in the group assigned to selectively invasive management (RR: 1.07; [0.87-1.33]; p=0.33).</td>
<td>Revasc rates were high in the 2 groups in our study (76% in the early-invasive strategy group and 40% in the selectively-invasive strategy group during the initial hospitalization, and 79% and 54%, respectively, within 1 y after randomization</td>
</tr>
<tr>
<td>Fox KA 2002. (187) 12241831</td>
<td>To compare interventional strategy and conservative strategy in pts with unstable CAD</td>
<td>RCT 1,810</td>
<td>Interventi on: 895 vs. Comparator: 915</td>
<td>Pts eligible for inclusion if they had suspected cardiac chest pain at rest and had documented evidence of CAD with at least 1 of the following: evidence of ischaemia on ECG (ST-segment depression, transient STE, LBBB [documented previously], or T-wave inversion); pathological Q waves suggesting previous MI; or arteriographic</td>
<td>All those with probable evolving MI, including those for whom reperfusion therapy was indicated; were ineligible. Those in whom new pathological Q waves developed, or those with CK or CK-MB concentration ≥2× the ULN before randomization, were excluded. Also excluded were those with MI within the previous mo, PCI in the</td>
<td>Pts assigned to interventional strategy were managed with antianginal and antithrombotic medication</td>
<td>Coprimary endpoints were: a combined rate of death, nonfatal MI, or refractory angina at 4 mo; and a combined rate of death or nonfatal MI at 1 y</td>
<td>Bleeding</td>
<td>Death, MI, refractory angina as individual endpoints</td>
<td>At 4 mo, 86 (9.6%) of 895 pts in interventional group had died or had a MI or refractory angina, compared with 133 (14.5%) of 915 pts in the conservative group (RR: 0.66, [0.51-0.85], p=0.001).</td>
<td>1º endpoint driven by reduction of refractory angina with no difference in hard clinical endpoints</td>
<td>To compare interventional strategy and conservative strategy in pts with unstable CAD</td>
</tr>
<tr>
<td>Spacek 2002 (120)</td>
<td>To compare 1-d angiography/angioplasty vs. early conservative therapy of evolving MI without persistent STE</td>
<td>RCT 131</td>
<td>Interventi on: 64 vs. Comparator: 67</td>
<td>Rest ischaemic chest pain, lasting <20 min, within last 24 h before randomization; ECG evidence of AMI without STE (ST-segment depressions minimally 0.1 mm in at least 2 contiguous leads and/or negative T waves or documented old LBBB/RBBB; CK-MB higher than 1.5× X ULN and/or positive Tnl assay</td>
<td>Unstable post-infarction angina pectoris resistant to maximal pharmacotherapy; cardiogenic shock: acute LBBB or RBBB or STE 2 mm in 2 leads; QMI or IV thrombolysis >1 mo; coronary angioplasty or bypass surgery >6 mo; any concomitant disease which may have possible influence on 1 y Px; lack of pt cooperation</td>
<td>1-d angiography/angioplasty treatment strategy guidelines were characterized by initial medical treatment with coronary angiography and subsequent revasc only in the presence of recurrent myocardial ischaemia</td>
<td>Composite of death or nonfatal RMI 6 mo after the randomization</td>
<td>None</td>
<td>Length of the initial hospitalization and the number of subsequent hospitalizations for UAP</td>
<td>1º endpoint (death/reinfarction) at 6 mo occurred in 6.2% vs. 22.3% (p<0.001). 6-mo mortality in 1-d angiography/angioplasty group was 3.1% vs. 13.4% in the conservative group (p<0.03).</td>
<td>Small sample size, interventions were done in only one high volume tertiary center</td>
<td>To compare 1-d angiography/angioplasty vs. early conservative therapy of evolving MI without persistent STE</td>
</tr>
</tbody>
</table>

| Hochman 1999 (230) | Evaluate early revascularization in pts with cardiogenic shock | Multicenter RCT | 302 pts | 152 pts randomized to emergency revasc | 150 pt-initial medical stabilization | STEMI, new LBBB, posterior infarction with anterior ST segment depression and cardiogenic | N/A | N/A | N/A | N/A | N/A | N/A | Emergency revasc did not significantly reduce overall mortality at 30 d. However, at 6 mo significant survival benefit | 2014 NSTE-ACS Guideline Data Supplements |
Data Supplement 26. Cardiogenic Shock (Section 7.2.2)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Interventio n Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study group</th>
<th>Comparator group</th>
<th>Endpoints</th>
<th>Conclusions</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhatt 2004 (231) 15523070</td>
<td>Determine use and predictors of early invasive management strategies in high-risk pts with NSTEMI</td>
<td>Registry-observation al study trial</td>
<td>17,926 with NSTEMI 6,037 (44.8%) underwent early cardiac cath <48 h</td>
<td>N/A</td>
<td>NSTEMI pts presenting to 248 US hospitals with cardiac cath facilities and PCI or CABG availability</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Use of early invasive management within 48 h of presentation</td>
<td>Predicators of early invasive management</td>
<td>In-hospital mortality</td>
</tr>
</tbody>
</table>

1º indicates primary; 2º indicates primary; ACS, acute coronary syndromes; AMI, acute myocardial infarction; BNP, B-type natriuretic peptide; CHF, congestive heart failure; CAB, coronary artery bypass; CABG, coronary artery bypass graft; CAD, coronary artery disease; CI, confidence interval; CK-MB, creatine kinase MB; cTnT, cardiac troponin T; CV, cardiovascular; ECG, electrocardiography; ED, emergency department; eGFR, estimated glomerular filtration rate; GDF, growth differentiation factor; GP, glycoprotein; GRACE; Global Registry of Acute Coronary Events; GUSTO, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries trial; HF, heart failure; Hx, history; LBBB, left bundle-branch block; MI, myocardial infarction; NSTE-ACS, non-ST-elevation acute coronary syndrome; NSTEMI, non-ST-elevation myocardial infarction; NT-pro, N-terminal pro; PCI, percutaneous coronary intervention; PURSUIT, Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy; Pt, patient; Px, prognosis; QMI, q-wave myocardial infarction; RBBB, right bundle-branch block; RCT, randomized clinical trial; RMI, recognized myocardial infarction; ROC, receiver operating characteristic; RR, relative risk; SBP, systolic blood pressure; STEMI, ST-elevation myocardial infarction; Sx, symptom; TIMI, Thrombolysis In Myocardial Infarction trial; TnT, troponin T; ULN, upper limit normal; US, United States.
<table>
<thead>
<tr>
<th>Jacobs A. et al., 2000</th>
<th>Determine the outcomes of pts with cardiogenic shock complicating NSTEMI</th>
<th>Registry Sub-study of the SHOCK trial</th>
<th>881</th>
<th>152 pts with NSTEMI and cardiogenic shock</th>
<th>729 pts with STEMI and cardiogenic shock</th>
<th>Cardiogenic shock due to LV failure</th>
<th>Excluded pts with missing ECG + cardiogenic shock due to mechanical complications, tamponade, cardiac catheter laboratory complication, isolated RV dysfunction, severe valvular heart disease</th>
<th>NSTEMI + cardiogenic shock</th>
<th>STEMI + cardiogenic shock</th>
<th>In-hospital mortality similar in the 2 groups (62.5% for NSTEMI vs. 60.4% STEMI). After adjustment, STEMI did not independently predict in-hospital mortality (OR: 1.30; 95% CI: 0.83 – 2.02; p=0.252)</th>
<th>Compared with shock pts who had STEMI, pts with NSTEMI were older and more likely to have comorbid disease, prior infarctions and MVD Left circumflex artery was the culprit vessel in 34.6% of non-ST-elevation MI pts (p<0.001) Similar LVEF in-hospital, and similar revascularization</th>
<th>No hemodynamic or LV function data Registry data – subject to confounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes DR et al., 1999</td>
<td>Assess the incidence and outcomes of cardiogenic shock developing among pts with and without ST-segment elevation</td>
<td>Pre-specified sub-study from the GUSTO-llb trial</td>
<td>12, 084 (of those 4,092 or 34% had NSTEMI)</td>
<td>200 pts developed cardiogenic shock (out of 7,986 NSTEMI pts) 2.5%</td>
<td>173 pts developed cardiogenic shock (out of 4,087 STEMI pts) 4.2%</td>
<td>Pts who developed shock after enrollment in GUSTO GUSTO eligibility criteria: chest pain of myocardial ischemia within 12 h + STE or ST-depression, or persistent T-wave inversion</td>
<td>Pts who had shock on presentation (n=58) + 11 pts with missing data Also excluded pts with STEMI who were not candidates for thrombolytic therapy</td>
<td>NSTEMI (incidence/outcome of cardiogenic shock)</td>
<td>STEMI (incidence/outcome of cardiogenic shock)</td>
<td>Lower OR of developing cardiogenic shock in NSTEMI compared with STEMI. Incidence: 4.2% vs. 2.5% (OR: 0.58; 95% CI: 0.47-0.72; p<0.001) High 30-d mortality in both: 63% among pts with STEMI with shock vs. 73% in NSTEMI with shock (p NS)</td>
<td>Pts without ST-segment elevation were older, more frequently had DM and 3-vessel disease, but had less TIMI grade 0 flow at angiography Shock developed significantly later among pts without ST-segment elevation No STE was significant predictor of 30-d mortality (p=0.048)</td>
<td>Pts with cardiogenic shock and NSTEMI have a higher-risk profile than shock pts with ST-segment elevation, but similar in-hospital mortality.</td>
</tr>
</tbody>
</table>
Data Supplement 27. Diabetes Mellitus (Section 7.3)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannon 2001 (186) 11419424</td>
<td>To compare an early invasive strategy to a more conservative approach</td>
<td>Prospective, randomized, multicenter trial 2,220</td>
<td>Interception: 1,114 vs. Comparator: 1,106</td>
<td>Pts ≥18 y if they had had an episode of angina (with an accelerating pattern or prolonged [>20 min] or recurrent episodes at rest or with minimal effort) within the preceding 24 h, were candidates for coronary revasc, and had at least 1 of the following: a new finding of ST-segment depression of at least 0.05 mV, transient (<20 min) STE of at least 0.1 mV, or T-wave inversion of at least 0.3 mV in at least 2 leads; elevated levels of cardiac markers; or coronary disease, as documented by a Hx of catheterization, revasc, or M</td>
<td>Persistent STE, 2º angina, a Hx of PCI or CABG within the preceding 6 mo, factors associated with an increased risk of bleeding, LBBB or paced rhythm, severe CHF or cardiogenic shock, serious systemic disease, a serum creatinine level of <2.5 mg/dL (221 μmol/L), or current participation in another study of an investigational drug or device</td>
<td>Pts assigned to the early invasive strategy were to undergo coronary angiography between 4 h and 48 h after randomization and revasc when appropriate on the basis of coronary anatomical findings</td>
<td>Combined incidence of death, nonfatal MI, and rehospitalization for MI</td>
<td>Bleeding</td>
<td>Death, death or MI, fatal or nonfatal MI, rehospitalization for MI</td>
<td>At 6 mo, the rate of the 1º endpoint was 15.5% with use of the early invasive strategy and 19.4% with use of the conservative strategy (OR: 0.78; 95% CI: 0.62-0.97; p=0.025). Study excluded pts with severe comorbid conditions or other serious systemic illness</td>
<td>To compare an early invasive strategy to a more conservative approach</td>
</tr>
</tbody>
</table>
FRISC II

Study
- Multicenter RCT of 2,457 pts
- 2,457 pts, 21.4% diabetics
- Early invasive strategy N=1,222
- Comparator group: noninvasive strategy n=1,235
- Inclusion: UA, NSTEMI

| Study || Comparator Group: Noninvasive Strategy |
|-------|--|
| Inclusion | UA, NSTEMI Pts with DM - 21.4% of total but not analyzed separately |
| 6-mo composite of death or MI | 9.4% in invasive vs. 12.1% in noninvasive group (RR: 0.78, 95% CI: 0.62–0.98, p=0.031) Decrease in MI alone 7.8% in invasive vs. 10.1% in conservative group (RR: 0.77 95% CI: 0.60–0.99; p=0.045) Nonsignificant decrease in death 1.9% vs. 2.5% (HR: 0.65, 95% CI: 0.39–1.09; p=0.10) |
| 1º composite of death or MI | ITT DM remained a strong independent predictor of death and MI in multivariable analyses Invasive strategy reduced composite of death or MI in pts with DM from 29.9% to 20.6% (OR 0.61; CI 0.36–1.04, p=0.086) Invasive strategy |
| Angina at 6 mo | N/A |

Norhammar 2004

- Evaluate influence of DM in outcome of unstable CAD
- Randomized clinical trial
- 299 pts with diabetes mellitus and 2,158 without randomized to early invasive or a noninvasive strategy
- 2,158 patients without DM

| Study || Comparator Group: Noninvasive Strategy |
|-------|--|
| Inclusion | UA, NSTEMI Pts with DM defined as treated with diet, oral agents, or insulin Pts with DM were at higher baseline risk – more prior MI, CHF, PAD, HBP, more 3VD |
| 6-mo composite of death or MI | 29.9% to 20.6% (OR 0.61; CI 0.36–1.04, p=0.086) Invasive strategy |
| Angina at 6 mo | N/A |

Early invasive strategy preferred in most pts with unstable CAD who have signs of ischemia or have NSTEMI. Benefit is greatest in pts at higher risk at entry.
| Parkhou 2012 | Compare strategy of aggressive medical therapy and DES vs. CABG for pts with DM and multivessel CAD | Multicenter randomized clinical trial | 1,900 pts | Aggressive medical therapy plus DES, n=953 | CABG, n=947 | Plts with DM with angiographic ally confirmed MVD of ≥2 major epicardial vessels | LMCA lesions excluded Minimum follow-up 2 y | N/A | N/A | Composite of death from any cause, nonfatal MI or nonfatal stroke | N/A | Composite 5-y rate 26.6% in PCI vs. 18.7% in CABG; p=0.005 5-y rate death from any cause 16.3% vs. 10.9%; p=0.049 PCI vs. CABG 5-y rate MI 13.0% vs. 6.0%; p<0.001 PCI vs. CABG Rate stroke increased with CABG 5.2% - CABG vs. 2.4% PCI; p=0.03 No subgroup analysis of pts with ACS | N/A | MACE at 30 d and 12 mo | N/A | For pts with DM and severe CAD undergoing revascularization, CABG was associated with significant reduction in death and MI, but with a significant increase in stroke compared with PCI. Limitations: Trial not blinded. Some pre-specified subgroups had very low prevalence.

1º indicates primary; 2º, secondary; 3VD, three-vessel disease; ACS indicates acute coronary syndrome; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; DES, drug-eluting stents; DM, diabetes mellitus; HBP, high blood pressure; Hx, history; ITT, intention to treat; LBBB, left bundle-branch block; LMCA, left main coronary artery disease; MACE, major adverse cardiac events; MI, myocardial infarction; MVD, multi-vessel disease; N/A, not applicable; NSTEMI, non-ST-elevation myocardial infarction; PAD, peripheral arterial disease; PCI, percutaneous coronary intervention; Pts, patients; RCT, randomized controlled trial; RR, relative risk; Sx, symptom(s); UA, unstable angina.
Data Supplement 28. Post-CABG (Section 7.4)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kavsak 2006 16524840 (23)</td>
<td>Impact of new classification of MI</td>
<td>Retrospective analysis using CK-MB vs. Tnl analysis for MI def. 258 pts with ACS</td>
<td>Tri vs. CK-MB Dx based on MONICA or AHA def of MI</td>
<td>2 SPSS CK-MB, Tnl ≥20% change using 99% Tnl cutoff</td>
<td>N/A</td>
<td>2 specimens CK-MB, Tnl drawn at least 6 h apart</td>
<td>AMI prevalence* MONICA CK-MB 19.4% AHA 19.8%, Tnl increase to 35.7%</td>
<td>N/A</td>
<td>Trl vs. CK-MB p<0.001 for increase MI def using Tnl</td>
<td>cTnl 35.7% (30.1-41.7) Relative inc 84%</td>
<td>N/A Exclusion of nonischemic diseases causing Tnl elevation</td>
</tr>
<tr>
<td>Goodman 2006 16504627 (25)</td>
<td>Diagnostic and prognostic impact of new UDMI</td>
<td>Multicenter observational prospective Registry (GRACE) 26,267 ACS pts</td>
<td>Use of CK and Tnl 16,797 vs. CK-MB and Tn 10,719 for hospital mortality, 14,063 vs. 8,785 for 6-mo mortality >18 y with possible ACS with ECG abnormal or CAD history, CK, CK-MB, Tn</td>
<td>NS comorbity, trauma, surgery, lack of 1 biomarker</td>
<td>CK CK-MB Tnl Follow-up for 6 mo</td>
<td>Tnl+ levels demonstrated higher in hospital and 6-mo mortality rates than higher CK levels</td>
<td>N/A</td>
<td>In entire population, Tnl+ status vs. CK status 6-mo mortality 1.6 (1.4-1.9)</td>
<td>Hospital mortality rates higher with Tnl+ vs. CK+ 2.2 (1.8-2.9) with Tnl+/CK-MB+: 2.1 (1.4-3.2)</td>
<td>N/A 34% in GRACE registry excluded because of use of 1 biomarker only Diagnostic and prognostic impact of new UDMI</td>
<td></td>
</tr>
<tr>
<td>Eggers 2011 20869357 (26)</td>
<td>Clinical implications of relative change in cTnl levels with chest pain</td>
<td>Retrospective study of 454 ACS pts within 24 h of admission follow up with 5.8 y follow-up</td>
<td>UDMI with presp cTnl changes from ≥20%, 50%, 100%</td>
<td>cTnl <99th percentile</td>
<td>cTnl levels</td>
<td>Peak cTnl level ≥99th percentile + change ≥20% in 160.25 had no AMI by ESC/ACC criteria</td>
<td>N/A</td>
<td>N/A</td>
<td>All 160 had significant raised mortality HR: 2.5 (1.7-3.8) Higher Tnl deltas were not associated with higher mortalities</td>
<td>NA Analysis of assay could not be validated by hs Tnl assay. No review of pts records for type I or 2 AMI No long-term risk assessment</td>
<td></td>
</tr>
<tr>
<td>Giannitsas 2010 (33) 20167697</td>
<td>Dx, perf. of hs-cTnlT for detection. of NSTEMI in ACS</td>
<td>Retrospective cohort analysis 57 with UA</td>
<td>Baseline vs. and serial conc. at 3 h and 6 h</td>
<td>UA or NSTEMI with initial -cTnlT</td>
<td>Immed PCI or kidney dysfunction</td>
<td>cTnlT baseline,3,6 h delta change</td>
<td>cTnlT Dx 61% at baseline to 100% at 6 h.</td>
<td>N/A</td>
<td>Doubling of cTnlT with initial 99% + pos</td>
<td>Delta changes and ROC opt. values spec 100% with</td>
<td></td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation

106
<table>
<thead>
<tr>
<th>NSTEMI and evolving NSTEMI</th>
<th>Detecting and Treating NSTEMI</th>
<th>Dx inc by 34% above std cTnT</th>
<th>predicted value 100% neg predicted value 88%</th>
<th>sens 69% and 76%</th>
<th>admissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>>20%, or ROC optimized value >117% 3 h, or 246% 6 h</td>
<td>No coronary angiography within 12 h</td>
<td>Both cTnT collected 48 h after randomization</td>
<td>+hs-cTnT same 1-y mortality. Whether + or – with st-TnT</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dx inc by 34% above std cTnT</td>
<td>Predicted value 100% neg Predicted value 88%</td>
<td>Sens 69% and 76%</td>
<td>Admissions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lindahl 2010
Comparison with std cTnT for risk assessment
Prospective cohort 1,452
Effect of pos. by both assays vs. only 1 assay

Cannon 2001
To compare an early invasive strategy to a more conservative approach
Prospective, randomized, multicenter trial 2,220
Intervention: 1,114 vs. Comparator: 1,106
Pts ≥18 y if they had had an episode of angina (with an accelerating pattern or prolongd [>20 min] or recurrent episodes at rest or with minimal effort) within the preceding 24 h, were candidates for coronary revasc, and had at least 1 of the following: a new finding of ST-segment depression of at least 0.05 Persistent STE, 2º angina, a Hx of PCI or CABG within the preceding 6 mo, factors associated with an increased risk of bleeding, LBBB or paced rhythm, severe CHF or cardiogenic shock, serious systemic disease, a serum creatinine level of <2.5 mg/dL (221 Pts assigned to the early invasive strategy were to undergo coronary angiography between 4 h and 48 h after randomization and revasc when appropriate on the basis of coronary anatomical findings

<table>
<thead>
<tr>
<th>Hs-cTnT comparison with std cTnT for risk assessment</th>
<th>Pts with higher pretest risk than typical chest pain pts in ED</th>
<th>Hs-cTnT comparison with std cTnT for risk assessment</th>
<th>Prospective cohort 1,452</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective, randomized, multicenter trial 2,220</td>
<td>Pts with higher pretest risk than typical chest pain pts in ED</td>
<td>Hs-cTnT comparison with std cTnT for risk assessment</td>
<td>Prospective cohort 1,452</td>
</tr>
</tbody>
</table>

At 6 mo, the rate of the 1º endpoint was 15.9% with use of the early invasive strategy and 19.4% with use of the conservative strategy (OR: 0.78; 95% CI: 0.62-0.97; p=0.025).
Study excluded pts with severe comorbid conditions or other serious systemic illness
To compare an early invasive strategy to a more conservative approach
Prospective, randomized, multicenter trial 2,220
<table>
<thead>
<tr>
<th>Fox 2002 (187)</th>
<th>To compare interventional strategy and conservative strategy in pts with unstable CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT 1,810</td>
<td>Intervention: 895 vs. Comparator: 915</td>
</tr>
<tr>
<td>All those with probable evolving MI, including those for whom reperfusion therapy was indicated, were ineligible. Those in whom new pathological Q waves developed, or those with CK or CK-MB concentration ≥2× the ULN before</td>
<td></td>
</tr>
<tr>
<td>Pts assigned to the interventional strategy were managed with optimum antianginal and antithrombotic treatment (as for the conservative group), and enoxaparin 1 mg/kg subcutaneously 2× for 2-8 d. The protocol specified that coronary</td>
<td></td>
</tr>
<tr>
<td>Pts assigned to the conservative strategy were managed with antianginal and antithrombotic medication</td>
<td></td>
</tr>
<tr>
<td>The coprimary trial endpoints were: a combined rate of death, nonfatal MI, or refractory angina at 4 mo; and a combined rate of death or nonfatal MI at 1 y</td>
<td></td>
</tr>
<tr>
<td>Bleeding</td>
<td></td>
</tr>
<tr>
<td>Death, MI, refractory angina as individual endpoints</td>
<td></td>
</tr>
<tr>
<td>At 4 mo, 86 (9.6%) of 895 pts in the interventional group had died or had a MI or refractory angina, compared with 133 (14.5%) of 915 pts in the conservative group (RR: 0.66, [0.51-0.85], p=0.001).</td>
<td></td>
</tr>
<tr>
<td>1st endpoint driven by reduction of refractory angina with no difference in hard clinical endpoints</td>
<td></td>
</tr>
<tr>
<td>To compare interventional strategy and conservative strategy in pts with unstable CAD</td>
<td></td>
</tr>
<tr>
<td>Spacek 2002 (120) 11762138</td>
<td>To compare 1st d angiography/angioplasty vs. early conservative therapy of evolving MI without persistent STE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rest ischaemic chest pain, lasting <20 min, within the last 24 h before randomization; ECG evidence of AMI without STE (ST-segment depressions minimally 0.1 mm in at least 2 contiguous leads and/or negative T waves or documented old LBBB/ RBBB, CK-MB higher than 1.5 × X ULN and/or positive TnI assay</td>
<td>Unstable post-infarction angina pectoris resistant to maximal pharmacothe rapy; cardiogenic shock; acute LBBB or STE 2 mm in 2 leads; QMI or IV thrombolysis >1 mo; coronary angioplasty or bypass surgery >6 mo; any concomitant disease which may have possible influence on 1st d angiography/angioplasty treatment strategy guidelines were characterized by a coronary angiogram as soon as possible after randomization followed by immediate coronary angioplasty of the culprit coronary lesion + stent implantation whenever suitable</td>
</tr>
<tr>
<td>Conservative treatment strategy guidelines were characterized by initial medical treatment with coronary angiography and subsequent revasc only in the presence of recurrent myocardial ischaemia</td>
<td>Composite of death or nonfatal RMI 6 mo after the randomization</td>
</tr>
<tr>
<td>To compare 1st d angiography/angioplasty vs. early conservative therapy of evolving MI without persistent STE</td>
<td>RCT 131</td>
</tr>
</tbody>
</table>
1º indicates primary; 2º, secondary; 3VD, three-vessel disease; ACS indicates acute coronary syndrome; AMI acute myocardial infarction; CABG, coronary artery bypass graft; CAD, coronary artery disease; CHF, congestive heart failure; CK, creatine kinase; CK-MB, creatine kinase MB; Dx, diagnosis; ECG, electrocardiograph; ESC, European Society of Cardiology; GRACE, Global Registry of Acute Coronary Events; HBP, high blood pressure; Hs-cTnT, high-sensitivity cardiac troponin I; Hx, history; IV, intravenous; LBBB, left bundle-branch block; MI, myocardial infarction; MONICA, Multinational MONItoring of trends and determinants in CArdiovascular disease; NS, no(n) significance; PCI, percutaneous coronary intervention; Pt, patient; Px, prognosis; QMI, Q-wave myocardial infarction; RBBB, right bundle-branch block; RCT, randomized controlled trials; revasc, revascularization; ROC, receiver operating characteristic; RMI, RR, relative risk; cTnT, cardiac troponin T; SSFS, STE, ST-elevation; Tn, troponin; TnI, troponin I; UAP, UDMi, Universal Definition of Myocardial Infarction; and ULN, upper limit of normal.

Data Supplement 29. Chronic Kidney Disease (Section 7.6)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wright 2002 12353943 (237)</td>
<td>Compare outcomes after AMI in pts with varying degrees of renal function</td>
<td>Retrospectiv e cohort study</td>
<td>4,426</td>
<td>n=3,106 with: endstage renal disease, severe renal insufficiency CrCl <35 mL/min, moderate renal insufficiency CrCl ≤35, ≥50 mL/min, mild renal insufficiency CrCl > 50 mL/min</td>
<td>n=1,320 with normal renal function</td>
<td>Consecutive pts with acute infarction before 1988 and 2000. Renal function estimated according to the Cockcroft-Gault.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short- and long-term survival compared after pts were stratified by CrCl. In-hospital mortality: 2% in pts with normal renal function, 6% in pts with mild renal failure, 14% in pts with moderate renal failure, 21% in pts with severe renal failure, and 30% in pts with endstage renal disease; p<0.001 Post-discharge mortality in abnormal renal function vs. normal renal function Mild renal failure HR: 2.4 (CI 1.7–3.3; p<0.001) Moderate renal failure HR: 2.2 (CI: 1.5–3.3; p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Shlipak 2002</td>
<td>Determine how pts with renal insufficiency are treated during MI</td>
<td>All nongovernmental U.S. hospitals cohort study</td>
<td>130,099 older pts with MI 1994-1995</td>
<td>Mild renal insufficiency: Cr 1.5-2.4 mg/dL n=36,756 Moderate renal insufficiency: Cr 2.5-3.9 mg/dL n=10,888</td>
<td>No renal insufficiency: Cr <1.5 mg/dL n=82,455</td>
<td>All older (age ≥65 y) Medicare beneficiaries with AMI 1994-1995</td>
<td>6,790 pts with severe renal insufficiency Cr ≥4.0 mg/dL 10,570 pts with no information on estimating CrCl</td>
<td>Primary: pts with moderate renal insufficiency less likely to receive aspirin, BB, thrombolytic therapy, angiography or PCI</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Severe renal failure HR: 1.9 (CI: 1.2–3.0; p=0.006) End-stage renal disease HR: 5.4 (CI: 3.0–9.7; p<0.001)

Determine association of renal insufficiency on survival after MI

Mild renal insufficiency: Cr: 1.5-2.4 mg/dL
Moderate renal insufficiency: Cr: 2.5-3.9 mg/dL
No renal insufficiency: Cr <1.5 mg/dL

Primary: pts with moderate renal insufficiency less likely to receive aspirin, BB, thrombolytic therapy, angiography or PCI

N/A

1 y-mortality 24% with no renal insufficiency 46% with mild renal insufficiency 66% with moderate renal insufficiency

Secondary: after adjustment for pt and treatment characteristics, renal insufficiency was associated with elevated risk of death after MI

Mild renal insufficiency: Cr: 1.5-2.4 mg/dL

Moderate renal insufficiency: Cr: 2.5-3.9 mg/dL
No renal insufficiency: Cr <1.5 mg/dL

Primary: pts with moderate renal insufficiency less likely to receive aspirin, BB, thrombolytic therapy, angiography or PCI

N/A

No measurement of true GFR

Size of data collected from 1994-1995

Focus on patients ≥65 y
<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Title</th>
<th>Study Design</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solomon 1994</td>
<td>7969280</td>
<td>Evaluate effect of saline, mannitol on renal function in pts undergoing coronary angiography</td>
<td>RCT</td>
<td>78 pts with chronic renal insufficiency undergoing coronary angiography. Serum Cr measure prior to and 48 h after angiography. An increase in baseline serum Cr of ≥0.5 mg/dL within 48 h of angiography 11% with saline, 28% with saline + mannitol, 40% with saline + furosemide (p=0.05). Hydration with 0.45% saline provides better protection against CIN than hydration plus either mannitol or furosemide. Limitations: Small sample size.</td>
</tr>
<tr>
<td>Charytan 2009</td>
<td>19423566</td>
<td>Evaluate effectiveness of an early invasive strategy or conservative strategy in pts with CKD admitted with UA/NSTEMI</td>
<td>Collaborative meta-analysis of RCT</td>
<td>78 pts with chronic renal insufficiency undergoing coronary angiography. Serum Cr measure prior to and 48 h after angiography. Invasive strategy associated with: Nonsignificant reduction in all-cause mortality RR: 0.76; 95% CI: 0.49–1.17; p=0.21 Nonfatal MI RR: 0.78; 95% CI: 0.52–1.16; p=0.22 Death or nonfatal MI RR: 0.79; 95% CI: 0.53–1.18; p=0.24 Significant reduction in rehospitalization RR: 0.76; 95% CI: 0.66–0.87; p<0.0001 Routine coronary angiography should be considered for pts with CKD who are admitted with NSTEMI. Limitations: Publication bias, Small number of patients, Small number of stage 4-5 CKD</td>
</tr>
<tr>
<td>Szummer 2009</td>
<td>19704097</td>
<td>Evaluate influence of renal function on effects of early revascularization in NSTEMI</td>
<td>Nationwide registry</td>
<td>23,262 consecutive NSTEMI pts ≤80 y old treated from 2003-2006. After adjustment overall 1-y mortality was 36% lower (HR: 0.64; 95% CI: 0.56–0.73; p<0.001) with invasive strategy. Magnitude of survival difference similar in normal to moderate renal function groups. Lower mortality observed with invasive therapy declined with lower renal function. Early invasive therapy is associated with greater 1-y survival in pts with NSTEMI and mild-moderate renal insufficiency. Benefit declines with lower renal function. Limitations: Registry study, Selection bias, Arbitrary cut point 14 d Pts ≤80 y.</td>
</tr>
</tbody>
</table>
2014 NSTE-ACS Guideline Data Supplements

Data Supplement 30. Women (Section 7.7)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hutchinson-Jaffe AB, Goodman SG, Yan RT, et al.</td>
<td>Characterize differences in clinical characteristics and clinical management between pts with NSTE-ACS in clinical trials and not in clinical trials</td>
<td>Retrospective case-control of several large NSTE-ACS registries</td>
<td>N=13,556 pts with NSTE-ACS (8.3% in clinical trials)</td>
<td>None</td>
<td>None</td>
<td>Pts with NSTE-ACS in 4 large prospectively collected registries: Canadian ACS I (1999 to 2001), ACS II (2002-2003), GRACE (2004-2007), and CANRACE (2008) over 10 y, ≥18 y age, within 24 h of NSTE-ACS presentation</td>
<td>Pts with NSTE-ACS with ACS precipitated or accompanied by a serious concurrent illness, such as trauma or GI bleeding</td>
<td>N/A</td>
<td>Pts enrolled in clinical trials were younger, more likely to be men, and had fewer comorbidities. Clinical trial pts were more likely to be on several GDMT, undergo invasive procedures (all p<0.001). Unadjusted inhospital mortality nonclinical vs. clinical trials (2.1% vs. 0.7%, p<0.001) and 1-y (8.9% vs. 6.3%, p=0.037) In</td>
<td>Results too numerous to list</td>
<td>N/A</td>
</tr>
</tbody>
</table>

AMI indicates acute myocardial infarction; BB, beta blocker; CKD, chronic kidney disease; CIN, contrast induced nephropathy; Cr, creatinine; CrCl, creatinine clearance; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; MI, myocardial infarction; N/A, nonapplicable; NSTEMI, Non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; pts, patients; RCT, randomized controlled trial; RR, relative risk; UA, unstable angina; and U.S., United States.
To assess clinical and angiographic characteristics, procedural and treatment patterns, and in-hospital outcomes between men and women

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design</th>
<th>Population</th>
<th>Comparator</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akhter N, Milford-Beland S, Roe MT, et al.</td>
<td>Retrospective case-control of registry data</td>
<td>N=199,690 pts, 55,691 women presented with NSTE-UA vs. 101,961 men</td>
<td>Men and women with NSTE-ACS who underwent PCI in ACC-NCDR Registry 1/104-3/30/06; index PCI only</td>
<td>Women presented more often with NSTE-ACS than men (82% vs. 77% of men, <0.0001). Women with NSTE-ACS had more comorbidities, but fewer high-risk angiographic features than men. Women were less likely to receive ASA, GPI, and less often discharged on ASA or statin. In-hospital mortality, was similar for women and men (OR: 0.97, p=0.5). Women had higher rates of cardiogenic shock, CHF, any bleeding (7.6 vs. 3.6%, p=0.01), and any vascular complications, but subacute stent</td>
</tr>
</tbody>
</table>

To examine differences of gender in treatment and outcomes among pts with NSTE ACS

| Retrospective case-control of registry data | N=35,875 pts (41% women) | None | 35,875 pts with NSTE-ACS (14,552 women) at 391 U.S. hospitals participating in the CRUSADE initiative between March 31, 2000, and December 31, 2002 | Pts excluded from this analysis included those who were transferred to another hospital, (3,210 men and 1,827 women), and pts with missing gender status (n=66) | N/A | N/A | Women were older (median age 73 vs. 65 y) and more often had DM and HTN. Women were less likely to receive acute heparin, ACE-I, and GPI and ASA, ACE-I, and statins at discharge. Men underwent more angiography/reverse than women, but among pts with significant CAD, PCI was performed similarly in men and women. NS gender difference was seen in adjusted rates of in-hospital death, reinfarction, HF, and stroke. RBC transfusion rates were higher in women (OR: 1.17; CI: 1.09-1.25) | N/A | Too numerous to list | Too numerous to list | Limited generalizability from registry data

| Retrospective analysis of ACUITY trial (prospecitive) | 4,157 women with NSTE-ACS (31% of total) | Overall women =4, 157 | Overall men =9,662 | Men and women enrolled in ACUITY trial, randomized to open-label AT | Missing data/follow-up | AT Strategy: GPI + heparin Bivalirudin + GPI | 1) Men vs. women ± PCI – bleeding, net | No gender difference in 30 d composite ischemia; women significantly less in women: bivalirudin alone significantly less | Same as 1º endpoint findings at 1 y and ± PCI | 30-d composite ischemia: women=7%, men=8%; p=NS; 30-d bleeding: Although prespecified gender analysis, study was underpowered to detect difference so

© American Heart Association, Inc and American College of Cardiology Foundation
<table>
<thead>
<tr>
<th>antithrombin strategy on early and late clinical outcomes in patients with non-ST-elevation acute coronary syndromes (from the ACUITY trial).</th>
<th>Am J Cardiol. 2009;103:1196-203.</th>
<th>19406258 (245)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ischemia vs. bleeding in pts with NSTE-ACS in ACUITY trial d but not powered) enrolled) (UFH or enoxaparin) n=1,354 women vs. bivalirudin + GPI=1,386 women vs. bivalirudin =1,417 women PCI=1,190 women No PCI =2,967 women</td>
<td>treatment</td>
<td>Bivalirudin Intervention: PCI Non-PCI ischemia, and overall clinical benefit at 30-d 2) AT strategy on outcome in women ± PCI at 30 d higher 30-d bleeding; net clinical outcome 30 d worse in women due to bleeding bleeding than GPI + heparin (5% vs. 10%, p<0.0001) with no difference in composite ischemia (7% vs. 8%) no difference in bivalirudin + GPI and GPI + heparin women=8% vs. men=3%; p<0.0001; 30-d net clinical outcome women=13% vs. men=10%; p<0.0001 regression analysis performed to account for baseline difference</td>
</tr>
<tr>
<td>To examine gender impact on GPI use, dose, bleeding in pts with NSTE-ACS in CRUSADE registry Retrospective analysis of CRUSADE registry N=32,601 total; GPI Rx=18,436 (6,084 women, 12,352 men) Use of GPI-dose was evaluated based on pts' CrCl Rate of dosing, excessive dosing, bleeding and outcome were compared by gender All enrolled CRUSADE pts Jan.-Dec. 2004 Contraindicated to GPI; those without complete data including GPI dose, CrCl, follow-up Those treated with GPI vs. not; women vs. men Those treated with GPI vs. not; women vs. men For GPI Rx: Rate of bleeding significantly higher in women vs. men (15.7% vs. 7.3%; p<0.0001); For those NOT GPI Rx'd: women had significantly higher bleeding rates than men (8.5 vs. 5.4%; p<0.0001) Despite NS difference in serum Cr, women had mean CrCl significantly lower (20 mg/min) vs. men; excess GPI dose given to women significantly more than men (46.4 vs. 17.2%; p<0.0001) Excess GPI dose associated with increased bleeding Women (OR: 1.72; 95% CI: 1.30-2.28) Men (OR: 1.27; 95% CI: 0.97-1.66) GPI bleeding attributed risk=25% women, 4.4% men; Excess GPI dose for women vs. men N/A</td>
<td>Alexander KP, Chen AY, Newby LK, et al. Sex differences in major bleeding with glycoprotein IIb/IIIa inhibitors: results from the CRUSADE initiative. Circulation. 2006;114:1380-7.</td>
<td>16982940 (246)</td>
</tr>
</tbody>
</table>
| Determine use and predictors of early invasive management strategies in high-risk pts with NSTEMI
| Registry-observation study trial
| 17,926 with NSTEMI in CRUSADE (women =7,353) 8,037 (44%) underwent early cardiac cath <48 h (women =2,642) 8,037 (44%) underwent early cardiac cath <48 h
| Pts with NSTEMI in CRUSADE: presenting with cardiac cath facilities and PCI or CABG availability
| N/A
| Use of early invasive management within 48 h of presentation; predictors of early invasive management; inhospital mortality
| Propensity matched analyses revealed OR: 0.8 significantly favors early invasive over selective invasive in women
| Female sex as predictor of early invasive OR: 0.86 (95% CI: 0.80-0.92);
| Registry data estimating “real world” practice' with usual limitations of generalizability
| Predictors of early invasive management: lower-risk pts with lack of prior or current CHF, renal insufficiency, positive biomarkers
| Pts treated with early invasive strategy had lower in-hospital mortality 2.5% vs. 3.7%; p<0.001

O'Donoghue M, Boden WE, Braunwald E, et al. Early invasive vs conservative treatment strategies in women and men with unstable angina and non-ST-

| To compare the effects of an invasive vs. conservative strategy in women and men with NSTE ACS Meta-
| Analysis of RCTs (1970-4/2008) with gender-specific analyses
| Data combined from 8 trials (3,075 women and 7,075 men).
| Women: Early invasive =1,571 Initial conservative =1,581 Men: Early invasive =3,641 Initial conservative =3,619
| Pts with NSTE-ACS in 8 RCTs evaluate early invasive vs. selective invasive (if recurrent Sx) or positive stress test after initial pharmacological test
| Pts with missing biomarker data excluded from high-risk analyses
| N/A
| Use of early invasive vs. initial conservative as predictor of early invasive MACE. Biomarker positive: OR: 0.56 (95% CI: 0.46-0.67) Biomarker MACE early invasive vs. initial conservative: Women: OR: 0.81 (95% CI: 0.65-1.01) Men: OR: 0.73 (95% CI: 0.550.98)
| Results persisted for 12-m follow-up. Heterogeneity between trials; trials not individually powered for sex-specific analyses

© American Heart Association, Inc and American College of Cardiology Foundation
Dolor RJ, Melloni C, Chatterjee R, et al. Treatment Strategies for Women With Coronary Artery Disease [Internet].2012 23016160 (247)

<table>
<thead>
<tr>
<th>To determine efficacy and safety of early invasive vs. initial conservative strategy in women with NSTE-ACS</th>
<th>Meta-analyses of RCTs and systematic reviews of observational studies</th>
<th>7 studies early invasive vs. initial conservative for women with NSTE-ACS</th>
<th>N=17,930 pts, of which 6,084 (34%) were women</th>
<th>Analyses run separately for different time points (6 mg, 1 y, 5 y); n=4,030 (36%) women for risk modifier studies; n=2,220 (34%) women for safety studies</th>
<th>Pts with NSTE-ACS in RCT of early invasive vs. initial conservative studies including FRISC-II, TACTICS-TIMI-18, GUSTO-IV-ACS, ICTUS, RITA-3, TIMI-IIIIB</th>
<th>Those with missing data</th>
<th>Early invasive vs. initial conservative</th>
<th>N/A</th>
<th>Women showed trend toward benefit from early invasive vs. initial conservative at 6 mo and 1 y (death/MI OR: 0.78; OR: 0.77, respectively), but at 5 y the trend favored initial conservative (1.05; CI: 0.81-1.35); Troponin-positive women benefit from early invasive vs. initial conservative (OR: 0.56; CI: 0.32-0.97)</th>
<th>Increased bleeding in women vs. men in NSTE-ACS pts undergoing PCI (adjusted OR: 3.6; 95% CI: 1.6-8.3)</th>
<th>Early invasive showed benefit (death/MI) over initial conservative in men at 6 m (OR: 0.65; CI: 0.52-0.82; p=0.0002). Results for these at 1y (OR: 0.88; CI: 0.64-1.20); 5 y (OR: 0.91; CI: 0.53-1.56)</th>
<th>N/A</th>
<th>N/A</th>
</tr>
</thead>
</table>

| To determine sex differences in baseline characteristics and outcome in ACS and if women benefit from early invasive strategy | Analyses of data from TACTIC TIMI-18 by gender (multivariable logistic regression of sex as predictor of outcome–prospective) | N=2,220 pts, of which 757 women | Early invasive =1,114 – Angiography 4-48 h after randomization with PCI/revasc as indicated | Initial conservative =1,106 – medical therapy – angiography/PCI if recurrent Sx or positive stress test | Pts with NSTE-ACS without contraindications to angiography: pt received ASA (325 mg), UFH, tirofiban | Missing data, lack of follow-up (6 mo and 1 y) | Early invasive =angigraph y 4-48 h after randomization with PCI/revasc as indicated | Initial conservativ e =medical therapy – angiograph y/PCI if recurrent Sx or positive stress test | Women were older, had more HTN, less Hx CAD, and less positive biomarkers, no difference in TIMI risk score. Women had less severe CAD. Women benefit from early PCI if underwent PCI higher bleeding rate vs. men (8.3% vs. 2.9%, OR: 3.6, 1.6-8.3). Rates of For women with NSTE-ACS troponin negative Women who underwent PCI had higher bleeding rate vs. men (8.3% vs. 2.9%, OR: 3.6; CI: 0.82; 1.01) | Early invasive vs. initial conservative for MACE Women: OR: 0.45 (95% CI: 0.24-0.88) adjusted for baseline difference Men: OR: 0.6 (95% CI: 0.47-0.88) (p=0.6 for gender interaction) | N/A | N/A |

© American Heart Association, Inc and American College of Cardiology Foundation 118
<table>
<thead>
<tr>
<th>Source</th>
<th>Study Description</th>
<th>Patients</th>
<th>Methods</th>
<th>Outcomes</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernheim A, Weiner SD, et al.</td>
<td>Cumulative exposure to ionizing radiation from diagnostic and therapeutic cardiac imaging procedures: a population-based analysis.</td>
<td>N=952,420 enrollees</td>
<td>Retrospective, observational study</td>
<td>Multiple MPIs performed on adults undergoing cardiac imaging</td>
<td>Invasive vs. initial conservative in MACE (OR: 0.72; 95% CI: 0.47-1.11) overall but OR: 0.47 (95% CI: 0.26-0.83) for elevated troponin bleeding and stroke showed in women undergoing CABG no different from men</td>
</tr>
<tr>
<td>Einstein AJ, Weiner SD, Benrheim A, et al.</td>
<td>Multiple testing, cumulative radiation dose, and clinical indications in patients undergoing myocardial perfusion imaging.</td>
<td>N=1,097 pts with index exam in 2006; (51.5% women)</td>
<td>Retrospective cohort study of consecutive pts undergoing MPI – single-center-index exam linked to all radiation studies pre (18 y) post (2 y) follow-up</td>
<td>Consecutive inpts and outpts in single center undergoing single-photon emission CT MPI (index procedure) in 2006-2008 EPR linked records 1988-2008</td>
<td>Median procedures=15 (IQR 6-32), 4 were high-dose ionizing radiation; 31% received cumulative dose >100 m Sv. Multiple MPIs performed on 39% pts, MPI accounted for majority of radiation exposure if scans not known; changes in technology over time, some date imputed, single center experience.</td>
</tr>
</tbody>
</table>
To determine the LAR of cancer incidence associated with 64-slice CTCA radiation exposure and determine influence of age, sex, and scan protocol.

Monte Carlo simulation estimation of organ doses from 64 slice CTCA- age and sex-specific LAR of cancer using BEIR VII.

Doses of 8 CTCA protocols given for organs; younger women had a significantly higher LAR of cancer, especially breast and lung, from single CTCA.

Models for single CTCA scans without shielding.

Data Supplement 31. Anemia, Bleeding, and Transfusion-Relationship Between Transfusion and Mortality (Section 7.8)

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim of Study</th>
<th>Type of Study</th>
<th>Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint</th>
<th>Outcome</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander KP 2008 18513518 (253)</td>
<td>To describe the association between transfusion nadir HCT and outcome</td>
<td>Post hoc registry analysis</td>
<td>44,242</td>
<td>CRUSADE registry of NSTE-ACS pts</td>
<td>Numerous endpoints. Most relevant: adjusted OR for mortality with transfusion for</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Supplement 3. Anemia, Bleeding, and Transfusion Studies for Weight-Based and Renally-Adjusted Dosing of Anticoagulants (Section 7.8)

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim of Study</th>
<th>Type of Study</th>
<th>Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang 2007</td>
<td>To assess transfusion patterns and in-hospital outcomes in pts receiving transfusions</td>
<td>Post hoc registry analysis</td>
<td>74,271</td>
<td>CRUSADE registry of NSTE-ACS pts</td>
<td>Relevant endpoints: Death and death or MI</td>
<td>Adjusted OR: Death: 1.67 (1.48-1.88) Death or MI: 1.44 (1.30-1.60)</td>
</tr>
<tr>
<td>Rao 2004</td>
<td>To determine the association between blood transfusion and mortality in pts with ACS</td>
<td>Post hoc analysis of data from 3 randomized trials</td>
<td>24,112</td>
<td>GUSTO-IIIb, PURSUITS, and PARAGON pts with ACS</td>
<td>30-d mortality rates in transfused and nontransfused pts</td>
<td>Adjusted HR: 3.94 (3.26-4.75)</td>
</tr>
<tr>
<td>Carson 2012</td>
<td>Clinical guideline from the AABB on RBC transfusion</td>
<td>Analysis of all randomized trials of restrictive vs. liberal transfusion strategies</td>
<td>19 trials; 30-d mortality available in 11 trials</td>
<td>Published randomized trials; various pt populations</td>
<td>Numerous endpoints assessed. Most relevant: 30-d mortality</td>
<td>Restrictive transfusion strategy: 6.9% Liberal transfusion strategy: 8.0% RR: 0.85 (0.7-1.03)</td>
</tr>
<tr>
<td>Carson 2012</td>
<td>Cochrane Database Systematic Review</td>
<td>Analysis of randomized trials of restrictive vs. liberal transfusion strategies</td>
<td>19 trials</td>
<td>Various trials in context of surgery, acute blood loss/trauma, coronary care unit pts, or leukemia pts</td>
<td>Numerous endpoints assessed. Restrictive transfusion strategy compared to liberal transfusion strategy</td>
<td>Hospital mortality OR: 0.77 (0.62-0.95) 30-d mortality OR: 0.85 (0.70-1.03) MI OR: 0.88 (0.38-2.04)</td>
</tr>
</tbody>
</table>

Data Supplement 3.2. Anticoagulant Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Aim of Study</th>
<th>Type of Study</th>
<th>Study Size</th>
<th>Patient Population</th>
<th>Primary Endpoint</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander 2005</td>
<td>Investigation of relationship between UFH, LMWH, and GPI excess dosing and major outcomes</td>
<td>Exploratory registry analysis</td>
<td>3,354</td>
<td>NSTE-ACS pts in CRUSADE registry</td>
<td>Major clinical outcomes and bleeding</td>
<td>Adjusted OR for major bleeding with excess dosing (vs. no excess dosing): UFH: OR: 1.08 (0.94 — 1.26) LMWH: OR: 1.39 (1.11 — 1.74) GPI: OR: 1.36 (1.10 — 1.68)</td>
</tr>
<tr>
<td>Melloni 2008</td>
<td>Exploratory analysis of CRUSADE registry examining relation between UFH dosing and bleeding</td>
<td>Post hoc analysis of registry</td>
<td>31,445</td>
<td>NSTE-ACS pts in CRUSADE registry</td>
<td>Excess dosing percent; factors associated with excess dosing; major bleeding</td>
<td>Dosing of UFH above recommended weight-based dosing associated with increased major bleeding Excess bolus OR: 1.03 (1.00 — 1.06) Excess infusion dosing OR: 1.16 (1.05 — 1.28)</td>
</tr>
<tr>
<td>LaPonte 2007</td>
<td>Exploratory analysis of CRUSADE registry examining relation between enoxaparin dosing and bleeding</td>
<td>Post hoc analysis of registry</td>
<td>10,887</td>
<td>NSTE-ACS pts in CRUSADE registry</td>
<td>Inappropriate dosing percent; major bleeding and death</td>
<td>Excess dosing associated significantly associated with increased risk of major bleeding (adjusted OR: 1.43; CI: 1.18 — 1.75)</td>
</tr>
<tr>
<td>Taylor LA 2012</td>
<td>Chart review assessing incidence of bleeding in CKD pts with incorrectly dosed bivalirudin or GPI</td>
<td>Chart review</td>
<td>199</td>
<td>Pts undergoing PCI</td>
<td>Incidence and extent of bleeding (TIMI or GUSTO)</td>
<td>Erititrabead: Incorrectly dosed in 64% Incorrectly dosed pts experienced more overall bleeding (64% vs. 35%; p<0.04), numerically more TIMI major bleeding (19% vs. 5%; no p value given), and a greater extent of bleeding (p=0.03 for TIMI bleeding and p=0.009 for GUSTO bleeding)</td>
</tr>
</tbody>
</table>
Pharmacokinetic/dynamic study of enoxaparin and anti-Xa activity and factors that affect anti-Xa levels

- Incorrectly dosed in 28%
- Bleeding rates (incorrect vs. correct) 37% vs. 21% (p=0.055)
- Extent of bleeding greater with incorrect bleeding (p=0.013 for GUSTO bleeding; p=0.058 for TIMI bleeding)

Data Supplement 33. Cocaine and Methamphetamine Users (Section 7.10)

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/ Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR; HR: RR: & 95 CI</th>
<th>Adverse Events</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Becker 2002 12040334 (262)</td>
<td>Pharmacokinetic/dynamic study of enoxaparin and anti-Xa activity and factors that affect anti-Xa levels</td>
<td>Pharmacokinetic/pharmacodynamic substudy</td>
<td>TIMI 11A study of ACS pts</td>
<td>Relationship of pt factors and anti-Xa levels</td>
<td>Pts with creatinine clearance <40 mL/min had sig higher trough and peak anti-Xa levels (numerous statistically significant p values for multiple comparisons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; CKD, chronic kidney disease; CRUSADE, Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines Registry; GPI, glycoprotein; GUSTO, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries; LMWH, low molecular weight heparin; N/A, not applicable; NSTE-ACS, non-ST-elevation-acute coronary syndrome; PCI, percutaneous coronary intervention; Pts, patients; TIMI, Thrombolysis In Myocardial Infarction; and UFH, unfractionated heparin.
<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Design</th>
<th>Participants</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB for chest pain associated with recent cocaine use</td>
<td>Determine if rates of adverse events associated with BB treatment in chest pain pts with recent cocaine use</td>
<td>Retrospective 331 (151 received BB)</td>
<td>BB treatment vs. no BB treatment</td>
<td>Chest pain pts with urine drug screen positive for cocaine: No chest pain; urine drug screen not performed or urine drug screen negative for cocaine</td>
</tr>
<tr>
<td>Benzodiazepines and Nitroglycerine in treatment of cocaine chest pain</td>
<td>To compare the use of lorazepam and nitroglycerine in treatment of cocaine chest pain</td>
<td>Prospective, randomized, single-blinded controlled trial; N=27</td>
<td>NTG (n=15) vs. NTG + lorazepam (n=12)</td>
<td>Chest pain and self-reported cocaine use in the preceding 72 h</td>
</tr>
</tbody>
</table>

1.2% — 6.7% did not check serum cocaine levels; urine drug screen only detects pts with cocaine use within 48-72 h. Selection bias as pts receiving BB were older, more frequent Hx of HBP and CHF, higher SBP, and higher glucose levels; mortality mainly due to non-ACS causes.
|ACS in chest pain pts after amphetamine use 2003 Turnipseed SD et al. 12745036 (268) | Determine frequency of ACS in pts presenting with methamphetamine induced chest pain | Retrospective N=36 visits in 33 pts (3 with CV events) | N/A | Nontraumatic chest pain, positive amphetamine on urine drug screen | Not admitted for MI rule out; abnormal CXR | N/A | ACS defined as MI, ischemia on cardiac stress testing, or ≥70% stenosis on cardiac cath | N/A | Cardiac arrhythmias (V-tach, V-fib, SVT) | ACS diagnosed in 9 pt visits (25%; 95% CI: 11%-48%) | N/A | Retrospective; small n; only investigated results in admitted pts and thus ACS rate over-estimated; urine drug testing in admitted pts not done routinely |

ACS indicates acute coronary syndrome; BB, beta blocker(s); BP, blood pressure; CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; CXR, chest x-ray; Dx, diagnosis; ED, emergency department; HBP, high blood pressure; HTN, hypertension; Hx, history; MI, myocardial infarction; N/A, not applicable; NTG, nitroglycerin; pt(s), patient(s); SBP, systolic blood pressure; SVT, supraventricular tachycardia; Sx, symptoms; Tn, troponin; UA, unstable angina; V-fib, ventricular fibrillation; and V-tach, ventricular tachycardia.
Data Supplement A. Other (Newer) Biomarkers

These tables were created during the evidence review process but do not support a specific section of recommendations in the guideline. They are provided for transparency and completeness.

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Primary Endpoint & Results</th>
<th>Secondary Endpoint & Results</th>
<th>P Values, OR; HR; RR; & 95 CI;</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 NSTE-ACS Guideline Data Supplements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional Data Supplement Tables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRISC-II Wollert 2007 (269) 17848615</td>
<td>Effect of PGF-15 on ACS outcomes in invasive vs. conservative strategy</td>
<td>Multicenter prospective study (FRISC –II) 2,079</td>
<td>PGF-15 in intervention vs. PCI or conservative treatment outcomes</td>
<td>ACS with criteria for PCI or conservative strategy with PGF-15 levels</td>
<td>Previous heart surgery, PCI within 6 mo, bleeding tendency, high creatinine</td>
<td>PGF-15 with PCI or conservative strategy</td>
<td>2-y MACE. PGF independently predicted outcomes in conservative strategy only</td>
<td>Occurrence of MACE reduced with PCI with highest PGF-15 levels: 0.49 (0.33-0.73) p=0.001</td>
<td>2-y MACE prediction with PGF-15 levels p=0.016</td>
</tr>
<tr>
<td>C-NET Viswanathan 2010 (270) 20513600</td>
<td>Px value of H-FABP in low-int. risk ACS pts</td>
<td>Prospective observational cohort 955</td>
<td>H-FABP vs. Tn</td>
<td>Chest pain</td>
<td>Non-cardiac Chest pain. Age <18 y</td>
<td>H-FABP/Tn 12-24 h from Sx onset</td>
<td>Death/MI 12 mo H-FABP predicted outcome after multivariate adjustment</td>
<td>Among Tr- pts, (79% of cohort) high FH-FA bp identify pts at high risk</td>
<td>HR:2.82 (1.30- 5.28) p=0.0007 H-FABP for adverse events ROC 0.79 (0.74- 0.84) ROC TnI 0.77 (0.72- 0.82)</td>
</tr>
<tr>
<td>Charpentier 2010 (271) 20078436</td>
<td>Detection of AMI by H-FABP and IMA</td>
<td>Prospective. observational cohort 677</td>
<td>H-FABP vs. IMA</td>
<td>Chest pain and suspected NSTEMI</td>
<td>Age <18 y Skeletal muscle injury, trauma, renal impairment.</td>
<td>H-FABP and IMA on admission</td>
<td>Dx NSTEMI IMA not predictor of ACS Dx H-FABP predictor</td>
<td>H-FABP did not add info to std predicted model</td>
<td>IMA OR: 1.23 (0.87-1.81) H-GFABP OR 4.65 (2.39-9.04) Sens 96.8% Spec 98.1%</td>
</tr>
<tr>
<td>Haaf 2011 (272) 21531234</td>
<td>BNP in Dx and risk in chest pain pts</td>
<td>Prospective multicenter 1,075</td>
<td>BNP vs. TnT</td>
<td>Possible ACS</td>
<td>ESRD with dialysis</td>
<td>BNP and TnT at admission and 1 h, 2 h, 3 h, 6 h</td>
<td>Dx accuracy of BNP for MI lower than Tn</td>
<td>BNP predicted 24 mo outcome more accurate than TnT AUC 0.81 vs. 0.76 p=0.001</td>
<td>BnP Dx: AUC: 0.74 (0.70-0.78) TnT: 0.88 (0.84-0.92) p=0.001</td>
</tr>
<tr>
<td>Keller 2010 (273) 20447532</td>
<td>Copeptin in Dx of AMI</td>
<td>Prospective multicenter 1,386</td>
<td>Copeptin vs. TnI</td>
<td>Possible ACS</td>
<td>Trauma, major surgery, IV drug abuse, anemia</td>
<td>Copeptin and TnT on admission</td>
<td>TnT vs. combined C-statistic vs. TnT alone: 0.93 vs. 0.84</td>
<td>C-statistic within 3 h chest pain combined 0.90 T alone 0.77</td>
<td>Combination of copeptin and TnT superior to all single or other marker delm. Using Tn for Dx might favor tested Tr compared with copeptin</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Number</td>
<td>Comparator</td>
<td>Endpoints</td>
<td>Data Collection</td>
<td>Study Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peacock 2011 (274)</td>
<td>Prospective multicenter</td>
<td>1,018</td>
<td>MPO vs. TnI</td>
<td>Possible ACS <8 h Sx</td>
<td>MPO and TnT on admission</td>
<td>Using 90% spec. cutoff MPO had insufficient accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iversen 2009 (275)</td>
<td>Prospective cohort</td>
<td>1,210</td>
<td>PAPP-A vs. std Dx (TnT)</td>
<td>Possible ACS NSTE</td>
<td>STE-ACS (evaluated separately)</td>
<td>Risk for MI and death 2.66 y to 3.47 y PAPP-A related to risk for both in NSTEMI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RISCA</td>
<td>Prospective cohort</td>
<td>1,210</td>
<td>CRP</td>
<td>CRP No comparator</td>
<td>CRP on admission</td>
<td>MACE at 1-y multivariate analysis: NS predictability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuch 2008 (277)</td>
<td>Prospective cohort</td>
<td>697</td>
<td>CRP vs. Tn in 28-d mortality event</td>
<td>Dx of NSTEMI</td>
<td>STEMI separately evaluated</td>
<td>CRP and TnT on admission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaub 2012 (278)</td>
<td>Prospective multicenter</td>
<td>646</td>
<td>GDF-15 vs. TnT and BNP</td>
<td>ACS Sx</td>
<td>ESRD</td>
<td>Assays on admission to ED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mega 2008 (279)</td>
<td>Prospective multicenter</td>
<td>2,349 with ACS</td>
<td>TpP+ vs. TpP– in predicated. Compared with Tn</td>
<td>NSTEMI UA</td>
<td>STEMI evaluated separately</td>
<td>Assay at median 40 h from presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saraf 2010 (280)</td>
<td>Prospective cohort</td>
<td>300 with ACS</td>
<td>Use of GTT</td>
<td>ACS</td>
<td>Sepsis, malignancy, blood, Dyscrasia, anticoagulant</td>
<td>Assay time not stated Evaluation OT and LT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Heart Association, Inc and American College of Cardiology Foundation
Body 2010

(281) 21167626

Effect of P-selectin on Dx of AMI and risk

Prospective cohort 713

P-selectin vs. TnT with 5 other novel biomarkers

Suspected ACS

Chest trauma, ESRD, pregnancy, prisoners

Assay time at present. For P-selectin

Only P-selectin and PAPP-A Dx AMI

30-d MACE prediction: only P-selectin

1.84 (1.1-3.1) <0.001

C-statistic for MIR: P-selectin: 0.63 (0.63-0.73)

PAPP: 0.57 (0.51-0.63)

No serial evaluation

Durmali variation of TpP

Wang 2007

(282) 16887214

Presence of PMAs and other novel biomarkers in ACS

Prospective cohort 132

74 ACS

58 SAP

PMAs and other novel biomarkers

ACS SAP

Renal, hepatic, hematologic, immunologic disorders

Assay at presentation included IL-6, IL-6, MCP-1, sCD40L

Pts with ACS have higher levels of PMAs compared with SA

PMA, CRP, IL-6

Each confer risk for ACS

Regression analysis

ACS and biomarkers

PMA 1.33 (0.95-1.86)

CRP 2.64 (1.08-6.89)

IL-6 1.03 (1.00-1.08)

Small observational study

ACS indicates acute coronary syndrome; ACS NSTE, acute coronary syndrome non-ST elevation; AMI, acute myocardial infarction; ASA, aspirin; AUC, area under the curve; BNP, B-type natriuretic peptide; BP, blood pressure; CK-MB, creatine kinase-MB; CRP, C-reactive protein; CV, cardiovascular; DX, diagnosis; ED, emergency department; ESRD, end stage renal disease; ETA, End Thrombosis Act; FRISC, Fragmin During Instability in Coronary Artery Disease; GDF-15, growth differentiation factor-15; GGT, global thrombosis test; H-FABP, heart fatty acid- binding protein; hs-CRP, high sensitivity C-reactive protein; hs-TnT, sTnT, high-sensitivity troponin T, IL, interleukin; IMA, ischemia-modified albumin; IV, intravenous; LT, lysis time; MACE, major adverse cardiac events; MCP, monocyte chemoattractant protein; MI, myocardial infarction; MPO, myeloperoxidase; N/A, not applicable; NS, not significant; NSTEMI, non-ST elevation MI; NCCP, non-cardiac chest pain; OT, occluded time; PAPP-A, pregnancy-associated plasma protein A; PCI, percutaneous coronary intervention; PMAs, platelet-monocyte aggregates; Pts, patients; Px, prognosis; ROC, receiver operator curve; SA, stable angina; SAP, stable angina pectoris; sCD40L, soluble CD40 ligand; Sens, sensitivities; Spec, specificities; Std, standard; STE-ACS, ST-elevation acute coronary syndrome; SX, symptoms; Tn, troponin; Tnl, troponin I; TnT, troponin T; TpP, thrombus precursor protein; and UA, unstable angina.

Data Supplement B. Other Anticoagulants

<table>
<thead>
<tr>
<th>Study, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uchino 2012 (178) 2231617</td>
<td>AMI risk with dabigatran</td>
<td>Meta-analysis of 7 trials</td>
<td>30,514</td>
<td>Dobutagran 20,001</td>
<td>Warfarin 7,357, Enoxaparin</td>
<td>RCTs including stroke, AFIB,</td>
<td>Not stated</td>
<td>Dobutagran 6-10 d 28-35 d</td>
<td>Warfarin, enoxaparin, or PC</td>
<td>Risk of ACS with Dabutagran higher than control</td>
<td>Not analyzed</td>
</tr>
<tr>
<td>Oldgren 2011 (283) 21551462 RE-DEEM</td>
<td>Safety and efficacy of dabigatran in ACS</td>
<td>Multicr Prosp. Dose Escalation trial</td>
<td>1,861 on dual platelet therapy</td>
<td>Dabungatan bid. 50 mg 369 75 368 110 406 150 347</td>
<td>PC 371 Both groups ASA and clopidogrel</td>
<td>AMI <14 d Bleeding Stroke complication DVT</td>
<td>4 doses of dabigatran for 6 mo</td>
<td>PC</td>
<td>6-mo bleeding Dose dependent Increase with Dabigatran Sig with 110 mg and 150 mg dose</td>
<td>3.8% PC pts had stroke, MI, or death vs. 3.0%-4.9% Dabigatran (not dose related)</td>
<td>Dabigatran reduced D-dimer in all dose groups</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; ACS NSTE, acute coronary syndrome non-ST elevation; AMI, acute myocardial infarction; ASA, aspirin; AUC, area under the curve; BNP, B-type natriuretic peptide; BP, blood pressure; CK-MB, creatine kinase-MB; CRP, C-reactive protein; CV, cardiovascular; DX, diagnosis; ED, emergency department; ESRD, end stage renal disease; ETA, End Thrombosis Act; FRISC, Fragmin During Instability in Coronary Artery Disease; GDF-15, growth differentiation factor-15; GGT, global thrombosis test; H-FABP, heart fatty acid- binding protein; hs-CRP, high sensitivity C-reactive protein; hs-TnT, sTnT, high-sensitivity troponin T, IL, interleukin; IMA, ischemia-modified albumin; IV, intravenous; LT, lysis time; MACE, major adverse cardiac events; MCP, monocyte chemoattractant protein; MI, myocardial infarction; MPO, myeloperoxidase; N/A, not applicable; NS, not significant; NSTEMI, non-ST elevation MI; NCCP, non-cardiac chest pain; OT, occluded time; PAPP-A, pregnancy-associated plasma protein A; PCI, percutaneous coronary intervention; PMAs, platelet-monocyte aggregates; Pts, patients; Px, prognosis; ROC, receiver operator curve; SA, stable angina; SAP, stable angina pectoris; sCD40L, soluble CD40 ligand; Sens, sensitivities; Spec, specificities; Std, standard; STE-ACS, ST-elevation acute coronary syndrome; SX, symptoms; Tn, troponin; Tnl, troponin I; TnT, troponin T; TpP, thrombus precursor protein; and UA, unstable angina.
<table>
<thead>
<tr>
<th>Study</th>
<th>Objective</th>
<th>Design</th>
<th>Patients</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Endpoints</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPRAISE
(2009) 19470889</td>
<td>Safety and efficacy of apixaban in ACS</td>
<td>Multicenter prospective trial</td>
<td>1,715</td>
<td>Apixaban 2.5 mg bid 317 10 mg 318 10 mg bid 248 20 mg 221 (611 total)</td>
<td>PC 611</td>
<td>MI within 7 d with at least 1 additional risk factor for recurrent events</td>
<td>Planned PCI ASA allergy Significant. HTN Bleeding diathesis Recent stroke Pericardial effusion</td>
</tr>
<tr>
<td>Alexander
(2011) 21780946</td>
<td>Risk of events with apixaban in ACS</td>
<td>Multicenter prospective trial</td>
<td>7,392</td>
<td>Apixaban 3705</td>
<td>PC 3687</td>
<td>Median 6 d after ACS with significant risk factors: prior MI, DM, HF</td>
<td>Planned PCI, ASA allergy, Significant HTN Bleeding diathesis Recent stroke Pericardial effusion</td>
</tr>
<tr>
<td>RUBY-1 Stieg 2011
(285) 21878434</td>
<td>Safety and tolerability of darexaban</td>
<td>Multicenter prospective trial</td>
<td>1,268</td>
<td>Darexaban Multiregimen 939 5 mg bid 10 mg qd 15 mg bid 30 mg qd 30 mg bid 60 mg qd</td>
<td>PC 319</td>
<td>ACS <7 d from event</td>
<td>Bleeding diathesis Planned PCI Recent stroke Renal or hepatic Insufficiency Allergy to study drug</td>
</tr>
<tr>
<td>ATLAS ACS-2 TIMI-51Mega 2012
(180) 22077192</td>
<td>CV outcomes with Rivaroxaban in ACS</td>
<td>Multicenter prospective trial</td>
<td>15,526</td>
<td>Rivaroxaban 2.5 mg bid (5,174) Rivaroxaban 5 mg bid (5,176)</td>
<td>PC (5,176)</td>
<td>ACS <7 d from event</td>
<td>Low plateau count Low hematocrit Renal dysfunction Recent GI bleed Hx of intracranial bleed</td>
</tr>
</tbody>
</table>
Meta-analysis 2012 (7) | Bleeding, outcomes in ACS
---|---
31,286 | Apixaban, Dabigatran, Darexaban, Rivaroxaban, Ximelagatran
PC or warfarin | ACS (4-71%) <6 to <14 d from event
Trials of parental AC, VKA | OAC with antiplatelet 6-31 mo
Antiplatelet with PC or warfarin | Increase major bleeding:
Decrease stent thrombosis, ischemic events, no difference in overall death, net clinical benefit
Major Bleeding 3.03 (2.20-4.16) <0.01
Net clinical benefit 0.98 (0.90-1.06)
Ischemic events 0.73 (0.63-0.84) <0.001
Mortality 0.90 (0.76-1.06)
Stent thrombosis 0.73 (0.54-0.98)
Increased major bleeding:
Decrease stent thrombosis, ischemic events, no difference in overall death, net clinical benefit
Major Bleeding 0.44 (0.29-0.67) <0.0001
Net clinical benefit 0.85 (0.70-1.03)
Ischemic events 0.80 (0.63-1.00)
Mortality 0.79 (0.60-1.03)
Stent thrombosis 0.82 (0.61-1.10)

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; ASA, aspirin; AFIB, atrial fibrillation; bid, twice daily; CABG, coronary artery bypass graft; CV, cardiovascular; DM, diabetes mellitus; DVT, deep vein thrombosis; GI, gastrointestinal; HF, heart failure; HTN, hypertension; Hx, history; MACE, major adverse cardiovascular events; MI, myocardial infarction; NS, nonsignificant; OAC, oral anticoagulant; PC, placebo; PCI, percutaneous coronary intervention; Pts, patients; qd, daily; RE-LY, Randomized Evaluation of Long-Term Anticoagulant Therapy; RCT, randomized controlled trial; TIA, transient ischemic attack; and VKA, vitamin K antagonist.

Data Supplement C. Lipid Management

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Type</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannon 2006 (286) 15687136</td>
<td>Efficacy of high dose vs. standard dosing for CV</td>
<td>Meta-analysis of 4 trials</td>
<td>27,548</td>
<td>High-dose statin 13,798</td>
<td>Stable CAD or ACS Intensive vs. standard statin >1000 pts each</td>
<td>Not stated</td>
<td>High-dose statin</td>
<td>Standard-dose statin</td>
<td>High-dose produced a significant 16% reduction in coronary death or MI</td>
<td>Significant 16% reduction in high-dose: Rhabdomyolysis 0.13% A to Z trial CK>10× ULN 0.15% PROVE-IT AST or ALT Trend toward decreased CV mortality with high dose p=0.054</td>
<td>Coronary death or MI 0.84 (0.77-0.91) p=0.00001 Coronary death or CV events 0.84 (0.80-0.89) p<0.000001</td>
<td>Underpowered for CV death and total death. Different duration and treatments. No individual pt data. No evaluation of benefit from statin or LDL–C level.</td>
</tr>
<tr>
<td>Outcome</td>
<td>Use of statin at hospital discharge with ACS</td>
<td>Registr y Retrospective analysi s</td>
<td>Statin use with LDL-C <100 mg/dL or ≥100 mg/dL at discharge</td>
<td>No statin at discharge</td>
<td>Statin use with LDL-C <100 or ≥100 mg/dL</td>
<td>Control</td>
<td>LDL levels <100 55% receiving statin at discharge LDL levels >100 72% receiving statin at discharge</td>
<td>Statin at time of discharge associated with 6-mo total mortality 0.66 (0.51-0.85)</td>
<td>6-mo statin use by pt self-report</td>
<td>No info on statin types or dosages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spencer 2007 (287) 17826369 GRACE</td>
<td>Use of statin at hospital discharge with ACS</td>
<td>Registr y Retrospective analysi s</td>
<td>Statin use with LDL-C <100 mg/dL or ≥100 mg/dL at discharge</td>
<td>No statin at discharge</td>
<td>Statin use with LDL-C <100 or ≥100 mg/dL</td>
<td>Control</td>
<td>LDL levels <100 55% receiving statin at discharge LDL levels >100 72% receiving statin at discharge</td>
<td>Statin at time of discharge associated with 6-mo total mortality 0.66 (0.51-0.85)</td>
<td>6-mo statin use by pt self-report</td>
<td>No info on statin types or dosages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinson 2009 (288) 19161879</td>
<td>Non-HDL-C reduction and CV risk</td>
<td>Meta-analy si s 30 trials</td>
<td>Statin use with LDL-C <100 mg/dL or ≥100 mg/dL at discharge</td>
<td>No statin at discharge</td>
<td>Statin use with LDL-C <100 or ≥100 mg/dL</td>
<td>Control</td>
<td>LDL levels <100 55% receiving statin at discharge LDL levels >100 72% receiving statin at discharge</td>
<td>Statin at time of discharge associated with 6-mo total mortality 0.66 (0.51-0.85)</td>
<td>6-mo statin use by pt self-report</td>
<td>No info on statin types or dosages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hulten 2008 (289) 17000936</td>
<td>Effect of statin therapy in ACS</td>
<td>Meta-analy si s 13 trials</td>
<td>Early statin in ACS</td>
<td>No statin, PC or usual care</td>
<td>Statin <14 d of hospitalization for ACS</td>
<td>Standard attain dose</td>
<td>Intensive statin</td>
<td>PC or standard statin</td>
<td>Comparative tolerability for intensive statins and control. Only 3 cases of rhabdomyolysis. PROVE-IT: 3.3% hepatitis in high-dose GP.</td>
<td>Rate of death and CV events reduction: 0.81 (0.77 — 0.87) p<0.001</td>
<td>Sig. statistical heterogeneity. Limited trials available. Not a pooled analysis. Adverse effects under safety box.</td>
<td></td>
</tr>
<tr>
<td>Sattar 2007 (290) 20167359</td>
<td>Risk of DM with statins</td>
<td>Meta-analy si s 13 statin trials</td>
<td>Statin use</td>
<td>No statin at discharge</td>
<td>Statin Trials with >1 y follow-up in both treatment groups</td>
<td>Mean follow-up ≤1 y</td>
<td>Statin</td>
<td>No statin</td>
<td>Statin therapy was associated with a 9% increased risk of incident DM with little</td>
<td>Lipophilic Statins risk: 1.10 (0.99=1.22) Hydrophilic Statins risk: 1.09 (1.02 — 1.17)</td>
<td>Varied methods of dx of DM. HRs not available in all trials.In 2 trials Dx based on physician reporting rather than biochemical analysis.</td>
<td></td>
</tr>
</tbody>
</table>
| Javed 2010
(291)
22461416
GSTG | Discharge intensiv e LLT in ACS | Retrospective data base analysis | 65,396 | Intensive LLT regimen | Likely to cause >50% LDL reduction 25,036 | Less intensive LLT regimen 40,360 | ACS related hospitalization with LLT | Left against medical advice discontinued care Discharged to nonparticipating facility | Intensive LLT regimen | Less intensive LLT regimen | Mostly AMI pts at discharge 38% received intensive LLT and 62% less intensive LLT | N/A | Factors associated with lack of LLT Female sex Increased age Dialysis (Multivariate 95% CI 1.00) | Factors associated with intensive LLT: LLT prior to admission PCI with stent Known CAD on admission PVD Prior MI (Multivariate 95% CI 1.00) | Discharge LLT dosing data not available on 50% of pts. Performance feedback in GWTG hospitals may influence pt care giving higher rates of LLT than general hospitals. Change in LLT dosing after not available. |
| Baigent 2010
(292)
21067804
CTT | Efficacy and safety of intensive LDL–C decrease | Meta-analysis of 26 trials | 165,138 | More intensive 19,829 5 trials 41,744 21 trials | Less intensive 19,783 Control 64,782 | Main effect of trial to lower LDL-C 1000+ pts >2 y follow-up treatment | Lack of trial eligibility criteria | Intensive LLT regimen | Less intensive LLT regimen | MACE reduction in 4.8 y by intensive LLT 15% No further adverse effects from lowering cholesterol including cancer risk | Reduction in revascularization 19% (15-24) p=0.0001 ischemic stroke 16% (5-26) p=0.005 | MACE reduction by intensive LLT 15% (11-16) <0.0001 Major vascular events 13% (97-19) <0.0001 Total mortality 10%/1 mmol/L LDL-C Reduction 0.90 (0.67 — 0.93) | Nonsignificant excess of hemorrhagic stroke with lowering cholesterol p=0.2 |
| Boekholdt 2012
(293)
22453571 | RR s of lipid values in statin treatme nt | Meta-analysis of 8 trials | 38,153 | Statin therapy | Risk with 1 SD increase in LDL–C 1000+ pts non–HDL–C apoB | Trials with serial evaluation of TC, LDL–C, HDL–C, TG >2 y followup 1000+ participants | Lack of trial eligibility criteria | LDL–C HDL–C Apo B during statin Rx | RRs for values | Adjusted HR for major CV events by intensive LLT: LDL–C 1.18 non-HDL–C 1.14 apoB 1.10 HDL–C p=0.002 and apo B p=0.02 | Adjusted HR per 1 SD increase non-HDL–C:1.16 (1.12,1.19) apo B 1.14 (1.11 — 1.18) LDL–C 1.13 (1.10 — 1.17) | Fatal CV events occurring in the 1st y of therapy not accounted for. Participating trials had different inclusion criteria. |
| Mora 2012
(294)
22461416 | CV risk in statin treated pts | Retrospective evaluation of a multicenter | 9251 | High-dose statin 80 mg Atorvastatin | Low-dose statin 10 mg Atorvastatin | CAD | TG>600 mg/dL Unstable CAD | High-dose atorvastatin | Low-dose atorvastatin | Multivariate detection of increased residual risk Older age | Decreased residual risk: High-dose statin Aspirin use | Known baseline variables performed moderately | Residual increased risk: HTN 1.38 (1.17,1.63) DM 1.33 | Excluded patients >130 mg/dL on Atorvastatin 10 mg, study was observational, novel risk factor data not available for |

© American Heart Association, Inc and American College of Cardiology Foundation
Data Supplement D. Blood Pressure Control

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nissen 2004 (295)</td>
<td>Antihypertensive agents on CV events in CAD and normal BP</td>
<td>Multicenter prospective study</td>
<td>1991 274 IVUS</td>
<td>661 Enalapril 673 IVUS substudy: Amlodipine 91 Enalapril 86</td>
<td>PC 655 IVUS substudy: 95</td>
<td>Angio, Doc. CAD Age 30-79 DBP<100 BB, a1 blockers, Diuretics permitted</td>
<td>Left main CAD LVEF<40% Moderate or severe CHF >79 y</td>
<td>Amlodipine 10 mg or Enalapril 20 mg + IVUS Substudy 24-mo follow-up</td>
<td>PC CV events in 24 mo/CV events in fewer Amlodipine vs. PC Substudy: No athero. P(x in amlodipine Trend toward Px in Enalapril, progression in PC p<0.001</td>
</tr>
</tbody>
</table>
Data Supplement E. Diabetes Mellitus

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low BP with adverse events in CAD</td>
<td>Multicenter Ad hoc analysis</td>
<td>22576</td>
<td>BP reduction Sustained Rel. verapamil or atenolol</td>
<td>Outcome</td>
<td>Stable pts with CAD and hypertension</td>
<td>MI within 3 mo and Class IV or V CHF</td>
<td>Verapamil Purpose was to evaluate BP with outcomes, not compare agents</td>
<td>Atenolol</td>
<td>All-cause death and total MI 2.7 yr pts J-shaped curve Nadir at 119/84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROVE-IT TIMI 22 Bangalore 2010</td>
<td>BP control and adverse events in ACS</td>
<td>Multicenter prospective study Ad hoc analysis</td>
<td>4162</td>
<td>BP level reached</td>
<td>Outcome</td>
<td>MACE</td>
<td>ACS within 10 d Randomly assigned to Pravastatin or atorvastatin</td>
<td>Not stated</td>
<td>Composite MACE SBP followed a J- or U-shaped curve Risk Nadir: 136 mmHg systolic 85 mmHg diastolic HR 49% vs. 13% SBP<100 vs. 130-140 HR 46% vs. 15% DBP<80 vs. 80-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooper-DeHoff 2010</td>
<td>Effect of tight BP control in CAD and diabetes</td>
<td>Observational substudy of multicenter clinical trial</td>
<td>6400</td>
<td>Tight BP control BP 130/85</td>
<td>Usual BP control</td>
<td>Stable CAD and hypertension with diabetes</td>
<td>Not stated</td>
<td>Pravastatin 40 mg Purpose was to evaluate BP with outcome, not to compare agents</td>
<td>Atorvastatin 80 mg</td>
<td>Significant increased risk for outcomes As SBP decrease below 110 systol. or 70 diastolic</td>
<td></td>
</tr>
<tr>
<td>INVEST</td>
<td></td>
</tr>
</tbody>
</table>

1º indicated primary; 2º, secondary; ACS, acute coronary syndrome; BP, blood pressure; CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; DBP, diastolic blood pressure; IVUS, intravascular ultrasound; LVEF, left ventricular ejection fraction; MACE, major adverse cardiovascular events; PC, placebo; Pts, patients; Px, prognosis; and SBP, systolic blood pressure.

Data Supplement E. Diabetes Mellitus
2014 NSTE-ACS Guideline Data Supplements

DIGAMI
- **Malmberg 1999**
 - **Study**: Glyco-metabolic state in DM and mortality risk
 - **Study Design**: Multicenter prospective study
 - **Number**: 620
 - **Intervention**: Insulin 306
 - **Primary Endpoint**: DM with AMI <24 h
 - **Exclusion Criteria**: Not stated
 - **Primary Endpoint (efficacy) and Results**: Intensive insulin-glucose infusion, then sc insulin 3.4-y follow-up
 - **Secondary Endpoint and Results**: Regular DM coverage
 - **Mortality**: 33% died in intensive group, 44% in regular group
 - **Admission Blood Glucose HbA1c were independent predictors of mortality**: Admission blood glucose HbA1c were independent predictors of mortality
 - **Long-term mortality reduction Intensive vs. regular 28% (8-45%) p<0.01
 - **No prior insulin and low CV risk**: reduction 51% (9-70%) p=0.004
 - **No indication whether increased use of insulin or decreased use of sulfonylureas decreased risk.**

Diabetes Prevention Program Research Group
- **Knowler 2002**
 - **Study**: Effects of treating elevated glucose on development of DM
 - **Study Design**: Multicenter prospective study
 - **Number**: 3234
 - **Intervention**: Meformin 1,073
 - **Primary Endpoint**: PC 1.082
 - **Exclusion Criteria**: 25 y or older BMI <24 FBS 95-125 Or 140-199 2-h global thrombosis test
 - **Primary Endpoint (efficacy) and Results**: Glucose tolerance affects medications Short life expectancy
 - **Secondary Endpoint and Results**: Metformin 850 mg bid PC 11.0 Life expectancy
 - **PC or lack of lifestyle intervention**: p<0.001
 - **Hospitalization vs. deaths NS different among groups**: Gl sx p<0.016 metformin vs. PC
 - **Average weight loss PC 0.1 kg Metformin 2.1 kg Life 5.6 kg p<0.001 v. Metformin and PC
 - **Reduced incidence vs. PC**: Lifestyle: 58% (48 — 66)
 - **Metformin 31 (17 — 43)**
 - **Lifestyle vs. metformin**: 39% (24-51%)

Suleiman 2005
- **(301) 15689267**
 - **Study**: Fasting glucose and 30-d mortality in AMI
 - **Study Design**: Prospective cohort observational study
 - **Number**: 735
 - **Intervention**: Fasting glucose
 - **Primary Endpoint**: Admission glucose Non-DM AMI <24 h
 - **Exclusion Criteria**: >24 h from Sx onset, inflammatory disease, surgery or trauma preceding mo
 - **Primary Endpoint (efficacy) and Results**: Fasting blood glucose Admission blood glucose
 - **Secondary Endpoint and Results**: 30-d mortality compared with FBG <110, adjusted 30-d mortality increased with increasing tertile of FBG
 - **30-d mortality compared with normal FBG**: 2.6 (1.3-5.0)=0.004 FBS ≥26: 4.6 (2.2 — 10.3) p<0.0001
 - **30-d mortality compared with normal AG and FG Elevated FG and AG: 9.6 Elevated AG and Normal FG 3.4
 - **30-d mortality vs. normal FBS 1°: 4.6 (1.7 — 12.7) P=0.003 2°: 6.4 (2.5 — 16.6) P<0.0001 3°: 11.5 (4.7 — 20.0) P<0.0001
 - **Did not attempt to evaluate for undiagnosed DM Significant overlap in HbA1c levels in AMI in known or newly diagnosed DM and no DM**

Sinnaeve 2009
- **(302) 19237725**
 - **Study**: Elevate FBS in ACS and Multicenter retrospective
 - **Number**: 13,526
 - **Intervention**: Range of FBS In-hospital and 6-mo mortality
 - **Primary Endpoint**: ACS Noncardiac chest pain Admission and FBS 6-mo follow-up
 - **Secondary Endpoint and Results**: Mortality in-hospital 6 mo Higher FBS associated with graded in-hospital and 6-mo
 - **Major bleeding complications increased with**: 6-mo death: FBS <100 vs. 100-125 6 mo-mortality: FBS 126 — 199 mg/dL 1.71 (1.25 —
 - **Retrospective analysis, unmeasured variables not accounted for, hospital glucose levels may not**
ACS indicates acute coronary syndrome; AG, admission glucose; AMI, acute myocardial infarction; bid, twice daily; CV, cardiovascular; DM, diabetes mellitus; FBG, fasting blood glucose; FBS, fasting blood sugar; FG, fasting glucose; GI, gastrointestinal; GP, glycoprotein; HbA1c, Hemoglobin A1c; NS, nonsignificant; NSTEMI, non-ST-elevation myocardial infarction; PC, placebo; Sig, significant; Sx, symptom; and UA, unstable angina.

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Patient Population</th>
<th>Study Comparator Group (n)</th>
<th>Primary Endpoint (efficacy) and Results</th>
<th>Safety Endpoint and Results</th>
<th>Secondary Endpoint and Results</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daly 1983 (303) 6409291</td>
<td>Persistence of smoking cessation after ACS</td>
<td>Prospective cohort study</td>
<td>488</td>
<td>Smoking cessation 217 Nonsmokers at entry and follow-up 147</td>
<td>Continued smoking 157</td>
<td>Survived 1st attack of ACS by at least 28 d</td>
<td>Nonsmokers at entry who started to smoke died within 2 y of entry. Follow up by life tables for 13 y beyond 2 y survival stopped smoking</td>
<td>Continued smoking</td>
<td>Mortality 13-y life tables beyond 1st 2 y from ACS Stopped smoking vs. continued smoking was 2.8× lower</td>
<td>Vascular causes of death: 68% 24% MI 35% sudden death NS diff among 3 groups</td>
<td>Mortality of previous nonsmoker 62.1% n=124 Average annual RR of death: 2.4× for smokers vs. stopped smoking p<0.01</td>
</tr>
<tr>
<td>Jorenby 2006 (304) 18820547</td>
<td>Efficacy and safety of varencl</td>
<td>Multicenter Prospective Study</td>
<td>1,027</td>
<td>Varencline 344 Bupropion 342</td>
<td>Previous use of bupropion. Contraindication to medications. Sig CV disease; HTN; pulmonary disease; depression</td>
<td>Varencline 1 mg bid Bupropion SR 150 mg bid 12 wk + brief counseling 12 wk with 40-wk follow-up</td>
<td>PC+b Brief smoking cessation counseling</td>
<td>Continuous abstinence: wk 9-12 Varencline vs. PC: 43.9% vs. 17.6% Bupropion vs. PC: 29.8% vs. 17.6% >10% side effects: Bupropion Insomnia 2.1% Varencline Nausea 29% Abnormal dreams 13.1% Wk 9-52 Abstinence Varencline vs. PC: 23% vs. 10.3% 2.66 (1.72-4.11) p<0.001 Abstinence 9-12 vs. PC: 3.85 (2.69-5.50) p<0.001 9-12 Bupropion vs. PC: 1.90 (1.38-2.62) p<0.001</td>
<td>Volunteers. Minimal counseling may confound results. Exclusion of depression. 35% did not complete follow-up period. Dropout rate for adverse events higher in PC group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Language</td>
<td>Setting</td>
<td>Participants</td>
<td>Race/Ethnicity</td>
<td>Follow-Up</td>
<td>Smoking Status</td>
<td>Smoking Cessation</td>
<td>Cessation Tool</td>
<td>Major Outcomes</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PREMIER Registry</td>
<td>Dawood 2008 (307)</td>
<td>18852396</td>
<td>Predictors of smoking cessation after AMI</td>
<td>English</td>
<td>Retrospective from registry</td>
<td>639</td>
<td>342 smokers at 6 m</td>
<td>297 Non-smokers at 6 mo</td>
<td>AMI Smoker > 18 y age</td>
<td>Transfer to hospital > 24 h from AMI Did not speak English or Spanish. Could not consent</td>
<td>Smoker > 18 wk of varenicline</td>
</tr>
<tr>
<td>Rigotti 2006 (306)</td>
<td>17145253</td>
<td>Bupropion in smokers with ACS</td>
<td>Multicenter Prospective Study</td>
<td>English</td>
<td>248</td>
<td>Bupropion 124</td>
<td>PC 124</td>
<td>Smoked > 1 cigarette in previous mo CAD admissions</td>
<td>Not willing to stop Smoking. Risk of seizure, sig. HTN, heavy alcohol use, depression, liver or renal disease, illegal drug use</td>
<td>Smoking counseling to 1-wk postdischarge Bupropion SR 1-y follow-up</td>
<td>Same smoking counseling PC</td>
</tr>
<tr>
<td>Tonstad 2006 (305)</td>
<td>16920548</td>
<td>Effect of varenicline on smoking cessation</td>
<td>Multicenter Prospective Study</td>
<td>English</td>
<td>1,210</td>
<td>Varenicline 603</td>
<td>PC 607</td>
<td>18-75 y. 10 cigarettes/d + smoking cessation Allen after 12 wk of varenicline</td>
<td>Unstable disease, depression, COPD, CV disease within 6 mo, uncontrolled HTN, smoking cessation aid</td>
<td>12-wk open label vs. if stopped smoking Randomized for 40 wk</td>
<td>PC Continued abstinence Wk 13-24 Varenicline vs. PC 70.5% vs. 49.6% Wk 13-52 43.6% vs. 36.9%</td>
</tr>
<tr>
<td></td>
<td>PC</td>
</tr>
</tbody>
</table>

Notes:
- Generally healthy group. No depression. CO may not evaluate complete check on self-report of nonsmoking. Those lost to follow-up differed between groups.
- 1/3 lost at 1 y. Study not powered to detect less than a 1.8-fold increase in cessation rates with bupropion. Many eligible declined to enroll. Reluctance to be randomized to PC.
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention Description</th>
<th>Relative Risk (RR)</th>
<th>Adjusted Odds Ratio (OR)</th>
<th>95% Confidence Interval (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohuiddin 2007 (308)</td>
<td>Intensive smoking cessation intervention in acute CV disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prospective randomized cohort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Intensive intervention 109 2-y follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-75 y Daily smokers >5 y in CCU with AMI or heart failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alcohol or illicit drug use Unfamiliar with English</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-min counseling before discharge. Intensive counseling for 3 mo + pharmacotherapy in 75%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same counseling before discharge only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>At each follow-up interval, point prevalence and continued abstinence greater in the intensive treatment group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Over 2-y period more in UC group Hospitalized RR reduction:44% (16,63)=0.007 2-y all-cause mortality: 2.8% intensive vs. 12.0% UC RR reduction: 77% (27, 93%) p=0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small sample size-lacking multivariate analysis to adjust for other factors on outcome.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith 2009 (309)</td>
<td>Hospital smoking cessation in CAD with long-term effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19548455</td>
<td>Multi-institution Prospective Study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>Intensive smoking cessation intervention 136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 or older Smoked in previous mo AMI or CABG admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnant</td>
<td>Medically unstable Lived in an institution. No English Psychiatric disorder Substance abuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal intervention 139</td>
<td>Minimal intervention + 45-60 min bedside counseling 7 telephone counseling sessions after discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-y abstinence self-reported 62% intensive GP vs. 46% minimal GP Confirmed: 54% intensive GP vs. 35% minimal group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>Abstinence lower in those using pharmacotherapy p=0.01 Abstinence higher in CABG vs. MI pts p=0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigotti 2008 (310)</td>
<td>Hospital smoking cessation intervention with 6-mo follow-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18852385</td>
<td>Meta-analysis of 33 trials in Figure 1 and 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,252</td>
<td>Intensive intervention counseling 2,673 Pharmacotherapy 323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usual care or control counseling 2,935 No pharmacotherapy 312</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trials not recruiting on basis of smoking, Hx, Hospitalization with psychiatric disorder, or substance abuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensive intervention with or without pharmacotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usual care with minimal smoking counseling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking cessation rates 6-12 mo decreased with smoking counseling No benefit with less postdischarge contact.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not evaluated</td>
<td>Adding NRT produced a trend toward efficacy vs. counseling alone: 1.47 (CI: 0.92-2.35)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colivicchi 2011 (311)</td>
<td>Smoking relapse rate after quitting following ACS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21741609</td>
<td>Prospective cohort study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>813</td>
<td>12-mo relapse 813 (of 1,294 not relapsing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictors of relapse</td>
<td>Previous smokers who stopped after ACS following hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major concurrent illness, depression, alcohol and drug abuse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Several in-hospital counseling sessions. 12-mo follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predictors of relapse</td>
<td>Age and female sex were predictors of relapse. Pts in cardiac rehab and pts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age and resumption: 1.034 (1.03,1.04) p=0.001 Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac rehab and abstinence: 0.74 (CI: 0.51-0.91)=0.02 DM and abstinence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig diff in age and CV risk factors in cohort. Questions about sens of troponin assay for Dx of AMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
discharge renal, lung, liver disease, stroke, malignancy with DM more likely to remain abstinent

Planer 2011 (303) Bupropion 74 PC 75 Smokers hospitalized for ACS Smoking >10 cigarettes/d Intention to quit smoking Prior use of bupropion in past y or NRT in past 6 mo Prior head trauma, depression, bulimia liver or kidney disease, pregnancy Bupropion 150 mg bid for 2 mo 1-y abstinence evaluation PC Same abstinence evaluation Abstinence rates at 3 mo, 6 mo and 1 y were not increased by bupropion Bupropion safe. NS diff vs. PC in: death, any hospitalization s, MI, ACS, Chest pain Adverse effects attributed to treatment was a negative predictor of smoking cessation: 0.23 (95% CI: 0.07-0.78) 3-mo abstinence: Bupropion vs. PC: 45% b 44% p=0.99 6 mo. Abstinence: Bupopion vs. PC: 37% vs. 42% p=0.61 1-y abstinence: 31% vs. 33% p=0.86 Recruitment stopped early after interim analysis limiting sample size. Self-reports of quitting, no biochemical confirmation. High self-reports of quitting in PC group. Dizziness more common than PC 14% vs. 1.4% p=0.005

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; bid, twice daily; CAD, coronary artery disease; CABG, coronary artery bypass graft; CCU, coronary care unit; CO, COPD, chronic obstructive pulmonary disease; CV, cardiovascular; Diff, difference(s); DM, diabetes mellitus; GP, glycoprotein; HTN, hypertension; Hx, history; MI, myocardial infarction; N/A, not available; NRT, nicotine replacement therapy; NS, nonsignificant; PC, placebo; Pt, patient; RR, relative risk; Sens, sensitivity; Sig, significance; SR, sustained release; UA, unstable angina; and UC, usual care.

Data Supplement G. Weight Management

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size (N)</th>
<th>Study Intervention Group (n)</th>
<th>Study Comparator Group (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Study Comparator</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR & 95% CI:</th>
<th>Study Limitations & Adverse Events</th>
</tr>
</thead>
</table>
| Nordmann 2006 (312) | Low-carb vs. low-fat diets on weight loss and CV risk | Meta-analysi s | 447 5 trials | Low carb 222 | Low fat 225 | Randomized controlled low carb vs. low fat, BMI≥25, Follow-up 6 mo + Age 16+ | Trials with cross-over or sequential design | Low-carb weight loss at 6 and 12 mo | Low fat same | Weight loss to 6 and 12 mo. 6 mo: low carb>weight loss. 12 mo: NS difference | Trend toward lower BP in low carb group at 6 mo only, TG and HDL changed more favorably in high-carb diets, LDL-C in low-fat diets | In diabetics, HbA1c dec. In low carb gp. vs. low fat -12 mo -0.7% vs. -0.1% p=0.02 | Weighted mean difference 6 mo Low carb vs. low fat -3.3 kg (-5.3,-1.4) 12 mo. -1.0 kg (-3.5,1.5) | Substantial losses to follow-up. No blinded outcome assessment. Had to use ITT analysis because of dropouts. Heterogeneity concerning main outcome.
Chow 2010
(313)
20124123

Adherence to behavi oral recommendat ion in CV risk

Multicentre Observ ational substu dy
18,809 Adherence to diet, exercise, smoking cessation
Nonadherence to individual components
UA, NSTEMI Age 60+y
Contraindication to LMWH heparin, recent hemorrhagic stroke AC for other than ACS, high creatinine
Survey at 30, 90, 180 d on 3 lifestyle values adherence
No diet, exercise, No smoking cessation
CV events at 6 mo decreased with exercise only and diet + exercise and ex-smoker vs. persistent smoker
Side effects not addressed
Decreased independent risk of stroke/MI/de ath
All 3 with diet/exercise
Death with ex-smoker vs. continued smoker
Risk of CV events
Exercise vs. no
0.69
(HD4.0.89)<0.003
Exercise/diet vs. no
0.46 (0.38-0.57)<0.001
Ex-smoker vs. smoker
0.68 (0.51-0.90)<0.001
No active study intervention program. Self- report of outcomes.
No details of actual diet and exercise quantification. Adherers/nonadherers categorized only at 30-d follow-up.

Gaddes 2011
(314)
21481449

Efficacy and safety of Qnexa
Multicenter prospective trial Phase 3
2,448 Phenteramin e/Topiramate 7.5mg/46mg 488 P15/92mg 981
PC 979
Age: 18-70 BMI: 27-45 Or diabetes 2 or more CV risk factors
BP >160/100 FBS >13.32 mmol/L TG >4.52 mmol/L Type 1 diabetes or Type 2 managed with antidiabetic drugs except for metformin
Phenteramin e/ Topiramate 1 of 2 dosages for 56 wk
PC for same period
Proportion of pts achieving at least 5% weight loss:
Low-dose Qnexa: 62%
High-dose Qnexa:70%
PC: 21%
Adverse effects vs. PC 10% or more with sig dif:
Dry mouth 21%
Paresthesia 21%
Constipation 17%
Dysgeusia 10%
Headache 10%
Cognitive (<sig Attention dist
10%)
Decreased weight loss:
Low-dose Qnexa 37%
High-dose Qnexa 48%
PC 7%
5% weight loss:
Low-dose Qnexa OR: 6.3 (4.9-8.0)<0.0001
High-dose Qnexa OR: 9.0 (7.3-11.1)<0.0001
Endpoint assessment not available for 31% of sample.
Restriction of upper limit to BMI: 45. Lack of ethnic diversity (86% white), few men (32%). No active comparator group such as orlistat or lorcaserin

Garvey 2012
(315)
22158731

Long-term efficacy and safety of Qnexa
Multicenter prospective trial Extensi on of previ ou s trial (4)
676 Out of original 2,448
Phenteramin e/Topiramate 7.5mg/46mg 173 P15/92mg 285
PC 227
See above agreed to extension
See above
See above
52-wk extension
PC for same period
Percentages achieving 5%, >10%, >15% and >20% weight loss in 108-wk period, in all 4 categories, Qnexa low and high dose
Change in percentages Adverse effects were 0-56 vs. 56-108 High-dose Q nexa 21% to 4%
Paresthesia 21% to 2.4%
Dry mouth
Percentage changes in BP, lipid, DM meds:
High-dose Q
BP: -9.8% Lipid: +4.7%
DM: 0%
Low-dose Q
BP: -3.9%
5% weight loss
Low-dose: 79.3%
High dose: 75.2%
PC: 30.2%
<0.0001
>10% weight loss
Low dose: 53.9%
High dose: 50.3%
PC: 11.5%
<0.0001
15% weight loss
Low dose: 31.9%
Discontinuation rates similar to 1 st 56-wk period above. Higher rate lost to follow-up in the 15/92 arm. Impact of Rx of dyslipidemia and HTN on secondary cardiometabolic variables. Type of adverse events similar to 1 st 56-wk period but incidence rates lower.
2010 NSTE-ACS Guideline Data Supplements

AC indicates anticoagulant; ACS, acute coronary syndrome; BMI, body mass index; BP, blood pressure; CV, cardiovascular; DM, diabetes mellitus; FBS, fasting blood sugar (glucose); HbA1c, Hemoglobin A1C; HDL-C, high-density lipoprotein cholesterol; HF, heart failure; HTN, hypertension; ITT, intention-to-treat; LDL-C, low-density lipoprotein cholesterol; LMW, low molecular weight; MI, myocardial infarction; NS, no(n) significance; NSTEMI, non-ST-elevation myocardial infarction; PC, placebo; Pt, patient; Rx, prescription; TG, triglycerides; and UA, unstable angina.

Data Supplement H. Cardiac Rehabilitation

<table>
<thead>
<tr>
<th>Study Name, Author, Year</th>
<th>Study Aim</th>
<th>Study Type/ Size (N)</th>
<th>Intervention vs. Comparator (n)</th>
<th>Patient Population</th>
<th>Study Intervention</th>
<th>Endpoints</th>
<th>P Values, OR: HR: RR: & 95 CI:</th>
<th>Adverse Events</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goel, K et al Circulation, 2011; 123: 2344-2352 (316) 21576654</td>
<td>Assess CR participation and impact on mortality</td>
<td>2,395</td>
<td>CR (1431) vs. non-CR (964) participants</td>
<td>PCI registry, Olmstead County</td>
<td>No prior pt authorization</td>
<td>At least 1 CR outpatient session</td>
<td>All-cause mortality HR</td>
<td>Subsequent MI, PCI-NS</td>
<td>Death, PCI, MI, CABG p=0.28</td>
</tr>
<tr>
<td>Hammil, Circulation. 2010;121:63-70 (317) 20026778</td>
<td>Characterize dose-response for # CR sessions</td>
<td>30,161 (8,181 with AMI as qualifying reason for CR)</td>
<td>Internal: cumulative comparison with # of CR sessions ("dose")</td>
<td>Medicare 5% sample 2001-2005</td>
<td>None identified</td>
<td>At least 1 CR outpatient session billed to Medicare</td>
<td>Death</td>
<td>Subsequent hospitalization</td>
<td>MI</td>
</tr>
</tbody>
</table>

AMI indicates acute myocardial infarction; CABG, coronary artery bypass graft; CR, cardiac rehabilitation; HR, hazard ratio; MI, myocardial infarction; NS, not significant; PCI, percutaneous coronary intervention; Pt, patient; and RR, relative risk.
References

309. Smith PM, Burgess E. Smoking cessation initiated during hospital stay for patients with coronary artery disease: a randomized controlled trial. CMAJ. 2009;180:1297-303.

