MHC Class II-Restricted Antigen Presentation by Plasmacytoid Dendritic Cells Drives Pro-Atherogenic T Cell Immunity

Running title: Sage et al.; MHC II expression by pDC promotes atherosclerosis

Andrew Sage, PhD1; Deirdre M. Murphy, BSc1; Pasquale Maffia, PhD2,4; Leanne M. Masters, Msc3; Suleman R. Sabir, Msc2; Lauren L. Baker, Bsc4; Helen Cambrook, PhD5; Alison J. Finigan, BSc1; Hafid Ait-Oufella, MD3; Gianluca Grassia, PhD2,4; James E. Harrison, BSc1; Burkhard Ludewig, PhD5; Walter Reith, PhD6; Göran K. Hansson, PhD7; Boris Reizis, PhD8; Stéphanie Hugues, PhD9; Ziad Mallat, MD, PhD1,3

1Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; 2Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; 3Institut National de la Santé et de la Recherche Médicale, Unit 970, Paris Cardiovascular Research Center, Paris, France; 4Dept of Pharmacy, University of Naples Federico II, Naples, Italy; 5Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland; 6Dept of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 7Center for Molecular Medicine, Dept of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden; 8Dept of Microbiology and Immunology, Columbia University Medical Center, New York; 9Dept of Pathology, University of Geneva Medical School, Geneva, Switzerland

Address for Correspondence:
Ziad Mallat, MD, PhD
Division of Cardiovascular Medicine
University of Cambridge
Addenbrooke's Hospital
Cambridge, CB2 2QQ, United Kingdom
Tel: 441223768678
Fax: 441223746962
E-mail: zm255@medchl.cam.ac.uk

Abstract

Background—Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and are important regulators of immuno-inflammatory diseases. However, their role in atherosclerosis remains elusive.

Methods and Results—Here, we used genetic approaches to investigate the role of pDCs in atherosclerosis. Selective pDC deficiency in vivo was achieved using CD11c-Cre x Tcf4flox BM transplanted into Ldlr-/- mice. Compared to control Ldlr-/- chimeric mice, CD11c-Cre x Tcf4flox mice had reduced atherosclerosis levels. To begin to understand the mechanisms by which pDCs regulate atherosclerosis, we studied chimeric Ldlr-/- mice with selective MHCII deficiency on pDCs. Significantly, these mice also developed reduced atherosclerosis compared to controls without reductions in pDC numbers or changes in conventional DCs. MHCII-deficient pDCs showed defective stimulation of ApoB100-specific CD4+ T cells in response to native LDL, whereas production of IFN-\gamma was not affected. Finally, the athero-protective effect of selective MHCII deficiency in pDCs was associated with significant reductions of pro-atherogenic T cell-derived Ifn-\gamma and lesional T cell infiltration, and was abrogated in CD4+ T cell-depleted animals.

Conclusions—This study supports a pro-atherogenic role for pDCs in murine atherosclerosis and identifies a critical role for MHCII-restricted antigen presentation by pDCs in driving pro-atherogenic T cell immunity.

Key words: antigen, atherosclerosis, immune system, low-density lipoprotein, Plasmacytoid Dendritic cell, T cell, Interferon gamma
Introduction

The first suggestion of adaptive immune activity in atherosclerosis came from the observation that HLA-DR was abundantly expressed in both immune and vascular cells of human atherosclerotic lesions. In the late 1980s, researchers reported that low-density lipoproteins (LDL) undergo oxidative modification in vivo and incite the generation of autoantibodies to modified LDL. This was followed in the mid 1990s by the discovery that CD4+ T lymphocytes from human atherosclerotic lesions recognize LDL-derived antigen in an HLA-DR-dependent manner and by the identification of vascular dendritic cells (DCs) in human aortic intima.

These seminal studies generated great interest in the immune mechanisms of atherosclerosis and were followed by 2 decades of intensive research into the roles of adaptive immune responses in disease initiation and progression. The studies defined the distinct roles of T lymphocyte subsets in the disease process: Th1-biased responses promote atherosclerosis whereas Tregs play a major counter-regulatory role and limit lesion inflammation and development, in part through the anti-atherogenic roles of IL-10 and TGF-β. Until recently, however, only a few studies addressed the contribution of DCs to the immune responses of atherosclerosis.

DCs are detected in normal vessels preferentially in regions predisposed to atherosclerosis where they accumulate lipid and contribute to the development of early fatty streaks. Besides these lipid scavenging properties, investigators have recently interrogated the roles of DCs in shaping atherosclerotic immune responses. DCs from normal and atherosclerotic vessels are able to process and present model antigens to CD4+ T cells in an MHCII-dependent manner. Adventitial DCs, like spleen and lymph node DCs, engage in sustained interactions with T cells, leading to T cell proliferation and cytokine secretion. However, the outcome of these interactions between conventional DCs (cDCs) and T cells on atherosclerosis is
still unclear. For example, genetic manipulations to expand or deplete the general pool of cDCs (and CD11c-expressing macrophages) using the CD11c-diptheria toxin receptor mouse did not reduce the development or progression of atherosclerosis 13. This disappointing and unexpected finding could be attributed either to a dominant role of cDCs in the modulation of cholesterol homeostasis or to the critical role of cDCs in the control of steady-state myelogenesis 14, blurring any potential role of DCs in adaptive immune responses to atherogenic stimuli.

A few studies addressed the role of a distinct DC subset, plasmacytoid DCs (pDCs), in atherosclerosis. pDCs originate in the bone marrow, circulate in the blood and home to secondary lymphoid organs as well as sites of inflammation. pDCs are specialized type I interferon (IFNs) producers in response to virus infection and as such are major players in innate immune responses 15, 16. As the name suggests, pDCs are also capable of antigen presentation to T cells 17, 18, a function shown to be critical in some autoimmune disease models 19, although not in viral infection responses 20. pDCs are detected in normal and atherosclerotic vessels, both in humans and mice 21-23. Reduced blood levels of pDCs in humans are suggested to reflect increased plaque infiltration and correlate with coronary artery disease 24, 25. Vascular pDCs are able to present antigen to T cells in vitro 23 and can load a model peptide on MHCII in vivo 26. However, the outcome and relevance to atherosclerosis remains uncertain. While some studies suggested a pro-atherogenic role for pDCs 23, 26, other investigators reported an athero-protective effect 22. The reasons for these discrepancies remain unknown and the mechanisms through which pDCs alter immune responses in atherosclerosis remain elusive. In particular, each of the above-mentioned atherosclerosis studies used antibody-mediated depletion of pDCs targeting PDCA1 (BST-2/CD317), which is not entirely specific for pDCs 27, especially in inflammatory settings. Therefore, alternative approaches are required to definitively address the role of pDCs.
and the mechanisms through which they modulate immune-mediated diseases. Here, we used selective genetic approaches to interrogate the role of pDCs in the development of murine atherosclerosis. We identify a critical role for MHCII expression on pDCs in driving pro-atherogenic T cell immunity. The results may have broad implications for the understanding of the immune mechanisms of atherosclerosis and other related immune diseases.

Methods

An expanded methods section is available in the online supplementary material.

Mice

All experiments were approved by the Home Office, UK. \(p^{III+IV-} \) mice were previously described\(^{28} \).

Flow cytometry

Single cell suspensions were stained with fluorophore-conjugated antibodies (Supplemental Table 1) and analyzed using LSRII Fortessa (BD) or CyAN ADP (Beckman Coulter) flow cytometers using the gating shown in Supplemental Figure 1.

Analysis of \textit{in vivo} antigen presentation

The E\(a\)-GFP/Y-Ae system was described previously\(^{26} \). To determine the anatomical location of the antigen processing pDCs, \(Ldlr^{-} \) mice were injected with DQ-OVA. After 1 h the aortic sinus was harvested for immunohistochemical analysis. For \textit{in vivo} OT-II stimulation, C57BL6 mice were injected with CFSE –labeled OT-II T cells, then injected with ovalbumin-loaded pDCs. OT-II T cell proliferation was assessed after 3 days by flow cytometry.

\textit{In vitro} dendritic cell culture

Bone marrow (BM) pDCs or spleen CD11c\(^{+} \) cells were isolated using an AutoMACS Pro
separator. **Supplemental Figure 2** shows pDC purity. For cytokine production, purified pDCs were treated with CpG oligonucleotides or control GpC. For antigen presentation assays, DCs were preincubated with antigen (OVA or native LDL) then with antigen-specific T cells. T cell activation was measured by proliferation or IL-2 production.

Statistics

Results were presented as mean ± S.E. They were analyzed in GraphPad Prism (La Jolla, CA, USA) using unpaired t-test, non-parametric Mann-Whitney U test, one way analysis of variance or repeated measures two-way analysis of variance, as appropriate. P value (two-sided) of <0.05 was considered significant.

Results

Selective blockade of pDC development limits atherosclerosis in Ldlr^{−/−} mice.

Basic helix-loop-helix transcription factor E2-2/Tcf4 is an essential regulator of the pDC lineage, and CD11c-restricted deletion of Tcf4 (as in CD11c-Cre x Tcf4^{−/−} mice) selectively blocks pDC development and maintenance^{20, 29}. The phenotype of these ‘pDC-less’ mice has been previously reported, demonstrating for example that they display selective defects in pDC responses and are susceptible to MHV infection²⁰. We therefore reconstituted lethally irradiated Ldlr^{−/−} mice with either CD11c-Cre x Tcf4^{−/−} (conditional Tcf4 deletion in CD11c⁺ cells, designated Tcf4-cKO thereafter) or CD11c-Cre x Tcf4^{−/−} (control, designated Tcf4-WT thereafter) BM²⁰. After recovery, mice were put on high fat diet (HFD) for 8 weeks. Ldlr^{−/−} Tcf4-cKO mice displayed marked reduction of pDC (CD11c⁺ B220⁺ PDCA1⁺ cells; see **Supplemental Figure 1** for an example of gating strategy) numbers in blood, spleen, lymph nodes (**Figure 1A**) and aortas (**Supplemental Figure 3A**) compared with control Ldlr^{−/−} Tcf4-WT mice. The depletion was
selective for pDCs, as we found no difference in other cell populations (T cells, B cells, monocytes and neutrophils) in blood or lymphoid organs (Supplemental Figure 3B-3D). Of note, contrary to the phenotype of cDC-less mice \(^{14}\), blockade of pDC development did not alter myelogenesis, despite chronic feeding with a HFD (Supplemental Figure 3D). We also assessed the numbers of other DC subtypes. As previously reported for \(Tcf4\)-cKO mice \(^{29}\), a B220\(^{lo}\) cDC-like (CD11c\(^{hi}\) MHCII\(^{+}\)) population that derives from converted \(Tcf4^{+/−}\) pDCs was increased in the spleen and lymph nodes (Figure 1B), consistent with the role of Tcf4 in maintaining the cell fate of mature pDC through active opposition of a cDC ‘default’ program. We also found increased numbers of CD11c\(^{hi}\) MHCII\(^{+}\) B220\(^{−}\) DCs in spleens and lymph nodes of \(Ldlr^{−/−}\) \(Tcf4\)-cKO mice compared with controls (Figure 1C). The proportions of CD11b\(^{+}\) and CD8\(^{a}\) cells within this population were not significantly changed (data not shown). Loss of pDCs and increase of cDCs may have effects on regulatory T cells. However we found no differences in the levels of spleen regulatory T cells between groups (Supplemental Figure 3E).

Animal weight (Figure 1D), plasma HDL-cholesterol (2.46 ± 0.36 mM vs 2.81 ± 0.22 mM; \(p=0.64\)) and triglycerides (5.51 ± 0.73 mM vs 5.29 ± 0.54 mM; \(p=0.45\)) were similar between the 2 groups of mice. However, \(Ldlr^{−/−}\) \(Tcf4\)-cKO mice showed a significant, although relatively small, increase of plasma total cholesterol levels in comparison with \(Ldlr^{−/−}\) \(Tcf4\)-WT animals (Figure 1D). A similar phenotype has previously been reported in cDC-depleted \(Ldlr^{−/−}\) or \(Apoe^{−/−}\) mice \(^{13}\), suggesting a similar potential role for pDCs in cholesterol metabolism. Previously, increased cholesterol in cDC-depleted mice was proposed to explain the lack of effect of cDC depletion on atherosclerosis \(^{13}\). It is therefore remarkable that despite higher plasma cholesterol levels, pDC-less \(Ldlr^{−/−}\) \(Tcf4\)-cKO mice showed significantly reduced atherosclerosis compared with \(Ldlr^{−/−}\) \(Tcf4\)-WT controls (Figure 1E). Reduced lesion
development was associated with a substantial reduction in plaque T cell accumulation (Figure 1F). Thus, blockade of pDC development substantially limits pro-atherogenic adaptive immunity, indicating a prominent role in disease development.

MHCII-restricted antigen presentation to T cells by pDCs.

We next addressed the potential functions of pDCs that may be influencing atherosclerosis. In general, pDCs have so far been found to be less potent stimulators of CD4+ T cells in the presence of cognate antigen than cDCs or inflammatory/bone-marrow derived DCs.

Nevertheless, pDCs are capable of antigen presentation in a number of conditions 19, 26, 30. We therefore addressed the role of MHCII-dependent functions of pDCs. Aortic pDCs from Apoe−/− mice have already been shown to take up injected Eα antigen and present it in the context of MHCII 26. Aortic pDCs from Ldlr−/− mice are also capable of Eα antigen presentation (Figure 2A). Staining with the Y-Ae antibody (which recognizes the Eα peptide specifically in the context of MHCII I-Ab) was readily detectable on aortic pDCs from chow and HFD-fed Ldlr−/− mice injected with Eα-GFP but not those injected with PBS (Figure 2A). In addition, after injection of DQ-OVA (a self-quenched conjugate of ovalbumin that exhibits bright green fluorescence upon proteolytic degradation), cells in the aortic root plaques of Ldlr−/− mice staining positive for the pDC marker Siglec-H were also positive for processed DQ-OVA (Figure 2B).

We then investigated the ability of pDCs to present the model antigen ovalbumin to purified OVA-specific OT-II CD4+ T cells, using Mhcii−/− mice to confirm the antigen dependency. Both WT splenic cDCs and BM pDCs induced T cell proliferation in the presence of OVA (Figure 2C). As expected, pDCs stimulated OT-II T cells to a lesser extent, but the majority of their effect was dependent on MHCII, since there was significantly less T cell
proliferation in the presence of MHCII-deficient pDCs (Figure 2C).

To target MHCII selectively in pDCs, we took advantage of the cell and tissue-specific promoters of the MHCII transactivator (CIITA), pI, pIII, and pIV, which specifically controls expression of MHCII genes and a handful of antigen-presentation related genes. The pI promoter controls MHCII expression in cDCs, macrophages and microglia, pIII selectively controls MHCII expression in pDCs and B cells, whereas pIV controls MHCII expression by thymic epithelial cells and immune-stimulated non-hematopoietic cells. Therefore, mice receiving BM cells lacking pIII and pIV (pIII+IV−/−) allow the study of the role of MHCII-restricted antigen presentation by pDCs and B cells. We backcrossed pIII+IV−/− mice with B cell deficient μMT mice in order to generate (“μMT:pIII+IV−/−”) mice lacking MHCII-restricted antigen presentation only by pDCs. Compared to μMT controls, μMT:pIII+IV−/− pDCs did not express detectable MHCII above isotype control staining in flow cytometry analysis (Supplemental Figure 4A). Firsty, we studied the role of selective MHCII deficiency in pDCs on antigen-specific T cell activation in culture. Importantly, μMT:pIII+IV−/− pDCs secreted inflammatory cytokines at normal levels in response to CpG activation (Supplemental Figure 4B), confirming that their innate functions were intact.

To confirm a defect in antigen presentation by pDCs in the absence of pIII+IV, we repeated the OT-II stimulation experiments in the presence of either μMT:pIII+IV−/− or μMT:pIII+IV+/+ control BM pDCs. T cell proliferation in the presence of OVA was significantly attenuated in μMT:pIII+IV−/− BM pDCs compared to μMT pDCs (Figure 2D). These experiments were conducted in the continuing presence of ovalbumin protein. When ovalbumin was removed before addition of OT-II T cells (OVA pulse), the effect of pIII+IV deficiency on pDCs was much greater (Figure 2E). To confirm an antigen presentation defect in vivo, we
adoptively transferred CFSE-labeled OT-II T cells into C57/BL6 mice and, after 24h, injected μMT or μMT:pIII+IV+/− pDCs pre-incubated with ovalbumin into the footpad. OT-II T cell proliferation was detectable in the popliteal lymph node of the injected hindlimb of μMT pDC recipients, but no proliferation was detected in μMT:pIII+IV+/− pDC recipients above that seen in the uninjected hindlimb popliteal lymph nodes (Figure 2F).

MHCII-restricted presentation of native LDL to T cells by pDCs.

To investigate an antigen with relevance to atherosclerosis, we utilized a T cell hybridoma specific for human native LDL (nLDL) cloned from hApoB100tg x Ldlr−/− mice, originally described by Hermansson et al. (see online-only Supplemental Methods). Antigen-specific stimulation of the T cell hybridoma was measured by enhanced production of IL-2 after 15h coculture with cDCs or pDCs pre-incubated with nLDL. We confirmed a defect in nLDL-specific T cell activation in μMT:pIII+IV+/− BM pDCs compared to μMT pDCs, but no differences between cDCs from the two genotypes (Figure 2G). Importantly, pDCs stimulated nLDL-specific T cells to the same extent as cDCs (Figure 2G), suggesting an enhanced ability to present this type of antigen compared to the model antigen OVA (Figure 2C). The results suggest a prominent and previously unsuspected role for pDCs in MHCII-restricted presentation of LDL-derived epitopes to CD4+ T cells.

MHCII expression on pDCs promotes atherogenesis.

We therefore examined the role of selective deletion of MHCII in pDCs on the adaptive immune response to HFD and its consequence on the development of atherosclerosis. Lethally irradiated Ldlr−/− mice reconstituted with either μMT:pIII+IV+/− or control μMT BM were analyzed after 4 weeks recovery followed by a HFD for 6 weeks. Animal weights (29.69 g ± 0.94 vs 30.77 g ± 0.97) and total plasma cholesterol (7.49 ± 0.79 g/l vs 7.71 ± 0.52 g/l, in μMT:pIII+IV+/− → Ldlr−/−).
and μMT:pIII+IV−/− → Ldlr+ mice, respectively, p=0.82) were similar between groups.

Numbers of blood monocytes and neutrophils were also comparable between the 2 groups of mice (Supplemental Figure 5A). Unlike Tcf4-cKO mice, pIII+IV deletion had no effect on the distribution of pDCs (Figure 3A) or cDCs (Figure 3B). However, μMT:pIII+IV−/− → Ldlr+ mice displayed a selective abrogation of MHCII expression on pDCs (Figure 3C). MHCII expression on cDCs was unaltered (Supplemental Figure 5B) and there were no differences in cDC activation markers including CD40, CD80 and CD86 between the 2 groups of mice (data not shown). Interestingly, aortic root lesion size was significantly reduced in μMT:pIII+IV−/− → Ldlr+ mice (Figure 3E). We therefore assessed the effect of this pDC-restricted MHCII deficiency on T cell responses. pIII+IV deletion had no impact on Tregs levels in the spleen and did not alter their suppressive potential (Supplemental Figures 5C and 5D). However, we found a significant reduction of pro-atherogenic IFN-γ producing CD4+ T cells (but no differences in IL-17+ T cells) in μMT:pIII+IV−/− → Ldlr+ compared with μMT:pIII+IV+/+ → Ldlr+ mice, using intracellular flow cytometry staining on freshly isolated spleen T cells (Figure 3D and Supplemental Figures 5E and 5F). Importantly, there was a substantial decrease of vascular T cell infiltration in lesions of μMT:pIII+IV−/− → Ldlr+ mice (Figure 3F). Thus, MHCII expression by pDCs is required to drive a pro-atherogenic T cell immunity.

The pro-atherogenic effect of pDC-selective MHCII expression requires the presence of CD4+ T cells.

To further substantiate the T cell-dependent effects of pDC MHCII, we repeated the experiment with additional groups of μMT:pIII+IV+/+ → Ldlr− and μMT:pIII+IV−/− → Ldlr− receiving a depleting anti-CD4 antibody (see Supplemental Methods) during 8 weeks of HFD. As expected, μMT:pIII+IV−/− → Ldlr− mice displayed a selective abrogation of MHCII expression on pDCs
(Figure 4A), and T cell depletion was substantial in anti-CD4-treated mice (Figure 4B) and maintained throughout the experiment (data not shown). Animal weights were similar between groups (Figure 4C). pIII+IV deficiency had no effect on serum cholesterol, whereas CD4+ T cell depletion led to a 25% decrease (Figure 4D), as previously reported in Apoe−/−/Rag1−/− and Ldlr−/−/Rag1−/− mice 31. CD4 depletion led to a 50% decrease in atherosclerosis in μMT:pIII+IV+ → Ldlr−/− mice (Figure 4E), which is consistent with the phenotype of Rag1-deficient animals 31,32 and the pro-atherogenic role of CD4+ T cells 33. Remarkably, CD4 depletion did not reduce lesion development in μMT:pIII+IV+ → Ldlr−/− mice (despite reduced cholesterol), indicating that pDC MHCII deficiency had abrogated the pro-atherogenic properties of CD4+ T cells (Figure 4E). The results strongly support an MHCII-CD4+ T cell dependent pathway for the pro-atherogenic effect of pDCs.

Selective MHCII expression on pDCs promotes atherogenesis in the presence of B cells. B cells are known to significantly regulate atherosclerosis 34-36, and pDCs might influence B cell responses. Since the above pIII+IV−/− experiments were performed in B cell-deficient animals, we generated B cell-sufficient mice with selective abrogation of MHCII in pDCs. To this aim, lethally irradiated Ldlr−/− mice were reconstituted with a mixture of 80% BM from μMT:pIII+IV−/− mice and 20% BM from WT mice. In this case, B cells only develop from the 20% WT BM and are MHCII+. However, 80% of pDCs will be generated from the μMT:pIII+IV−/− BM and should therefore be deficient in MHCII. Control Ldlr−/− mice were reconstituted with a mixture of 80% BM from μMT mice and 20% BM from WT (all B cells and pDCs are MHCII+). After recovery, mice were fed a HFD for 8 weeks. Proportions of pDCs, cDCs, T and B cells were similar between the 2 groups of mice (Supplemental Figure 6) and only pDCs were defective in MHCII expression (Figure 5A-C). This pDC-specific MHCII deficiency again resulted in a
significant reduction of lesion size (Figure 5D) and 70% reduction of vascular T cell infiltration (Figure 5E) along with reduced systemic levels of Ifn-γ (Figure 5F) despite no change of plasma cholesterol levels (μMT/WT: 10.96 ± 0.61 g/l, μMT:pIII+IV−/WT: 9.91 ± 0.58 g/l, p=0.22).

Discussion

Atherosclerosis development is driven by both innate and adaptive immune responses. Recent studies further highlighted the role played by LDL in driving antigen-specific pro-atherogenic T cell immunity 37. T cell-mediated responses and disease severity were shown to be highly dependent on cDC subtype. CCL17-expressing DCs restrain Treg responses and promote atherosclerosis 38 whereas Flt3-dependent CD103+ DCs and CD11c-restricted MyD88 signaling sustain athero-protective Tregs 39, 40, as do DCs that were manipulated to exert tolerogenic activity 41. However, whether these distinct effects require antigen presentation by DC subsets remains elusive. Reduction of atherosclerosis in mice lacking MHCII-associated invariant chain CD74 42 is frequently cited as evidence for a potential role of antigen presentation in atherosclerosis. However, CD74-deficient mice display defective CD4+ T cell selection and massive reduction of thymic and spleen CD4+ T cells already in the absence of atherosclerosis 43, precluding any direct conclusion regarding the distinct role of antigen presentation in disease development. Therefore, the in vivo role of MHCII-restricted antigen presentation by cDCs in the development of atherogenic immunity remains unknown. In addition, as mentioned above, sustained total cDC depletion did not result in athero-protection.

Recent studies therefore focused on the pDC subset and its potential role in atherosclerosis, but discrepant results and mechanisms were reported 22, 23, 26. As an alternative to
the antibody depletion strategy, used in all 3 previous studies that addressed the role of pDCs in atherosclerosis, we used genetically-modified mice with selective deficiency in pDCs. Our results clearly show that the development of atherosclerosis is reduced in pDC-less mice, which strongly argues in favor of a major role of pDC-mediated immunity in driving the atherogenic process.

A limitation of the depleting strategies mentioned above and the use of pDC-less mice is that they allow no conclusion about innate versus adaptive functions of pDCs in atherosclerosis. Indeed, besides their major role in shaping innate immune responses, pDCs have also been suggested to function as antigen presenting cells (APCs). They are capable of antigen cross-presentation to CD8⁺ T cells, express MHCII molecules and acquire a mature phenotype to internalize, process and present antigen to CD4⁺ T cells. However, such APC function could not be observed in vivo using models of virus infection and antibody-mediated pDC depletion. It appears that under conditions of acute viral infection, pDCs mainly act via type I IFN production, whereas the contributions of innate versus adaptive immune functions of pDCs to chronic immune diseases require more investigation. An APC function was recently demonstrated in a model of experimental autoimmune encephalomyelitis (EAE), where pDCs inhibited T cell-mediated autoimmunity. Whether this result could be translated to other (auto)immune-mediated diseases was still unknown. Here, we addressed this question in the context of atherosclerosis by generating mice with selective abrogation of MHCII expression in pDCs and provided strong evidence for a critical role of MHCII-restricted antigen presentation by pDCs in driving pro-atherogenic T cell responses. The results are of high importance and should prompt a re-assessment of the differential roles of pDCs and cDCs in shaping adaptive immune responses during atherogenesis.
Our results might appear in contradiction with the tolerogenic role assigned to pDCs in other settings. However, previous studies on the role of pDCs in antigen-specific CD4⁺ T cell responses in vivo used a disease-unrelated model antigen, i.e. OVA 30, which might not faithfully reproduce the regulation of disease-specific immune responses. In other studies, Irla et al. reported an inhibitory role of MHCII-restricted antigen presentation by pDCs in a mouse model of EAE 19. However in the EAE model, the disease process is initiated after active immunization with antigen in association with adjuvants, which is different from the spontaneous development of adaptive immune responses to endogenous LDL-derived antigens in the atherosclerosis model. APC function of pDCs might differ between these 2 different ways of induction of adaptive immunity. Finally, the outcome of antigen presentation by pDCs might depend on the nature of the presented antigen and the local microenvironment where presentation occurs. For example, exposure to oxidized LDL selectively enhanced the surface expression of the scavenger receptor CD36, with enhanced phagocytic function of pDCs and increased capacity to prime antigen-specific T-cell responses 23. It is conceivable that under basal non-inflammatory conditions, LDL presentation by pDCs induces tolerogenic adaptive immune responses, which then gradually switches towards effector responses with the progressive high load of cholesterol and environmental inflammatory stimuli. This hypothesis merits further investigation.

It should be noted that the present work addressed the role of pDCs in early atherosclerosis, at which point pro-atherogenic T cell immunity greatly influences atherosclerosis development in mice 32. Additional studies are needed to determine the contribution of pDC-mediated immunity at later stages of disease development. Since pDCs and T cells infiltrate both early and advanced atherosclerotic lesions in humans 21-25, 47, 48, we speculate that our results will also bear relevance to the human disease. However, direct testing
of this hypothesis is still required.

In conclusion, we present new evidence that MHCII-restricted antigen presentation by pDCs drives pro-atherogenic T cell immunity. The results shed new light on the role of adaptive immune responses in atherosclerosis and may have implications for the design of specific therapeutic strategies.

Acknowledgments: We are indebted to Sonja Firner (Institute of Immunobiology, Kantonal Hospital St. Gallen, Switzerland) for her technical support. HDL-cholesterol and triglycerides were measured by Keith Burling, at the Department of Clinical Biochemistry, University of Cambridge, UK. We thank Paul Garside and James M. Brewer (Institute of Infection, Immunity and Inflammation, University of Glasgow, UK) for stimulating discussions.

Funding Sources: This work was supported by the British Heart Foundation (PG/12/81/29897).

G K Hansson is supported by the Swedish Research Council.

Conflict of Interest Disclosures: None.

References:

27. Grassia G, MacRitchie N, Platt AM, Brewer JM, Garside P, Maffia P. Plasmacytoid dendritic

Figure Legends:

Figure 1. Conditional Tcf4 deficiency in CD11c+ cells reduces tissue pDC levels and decreases atherosclerosis. Ldlr−/− mice transplanted with Tcf4-WT or Tcf4-cKO BM were fed a HFD for 8 weeks. A-C. Lymphoid tissue and blood levels of pDCs (A), B220lo cDCs (B) and cDCs (C). See methods for gating strategy. Results representative of 2 separate experiments with similar results. D. Terminal weights and serum total cholesterol levels. E. Representative images of oil red O-stained aortic root lesions (bar represents 100 μm). Quantification of total plaque area at the aortic root in 10 serial sections beginning at the start of the aortic valves (0 μm). Data represents mean ± S.E. at each position (n=10/group). Statistical significance determined by two-way ANOVA. F. Quantification of plaque CD3+ cells/mm² in the aortic root. For each figure, significant differences between groups are indicated by p values.

Figure 2. Antigen presentation by pDCs in vivo and in vitro. A. Chow or HFD-fed Ldlr−/− mice injected with Eα-GFP (or PBS) and whole aortas were digested and analysed by flow cytometry for pDC uptake of Eα-GFP using Y-Ae antibody. Data are from 4 pooled aortas/group. B. pDCs detected by staining for Siglec-H (red) in the aortic sinus of Ldlr−/− mice were able to uptake and process DQ-OVA [green or yellow (green + red)]. Cell nuclei are stained by DAPI (blue). A: Adventitia, M: Media, P: Plaque. Representative images from analysis of 5 mice. C. Proliferation of OT-II CD4 T cells after incubation with spleen CD11c+ from WT mice or BM pDCs from WT and MHCII−/− mice incubated with or without 100 μg/ml ovalbumin. Data representative of 2 separate experiments. *p<0.05. D. OT-II CD4 T cell proliferation after incubation with pDCs from μMT or μMT:pIII+IV−/− mice with or without 100 μg/ml ovalbumin continuously. *p<0.05.
E. OT-II CD4 T cell proliferation after incubation with pDCs from μMT or μMT:pIII+IV−/− mice with pre-incubated with or without 100 μg/ml ovalbumin and/or CpG-B (5 μg/ml) prior to addition of OT-II T cells only.*p<0.05. F. OT-II T cell proliferation in vivo (% of total OT-II) after injection of ova-loaded μMT or μMT:pIII+IV−/− pDCs in popliteal lymph nodes from the uninjected control (Con) or injected (Inj) hindlimbs. *p<0.05. G. Activation of human ApoB100-specific T cell hybridoma (48-5T), measured by II-2 secretion, after 15h co-culture with spleen CD11c+ cells or BM pDCs from μMT or μMT:pIII+IV−/− mice with or without native human LDL (25 μg/ml). Data representative of at least 2 experiments in D and E, and 4 experiments in G with similar results. *p<0.05.

Figure 3. Conditional MHCII deficiency in pDCs decreases atherosclerosis in B cell-deficient mice. Ldlr−/− mice transplanted with μMT or μMT: pIII+pIV−/− BM were fed a HFD for 6 weeks. Results representative of 3 separate experiments with similar results. A. Lymphoid tissue and blood levels of pDCs. See methods for gating strategy. B. Lymphoid tissue levels of cDCs and B220lo cDCs. See methods for gating strategy. C. Mean fluorescence intensity (MFI) of MHCII staining on pDCs. D. Percentage of spleen CD4+ T cells positive for IFN-γ by intracellular flow cytometry (see methods). N=5/group. See also Supplemental Figure 4D. E. Representative images of oil red O stained lesions (bar represents 100 μm). Quantification of total plaque area at the aortic root in 10 serial sections beginning at the start of the aortic valves (0 μm). Data represents mean at each position ± S.E. (n=7 μMT, 9 μMT:pIII+IV−/−). Statistical significance determined by two-way ANOVA. F. Quantification of plaque and adventitial CD3+ cells in the aortic root. For each figure, significant differences between groups are indicated by p values.
Figure 4. The protective effect of MHCII deficiency in pDCs is dependent on CD4+ T cells. Ldlr−/− mice transplanted with μMT or μMT: pIII+pIV−/− BM were fed a HFD for 8 weeks and injected every 10 days with either PBS or a CD4 T cell depleting antibody (αCD4). A. Mean fluorescence intensity (MFI) of MHCII staining on pDCs. *p<0.05. B. Blood CD4+ T cell levels before (Day 0) and at Day 20. *p<0.05. C+D. Final body weights and serum total cholesterol. *p<0.05. E. Quantification of total plaque area at the aortic root in 10 serial sections beginning at the start of the aortic valves (0 μm). Data represents mean ± S.E. (n=11 μMT/PBS, 9 μMT:pIII+pIV−/−/PBS, 10 μMT/αCD4, 11 μMT:pIII+pIV−/−/αCD4). Statistical significance determined by two-way ANOVA.

Figure 5. Conditional MHCII deficiency in pDCs decreases atherosclerosis in B cell-sufficient mice. A-C. Mean fluorescence intensity (MFI) of MHCII staining on pDCs (A), B cells (B) or cDCs (C). D. Representative images of plaque area. Bar represents 100 μm. Quantification of total plaque area at the aortic root in 10 serial sections beginning at the start of the aortic valves (0 μm). Data represents mean ± S.E at each position (n=10 WT pDC group, 12 pIII+pIV−/− pDC group). E. Quantification of CD3+ cells in the vascular lesions. F. Serum IFN-γ quantified by luminex assay (see methods). For each figure, significant differences between groups are indicated by p values.
Figure 1
Figure 2

Panel A: Flow cytometry analysis showing normalized intensity of Y-Ae against CD45 and SSC for Chow/PBS, Chow/Eα, and HFD/Eα groups. The MFI values are provided for each group: Chow/PBS 158, Chow/Eα 5173, HFD/Eα 15658.

Panel B: Immunofluorescence images showing the localization of P, M, and A proteins.

Panel C: Bar graph showing CPM values for WT, WT DC11c, WT pDC, and MHCI+ pDC in untreated and Ova-treated conditions.

Panel D: Similar bar graph for untreated and Ova-treated conditions in the context of MDC11c and pDC.

Panel E: CPM values for the percentage of CD11c+ cells in untreated and Ova-treated conditions.

Panel F: Proportion of proliferated CD11c+ cells following Con or Inj treatments.

Panel G: IL-2 levels in the control and nLDL conditions.

These panels collectively illustrate the immune response and cytokine production in different experimental conditions.
Figure 3
Figure 5
MHC Class II-Restricted Antigen Presentation by Plasmacytoid Dendritic Cells Drives Pro-Atherogenic T Cell Immunity

Andrew Sage, Deirdre M. Murphy, Pasquale Maffia, Leanne M. Masters, Suleman R. Sabir, Lauren L. Baker, Helen Cambbrook, Alison J. Finigan, Hafid Ait-Oufella, Gianluca Grassia, James E. Harrison, Burkhard Ludewig, Walter Reith, Göran K. Hansson, Boris Reizis, Stéphanie Hugues and Ziad Mallat

Circulation. published online September 15, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2014/09/15/CIRCULATIONAHA.114.011090

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/09/15/CIRCULATIONAHA.114.011090.DC1
http://circ.ahajournals.org/content/suppl/2016/12/29/CIRCULATIONAHA.114.011090.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
MHC class II-restricted antigen presentation by plasmacytoid dendritic cells drives pro-atherogenic T cell immunity

Supplemental Material
Mice

All experiments were approved by the Home Office, UK and were performed under PPL 80/2426. Ldlr−/− and µMT mice were purchased originally from Jackson labs and were on a C57Bl/6 background. CD11c-Cre x Tcf4−/− and CD11c-Cre x Tcf4+/− control littermates were originally generated in the lab of Prof. B. Reizis.

Mice lacking the pIII and pIV promoter elements of Class II transactivator (CIITA) (pIII+IV−/−) were maintained on a µMT (B cell deficient) background and µMT mice were used as controls. MHCII-deficient bone marrow was kindly provided by the lab of Sebastian Amigorena (INSERM U932, Institut Curie, Paris, France). For atherosclerosis experiments, male 6-8 week old Ldlr−/− mice were lethally irradiated (9.5 Gy) then injected i.v. with 1x10⁷ bone marrow cells from donor mice. After 4 weeks recovery, mice were fed a high fat diet (21% Fat, 0.15% Cholesterol) for 6 or 8 weeks. In order to assess the effects of selective deficiency of pIII+IV on pDCs but not B cells, lethally irradiated Ldlr−/− mice were reconstituted with a mixture of 80% bone marrow from either µMT:pIII+IV−/− or control µMT mice and 20% bone marrow from WT C57BL6 mice. In this case, all B cells derive from the WT cells whereas 80% of all other leukocytes derive from µMT or µMT:pIII+IV−/− cells. In some experiments, 100 µg of anti-CD4 depleting antibody (clone YTS 191.1) was injected every 10 days starting coincident with the start of HFD feeding.

Cell preparation from aorta

Cell suspension from aorta was prepared by enzyme digestion as previously described. Briefly, Ldlr−/− mice were placed under terminal anesthesia and perfused with 2 mmol/L EDTA (Sigma-Aldrich, Gillingham, UK) in PBS via cardiac puncture to remove blood contamination from vascular tissue. After removal of aortas, a single cell suspension was obtained by incubation of aortic segments in an enzymatic suspension containing 450 U/mL collagenase type I, 125 U/mL collagenase type XI, 60 U/mL hyaluronidase, and 60 U/mL DNase (all from Sigma-Aldrich) in PBS containing 20 mmol/L Hepes at 37°C for 1 hour. Digested aortas were then mechanically disrupted through a 40-µmol/L cell strainer to release a single cell suspension. All the Abs used were...
Sage et al, CIRCULATIONAHA-2014-011090-R2
for flow cytometry analysis of mouse aorta had been validated on cell suspensions from spleen/lymph nodes untreated or treated with the enzyme digestion cocktail.

Flow cytometry

Single cell suspensions of bone marrow, spleen, lymph node, blood and aorta were stained with fluorophore-conjugated antibodies (Supplemental Table 1) and analyzed using LSRII Fortessa (BD) or CyAN ADP (Beckman Coulter) flow cytometers. For intracellular staining, cells were activated with leukocyte activation cocktail (BD) for 4 h. Cells were fixed with IC fixation buffer (eBioscience) before intracellular staining. Cells were processed with Foxp3 buffer set (eBioscience) before staining with Foxp3. Data was analysed using FlowJo software (TreeStar, OR, USA). Dead cells were excluded based on FSc, SSc and positive staining for Live/Dead Aqua (Life Technologies). pDCs were defined as CD11c^{lo} PDCA1^{hi} B220⁺ CD11b⁻, cDC as CD11c^{hi} MHCII⁺, B cells as B220⁺ IgM⁺ or CD19⁺ lymphocytes, T cells as CD4⁺ or CD8⁺ lymphocytes, Treg as CD4⁺ CD25⁺ Foxp3⁺ GITR⁺, monocytes as CD11b⁺ Ly6G⁻ and Ly6C low, intermediate or high, neutrophils as CD11b⁺ Ly6G⁺ Ly6C⁺. Representative plots are shown in Supplemental Figure 1. In some experiments, Siglec-H (Miltenyi) was used as an additional pDC marker.

Analysis of in vivo antigen uptake/processing

To study the ability of aortic pDCs to present systemic antigen, we used the Ea-GFP/Y-Ae system as described previously. Briefly, Ldlr^{−/−} mice fed chow or HFD were i.v. injected either with 1 mg of Ea antigen or PBS, and were killed 4 hours later for FACS analysis. The APCs take up the Ea antigen, and the Ea peptide in the context of MHC (I-A^b) can be recognized by the Y-Ae mAb.

To determine the anatomical location of the antigen processing pDCs, Ldlr^{−/−} mice fed HFD for 28 days were injected i.v. with 2.5 mg of DQ ovalbumin (DQ-OVA; Molecular Probes). After 1 h the aortic sinus was harvested, embedded in Tissue-Tec OCT (Tissue Tek, Sakura Finetek Europe, Zoeterwoude, the Netherlands) and snap frozen for immunohistochemical analysis. For staining, sections were fixed in acetone for 10 mins, air dried, and rehydrated with PBS before incubation in serum-free Protein Block (DakoCytomation) for 30 mins. pDCs were detected by staining for Siglec-H (440c, HyCult Biotech, Uden, The Netherlands). The primary antibody was detected using a Texas Red conjugated donkey anti-rat IgG (Jackson ImmunoResearch). Images
Sage et al, CIRCULATIONAHA-2014-011090-R2
were taken by a Leica DFC340 FX video-camera (Leica Microsystems) connected to a fluorescence microscope
(Leica DMRB) using the LAS software (vers. 2.8.1, Leica). Dapi was used to identify nuclei.

For in vivo OT-II stimulation, C57BL6 mice (4/group) were injected with 5 x 10^6 CFSE (Life Technologies)–labeled OT-II T cells. After 24h mice were injected into the left footpad with 1 x 10^5 µMT or µMT:pIII+IV\(^+\) pDCs pre-incubated with ovalbumin (100 µg/ml) for 3h. OT-II T cell proliferation (CFSE dilution) was assessed after 3 days by flow cytometry in the popliteal lymph node, using spleen and the contralateral popliteal lymph node as internal controls.

In vitro dendritic cell culture
Bone marrow pDCs and spleen CD11c\(^+\) cells were isolated by negative and positive magnetic selection, respectively, according to the manufacturer’s instructions using an AutoMACS Pro separator (Miltenyi). For cytokine production, purified pDCs (2 x 10^4) were treated with type A or B CpG or control GpC oligonucleotides (10 µg/ml; Invivogen). IFN\(\alpha\) levels in supernatants were quantified by ELISA (eBioscience).

Antigen-specific T cell stimulation in vitro
OT-II CD4\(^+\) T cells were incubated with cDCs or pDCs preincubated with 100 µg/ml ovalbumin (Sigma) and proliferation quantified after 3 days by \(^3\)H thymidine incorporation over the final 18h. An I-A\(^b\) restricted murine T cell hybridoma (48-5T) recognising human ApoB100\(^10\) was added to pDCs or CD11c\(^+\) cells preincubated for 4h with native human LDL (50 µg/ml; Intracel) in 0.5% serum-DMEM and incubated overnight. Supernatants were analysed for IL-2 levels by ELISA (Peprotech).

Analysis of atherosclerotic lesions
Total plasma cholesterol was quantified using a Cholesterol RTU kit (Biomerieux).
Aortic root atherosclerotic lesions were analysed by Oil Red O and CD3 staining as previously described\(^11\). Images were captured and analysed using a Leica DM6000B microscope and accompanying software.

Statistics
Results were presented as mean ± S.E. They were analyzed in GraphPad Prism (La Jolla, CA, USA) using unpaired t-test, non-parametric Mann Whitney U test, one way analysis of variance or two-way analysis of variance, as appropriate. A P value (two-sided) of <0.05 was considered significant. For analysis of
atherosclerotic lesions in the aortic root, the entire 10-section profile was analyzed by repeated measures two-way analysis of variance and the p value for between groups displayed.
Supplemental methods references

Figure S1

Plots pre-gated on FSc vs SSC and Live/Dead staining

Supplemental Figure 1. Representative plots of gating strategies used. Plasmacytoid dendritic cells (pDCs): CD11c+ PDCA1+ CD11b- B220+. This population is also SiglecH+ (98.1±1.0 %) and CD8+ (88.7±1.7). Conventional dendritic cells (cDCs) were defined as CD11c+ MHCI+ and either B220+ or negative. B cells were defined as CD19+ MHCI+, CD4+ T cells as CD3+ CD4+ and regulatory T cells as CD4+ Foxp3+ CD25+ GITR+. Monocytes were defined as CD11b+ CD115+ and Ly6C high, intermediate or low. Neutrophils were CD11b+ Ly6G+ Ly6C+.
Supplemental Figure 2: Purity of bone marrow pDCs isolated by negative magnetic selection and expression of MHCII in µMT or µMT:plll+IV^+ pDCs.
Supplemental Figure 3. Plasmacytoid dendritic cell, lymphocyte and monocyte levels in Ldlr−/− mice transplanted with Tcf4-WT or Tcf4-cKO mice. *p<0.05 vs WT. Data representative of 2 separate experiments. A. Aortic pDCs. B. B cells. C. CD4+ T cells. D. Ly6C monocyte subsets and neutrophils in blood and bone marrow (BM). E. Spleen regulatory T cells.
Supplemental Figure 4. A. Anti-MHCII staining on pDCs from μMT or μMT;plIII+IV− mice compared to isotype control staining. B. IFNα levels in conditioned medium from bone marrow pDCs from μMT or μMT; plIII+IV− mice untreated or treated with CpG control (GpC) or CpG-A (10μg/ml) for 24h. Data representative of 2 separate experiments performed in triplicates.
Supplemental Figure 5. Immune cell levels and functions in Ldlr^{−/−} mice reconstituted with μMT or μMT:μIII+IV^{−/−} bone marrow. A. Ly6C monocyte subsets and neutrophils in blood and bone marrow (BM). Data representative of 3 separate experiments. B. MFI for MHCII in cDCs. Pooled data from 2 experiments. C. Spleen regulatory T cells. Representative of 3 separate experiments. D. Suppressive capacity of spleen CD4⁺ CD25⁺ regulatory T cells on CD4⁺ CD25⁺ effector T cell proliferation to anti-CD3 in the presence of WT spleen CD11c⁺ cells expressed as % of effector T cell proliferation alone. Representative of one experiment performed in triplicates with cells pooled from 5 animals/group. E. IFN-γ⁺ CD4⁺ T cells. Pooled data from 3 experiments. F. IL-17⁺ CD4⁺ T cells. Representative of 3 experiments.
Supplemental Figure 6. Lymphoid tissue and blood levels of pDCs (A), monocytes and neutrophils (B), B cells (C) and T cells (D) in Ldlr−/− mice reconstituted with μMT (80%)/WT (20%) or μMT:plll+IV^{−/−} (80%)/WT (20%) bone marrow. See methods for gating strategy. Data pooled from 2 experiments with at least 5 animals per experiment and per group.
<table>
<thead>
<tr>
<th>Target</th>
<th>Clone</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ly6C</td>
<td>7/4</td>
<td>AbD Serotec</td>
</tr>
<tr>
<td>CD45</td>
<td>30-F11</td>
<td>BD</td>
</tr>
<tr>
<td>Ly-6G</td>
<td>1A8</td>
<td>BD</td>
</tr>
<tr>
<td>CD11b</td>
<td>M1/70</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD25</td>
<td>PC61</td>
<td>Biolegend</td>
</tr>
<tr>
<td>PDCA1</td>
<td>927</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD44</td>
<td>1M7</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD62L</td>
<td>MEL-14</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD69</td>
<td>H1.2F3</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD8a</td>
<td>53-6.7</td>
<td>Biolegend</td>
</tr>
<tr>
<td>GITR</td>
<td>DTA-1</td>
<td>Biolegend</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>XMG1.2</td>
<td>Biolegend</td>
</tr>
<tr>
<td>IL-10</td>
<td>JES5-16E3</td>
<td>Biolegend</td>
</tr>
<tr>
<td>IL-17A</td>
<td>TC11-18H10.1</td>
<td>Biolegend</td>
</tr>
<tr>
<td>MHC II</td>
<td>M5/114.15.2</td>
<td>Biolegend</td>
</tr>
<tr>
<td>CD3</td>
<td>145-2C11</td>
<td>Biolegend</td>
</tr>
<tr>
<td>B220</td>
<td>RA3-6B2</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD11c</td>
<td>N418</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD4</td>
<td>RM4-5</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD40</td>
<td>1C10</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Foxp3</td>
<td>FJK-16a</td>
<td>eBioscience</td>
</tr>
<tr>
<td>IgM</td>
<td>II/41</td>
<td>eBioscience</td>
</tr>
<tr>
<td>Y-Ae</td>
<td>eBioY-Ae</td>
<td>eBioscience</td>
</tr>
<tr>
<td>CD86</td>
<td>PO3.3</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>SiglecH</td>
<td>551.3D3</td>
<td>Miltenyi</td>
</tr>
</tbody>
</table>
형질세포양 수지상세포의 MHC II를 통한 항원 제시는 동맥경화를 조장하는 T 세포 면역을 일으킨다

권준 교수 인하대병원 심장내과

Summary

배경
형질세포양 수지상세포(plasmacytoid dendritic cell, pDC)는 선천적 그리고 후천적 면역 반응의 교량 역할을 하며, 면역-염증 성 질환의 중요한 조절자 역할을 한다. 그러나 죽상동맥경화증에서 pDC의 역할은 규명되지 않은 상태이다.

방법 및 결과
유전학적 접근 방식을 이용해 죽상동맥경화증에서 pDC의 역할을 조사하였다. CD11c-Cre × Tcf4^{−/−}가 골수 이식된 Ldlr^{−/−} 죄를 이용함으로써 선택적인 pDC 결합이 있는 생체 내 조건을 만들었다. 대조군인 Ldlr^{−/−} chimeric 죄에 비해 CD11c-Cre × Tcf4^{−/−} 죄에서 죽상동맥경화증 자수가 늘었다. 죽상동맥경화 증이 어느 pDC에 의해 조절되는지 그 기전을 이해하고자, 본 연구에서는 선택적 MHC II 결합이 있는 pDC를 가진 chimeric Ldlr[−] 죄들을 대상으로 연구하였다. 그 결과, 대조군 죄에 비해 이 들 죄에서 pDC 수의 감소 없이 또는 일반 수지상세포의 변화 없이 유의하게 죽상동맥경화증이 감소한 소견을 보였다. MHC II 결합이 있는 pDC는 native LDL에 대한 반응으로 나타나는 apolipoprotein B100–specific CD4⁺ T 세포의 활성화에 결합을 가져다 준 것에 반해, interferon-α의 생성에는 아무런 영향을 주지 않았다.

결국, 선택적 MHC II 결합이 있는 pDC의 동맥 보호 효과는 동 맥경화를 조장하는 T 세포에서 파생된 interferon-γ와 lesional T 세포 침윤의 감소와 연관이 있는 것으로 나타났으며, CD4⁺ T 세포가 없는 동물에서는 나타나지 않았다.

결론
본 연구 결과는 pDC가 죽상동맥경화증 발생 기전에서 동맥경 화를 조장하는 역할을 하고 있음을 뒷받침해주며, 동맥경화를 조장하는 T 세포 면역을 유도하는 데 있어 pDC의 MHC II를 통 한 항원 제시가 중요한 역할을 하고 있음을 확인하였다.