Diabetes Medications and Heart Failure: Recognizing the Risk

Running title: Fonarow; Diabetes Medications and Heart Failure Risk

Gregg C. Fonarow, MD

Ahmanson-UCLA Cardiomyopathy Center, Ronald Reagan-UCLA Medical Center,
Los Angeles, CA

Address for Correspondence:
Gregg C. Fonarow, MD
Ahmanson-UCLA Cardiomyopathy Center
Ronald Reagan UCLA Medical Center
10833 LeConte Avenue, Room 47-123 CHS
Los Angeles, CA 90095-1679
Tel: 310-206-9112
Fax: 310-206-9111
E-mail: gfonarow@mednet.ucla.edu

Journal Subject Codes: Diabetes:[190] Type 2 diabetes, Heart failure:[110] Congestive

Key words: Editorial, diabetes mellitus, heart failure, hospitalization, outcome
The diabetes pandemic is currently among the most challenging non-communicable disease threats to public health. It is estimated that 382 million people worldwide have diabetes and the majority will likely die from cardiovascular disease. Diabetes is an independent risk factor for atherosclerotic cardiovascular disease as well as heart failure, with a 5-fold increased risk of heart failure in women with diabetes and a 2.4-fold increased risk in men.1-3 In patients with diabetes, the prevalence of heart failure is between 10 to 22%, 4 times higher than that of the general population.2 The degree of glycemic control in patients with diabetes has been demonstrated to be associated with the risk of atherosclerotic cardiovascular disease and new onset heart failure.1,4 It has been a widely held belief that lowering HbA1c levels with glucose-lowering medications in patients with diabetes would result in clinical benefits, including the reduction of atherosclerotic cardiovascular events. Lowering of the HbA1c levels by glucose-lowering medications in patients with diabetes mellitus has been used as a surrogate measure of their benefit including the potential to reduce cardiovascular risk by clinicians, guideline writing groups, and regulators.5

There is however little evidence from randomized clinical trials of substantial cardiovascular risk reduction with improved glycemic control in type 2 diabetes. Trials of individual glucose lowering medications as well as trials comparing more intensive versus standard glucose-lowering strategies, including the Action to Control Cardiovascular Risk in Diabetes (ACCORD), Veterans Administration Diabetes Trial (VADT), and Action in Diabetes and Vascular Disease (ADVANCE) trials, have despite their large sample sizes and follow-up for up to 5 years, demonstrated no or very modest, reductions in cardiovascular events.5-9 After publication of a meta-analysis suggested that one of the thiazolidinedione medications may have increased the risk of myocardial infarction and the resulting controversy, regulatory agencies
revised the process for approval of new medications to treat diabetes and require demonstration that cardiovascular risk is not above certain specified levels.5,10 The Food and Drug Administration (FDA) now requires that clinical trials done before the approval of a diabetes drug show a two-sided 95\% confidence interval upper boundary of 1.8 risk ratio for major adverse cardiovascular events, versus the placebo/usual care control group, with subsequent outcomes trials having an upper boundary of 1.3 for major adverse cardiovascular events.10 The focus of the FDA and other regulators has been on major adverse cardiovascular events (the composite of cardiovascular death, myocardial infarction, or stroke).10,11 Heart failure events were not included as part of the requirements to demonstrate cardiovascular safety and as a result none of the large scale randomized clinical trials evaluating the cardiovascular safety of new diabetes medications have included heart failure in the primary cardiovascular endpoints and many have not included heart failure events as secondary endpoints.11 However, patients with diabetes, inducing those enrolled in these cardiovascular safety trials, face a substantial risk of heart failure. As noted by McMurray and colleagues the rates of heart failure events have actually exceeded that of acute myocardial infarction in many of the diabetes medication trials.11 Further when patients in trials developed heart failure hospitalizations their subsequent risk of mortality greatly exceeded that of patients hospitalized with myocardial infarction.11

It had also been hypothesized that an improvement in glycemic control would be beneficial to reduce the initiation and progression of myocardial dysfunction, reducing the risk of heart failure events. Metabolic control has shown to enhance myocardial contractility parameters, possibly as a result of more efficient myocardial energy substrate use and improved microvascular perfusion.12 However, results from recent trials have challenged this assumption. In ACCORD, VADT, and ADAVANCE stricter glycemic control was not associated with a
reduced heart failure risk. In the Diabetes Mellitus and Diastolic Dysfunction (DADD) study neither insulin nor oral agents were associated with an improvement in diastolic function despite a reduction in HbA1c. Trials with thiazolidinediones have shown substantially increased heart failure event rates. The use of rosiglitazone and pioglitazone has been associated with more than a 2-fold increased risk of heart failure, including heart failure hospitalizations due to fluid retention and peripheral edema, even in patients without pre-existing left ventricular systolic dysfunction and the risk increased further in patients with a history of heart failure.

Recently, the cardiovascular efficacy and safety of the dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin was evaluated in 16,492 patients with diabetes and cardiovascular risk factors in the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus (SAVOR)–Thrombolysis in Myocardial Infarction (TIMI) 53 trial. The primary or secondary cardiovascular endpoints were similar between saxagliptin and placebo control during a median of 2.1 years follow-up. However, in this trial heart failure hospitalizations were prospectively collected and there was a 27% relative risk increase (hazard ratio 1.27, 95% confidence intervals 1.07-1.51, P<0.007; 0.7% absolute risk) for hospitalization for heart failure. In this issue of Circulation, Scirica and colleagues further analyze the heart failure risk in this trial in detail. The risk of heart failure hospitalization with saxagliptin was found to be most prominent in the first 12 months of treatment. It was also shown that patients at the greatest risk for hospitalization for heart failure had prior heart failure, elevated baseline levels of NT-proBNP, or chronic kidney disease. Patients with or without these risk factors experienced a similar relative risk increase for heart failure hospitalizations with saxagliptin compared to placebo, but the highest absolute risk were observed in those with a greater number of heart failure risk factors. Interestingly treatment with saxagliptin was not associated with increased
risk of peripheral edema, adverse event reports for edema, or differences in one year body weight compared to placebo. While baseline NT-proBNP levels were associated with increased risk of heart failure hospitalization, NT-proBNP levels increased only modestly in both the placebo and saxagliptin treated patients, with a slightly greater increase in placebo treated patients.

The findings from SAVOR-TIMI 53 appear consistent with other trials of DPP-4 inhibitors. The EXamination of Cardiovascular OutcoMes: Alogliptin vs. Standard of Care in Patients with Type 2 Diabetes Mellitus and Acute Coronary Syndrome (EXAMINE) trial has also preliminarily reported heart failure as part of an exploratory composite outcome with a greater number of hospitalizations for heart failure in the alogliptin group compared with the placebo group (alogliptin 3.9% vs. placebo 3.3%, hazard ratio 1.19, 95% confidence intervals 0.90-1.58), although this difference was not statistically significant. A recent meta-analysis of 84 studies showed that the risk of heart failure was higher in patients treated with DPP-4 inhibitors in comparison with those treated with placebo/active comparators (odds ratio 1.19, 95% confidence intervals 1.03-1.37, p<0.05). There was no evidence of heterogeneity among medications of this class. Ongoing trials including the Sitagliptin Cardiovascular Outcome Study (TECOS, ClinicalTrials.gov Identifier: NCT00790205), which also includes a prespecified endpoint of heart failure hospitalizations, will add knowledge to these previous findings. Studies are also ongoing investigating glucagon-like-peptide (GLP)-lagonists as a treatement for established heart failure (Functional Impact of GLP-1 for Heart Failure Treatment, FIGHT, ClinicalTrials.gov Identifier: NCT01800968).

The possible mechanism(s) for increased heart failure with DPP-4 inhibitors are not entirely clear. Pre-clinical studies have not shown cardiotoxicity or impairment of systolic or diastolic function with DPP-4 inhibitors. DPP-4 has many substrates and its inhibition might
impact many pathways including those involving cardiac signaling peptides, cardiac collagen turnover enzymes, and the sodium/hydrogen exchanger in the renal proximal tubule. Prior smaller studies with saxagliptin did not suggest an increased risk of weight gain, fluid retention, or new onset heart failure, nor were there signs of excessive volume overload in SAVOR-TIMI 53. Some studies have suggested BNP is a substrate for DPP-4 inhibitors. In SAVOR-TIMI 53, saxagliptin did not increase levels of NT-proBNP. The myocardial effects and energetic consequences of reduced blood and tissue glucose and insulin levels after a prolonged period in which the myocardium had been exposed to elevated glucose and insulin levels might explain the increased risk of heart failure with multiple classes of diabetes medications despite different mechanisms of action. Changes glucose and insulin levels may unfavorably alter the balance of free fatty acid oxidation and glycolysis. Findings from SAVOR-TIMI 53 do not suggest that there was direct myocardial necrosis or inflammation triggered by the medication as there were not significant differences in levels of high sensitivity-troponin T or high sensitivity-C reactive protein with saxagliptin compared to placebo. Some studies have also suggested worsened endothelial function as assessed by flow-mediated dilation with DPP-4 inhibitors. In a 12 month study of the DPP-4 inhibitor vildagliptin in patients with heart failure, New York Heart Association functional class I-III, and reduced left ventricular ejection fraction, the DPP-4 inhibitor increased left ventricular end diastolic volumes, without a change in left ventricular ejection fraction. However, it was preliminarily reported that there were numerically more deaths in the vildagliptin arm (n=11) compared to the placebo arm (n=4), raising additional concerns about safety with DPP-4 inhibitors in patients with established heart failure. Nevertheless further studies are necessary to explore the mechanism(s) which may explain the increased risk of hospitalization for heart failure, as uncovered in SAVOR-TIMI 53 and other studies.
As noted by the authors, the decision to choose one antihyperglycemic agent versus another must balance the potential benefit in reducing microvascular complications via improved glycemic control together with potential adverse events such as hypoglycemia and heart failure. While the potential benefits of these diabetes medications may become manifest with longer-term follow-up, the risk of heart failure appears to emerge very early. At the population level this increased risk of heart failure may be of significant concern; if a quarter of the 25.8 million individuals with diabetes in the United States were of similar risk profile to those of SAVOR-TIMI 53 and treated with saxagliptin, potentially 45,150 excess heart failure hospitalizations over the next 2 years could result. There exists a compelling need for well-powered randomized clinical trials of diabetes medications with sufficient length of follow-up and that more fully integrate all relevant events, including heart failure, into the primary cardiovascular composite endpoint to more effectively address the crucial questions of net clinical outcomes and the comparative balance of benefit and risk.

Conflict of Interest Disclosures: Gregg C. Fonarow reports the following disclosures:
Research: AHRQ (significant), NIH (significant); Consulting: Amgen (modest), Bayer (modest), Gambro (modest), Janssen (modest), Novartis (significant), Medtronic (modest).

References:

Diabetes Medications and Heart Failure: Recognizing the Risk
Gregg C. Fonarow

Circulation. published online September 4, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2014/09/04/CIRCULATIONAHA.114.012883

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/