Aspirin for the Prevention of Recurrent Venous Thromboembolism:

The INSPIRE Collaboration

Running title: Simes et al.; INSPIRE: aspirin for recurrent VTE

John Simes, MD1; Cecilia Becattini, MD2; Giancarlo Agnelli, MD2;
John W. Eikelboom, MB BS3; Adrienne C. Kirby, MSc1; Rebecca Mister, MSc1;
Paolo Prandoni, MD4; Timothy A. Brighton, MB BS5 for the INSPIRE Study Investigators*

(International Collaboration of Aspirin Trials for Recurrent Venous Thromboembolism)

1National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia; 2Division of Internal and Cardiovascular Medicine and Stroke Unit, Dept of Internal Medicine, University of Perugia, Perugia, Italy; 3Population Health Research Institute, McMaster University, Hamilton, ON, Canada; 4Dept of Cardiothoracic and Vascular Sciences, University of Padua, Padua, Italy; 5Dept of Haematology, South Eastern Area Laboratory Services (SEALS), Prince of Wales Hospital, Sydney, Australia

*A full list of investigators is contained in the Appendix

Address for Correspondence:
John Simes, MD
National Health and Medical Research Council (NHMRC) Clinical Trials Centre
Medical Foundation Building
University of Sydney
NSW 2006, Australia
Tel: +61 2 9562 5002
Fax: +61 2 9565 1863
E-mail: john@ctc.usyd.edu.au

Journal Subject Codes: Thrombosis:[92] Platelets, Thrombosis:[173] Deep vein thrombosis
Abstract

Background—In patients with a first unprovoked venous thromboembolism (VTE) the risk of recurrent VTE remains high after anticoagulant treatment is discontinued. The WARFASA and ASPIRE trials showed that aspirin reduces this risk, but they were not individually powered to detect treatment effects for particular outcomes or subgroups.

Methods and Results—An individual-patient-data analysis of these trials was planned, before their results were known, to assess the effect of aspirin versus placebo on recurrent VTE, major vascular events (recurrent VTE, MI, stroke and CVD death) and bleeding, overall and within predefined subgroups. The primary analysis, for VTE, was by intention to treat using time-to-event data. Of 1224 patients, 193 had recurrent VTE over 30.4 months’ median follow-up. Aspirin reduced recurrent VTE (7.5%/year vs 5.1%/year; hazard ratio (HR), 0.68; 95% CI, 0.51–0.90; \(P=0.008\)), including both deep-vein thrombosis (HR, 0.66; 95% CI, 0.47–0.92; \(P=0.01\)) and pulmonary embolism (HR, 0.66; 95% CI, 0.41–1.06; \(P=0.08\)). Aspirin reduced major vascular events (8.7%/year vs 5.7%/year; HR, 0.66; 95% CI, 0.50–0.86; \(P=0.002\)). The major bleeding rate was low (0.4%/year for placebo and 0.5%/year for aspirin). After adjustment for treatment adherence, recurrent VTE was reduced by 42% (HR, 0.58; 95% CI, 0.40–0.85; \(P=0.005\)). Prespecified subgroup analyses indicate similar relative, but larger absolute, risk reductions in men and older patients.

Conclusions Aspirin after anticoagulant treatment reduces the overall risk of recurrence by more than a third in a broad cross-section of patients with a first unprovoked VTE, without significantly increasing the risk of bleeding.

Clinical Trial Registration Information—National Health and Medical Research Council (Australia) (ACTRN12611000684921 at www.anzctr.org.au).

Key words: venous thrombosis, aspirin, anticoagulation, embolism, prevention
Introduction

Patients with unprovoked venous thromboembolism (VTE) remain at high risk of recurrence following discontinuation of vitamin K antagonist therapy, with about a 10% risk within the first year and 5% per year thereafter.1–6 Extending treatment with vitamin K antagonists reduces the risk of recurrence while treatment continues,1–7 but is associated with an increased risk of bleeding and the inconvenience of laboratory monitoring and dose adjustment.8

Several studies have evaluated the efficacy of new oral anticoagulants for the prevention of recurrent VTE as part of initial or extended treatment.9–14 They have been shown to be effective alternatives to warfarin, but still carry a risk of bleeding and are expensive. Aspirin treatment, as a low cost and relatively safe means of preventing further events in this clinical setting, has been recently evaluated in the WARFASA and ASPIRE trials.15,16 The trials showed that aspirin reduces the risk of recurrent VTE but they were not individually powered to detect moderate treatment effects for particular outcomes or subgroups.

A combined patient-level analysis of WARFASA and ASPIRE was planned and a protocol for this project was developed before unblinding of the results of either trial (ACTRN12611000684921). The purpose of the INSPIRE analysis was to more accurately estimate the effects of aspirin treatment: overall, on individual outcomes and in prespecified subgroups of patients.

Methods

Study protocols

The ASPIRE and WARFASA studies were independent, investigator-initiated, randomized, double-blind, placebo-controlled clinical trials designed to examine the efficacy and safety of low-dose aspirin in the extended treatment of VTE. Eligible patients were those with a first
episode of unprovoked VTE, defined as proximal deep-vein thrombosis (DVT) or pulmonary embolism (PE), who had completed initial treatment with heparin and warfarin or an equivalent anticoagulant regimen. Venous thromboembolism was considered as unprovoked when it occurred in the absence of any known specific permanent or temporary clinical risk factor. The main inclusion and exclusion criteria for the two studies are reported in Supplementary Table 1.

Patients in each trial received 100 mg enteric-coated aspirin or matching placebo (Bayer HealthCare, Germany) once daily and were followed up for recurrent VTE, arterial ischemic events (myocardial infarction and stroke), bleeding, and death. Both study protocols allowed for interruption of study medication (for example, for major surgery) and for anticoagulant thromboprophylaxis for situations of risk while on the study. Patients were followed up for at least 2 years in the WARFASA trial and up to 4 years in ASPIRE.

Design and rationale
Early in the recruitment phases of both studies, the management committees agreed to combine the data from the two trials in a prospective combined patient-level analysis. Both trials had been planned with harmonization of their study designs, including similar eligibility criteria, study interventions and definitions of outcomes.15,16 While it was recognized that the ASPIRE and WARFASA trials would provide important information, neither was powered for reliable estimates of moderate treatment effects on particular outcomes or within particular subgroups. With a planned 2000 patients, INSPIRE would have 80% power to detect a 30% reduction in VTE. Owing to slow recruitment, the final sample size of the combined trials was 1225, giving 80% power to detect a 35% reduction.

Outcome measures
The primary outcome for the INSPIRE study was recurrent VTE, defined as the occurrence of
newly diagnosed symptomatic VTE or fatal PE. Secondary outcomes were: 1. major vascular events: the composite of recurrent VTE, myocardial infarction, stroke, or cardiovascular death; and 2. recurrent VTE, myocardial infarction, stroke, all-cause mortality and major bleeding, a measure of the net clinical benefit. In addition the component outcomes were also reported separately in pooled analyses: PE, DVT, myocardial infarction, stroke and cardiovascular death. Safety outcomes included major bleeding and clinically relevant nonmajor bleeding. Definitions of these outcomes have been reported. All suspected study outcome events were adjudicated by the independent outcome assessment committees for the trials.

Statistical analysis

The primary efficacy analysis compared the treatment groups on the first occurrence of VTE from randomization to a maximum of 4 years using a modified intention-to-treat principle, which included all randomized patients who had received at least one dose of the study drug, and was stratified by trial. Tests for heterogeneity of treatment effect between trials on each outcome were done before the combined analyses. Hazard ratios (HRs), 95% confidence intervals and \(P\) values were estimated in an unadjusted Cox regression analysis, which was repeated for the secondary endpoints. Secondary analyses with adjustment for baseline risk factors were also prespecified. Survival curves were estimated by using the Kaplan-Meier procedure.

Subgroup analyses compared the effects of treatment across subgroups on the prespecified outcome of major vascular events (the composite of recurrent VTE, myocardial infarction, stroke, or cardiovascular death). The prespecified subgroups were the qualifying VTE event (DVT, PE, or both), sex, age groups (<50 years, 50-65, ≥65), anticoagulation duration (<6, 6-9, >9 months), body mass index (BMI) (<25, 25-30, ≥30 kg/m\(^2\)). The primary subgroup analysis examined whether the relative treatment effects of aspirin differed across subgroup
categories, by using tests for treatment-subgroup interactions. The effect of treatment on reducing VTE was also examined in these subgroups within clinically relevant categories.

Nonadherence with study medication during extended follow-up was anticipated by planned additional analyses which were specified before the trial results were unblinded. The efficacy of aspirin in a hypothetical fully adherent group was estimated by adjusting the treatment effect in the intention-to-treat analysis by the nonadherence rates averaged over the study period; the nonadherence rate was defined as the proportion of patients assigned to aspirin who discontinued it plus the proportion of patients assigned to placebo who initiated antiplatelet or anticoagulation treatment. A more sensitive estimate of adherence-adjusted treatment effect considered the relative reduction in VTE due to aspirin treatment within each year of follow-up from randomization and within each trial. An adherence-adjusted estimate was then derived from a weighted combination of these estimates, using the average adherence rates within each year and study as weights (see Supplemental Methods for additional details). An on-treatment analysis restricted to information from patients while they were still on study treatment was also performed. All analyses used SAS, version 9.3 (SAS Institute).

Oversight of the study
The INSPIRE study was overseen by the International Steering Committee which had final responsibility for verification and analyses of the data (see Appendix). The protocols of each trial and the plan to undertake a prospective combined analysis were approved by the relevant independent ethics committees. Written informed consent was obtained from all patients before randomization. The National Health and Medical Research Council (NHMRC (Australia)) Clinical Trials Centre (CTC) coordinated the analysis and checked the combined data set. Statistical analyses were undertaken at both the CTC and the Italian coordinating centre.
All authors contributed to the interpretation of the results and approved the final version of the paper. The INSPIRE combined analysis was supported by a grant-in-aid from the NHMRC. Aspirin and placebo tablets for both trials were supplied by Bayer HealthCare. The NHMRC and Bayer HealthCare played no role in study design, data collection, or analysis of the individual trials or the INSPIRE project.

Results

Patients

Data from 1224 patients were included in the combined analyses: 402 from WARFASA and 822 from ASPIRE (Figure 1) (One patient did not receive any treatment and was excluded.) Baseline characteristics were well balanced between the two treatment groups pooled over the two studies (Table 1). Patients in the WARFASA study were older, more likely to be male and be smokers, but less likely to be obese (Table 1). Patients were followed up for a median 30.4 months. Within 4 years of randomization, 193 patients had at least one VTE event. Patients in the intention-to-treat analyses included 12 subsequently found to not meet eligibility criteria, 31 who withdrew consent for further follow-up, and 13 lost to follow-up. The median period that patients were on the study medication was 24.2 months.

Recurrent venous thromboembolism

During the follow-up period, VTE occurred in 112 of 608 patients (18.4%) assigned to placebo and 81 of 616 (13.1%) assigned to aspirin (a rate of 7.5% per year vs. 5.1% per year (Figure 2 and Table 2). This was a 32% relative reduction in VTE (HR, 0.68; 95% CI, 0.51 to 0.90; P=0.008). This corresponds to needing to treat 42 patients each year to prevent one VTE event. After adjustment for baseline characteristics, the HR was similar (0.65; 95% CI, 0.49 to 0.86;
There were four fatal recurrences of VTE (2 in each group). Aspirin reduced the rate of recurrent DVT without symptomatic PE by 34% (HR, 0.66; 95% CI, 0.47 to 0.92; \(P=0.01 \)) and PE with or without symptomatic DVT by 34% (HR, 0.66, 95% CI, 0.41 to 1.06, \(P=0.08 \)).

Secondary outcomes and bleeding events

Aspirin reduced the risk of major vascular events (symptomatic VTE, myocardial infarction, stroke, and cardiovascular death) by 34% (8.7% per year vs 5.7% per year), corresponding to 34 needed to treat per year to prevent an event. Clinically relevant bleeding occurred in 12 patients assigned placebo (7 of whom had a major bleed) and in 18 patients assigned aspirin (9 of whom had a major bleed). The rate of bleeding was low and did not differ significantly between the groups (0.7% per year for placebo and 1.1% per year for aspirin). The net clinical benefit (symptomatic VTE, myocardial infarction, stroke, all-cause mortality and major bleeding) was improved with aspirin by 33% (9.8% per year vs 6.5% per year; number needed to treat (NNT), 31) (Figure 2 and Table 2).

Prespecified subgroups

Similar relative reductions in events were observed with aspirin in each of the prespecified subgroups, either in terms of the effect on VTE (Figure 4) or on major vascular events, the prespecified outcome for subgroups (Figure 5), with no significant interactions (each \(p>0.1 \)). Larger absolute reductions in VTE occurred in those subgroups at higher risk of recurrent VTE: in men vs women (absolute risk reduction 3.3% per year vs 1.7% per year; NNT, 31 vs 59) and in older patients (\(\geq 65 \) vs <65 years, absolute risk reduction 5.5% per year vs 1.3% per year; NNT, 19 vs 78).

Treatment effects over time
The effects of aspirin in each year of follow-up after randomization are shown in Figure 6. The relative reduction in VTE events did not differ significantly over each year of follow-up (test for interaction by year, \(P=0.31 \)). However, the absolute reduction in recurrent events was significantly greater in the first year when the risk of recurrence among untreated patients was higher. In the first year aspirin reduced VTE events by 5.6\%, from 11.0\% to 5.4\% (HR, 0.49; 95\% CI, 0.32 to 0.76; \(P=0.001 \)).

Analyses adjusted for treatment adherence

During the follow-up period, 164 patients assigned to placebo and 154 patients assigned to aspirin discontinued the study drug, with rates of 13.4\% per year and 11.4\% per year, respectively (Figure 7). A total of 76 patients assigned to placebo and 68 assigned to aspirin initiated open-label antiplatelet therapy or anticoagulation therapy before a defined vascular event occurred. In 65 patients (32 placebo group, 33 aspirin group) an antiplatelet drug was used and in 79 patients (44 placebo group, 35 aspirin group) an anticoagulant drug was used with or without an antiplatelet drug. The combined rate of nonadherence with study medication in the placebo and aspirin groups, averaged over the study period, was 19.4\%: 13.2\% in the aspirin group discontinued aspirin and 6.2\% in the placebo group initiated antiplatelet or anticoagulation treatment.

When the analysis was adjusted for nonadherence with medication (with the analysis weighted within each year and study), the relative reduction in the risk of VTE with aspirin was 42\% (HR 0.58; 95\% CI 0.40 to 0.85; \(P=0.005 \)) (Supplementary Table 2). This would correspond to 32 patients treated each year to prevent one VTE event. The result was similar when the adherence-adjusted analysis was based simply on modifying the intention-to-treat estimate by the pooled nonadherence rate: a 40\% reduction (HR, 0.60; 95\% CI, 0.39 to 0.88;
$P=0.008$). An analysis based on the actual treatment received showed similar relative effects (HR, 0.63; 95% CI, 0.46 to 0.86, $P=0.004$).

Discussion

The prospectively planned combined analysis of the ASPIRE and WARFASA trials using individual patient data provides strong evidence that, in patients with a prior unprovoked VTE, aspirin after initial anticoagulation is ceased is effective in reducing the rate of recurrence of VTE. It builds on the previously reported trial results15,16 and simpler meta-analysis,16 providing robust findings across important subgroups and outcomes. Aspirin reduces recurrent events by more than one-third, with similar reductions in symptomatic DVT and PE and similar effects on major vascular events (the composite secondary outcome). When thrombosis and bleeding events are considered together, there is clear evidence of a net clinical benefit favouring aspirin over placebo.

The design of this prospective combined analysis has the strengths of a larger individual randomized trial.18 Many aspects of ASPIRE and WARFASA were identical, including the randomized double-blind placebo-controlled design, the study interventions, and the outcome definitions. Study management committees jointly convened and further harmonized each study protocol with respect to eligibility criteria, efficacy and safety outcomes, and analysis plans. As this combined patient-level analysis was defined before any unblinding of study outcomes of either individual trial, it has the same scientific rigor as a single larger randomized study.

The INSPIRE study provides greater power than either trial to more reliably estimate treatment effects among predefined subgroups and to examine the treatment effects over time. These analyses demonstrate that the relative treatment effects are similar across these subgroups
and that the relative effect overall is still an appropriate estimate to consider for each subgroup. However, larger absolute effects of treatment are seen when there is a higher risk of recurrence, particularly for men compared with women and for older compared with younger patients. For treatment effects over time, there was not clear evidence of lesser effects over time. However, with more events occurring in the first year, there are larger absolute benefits of aspirin, and within first 12 months after anticoagulation is ceased when the risk of VTE recurrence is still at its highest. This information may be important for patients at high risk of recurrence for whom ongoing anticoagulation is not an option and for whom aspirin provides greater absolute benefit. Even among patients at lower risk, aspirin therapy still remains a useful treatment with a favorable risk-benefit profile.

A particular issue raised by intention-to-treat analyses of long-term trials is the problem of falling adherence to protocol therapy over time leading to an underestimation of the true effect of the study treatment. This can be especially problematic for a treatment such as aspirin, which is readily available as a nonprescription medicine. Estimating effects of fully adherent aspirin use, using an on-treatment analysis, is prone to selection bias. An alternative approach is to use a randomization-based efficacy estimate which inflates the size of the treatment effect by dividing the overall efficacy estimate by the average adherence rate. A refinement to this approach, with greater power, is to use a weighted combination of treatment effects within each year of follow-up with greater weight given to the earlier years when there is greater adherence to treatment. These approaches gave similar qualitative conclusions and suggest that in a fully adherent population aspirin will prevent about 40% of recurrent events.

It is clear that the treatment effect of aspirin is still much less than can be achieved with warfarin or the new oral agents with direct thrombin inhibitors or factor Xa inhibitors.
where more than an 80% reduction in events might be expected. Consequently, aspirin represents a reasonable treatment option only in patients who would otherwise not be receiving oral anticoagulation.

While the current combined analyses have strengths, there are also limitations to the study and its conclusions. Because patients with cancer represented only a small proportion of patients in ASPIRE and were excluded from WARFASA and because patients with known coronary heart disease were not included in either study, our results do not apply to all patients with VTE. Further, the combined analyses provide clearcut evidence of treatment benefit but have limited power to assess the longer-term effects of aspirin on VTE.

Globally, many patients with unprovoked VTE are not routinely treated with longer-term anticoagulant therapy. We conservatively estimate that over a million patients worldwide experience unprovoked VTE each year and an even greater number have a prior history of unprovoked VTE.19,20 Less than half of these patients remain on long-term anticoagulant therapy.21–23 If a million patients worldwide could be treated with aspirin each year, a hundred thousand events might be prevented with a minimal increase in bleeding (about 1 extra major bleed for every 25 VTEs prevented) and with a treatment that would also be cost saving (the costs of treating subsequent VTEs avoided would outweigh the cost of aspirin). Additional potential benefits of aspirin in treated patients would include a reduction in arterial vascular events and cancer-related events, each known to be associated with VTE.24–27

In conclusion, this prospective combined analysis of the WARFASA and ASPIRE trials provides clear evidence that aspirin reduces the risk of recurrent VTE events by about 40% and is a very safe and effective therapy. Although it does not reduce the rate of VTE by as much as vitamin K antagonists or newer oral anticoagulants (direct thrombin inhibitors or factor Xa...
inhibitors), among patients for whom such therapies are not considered appropriate or are discontinued, aspirin should be strongly considered.

Funding Sources: The ASPIRE study was funded by grants from the National Health and Medical Research Council (Project grants 301911 (2003) and 570967 (2008)), New Zealand Health Research Council (HRC) (05/080R (2005)), New South Wales Health, and Australian Society of Thrombosis and Haemostasis. The WARFASA study was funded by the University of Perugia and a grant-in-aid from Bayer HealthCare. The study drug (aspirin and placebo) for both studies was provided by Bayer HealthCare.

Appendix

INSPIRE International Steering Committee
John Eikelboom, Tim Brighton (co-principal investigators ASPIRE), Giancarlo Agnelli, Cecilia Becattini (co-principal investigators WARFASA), Wendy Hague, Rebecca Mister, Adrienne Kirby (ASPIRE coordinating centre, NHMRC CTC), Paolo Prandoni (WARFASA Trial Management Committee), Paul Ockerford (PI, New Zealand), Alex Gallus (ASPIRE Trial Management Committee), Denis Xavier (PI, India), Rafael Diaz (PI, Argentina), John Simes (study chair).

NHMRC Clinical Trials Centre (coordinating centre for INSPIRE) Adrienne Kirby and Kristy Mann (biostatisticians), Rebecca Mister, Wendy Hague, Rhana Pike, John Simes

ASPIRE Trial Management Committee
Tim Brighton, John Eikelboom, John Simes, Wendy Hague, Rebecca Mister, Adrienne Kirby, Alex Gallus, Paul Ockelford, Ross Baker, Harry Gibbs, Paul Coughlin, Denis Xavier, Rafael Diaz

WARFASA Trial Management Committee
Giancarlo Agnelli, Cecilia Becattini, Paolo Prandoni

WARFASA Writing Committee
Cecilia Becattini, Giancarlo Agnelli, Paolo Prandoni, Walter Ageno, Claudio Cimminiello, Sabine Eichinger.
ASPIRE Safety and Data Monitoring Committee
Graham Young, Anthony Rogers, Chris Hayward

ASPIRE Outcomes Assessment Committee
Harry Gibbs (Chair), Andre van Rij, Tom Karplus, John Fletcher

WARFASA Central Independent Adjudication Committee for recurrence of venous thromboembolism and bleeding
M Duranti (chairman), S Radicchia, F Guercini

ASPIRE sites (at least 1 patient randomized, principal investigator and primary trial coordinator listed)

Australian sites: Canberra Hospital, Philip Crispin, James Slade (20); Royal North Shore Hospital, Chris Ward, Negar Tadayon (21); Westmead Hospital, Jerry Koutts, Lisa Fisher (2); Prince of Wales Hospital, Tim Brighton, Karen McCardie, (42); Concord Hospital, Alessandra Bianchi, Jimmy Trinh (12); St Vincent’s Hospital Sydney, Joanne Joseph, Patricia Plenge (6); St George Hospital, Beng Chong, Sarah Davidson (28); Coffs Harbour Health Campus, John Waites, Pauline Cahill (1); Gosford Hospital, Campbell Tiley, Mark Lacey (54); Lismore Base Hospital, David Jackson, Janice Boys (13); Calvary Mater Hospital, Michael Seldon, Michelle Gambrill (18); St Vincent’s Hospital Melbourne, Harshal Nandurkar, Helen Worland (2); Alfred Hospital, Hatem Salem, Claire Gollogly (2); Geelong Hospital, Philip Campbell, Isobel Marshall (10); Ballarat Health Services, Kate Hamilton, Carmel Goss (1); Box Hill Hospital, Hatem Salem, Lesley Poulton (34); Frankston Hospital, Martin Jackson, Theresa de Man (2); Monash Medical Centre, Eng Gan, Anita Cummins (29); Maroondah Hospital, Michael Leyden, Caroline Sturtz (6); Royal Brisbane and Women’s Hospital, Paul Kubler, Xanthe Sansome (12), Princess Alexandra Hospital, Andrew McCann, Chris Downey (31); Redcliffe Hospital, Patrick Carroll, Maree Duroux (15); Nambour General Hospital, Steven Hamwood, Greg Styles (8); Gold Coast Hospital, Nick Buckmaster, Tammy Schmidt (2); Flinders Medical Centre, Alexander Gallus, Jenny Osmond (23); Lyell McEwin Health Service, William Jeffries, Brenda Trezona (4); Queen Elizabeth Hospital, Simon McRae, Donna King (16); Royal Perth Hospital, Ross Baker, Karen Courtley (26); Royal Hobart Hospital, Robert Kimber, Lesley Oliver (10), Launceston General Hospital, Alasdair MacDonald, Jenny Shepherd (3)

New Zealand sites: Auckland Hospital, Paul Ockelford (NZ PI), Maree Hulton (69); Middlemore Hospital, Gordon Royle, Lyn Haycock (38); North Shore Hospital, David Simpson,
Karen Yap (66); Palmerston North Hospital, Bartrum Baker, Helen McQuilkin (39); Wellington Hospital, John Carter, Julie Body (8)

Singapore sites: Singapore General Hospital, Lee Lai Heng, Melissa Tan (6); Tan Tock Seng Hospital, Jam Chin Tay, Jaxing Zou (9)

Indian National Coordinating Office: St John’s Medical College and Research Institute: Denis Xavier, Prem Pais (PIs), Alben Sigamani, Nandini Mathur

Indian sites: St John’s Medical College and Hospital, Hemant Kumar, Mridul Nair (20); MS Ramaiah Memorial Hospital, Sanjay Desai, Reetu Singh (21); Jain Institute of Vascular Sciences, Kalkunte R Suresh, Murali Krishna N (4); Apollo Hospitals, Shekar Natarajan, K Sathyanarayanan (14); Fortis Escorts Hospitals, Rajeev Gupta, Bhawani Mishra (3); Sidhu Hospitals, Gursaran Kaur Sidhu, Ravinder Singh Chawdhary (12); Medanta Hospital, Rajiv Parakh, Kapil Gupta (14); Mahavir Hospital, Sindhu Joshi, Madhuri Mahajan (1); Sahyadri Hospital, Adavit Kothurkar, (6)

Argentinean National Coordinating Office: ECLA (Rafael Diaz (PI), Carolina Chacon, Rosana Rucci)

Argentinean sites: IIC Rosario, José Luis Fedele, Andrea Carolina Cristófaro (1); CEDIC (Centro de Investigaciones Clínicas), Elizabeth Gelersztein, Miriam Gelersztein (4); Instituto de Investigaciones Clínicas Cipolletti–Policlínico Modelo de Cipolletti, Alejandro Senén Sánchez, Laura Celeste Bowen (1), IIC San Nicolás, Rubén Omar García Durán, Fernanda Cámpora (1); Consultorios Hematológicos SRL, Hugo Héctor Ferro, Marcela Verónica Casais (2)

WARFASA sites (at least one patient randomized)

Perugia, Italy - Department of Internal Medicine, University of Perugia: MC Vedovati, MD (29); Padua, Italy - Department of Cardiothoracic and Vascular Sciences, University of Padua: D. Tormene, MD, M. Perlati, MD, S. Barbar, MD (32); Genua, Italy - Galliera Hospital, R. Poggio, MD (25); Wien, Austria - Medical University of Wien: L. Leischer, MD (25); Faenza, Italy – Faenza Hospital: E. Bucherini (24); Reggio Emilia, Italy – Arcispedale S Maria Nuova: D. Galimberti, MD, MF. Leone, MD (20); Como, Italy – Valduce Hospital: A. Beretta, MD, A. Carugati, MD (19); Milan, Italy – Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico: S. Braham, MD (18); Varese, Italy - University of Insubria: E. Romualdi, MD, (17); San Giovanni Rotondo, Italy - Ospedale Sacro Cuore di Gesù: G. Tischia, D. Colaizzo, M. Grilli, MD (15); Palermo, Italy – Ematologia
con trapianto, Dipartimento di Medicina Interna e Specialistica (DIMIS), Azienda Ospedaliera Universitaria Policlinico di Palermo: S. Siragusa, MD (13); Trieste, Italy – Medicina di Urgenza, Ospedale Cattinara: R. Salvi, MD; M. Miccio, MD (12); Gallipoli, Italy – Medicina Interna e Lungodegenza, Ospedale Sacro Cuore di Gesti: L. Ria, MD (12); Vittorio Veneto, Treviso, Italy - Ospedale Civile; N. Zanatta, MD (12); Florence, Italy – Thrombosis Centre, Department of Heart and Vessels Azienda Ospedaliero-Universitaria Careggi: D. Poli, MD (11); Padua, Italy – Unit of Angiology, University Hospital of Padua: G. Camporese, MD; F. Verlato, MD (11); Ancona, Italy – Medicina di Urgenza, Ospedali Riuniti Umberto I - Lancisi- Salesi: A. Salvi, MD; C. Nitti, MD (11); Alessandria, Italy - Ospedale Civile S Antonio, Biagio e Arrigo: R. Santi, MD (10); Vimercate, Italy - Department of Medicine, Vimercate Hospital, Azienda Ospedaliera di Desio e Vimercate (Monza-Brianza): C. Cimminiello, MD (8); Treviso, Italy - Ospedale Ca’ Foncello,: G. Scannapieco, MD (8); Udine, Italy - Ospedale S Maria della Misericordia: G. Barillari, MD, S. Pasca, MD (8); Domodossola, Italy: Ospedale di Fano: G. Frausini, MD (6); Cosenza, Italy - Department of Internal Medicine, Azienda ospedaliera: C. Bova, MD (5); Monza, Italy - Università Milano Bicocca: E. Pogliani, MD (4); Catania, Italy – Angiologia, Ospedale Garibaldi: S.S. Signorelli, MD (4); Cremona, Italy – Haemostasis and Thrombosis Centre, Istituti Ospedalieri di Cremona: S. Testa, MD, A. Alatri, MD (2); Lamezia Terme, Italy – Internal Medicine: G. Mancuso, MD (2); Florence, Italy – Emergency Department, Azienda Ospedaliero-Universitaria Careggi: S. Grifoni, MD (2); Milan, Italy - Thrombosis Center, IRCCS Istituto Clinico Humanitas: C. Lodigiani, MD (1).

Conflict of Interest Disclosures: None.

References:

Table 1. Baseline characteristics by study and by randomized treatment.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Study</th>
<th>Treatment</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASPIRE 822</td>
<td>WARFASA 402</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years) (mean±SD)</td>
<td>54±16</td>
<td>61±15</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex (n (%))</td>
<td>447 (54)</td>
<td>257 (64)</td>
<td>0.002</td>
</tr>
<tr>
<td>Body mass index (kg/m²) (mean±SD)</td>
<td>29±6</td>
<td>27±4</td>
<td><0.001</td>
</tr>
<tr>
<td>Normal (<25) (n (%))</td>
<td>207 (25)</td>
<td>116 (29)</td>
<td><0.001</td>
</tr>
<tr>
<td>Overweight (25<30) (n (%))</td>
<td>313 (38)</td>
<td>199 (50)</td>
<td></td>
</tr>
<tr>
<td>Obese (≥30) (n (%))</td>
<td>300 (36)</td>
<td>82 (20)</td>
<td></td>
</tr>
<tr>
<td>Qualifying event (n (%))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVT only</td>
<td>468 (57)</td>
<td>252 (63)</td>
<td>0.36</td>
</tr>
<tr>
<td>PE only</td>
<td>231 (28)</td>
<td>55 (14)</td>
<td></td>
</tr>
<tr>
<td>DVT and PE</td>
<td>115 (14)</td>
<td>95 (24)</td>
<td></td>
</tr>
<tr>
<td>Duration of anticoagulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><6 months</td>
<td>224 (27)</td>
<td>28 (7)</td>
<td></td>
</tr>
<tr>
<td>6<9 months</td>
<td>387 (47)</td>
<td>176 (44)</td>
<td></td>
</tr>
<tr>
<td>9<12 months</td>
<td>137 (17)</td>
<td>87 (22)</td>
<td></td>
</tr>
<tr>
<td>≥12 months</td>
<td>74 (9)</td>
<td>111 (28)</td>
<td></td>
</tr>
<tr>
<td>Anticoagulation to randomization (days)</td>
<td>7 (1–29)</td>
<td>1 (0–7)</td>
<td><0.001</td>
</tr>
<tr>
<td>(median (Q1 to Q3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>73 (9)</td>
<td>65 (16)</td>
<td><0.001</td>
</tr>
<tr>
<td>Active malignancy at baseline (%)</td>
<td>18 (2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Low-molecular-weight heparin</td>
<td>711 (86)</td>
<td>326 (81)</td>
<td>0.04</td>
</tr>
<tr>
<td>Unfractionated heparin</td>
<td>52 (6)</td>
<td>60 (15)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>59 (7)</td>
<td>16 (4)</td>
<td></td>
</tr>
<tr>
<td>Subsequent therapy (n (%))</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Low-molecular-weight heparin</td>
<td>9 (1)</td>
<td>0</td>
<td>4 (0.7)</td>
</tr>
<tr>
<td>Warfarin</td>
<td>684 (83)</td>
<td>402 (100)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>129 (16)</td>
<td>0</td>
<td>66 (11)</td>
</tr>
</tbody>
</table>

* P values for the comparison of the baseline variables between the studies are for a chi-squared analysis for binary variables, ordinal regression analysis for multiple categories (ordered) variables, t test for normally distributed continuous variables, and a Kruskal–Wallis test for non-normal data.
Table 2. Outcome events, according to randomized treatment*.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Placebo (n=608)</th>
<th>Aspirin (n=616)</th>
<th>Hazard ratio with aspirin (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent venous thromboembolism</td>
<td>112</td>
<td>81</td>
<td>0.68* (0.51–0.90)</td>
<td>0.008</td>
</tr>
<tr>
<td>Deep-vein thrombosis only</td>
<td>85</td>
<td>59</td>
<td>0.66 (0.47–0.92)</td>
<td>0.01</td>
</tr>
<tr>
<td>Pulmonary embolism with or without deep-vein thrombosis</td>
<td>42</td>
<td>29</td>
<td>0.66 (0.41–1.06)</td>
<td>0.08</td>
</tr>
<tr>
<td>Major vascular event†</td>
<td>129</td>
<td>91</td>
<td>0.66 (0.50–0.86)</td>
<td>0.002</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>7</td>
<td>4</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>5</td>
<td>7</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>9</td>
<td>6</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Bleeding</td>
<td>12</td>
<td>18</td>
<td>1.50 (0.72–3.14)</td>
<td>0.28</td>
</tr>
<tr>
<td>Major</td>
<td>7</td>
<td>9</td>
<td>1.24 (0.46–3.33)</td>
<td>0.67</td>
</tr>
<tr>
<td>Clinically relevant nonmajor bleeding</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major vascular event, major bleeding or death from any cause</td>
<td>144</td>
<td>103</td>
<td>0.67 (0.52–0.86)</td>
<td>0.002</td>
</tr>
<tr>
<td>Death from any cause</td>
<td>23</td>
<td>20</td>
<td>0.84 (0.46–1.53)</td>
<td>0.56</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other cardiovascular cause</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>including sudden death of uncertain cause</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bleeding</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other noncardiovascular cause</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Only the first event for each patient is counted in each row. Hazard ratio and 95% confidence intervals estimated by Cox regression analysis stratified by trial. Tests for treatment-trial interaction for each outcome were not significant (each P > 0.20).
† Composite of venous thromboembolism, myocardial infarction, stroke and cardiovascular death.

Figure Legends:

Figure 1. Consort flow diagram.
Figure 2. Cumulative risk of outcome events. Panel A: venous thromboembolism (VTE), defined as symptomatic deep-vein thrombosis or pulmonary embolism; Panel B: major vascular events (composite of recurrent VTE, myocardial infarction, stroke, and cardiovascular death); Panel C: The reduction in the risk of recurrent VTE, myocardial infarction, stroke, all-cause mortality, and major bleeding is a measure of the net clinical benefit of aspirin treatment.

Figure 3. Effects of aspirin treatment on recurrent venous thromboembolism and other outcomes after adjustment for baseline characteristics: age (<50 years, 50–65, ≥65), sex (male versus female), qualifying event (deep-vein thrombosis only versus pulmonary embolism with or without deep-vein thrombosis), body mass index (normal, overweight, obese) and duration of anticoagulation (<6, 6 to <9, ≥9 months).

Figure 4. Effects of aspirin treatment on venous thromboembolism in prespecified subgroups. *P for trend.

Figure 5. Effects of aspirin treatment on major vascular events in prespecified subgroups. *P for trend.

Figure 6. Effects of treatment on venous thromboembolism in each year of follow-up.

Figure 7. Kaplan-Meier curves of adherence with study medication (shown as time to permanent discontinuation) and cumulative risk curves of uptake of open-label antiplatelet therapy or anticoagulation therapy, by treatment group.
Figure 1

1225 randomized
822 ASPIRE
403 WARFASA

609 assigned placebo
411 ASPIRE
198 WARFASA

616 assigned aspirin
411 ASPIRE
205 WARFASA

1 did not receive study treatment
1 WARFASA

608 received placebo
411 ASPIRE
197 WARFASA

616 received aspirin
411 ASPIRE
205 WARFASA

6 no qualifying DVT
6 ASPIRE
20 revoked consent
10 ASPIRE
10 WARFASA
7 lost to follow-up
4 ASPIRE
3 WARFASA

608 included in efficacy and safety analysis
411 ASPIRE
197 WARFASA

616 included in efficacy and safety analysis
411 ASPIRE
205 WARFASA
Figure 2
Figure 3

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Event rate/year (%)</th>
<th>Hazard ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (n=608)</td>
<td>Aspirin (n=616)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venous thromboembolism</td>
<td>112 (7.5)</td>
<td>81 (5.1)</td>
<td>0.65 (0.49–0.86)</td>
</tr>
<tr>
<td>Major vascular events</td>
<td>129 (8.7)</td>
<td>91 (5.7)</td>
<td>0.63 (0.48–0.83)</td>
</tr>
<tr>
<td>Net clinical benefit</td>
<td>144 (9.8)</td>
<td>103 (6.5)</td>
<td>0.64 (0.50–0.83)</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>42 (2.6)</td>
<td>27 (1.7)</td>
<td>0.63 (0.39–1.02)</td>
</tr>
<tr>
<td>Deep-vein thrombosis</td>
<td>85 (5.5)</td>
<td>59 (3.6)</td>
<td>0.63 (0.45–0.88)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>23 (1.4)</td>
<td>20 (1.2)</td>
<td>0.82 (0.45–1.52)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>7 (0.4)</td>
<td>9 (0.5)</td>
<td>1.31 (0.48–3.53)</td>
</tr>
</tbody>
</table>

0.1 favors aspirin
1 favors placebo
<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Event rate/year (%)</th>
<th>Hazard ratio (95% CI)</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>5.2</td>
<td>0.68 (0.41–1.13)</td>
<td>0.95</td>
</tr>
<tr>
<td>Male</td>
<td>9.6</td>
<td>0.66 (0.47–0.94)</td>
<td></td>
</tr>
<tr>
<td>Anticoagulation time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><6 months</td>
<td>7.7</td>
<td>0.52 (0.28–0.98)</td>
<td>0.46*</td>
</tr>
<tr>
<td>6–<12 months</td>
<td>6.3</td>
<td>0.87 (0.61–1.24)</td>
<td></td>
</tr>
<tr>
<td>≥12 months</td>
<td>13.4</td>
<td>0.32 (0.14–0.75)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 years</td>
<td>4.0</td>
<td>1.05 (0.58–1.91)</td>
<td>0.11*</td>
</tr>
<tr>
<td>50–<65 years</td>
<td>7.1</td>
<td>0.61 (0.36–1.04)</td>
<td></td>
</tr>
<tr>
<td>≥65 years</td>
<td>12.1</td>
<td>0.56 (0.37–0.85)</td>
<td></td>
</tr>
<tr>
<td>Body mass index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>5.5</td>
<td>0.81 (0.43–1.49)</td>
<td>0.92*</td>
</tr>
<tr>
<td>Overweight</td>
<td>8.6</td>
<td>0.58 (0.37–0.90)</td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>7.8</td>
<td>0.73 (0.45–1.17)</td>
<td></td>
</tr>
<tr>
<td>Event type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVT only</td>
<td>7.8</td>
<td>0.66 (0.45–0.96)</td>
<td>0.79</td>
</tr>
<tr>
<td>PE ± DVT</td>
<td>7.0</td>
<td>0.71 (0.46–1.11)</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>7.5</td>
<td>0.68 (0.51–0.90)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4
<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Event rate/year (%)</th>
<th>Hazard ratio (95% CI)</th>
<th>Interaction P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo (n=608)</td>
<td>Aspirin (n=618)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>6.2</td>
<td>3.8</td>
<td>0.61 (0.38–0.99)</td>
</tr>
<tr>
<td>Male</td>
<td>10.9</td>
<td>7.2</td>
<td>0.67 (0.48–0.92)</td>
</tr>
<tr>
<td>Anticoagulation time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><6 months</td>
<td>9.1</td>
<td>4.2</td>
<td>0.45 (0.24–0.82)</td>
</tr>
<tr>
<td>6–<9 months</td>
<td>7.1</td>
<td>7.4</td>
<td>1.04 (0.72–1.52)</td>
</tr>
<tr>
<td>≥9 months</td>
<td>11.4</td>
<td>4.3</td>
<td>0.38 (0.22–0.64)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50 years</td>
<td>4.3</td>
<td>4.1</td>
<td>0.96 (0.53–1.72)</td>
</tr>
<tr>
<td>50–<65 years</td>
<td>7.7</td>
<td>4.9</td>
<td>0.64 (0.39–1.06)</td>
</tr>
<tr>
<td>≥65 years</td>
<td>15.1</td>
<td>7.9</td>
<td>0.53 (0.36–0.78)</td>
</tr>
<tr>
<td>Body mass index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>6.8</td>
<td>5.1</td>
<td>0.72 (0.41–1.28)</td>
</tr>
<tr>
<td>Overweight</td>
<td>9.8</td>
<td>5.9</td>
<td>0.61 (0.40–0.91)</td>
</tr>
<tr>
<td>Obese</td>
<td>8.9</td>
<td>6.0</td>
<td>0.67 (0.43–1.06)</td>
</tr>
<tr>
<td>Event type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVT only</td>
<td>0.3</td>
<td>5.3</td>
<td>0.57 (0.40–0.82)</td>
</tr>
<tr>
<td>PE only</td>
<td>5.0</td>
<td>5.8</td>
<td>1.09 (0.60–1.98)</td>
</tr>
<tr>
<td>Both PE and DVT</td>
<td>13.3</td>
<td>6.8</td>
<td>0.56 (0.31–1.01)</td>
</tr>
<tr>
<td>Overall</td>
<td>8.7</td>
<td>5.7</td>
<td>0.66 (0.50–0.86)</td>
</tr>
</tbody>
</table>
Figure 6

<table>
<thead>
<tr>
<th>Year</th>
<th>Placebo</th>
<th>Placebo</th>
<th>Aspirin</th>
<th>Aspirin</th>
<th>HR (95% CI)</th>
<th>P for trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60/608</td>
<td>31/616</td>
<td>11.0</td>
<td>5.4</td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>2</td>
<td>25/489</td>
<td>26/531</td>
<td>2.7</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18/378</td>
<td>15/412</td>
<td>1.7</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9/240</td>
<td>9/259</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>112/608</td>
<td>81/616</td>
<td>7.5</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 0.2 favors aspirin
- 1 favors placebo
- 2 favors placebo
Figure 7
Aspirin for the Prevention of Recurrent Venous Thromboembolism: The INSPIRE Collaboration
John Simes, Cecilia Becattini, Giancarlo Agnelli, John W. Eikelboom, Adrienne C. Kirby, Rebecca
Mister, Paolo Prandoni and Timothy A. Brighton
for the INSPIRE (International Collaboration of Aspirin Trials for Recurrent Venous
Thromboembolism) Study Investigators

Circulation. published online August 25, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/early/2014/08/12/CIRCULATIONAHA.114.008828

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/08/12/CIRCULATIONAHA.114.008828.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click Request
Permissions in the middle column of the Web page under Services. Further information about this process is
available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
Supplemental Material

Supplemental Methods

Adherence adjustment method

For each trial, the log hazard ratio (ln(HR)) and its variance (v) were calculated for each year of follow-up. These estimates were adjusted for adherence by dividing the ln(HR) for each year by the average adherence \(\left(c = 1 - p_{\text{disc}} - p_{\text{drop-in}} \right) \) for the middle of that year

\[
\text{adj}(\ln(HR)) = \frac{\ln(HR)}{(1 - p_{\text{disc}} - p_{\text{drop-in}})}
\]

where \(p_{\text{disc}} \) is the proportion of patients, randomized to active treatment, who discontinue study medication and \(p_{\text{drop-in}} \) is the proportion randomized to placebo who commence aspirin or an equivalent medication.

The variances for the estimates were adjusted in the same way

\[
\text{Var}(\text{adj}(\ln(HR))) = \frac{\text{var}(\ln(HR))}{(1 - p_{\text{disc}} - p_{\text{drop-in}})^2}.
\]

Weights were calculated as

\[
w = 1/\text{Var}(\text{adj}(\ln(HR))).
\]

A weighted meta-analysis was conducted by multiplying the adjusted value for each year by \(w \) and the variances by \(w^2 \). The values were combined by summing the weighted estimates and dividing by the sum of the weights

\[
\text{weighted adj}_\lnHR = \frac{\Sigma w \times \text{adj}_\lnHR}{\Sigma w},
\]

to produce a grand total (G). Similarly, the variances weighted by \(w^2 \) were combined to give a pooled variance \(V \)

\[
V = \text{Var}(\text{weighted adj}_\lnHR) = \frac{\Sigma w^2 \times \text{var}}{(\Sigma w)^2}.
\]
Supplemental Table 1: Summary of eligibility criteria

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>ASPIRE</th>
<th>WARFASA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >18</td>
<td>No age restriction</td>
<td></td>
</tr>
<tr>
<td>First unprovoked deep-vein thrombosis or pulmonary embolism (no transient risk factor)</td>
<td>Initial idiopathic deep-vein thrombosis or pulmonary embolism (no known risk factor)</td>
<td></td>
</tr>
<tr>
<td>Initial unfractionated heparin / or low-molecular-weight heparin and warfarin</td>
<td>Initial unfractionated heparin or low-molecular-weight heparin and warfarin</td>
<td></td>
</tr>
<tr>
<td>Recommended 6 to 24 months treatment</td>
<td>Recommended 6 to 12 months treatment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclusion</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication or contraindication for aspirin</td>
<td>Indication or contraindication for aspirin</td>
<td></td>
</tr>
<tr>
<td>Indication for antiplatelet or oral anticoagulation</td>
<td>Indication for antiplatelet or oral anticoagulation</td>
<td></td>
</tr>
<tr>
<td>(Thrombophilia not excluded except at discretion of investigator)</td>
<td>Known thrombophilia excluded (including (lupus anticoagulants, anticardiolipin antibodies, homozygous or combined Factor V Leiden mutation and prothrombin gene mutation, antithrombin deficiency, cancer)</td>
<td></td>
</tr>
<tr>
<td>(Cancer not excluded, except at discretion of investigator)</td>
<td>History of cancer</td>
<td></td>
</tr>
<tr>
<td>Increased bleeding risk</td>
<td>Increased bleeding risk</td>
<td></td>
</tr>
<tr>
<td>COX 1 or COX 2 inhibitor</td>
<td>COX 1 or COX 2 inhibitor</td>
<td></td>
</tr>
<tr>
<td>Life expectancy <12 months</td>
<td>Life expectancy <6 months</td>
<td></td>
</tr>
<tr>
<td>Expected nonadherence</td>
<td>Expected nonadherence</td>
<td></td>
</tr>
<tr>
<td>Anticipated difficult follow-up</td>
<td>Anticipated difficult follow-up</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental Table 2: Unadjusted and adherence-adjusted* effect of aspirin in each year, and overall

<table>
<thead>
<tr>
<th>Year</th>
<th>Unadjusted effect of aspirin</th>
<th>Adherence-adjusted effect of aspirin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>0.49 (0.32–0.76)</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>0.97 (0.55–1.71)</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td>0.79 (0.40–1.59)</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>0.88 (0.34–2.29)</td>
<td>0.79</td>
</tr>
<tr>
<td>All years</td>
<td>0.68 (0.51–0.91)</td>
<td>0.008</td>
</tr>
</tbody>
</table>

* The efficacy of aspirin in a fully adherent group was estimated by adjusting the treatment effect in the intention-to-treat analysis by the nonadherence rates (the proportion of patients assigned to aspirin who discontinued it plus the proportion of patients assigned to placebo who initiated antiplatelet or anticoagulation treatment) averaged within each year and study. An adherence-adjusted estimate for all years was derived from a weighted combination of the estimates from each year and study (see Supplemental Methods).