Vitamin D Promotes Vascular Regeneration

Running title: Wong et al.; Vitamin D and vascular repair

Michael Sze Ka Wong, PhD¹; Matthias S. Leisegang, PhD¹,²; Christoph Kruse, MSc¹,²; Juri Vogel, MSc¹; Christoph Schürmann, PhD¹,²; Nathalie Dehne, PhD³; Andreas Weigert, PhD³; Eva Herrmann, MD⁴,²; Bernhard Brüne, PhD³; Ajay M. Shah, MD, PhD⁵; Dieter Stein hilber⁶; Stefan Offermanns, PhD⁷,²; Geert Carmeliet, MD PhD⁸; Klaus Badenhoop, MD⁹; Katrin Schröder, PhD¹,²*; Ralf P. Brandes, MD¹,²*

¹Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; ²German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany; ³Institute for Pathobiochemistry, Goethe-University, Frankfurt, Germany; ⁴Institute for Biostatistics and Mathematical Modeling, Goethe-University, Frankfurt, Germany; ⁵Cardiovascular Division, King’s College London BHF Center of Excellence, London, United Kingdom; ⁶Institute of Pharmaceutical Chemistry/ZAFES, Goethe-University Frankfurt, Frankfurt am Main, Germany; ⁷Dept of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; ⁸Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium; ⁹Dept of Endocrinology and Diabetes, Internal Medecine 1, University Hospital Frankfurt, Frankfurt, Germany
*contributed equally

Address for Correspondence:
Katrin Schröder, PhD or Ralf P. Brandes, MD
Institut für Kardiovaskuläre Physiologie
Fachbereich Medizin der Goethe-Universität
Theodor-Stern Kai 7
60596 Frankfurt, Germany
Tel: +49-69-6301-6995
Fax: +49-69-6301-7668
E-mail: R.Brandes@em.uni-frankfurt.de or Schroeder@vrc.uni-frankfurt.de

Abstract

Background—Vitamin D deficiency in humans is frequent and has been associated with inflammation. The role of the active hormone, 1,25-dihydroxy-vitamin D3 (1,25-VitD3) in the cardiovascular system is controversial. High doses induce vascular calcification; vitamin D3 deficiency, however, has been linked to cardiovascular disease as the hormone has anti-inflammatory properties. We therefore hypothesized that 1,25-VitD3 promotes regeneration after vascular injury.

Methods and Results—In healthy volunteers supplementation of VitD3 (4000 I.E. cholecalciferol/day) increased the number of circulating CD45-CD117+Sca1+Flk1+ angiogenic myeloid cells (AMC), which are thought to promote vascular regeneration. Similarly, in mice 1,25-VitD3 (100ng/kg/d) increased the number of AMCs and promoted re-endothelialization in the carotid artery injury model. In streptozotocin-diabetic mice, 1,25-VitD3 also promoted reendothelialization and restored the impaired angiogenesis in the femoral artery ligation model. AMCs home through the stromal cell-derived factor 1 (SDF1) receptor CXCR4. Inhibition of CXCR4 blocked 1,25-VitD3-stimulated healing pointing to a role of SDF1. The combination of injury and 1,25-VitD3 increased SDF1 in vessels. Conditioned medium from injured, 1,25-VitD3 treated arteries elicited a chemotactic effect on AMCs, which was blocked by SDF1-neutralizing antibodies. Conditional knockout of the vitamin D receptor (VDR) in myeloid cells but not the endothelium or smooth muscle cells blocked the effects of 1,25-VitD3 on healing and prevented SDF1 formation. Mechanistically, 1,25-VitD3 increased Hif1α through binding to its promoter. Increased HIF signaling subsequently promoted SDF1 expression as revealed by reporter assays and knockout and inhibitory strategies of HIF1α.

Conclusions—By inducing SDF1, VitD3 is a novel approach to promote vascular repair.

Key words: endothelium, vitamin D, angiogenesis, reendothelialization, regeneration
Introduction

Vitamin D is a misnomer. The body produces this hormone through precursors with final hydroxylation to the most active metabolite 1,25-dihydroxycholecalciferol (1,25-VitD3). Vitamin D is ingested with food or synthesized from the precursor 7-dehydrocholesterol which is then photochemically converted in the sunlight-exposed skin into cholecalciferol (vitamin D3). Active 1,25-VitD3 is generated by two hydroxylation steps: 25β-hydroxylation in the liver followed by 1α-hydroxylation in the kidney. The latter reaction is particularly rate limiting and thus the effective concentration of 1,25-VitD3 is much lower than that of vitamin D3 or 25-hydroxy-vitamin D3. By a positive feedback loop, 1,25-VitD3 induces the 24-hydroxylase expression. As 1,24,25-trihydroxy-VitD3 is water soluble and cleared by the kidney, this pathway limits the effects of the hormone and 24-hydroxylase expression can be used as a marker for the biological activity of 1,25-VitD3. Unless vitamin D is supplemented, intake with food is usually insufficient and thus endogenous production contributes significantly to plasma levels. This leads to vitamin D deficiencies in up to 70% in some population groups in which sunlight exposure is low due to modern life style, clothing and few sunshine hours during winter1,2.

The best characterized vitamin D effects are enhanced intestinal calcium absorption and an increase in plasma calcium level. The biological effects of 1,25-VitD3, however, extend far beyond calcium metabolism. By controlling gene expression through the nuclear vitamin D receptor (VDR), 1,25-VitD3 has been suggested to limit inflammation and cancer and thus lack of vitamin D has been associated with auto-immune disorders like multiple sclerosis or neoplastic diseases3. In the cardiovascular system, a low vitamin D status is inversely associated with blood pressure in blacks4 and increased renin-angiotensin II activity in mice5. Vitamin D
has also been suggested to delay the development of heart failure and potentially myocardial infarction. Furthermore, epidemiologic evidence links low vitamin D status to an increased risk for cardiovascular disease. Although these observations are still very controversial, they have attracted considerable attention in cardiovascular research to study the effects of this hormone.

Little is known about the role of vitamin D in endothelial cell biology. Initial data suggested that high doses of vitamin D inhibit endothelial cell migration which could be used to treat tumor angiogenesis. Whether physiologic concentrations of active vitamin D, however, have an effect on angiogenesis is elusive. Considering the anti-inflammatory and pro-differentiating effects of vitamin D, we hypothesized that the hormone promotes vascular regeneration. To address this, we subjected mice to the carotid artery injury model and femoral artery ligation. Furthermore, we investigated the effect of vitamin D supplementation on circulating angiogenic myeloid cells (AMCs) both in a mouse model of type 1 diabetes as well as in healthy volunteers.

Methods

An expanded methods section is available in the Online Supplemental Material at http://circ.ahajournals.org.

Experimental animals and animal procedures

All experimental procedures were approved by the local governmental authorities (approval numbers: F28/14, F28/30) and were performed in accordance with the animal protection guidelines exclusively in male mice. Hif1α^flox/flox-LysM-Cre^{+/0}.TG and Hif1α^flox/flox-Hif2α^flox/flox-TG were provided by one of the co-authors (N.D.). Hif1α^flox/flox and Hif2α^flox/flox mice were
initially provided by R.S. Johnson (San Diego, USA). A previously reported LysM-Cre deleter line was used for conditional gene knockout in monocytic cells like macrophages and leukocytes. The generation and general characterization of VDR$^{\text{lox/lox}}$ and SMMHC-CreERT2 mice has been described previously. Cdh5-CreERT2 mice were kindly provided by Ralf Adams, MPI Münster. Activation of CreERT2 was achieved by tamoxifen (40 mg/kg dissolved in autoclaved sunflower oil injected intraperitoneally on 3 consecutive days followed by a “wash-out” phase of 2 weeks. Diabetes was induced by streptozotocin injection. Carotid artery injury was performed by the electric injury model and the area of injury was stained by Evans blue or lectin staining. Hind limb ischemia was produced by femoral artery ligation and angiogenesis was determined from laser Doppler imaging of skin perfusion and capillary density measurements.

VitD3 was supplemented as the active $1\alpha,25\text{-Dihydroxy-vitamin D3}$ (1,25-VitD3, 100ng/kg/day) dissolved in a solvent mixture of water, propylene glycol and ethanol in a 5:4:1 ratio.

FACS analyses of angiogenic myeloid cells (AMCs)

Circulating AMCs were measured in the mononuclear cell fraction of the blood by FACS counted and stained as CD45, CD117, Sca-1 and Flk-1 positive cells.

Vitamin D treatment in healthy volunteers

A pilot study in 6 healthy volunteers (4 male, 2 female, age 32.5 ± 4.9 years, mean ± SD) who gave informed written consent, was performed. This was part of the ViDDA1 trial (registered under EUDRACT 2010-022677-34, “Influence of high dose vitamin D substitution on humoral immunity and lymphocyte function in patients with newly diagnosed and recent onset type 1 diabetes mellitus or Addison’s disease”), which was approved by the Ethical Committee of
Frankfurt Medical School. Blood was taken weekly in the morning over a period of 12 weeks and vitamin D was supplemented from week 4 to 10 by a daily oral intake of 4,000 IU cholecalciferol (Vigantol Öl, Merck Serono).

Statistical analysis

Unless otherwise indicated, data are given as means ± standard error of mean (SEM). For the individual statistical tests use, please see the expanded material and methods section. A probability value <0.05 was considered significant.

Results

Vitamin D3 increases the number of circulating angiogenic myeloid cells in humans

To address whether 1,25-VitD3 could have a positive effect on factors promoting vascular repair in humans, healthy volunteers were treated with vitamin D3 (4000 IU, orally once a day) and blood was drawn prior, during and after the 6 weeks treatment course. The treatment induced a significant increase in the levels of the vitamin D3 metabolite 25-hydroxy-vitamin D3 and importantly also doubled the plasma concentration of active 1,25-VitD3 (Fig. 1A&B).

Importantly, the number of CD45-CD117+ Sca1+ Flk1+ cells, denoted as angiogenic circulating myeloid cells (AMCs) more than doubled during VitD3 treatment of humans (Fig. 1C). To correlate this finding with the biological activity of 1,25-VitD3, the expression of 24-hydroxylation was determined in myeloid cells obtained from the peripheral blood during the trial. The enzyme was almost undetectable prior to treatment but was massively induced by in vivo vitamin D3 (Fig. 1D). After termination of the treatment, the level of active 1,25-VitD3 slowly decreased as did the number of circulating AMCs and the 24-hydrolase expression. This suggests that the effects observed during the study were related to vitamin D3 therapy.
1,25-VitD3 promotes endothelial regeneration in mice

To determine whether 1,25-VitD3 indeed promotes endothelial regeneration, mice were treated with 1,25-VitD3 (100 ng/kg/day) for five days and were subsequently subjected to carotid artery electric injury. Although this approach only increased the plasma levels of 1,25-VitD3 by approximately 2.5 fold, it elevated the number of CD45-CD117+ Sca1+ Flk1+ cells, denoted as angiogenic circulating myeloid cells (AMCs) in blood and bone marrow and more than doubled the number of colony forming units (CFUs) from the spleen ([Fig. 2A-D](#fig2a-d)). Importantly, 1,25-VitD3 also greatly enhanced endothelial regeneration, as evidenced by a significantly lower Evans blue positive and lectin negative area in the injured carotid artery ([Fig. 2E-F](#fig2e-f)). Also when a higher dose of 1,25-VitD3 was administered (1 μg/kg/d) for the same duration or when 1,25-VitD3 was given every other day over 4 weeks this healing effect was observed ([Fig. S1A&B](#figs1ab)). A single injection of 1,25-VitD3 (1 μg/kg/d) at the time of carotid injury failed to affect regeneration([Fig. S1C](#figs1c)), indicating that some pretreatment is required for the beneficial effects of 1,25-VitD3. Importantly, also 22-oxocalcitriol, a pharmacological 1,25-VitD3 analogue which is thought to have limited effects on plasma calcium levels and thus a reduced risk of extraskeletal calcification was similarly effective as 1,25-VitD3 in promoting reendothelialization ([Fig. 2G](#fig2g)).

1,25-VitD3 restores vascular regeneration in diabetic mice

Diabetes patients are frequently affected by vitamin D deficiency \(^{19}\) and the systemic inflammation in diabetes has been linked to functional vitamin D shortage \(^{20}\). As vascular dysfunction is the most important complication of diabetes, we hypothesized that diabetic vasculopathy will be alleviated by 1,25-VitD3 supplementation. Indeed, in streptozotocin (STZ) type 1 diabetic mice, carotid artery re-endothelialization and CFU formation were greatly reduced ([Fig. 3A&B](#fig3ab)). Although vitamin D plasma levels, as expected, were normal in type I-
diabetic mice (Fig. S2), 1,25-VitD3 supplementation had a beneficial effect so that CFU formation was increased by 1,25-VitD3 and vascular healing was completely normalized to the level obtained in control animals (Fig. 3A&B). Encouraged by this finding, vascular regeneration in the femoral artery ligation model was determined. In normal C57BL/6 mice basal angiogenesis was very strong but basically ablated by diabetes as determined by laser Doppler imaging and capillary density measurements. Remarkably, 1,25-VitD3 treatment completely restored the normal angiogenic response in these highly vascular dysfunctional animals (Fig. 3C-F). These data indicate that 1,25-VitD3 can revert vascular dysfunction and that 1,25-VitD3 is a candidate to restore angiogenesis in diabetes. Although the benefit of 1,25-VitD3 in diabetic mice is greater than that in healthy mice, it can, however, not be inferred for the present data that diabetes is a situation of functional vitamin D-deficiency.

CXCR4-positive myeloid cells mediate the regenerative effect of 1,25-VitD3

The positive effect of 1,25-VitD3 on re-endothelialization could be the consequence of a direct effect on endothelial cells or could be mediated by changes in the environment promoting endothelial migration in a paracrine manner. To distinguish between these possibilities, tissue specific knockout mice of the vitamin D receptor (VDR) were generated. The regenerative effect of 1,25-VitD3 was lost in mice lacking the VDR in LysM-positive myeloid cells (Fig. 4A). In contrast, deletion of VDR in endothelial or smooth muscle cells performed in tamoxifen-inducible tissue-specific cre-deleter strains (Fig. S3) had no effect on regeneration (Fig. 4B&C). To exclude a potential role of platelets in the process, mice were made thrombocytopenic by treatment with anti-CD42 antibody and although this lowered the platelet count by more than 90% it did not affect 1,25-VitD3-stimulated vascular regeneration (Fig. S4A&B). To further define the nature of the LysM-positive cells, individual cell populations were depleted. Depletion
of polymorphonuclear neutrophils (PMN) by anti-PMN antibody had no effect on 1,25-VitD3-induced re-endothelialization whereas clodronate, which depletes predominately macrophages and related cells prevented the 1,25-VitD3-induced re-endothelialization (Fig. S4C-F). Since these data suggest myeloid-derived monocytic cells as the mediator of the effects of 1,25-VitD3 and as 1,25-VitD3 increased the number of AMCs, a possible involvement of AMCs in carotid artery repair was studied. Homing of AMCs depends on the CXCR4 receptor and indeed, the mRNA of CXCR4 was increased after 3 days, but not after 1 day of vascular injury (Fig. S5) suggesting a homing of CXCR4 positive myeloid cells to the site of injury. In vivo blockade of CXCR4 with AMD3100 drastically reduced the 1,25-VitD3-induced re-endothelialization (Fig. 4D), suggesting that AMCs are indeed essential for the beneficial effect of 1,25-VitD3 on vascular regeneration.

SDF1 mediates the regenerative effect of 1,25-VitD3

CXCR4 is the receptor for SDF1, making this chemokine a potential mediator of the 1,25-VitD3 effects. Indeed, SDF1 mRNA expression was increased in the carotid artery of 1,25-VitD3 treated mice already within 24 hours after injury, whereas injury alone or 1,25-VitD3 alone had no effect on SDF1 expression (Fig. 4E). To address whether tissue-resident cells mediate this effect, experiments were repeated in isolated murine vascular segments. Similar to the in vivo setting, ex vivo stimulation with a fairly low concentration of 1,25-VitD3 (10 nmol/L) increased SDF1 mRNA only in vessels which were previously injured ex vivo by detergent application (Fig. 4F). The increase in SDF1 mRNA also resulted in protein formation and secretion of the chemokine as detected by a significant increase in SDF1 protein in response to 1,25-VitD3 in the conditioned medium of the injured vessels (Fig. 4G). To test whether SDF1 released from the 1,25-VitD3 treated injured vessel mediates the chemotactic stimulus on myeloid cells, Boyden
chamber experiments were performed with conditioned medium prepared from vascular segments. Medium conditioned with injured 1,25-VitD3 treated vessels had the greatest chemotactic effect (Fig. 4H) and importantly, the chemotactic effect was blocked by a SDF1 neutralizing antibody (Fig. 4I). To directly visualize this chemotactic effect in vivo, homing was studied. Bone marrow mononuclear cells were labeled ex vivo and injected into mice. Without injury no positive cells were observed in the carotid artery, whereas injury induced homing and this effect was stimulated by 1,25-VitD3 pretreatment (Fig. 4J). Collectively, these data demonstrate that tissue-resident cells express and release SDF1 upon the combined stimulation of injury and 1,25-VitD3 which then attracts AMCs to the vessel.

Myeloid cells are the source of injury and 1,25-VitD3-induced SDF1 production

To identify the cellular sources of SDF1, VDR-conditional knockout mice were studied. Interestingly, an increase in SDF1 plasma level in response to 1,25-VitD3 was not observed in VDR flox/flox-mice crossed with the LysM-Cre deleter strain (Fig. 5A), raising the possibility that myeloid cells are the source of SDF1. To address this, human AMCs, which are LysM positive, were generated from human blood by density gradient centrifugation and subsequently cultured in endothelial growth medium supplemented with EGF on fibronectin coated dishes for 3 days. To mimic the situation of vascular injury, cultured AMCs, after pretreatment with 1,25-VitD3 (24 hours, 10nmol/L) were stimulated with the combination of TNFα and IL-1β, two cytokines produced at sites of vascular injury. Similar to the data obtained in the carotid artery, only the combination of cytokines and 1,25-VitD3 induced a marked upregulation of SDF1 mRNA (Fig. 5B) which was sufficient to also increase the SDF1 protein concentration in the supernatant of the cells (Fig. 5C). Similar data were obtained in the human monocytic cell line THP-1 (Fig. S6). As these data suggest myeloid cells as the source of SDF1,
the consequence of conditional VDR deletion on SDF1 mRNA expression was studied in the carotid artery. Genetic deletion of VDR in LysM-positive cells, but not in endothelial or smooth muscle cells prevented the induction of SDF1 in response to the combination of 1,25-VitD3 and injury (Fig. 5D). Thus, LysM-positive tissue-resident cells like macrophages or dendritic cells generate SDF1 in response to 1,25-VitD3 and injury which then either by directly stimulating the endothelium or by attracting AMCs to the site of injury, promote vascular regeneration.

The potentiating effect of 1,25-VitD3 on SDF1 is mediated by HIF1α

The stimulating effect of 1,25-VitD3 on injury-induced SDF1 expression was present on the protein as well as on mRNA level suggesting an induction or stabilization of SDF1 mRNA. The SDF1 promoter harbors binding sites for several transcription factors. In cytokine-primed human AMCs, 1,25-VitD3, however, down-regulated JAK2 and hemeoxygenase-1 expression (Fig. S7A&B) arguing against a role of the signal transducer and activator (STAT) and nuclear factor erythroid-derived 2 (NRF2)-system, which leaves the transcription factors nuclear factor κ B (NFκB) and hypoxia-inducible factor 1 or 2 (HIF) as likely mediators. Pharmacological inhibition of NFκB with two different inhibitors did not affect the 1,25-VitD3-stimulated SDF1 induction in cytokine-primed AMCs (Fig. S7C), whereas the HIF1α inhibitor acriflavine completely blocked the effect of 1,25-VitD3 of SDF1 mRNA (Fig. 6A). Importantly, also when administered to mice in vivo, acriflavine (given as reported previously 22) prevented the 1,25-VitD3-stimulated carotid artery repair (Fig. 6B). To seek molecular confirmation of these pharmacological data, conditional LysM-specific HIF knockout mice were studied. Combined deletion of HIF1 and HIF2 in LysM-positive cells prevented the 1,25-VitD3-induced vascular healing and SDF1 induction (Fig. 6C&D). To differentiate between the involvement of HIF1α and HIF2α ex vivo experiments were performed in tissue from LysM-specific HIF1α single
knockout mice. 1,25-VitD3 failed to induce SDF1 induction in injured vascular preparations of
the knockouts ex vivo as well as in cytokine-primed murine spleen-derived monocytic cells of
these LysM-Cre^{+/−}-HIF1α^{Flox/Flox} mice (Fig. 6E&F). Collectively, these data suggest that 1,25-
VitD3 acts through HIF1α in LysM-positive cells to induce SDF1.

1,25-VitD3 induces HIF1α

Cytokines and injury are known to increase HIF1α protein by attenuating HIF1α protein
degradation²³. The fact that 1,25-VitD3 had an additive effect to cytokines / injury suggests that
the hormone acts through a different mechanism. Indeed, 1,25-VitD3 increased the HIF1α
mRNA expression of human AMCs under basal conditions as well as after cytokine priming
(Fig. 6G). The HIF1α promoter contains putative binding sites for NFκB and for the vitamin D
receptor. Inhibition of NFκB did not alter the 1,25-VitD3-induced induction of HIF1α in
cytokine-primed human AMCs (Fig. S6D) and therefore a potential direct effect of 1,25-VitD3
on HIF1α promoter activity was tested. In cytokine-primed human AMCs transiently transfected
with a luciferase-reporter construct carrying up to 821 base pairs upstream of the transcription
start site, 1,25-VitD3 induced an approx. 8 fold increase in reporter activity (Fig. 6H). In order to
obtain direct proof of an activation of the vitamin D-receptor on the HIF1α promoter chromatin
immuno-precipitation (ChIP) was performed. Due to the limited availability of human AMCs
and the difficulties associated with their transfection, these experiments were carried out in
cytokine-primed HEK293 cells transiently transfected with the VDR and the retinoid X receptor,
which acts in concert with the VDR²⁴. In these experiments, 1,25-VitD3 increased the recovery
of HIF promoter regions around predicted vitamin D responsive elements (VDRE) at nucleotides
808 to 435 upstream of the transcriptional start site, whereas recovery upstream or downstream
of the nucleotides 808-435, which did not contain a VDRE, was not increased (Fig. 6I). To
obtain ultimate proof for a direct action of 1,25-VitD3 on the HIF1α promoter, potential VDREs at sites 438, 626 and 648 nucleotides upstream of the HIF1α transcriptional start site were mutated and tested for vitamin D dependent HIF1α promoter activation again in a luciferase reporter assay. Mutation of the putative VDREs at sites 438, 626 and 648 blocked the 1,25-VitD3-mediated induction of the HIF1α promoter (Fig. 6J). Thus, upon activation with 1,25-VitD3, the VDR binds to regions within the HIF1α promoter and increases HIF1α mRNA transcription.

Discussion

Vitamin D deficiency is common but its medical consequences, apart from bone disease, are insufficiently understood. The possible vascular effects of vitamin D supplementation are discussed controversially. Here, we report that 1,25-VitD3 supplementation boosts the number of circulating AMCs both in healthy humans mice and in mice with carotid injury. We demonstrate that 1,25-VitD3 promotes vascular regeneration in healthy mice and restores normal vascular repair and AMC function in diabetic mice. By acting on myeloid cells, 1,25-VitD3 increases the level of SDF1 in the plasma and at sites of vascular injury through the induction of HIF1α. SDF1 by stimulating CXCR4 positive cells subsequently mediates the regenerative effect of 1,25-VitD3.

In the present study we found little evidence for a direct effect of 1,25-VitD3 on the vascular endothelium as genetic deletion of VDR in endothelial cells did not affect SDF1 plasma levels or vascular regeneration. These findings were unexpected given that several studies documented effects of 1,25-VitD3 on endothelial cells in culture such as an anti-inflammatory action in human coronary arterial endothelial cells and inhibition of TNFα-induced adhesion molecule expression. It has also been suggested that vitamin D acutely induces endothelial NO
formation by altering phosphorylation of endothelial nitric oxide synthase. In our hands, genetic deletion of eNOS, however, was without effect on 1,25-VitD3-induced vascular repair (Wong, M.S. unpublished observation). Although endothelial cells have been reported to express the VDR, RT-qPCR revealed that the level of receptor mRNA in these cells is more than 1000 times lower than that in monocytes or AMCs (Wong M.S., unpublished observation). Obviously, cultured cells, being devoid of most physiological stimuli, respond more vigorously than cells in an organ context and thus the direct endothelial effects of vitamin D might be restricted to the culture situation. Indeed, in a placebo-controlled randomized double blind trial study of 90 patients with documented coronary artery disease and low vitamin D level, treatment with 50,000 IU weekly for 12 weeks had no impact on reactive hyperemia peripheral arterial tonometry (RH-PAT) and levels of inflammatory cytokines in the blood and vitamin D also failed to improve flow-mediated dilatation in diabetic patients. Despite this notion, it should be emphasized that in spontaneously hypertensive rats (SHRs) 1,25-VitD3 supplementation improved endothelial function and reduced endothelium dependent contraction. However, it is unclear whether this effect is a consequence of a global change in stress level or local inflammation which impacts on the endothelium or a direct endothelial effect associated with prolonged treatment.

Several studies documented an anti-inflammatory effect of 1,25-VitD3 in a variety of cell types including endothelial cells, dendritic cells, T-cells and macrophages which was in part linked to an inhibition of NFkB activation and signaling. It was therefore unexpected that 1,25-VitD3 increased the expression of the cytokine SDF1 in response to injury in vivo and in culture in response to the combination of TNFα and interleukin 1β, two cytokines which are increased after injury and which were used to mimic the injury scenario. The SDF1
promoter does not contain putative binding sites for VDR but for inflammatory transcription factors and STAT transcription factors38,39. Nevertheless, TNFα/IL-1β or injury alone had little influence on SDF1 expression and also 1,25-VitD3 was without effect. After the combined application of these stimuli, SDF1 expression was induced, but this response was much delayed, compared to responses mediated directly by AP-1 or NFκB, which suggests an indirect mechanism. Indeed, inhibition of NFκB in the present study was without effect on 1,25-VitD3-mediated induction of SDF1 and also elements of the STAT pathway were rather down-regulated by 1,25-VitD3 than induced. As the mechanism driving SDF1 in the present study we identified HIF1α and observed that 1,25-VitD3 directly increases HIF1α mRNA transcription and that VDR directly binds to its promoter. This also explains why in acute experiments in the absence of cytokines 1,25-VitD3 had little effect on SDF1: Without a stabilizing signal like inflammation or hypoxia increases in Hif1α mRNA have basically no effect on HIF1α protein levels23.

It is a potential weakness of our study that we did not identify in detail the nature of the LysM-positive 1,25-VitD3 sensitive cell in the vessel wall. Lysosome M is expressed in all myeloid cells including macrophages, monocytes and granulocytes but also AMCs, which possess similarities to the myeloid lineage40,41. Tissue resident myeloid cells as well as progenitor cells are present in healthy vessels and in part are LysM positive42-45. The deletion experiments in the present study indicate that potentially tissue resident, adventitial localized, clodronate-sensitive macrophages are the source of SDF1 in response to injury and 1,25-VitD3. Although we could exclude granulocytes as mediators of healing, we did not further differentiate the subpopulations of clodronate sensitive cells which may comprise dendritic cells, tissue resident progenitors or macrophages.

Our study contrasts early observations suggesting that vitamin D limits angiogenesis12.

DOI: 10.1161/CIRCULATIONAHA.114.010650
The context of that study, however, was different, since a tumor environment and high doses of 1,25-VitD3 were studied. Given the anti-tumor effects of vitamin D, it is conceivable that part of the anti-angiogenic effect of the compound is indirect.

An important finding in the present study was that vitamin D supplementation in humans increased the number of circulating AMCs. The particular design of our study favors a positive outcome as healthy subjects in the winter months were studied, but the small sample size and the open and consecutive design let us interpret the data with caution. Nevertheless, the dramatic effects on 24-hydroxylase observed in the present study indicate the high efficiency of the treatment and the compliance of the study population. Thus, studies on the effect of vitamin D supplementation for vascular repair in humans, for example after balloon angioplasty, are warranted.

Collectively, the present work advocates vitamin D treatment as a novel and effective approach to promote vascular regeneration after injury in healthy and diabetic subjects.

Acknowledgments: We thank Cindy F. Höper, Jasmin Kohout, Bernd Sorg, Khader Awwad, Christian Fork, Susanne Schütz and Katalin Pálfi for their excellent support of our study.

Funding Sources: This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB815/TP1 to KS, SFB815/TP8 to BB&NB, SFB 834/TP2 to RPB, SFB1039 TPA1 to RPB and DS and SFB834/TP1 to SO), the Hugelschaffner-Stiftung (KS), the Heinrich und Fritz-Riese-Stiftung, the DFG excellence cluster ECCPS, the Goethe University (KS & RPB), the graduate program “Translational Research Innovation - Pharma” (TRIP) and the Alexander von Humboldt foundation. MSW is financed by the postdoctoral fellowship program of the Alexander von Humboldt foundation. KB receives support from the European Commission under framework 7 program: NAIMIT grant agreement 241447. AMS is supported by the British Heart Foundation and Fondation Leducq.
Conflict of Interest Disclosures: None.

References:

Figure Legends:
Figure 1. Vitamin D increases angiogenic myeloid cells (AMCs) in the human blood. Healthy subjects were studied before, during and after a 6 weeks course of vitamin D (cholecalciferol, 4000 IU/day) supplementation. (A&B) Plasma concentrations of 25-VitD3 (A) and 1,25-VitD3 (B) as determined by ELISA. * indicates significant differences to the mean of the values obtained before vitamin D supplementation.(C) Percentage of CD45-CD117+Sca1+Flk1+ AMCs in the peripheral blood. (D) 24-hydroxylase mRNA expression in myeloid cells isolated from the peripheral blood. N=6, *p<0.05, ticks on the x-axis of A&B indicate weeks.

Figure 2. 1,25-VitD3 promotes carotid artery reendothelialization. (A) 1,25-VitD3 plasma level (n=7, p<0.05) and (B&C) Percentage of CD45-CD117+Sca1+Flk1+ angiogenic myeloid cells in the white cell fraction of blood (B) and bone marrow (BM, C) and (D) Number of spleen colony forming units (n=4) from mice treated with solvent (CTL) or 1,25-VitD3 (100 ng/kg/day) for 5 days followed by vascular injury or sham operation and 3 days of recovery. (E&F) Statistical analysis and representative photos of the Evans blue (E) or lectin (F) stained carotid artery of mice treated with solvent (CTL) or 1,25-VitD3 (100 ng/kg/day) for 5 days, 3 days after injury (n=5). Red: lectin, blue: DAPI, Surface reconstruction plot of 3D-tile scans. (G) Injured area of the carotid artery of mice treated with solvent (CTL) and 22-oxacalcitrol (22-Oxa)(n=5) (*p<0.05 CTL vs. 1,25-VitD3 or 22-Oxa).

Figure 3. 1,25-VitD3 restores vascular repair in type 1-diabetic mice. (A) Evans blue staining of the injured carotid artery and (B) spleen colony forming unit assay from healthy and diabetic mice 60 days after streptozotocin-application with (100ng/kg/day) and without (CTL) 5 days pretreatment with 1,25-VitD3, 3 days after carotid injury (n=6, *p<0.05). (C-F) Angiogenesis in
the femoral artery ligation model of normal and diabetic mice with or without 1,25-VitD3 treatment (100 ng/kg/day, given as 5 daily injection prior to the procedure followed by injection every second day for the next 14 days). (C&D) Exemplary laser doppler images on day 14 (C) and statistics (D) for hind limb perfusion on day 7 and 14 after operation. *p<0.05 day 14 vs. non-treated control group and vs. 1,25-VitD3 treated diabetic group. #*p<0.05 day 7 to day 14 for identical treatment group (E&F) Exemplary histology (F) and statistics (E) of capillary density as determined by immuno-histochemistry and confocal microscopy 2 weeks after operation. *p<0.05 vs. healthy control group as well as vs. 1,25-VitD3 treated diabetic group (n=7, *p<0.05). green: CD31- positive endothelial cells, red: laminin-positive skeletal muscle cells. (n=4, *p<0.05 CTL vs. 1,25-VitD3 and healthy vs. diabetic).

Figure 4. 1,25-VitD3-induced vascular healing is mediated by the vitamin D receptor in myeloid cells. (A-D) Carotid artery injury model with (1,25-VitD3, 100 ng/kg/day) or without (CTL) a 5 days pretreatment with 1,25-VitD3 in (A) LysM-Cre (B) Cdh5-CreERT2 and (C) SMMHC-CreERT2 positive (cre+) or negative (cre-) vitamin D receptor flox/flox mice and (D) control mice treated with (+AMD) or without (-AMD) the CXCR4 antagonist AMD3100 (1.25 mg/kg/day, n>3). In the tamoxifen-activated Cre-lines (ERT2), cre positive as well as cre negative animals were treated with tamoxifen 2 weeks prior to the experiment. (E) Relative mRNA expression of SDF1 24 hours after *in vivo* carotid injury or sham operation (non-injured) in animals with or without (CTL) a 5-days pretreatment with 1,25-VitD3. (n>3). (F) Relative mRNA expression of SDF1 of the isolated mouse aorta after a 24 hours incubation with (injured) or without (intact) prior injury and with or without (CTL) addition of 1,25-VitD3 (10 nM) to the culture medium (n=4). (G) SDF1 ELISA from the culture medium conditioned with mouse
aortic segments for 24 hours with injury and 1,25-VitD3 (10 nM) treatment (1,25-VitD3) or without (CTL). (n=4). (H&I) Boyden chamber assays of cultured murine blood AMCs towards different conditioned media. (H) Medium only: no vessel present, +denuded vessel: the vessel was injured by CHAPS treatment, +intact vessel: no prior CHAPs treatment. Open bars indicate absence and closed bars presence of 1,25-VitD3 (10 nM) during the generation of the conditioned medium. (I) Experiment with or without SDF1 neutralizing antibody (R&D systems, 110 μg/mL) (n=6). (J) Exemplary confocal images and statistics of 10 consecutive sections of homing of ex vivo labeled bone marrow-derived mononuclear cells of control mice into the artery of mice with and without 1,25-VitD3 treatment on day 1 after injury and cell application. Arrows point on cell tracker orange labeled positive cells. Nuclei are counterstained in DAPI. Marker=50 μm. (n>3) *p<0.05 CTL vs. 1,25-VitD3, #p<0.05 no vessel vs. denuded vessel.

Figure 5. Injury and 1,25-VitD3-stimulated SDF1 production involves LysM-positive cells. (A) SDF1 ELISA from the plasma of VDR flox/flox mice crossed with cre-positive (+) and cre-negative (-) deleter lines under the endothelial-specific Cdh5- or myeloid-specific LysM-promoter subjected to carotid injury with or without (CTL) 5 days of pretreatment with 1,25-VitD3 (100 ng/kg/day, n=4). The Cdh5 line-cre+ and cre- line were pretreated with tamoxifen 2 weeks prior to the experiment. (n>3) (B&C) Relative SDF1 mRNA expression of AMCs (B) and SDF1 protein amount in the conditioned medium of AMCs (C) cultured from human blood with or without (CTL) treatment with TNFα (10 ng/ml), interleukin 1β (10 ng/ml) for 16 hours and 1,25-VitD3 (10 nM) pretreatment for 24 hours. (n=5). Conditioned medium was collected for 16 hours after simulation. (D) Carotid artery SDF1 mRNA expression one day after injury in the mouse lines indicated with (1,25-VitD3) or without (CTL) 5 days of pretreatment with 1,25-
VitD3 (100 ng/kg/day). (*p<0.05 CTL vs. 1,25-VitD3).

Fig 6. 1,25-VitD3 acts through HIF1α. (A) qRT-PCR analysis for SDF1 in human AMCs treated with or without 1,25-VitD3 (10 nM) for 24 hours prior to TNFα (10 ng/mL), interleukin 1β (10 ng/mL) and the HIF1 inhibitor acriflavine (10 μmol/L for 16 hours, n=4). (B) Effect of in vivo acriflavine (2 mg/kg/d i.p. in PBS) on 1,25-VitD3-stimulated carotid artery repair, (n=5). (C&D) Carotid artery repair (C) and (D) SDF1 mRNA expression as determined by qRT-PCR in LysM-conditioned Hif1/2 double knockout mice treated with or without 1,25-VitD3, n=4. (E&F) qRT-PCR for SDF1 in the intact or injured aorta (E) or in cytokine-primed spleen-derived monocytic cells (F) from control (Cre-) or conditional LysM-Hif1α knockout mice (Cre+), n=5,*p<0.05. (G) qRT-PCR for HIF1α in human AMCs treated with or without 1,25-VitD3 (10 nM) for 24 hours prior to TNFα (10 ng/mL) and interleukin 1β (10 ng/mL) for 16 hours, n=3. (H) HIF1α promoter activity as determined by luciferase assay in human AMCs treated with or without 1,25-VitD3 (10 nM, 24 hours), n=6. (I) Chromatin immuno-precipitation with Anti-vitamin D-receptor (VDR) antibody performed in HEK293 cells transiently transfected with pSG5 plasmids containing the genes coding for VDR and retinoic X receptor (RXR) followed by qRT-PCR for the regions indicated. βAct: βActin, CYP24: positive control Vitamin D-24 hydroxylase . (n=4). (J) Luciferase reporter assays in human AMCs treated with or without 1,25-VitD3 (10 nM, 24 hours) for the HIF1α promoter 1-821 nucleotides upstream of the transcriptional start site and vitamin D responsive element (VDRE) mutants of the plasmid as indicated (n=3),*p<0.05. CTL vs. 1,25-VitD3.
Figure 1

A) 25-VitD3 [nmol/L]

B) 1,25-VitD3 [pmol/L]

C) AMC [%]

D) 24-hydroxylase [rel. mRNA]

*p < 0.1
Figure 2
Figure 3
Figure 4

(A) Injured area [mm²]

(B) Cre- Cre+ LysM

(C) Cre- Cre+ Cdh5-ERT2

(D) -AMD +AMD SMMHC-ERT2

Wild type

(E) SDF1 in vivo

(F) SDF1 ex vivo

(G) Medium

(H) No Supplement 1,25-VitD3

(I) no vessel denuded vessel

(J) Injured carotid

Circulation

Journal of the American Heart Association
Figure 5
Figure 6
Vitamin D Promotes Vascular Regeneration

Michael Sze Ka Wong, Matthias S. Leisegang, Christoph Kruse, Juri Vogel, Christoph Schürmann, Nathalie Dehne, Andreas Weigert, Eva Herrmann, Bernhard Brüne, Ajay M. Shah, Dieter Steinhilber, Stefan Offermanns, Geert Carmeliet, Klaus Badenhoop, Katrin Schröder and Ralf P. Brandes

Circulation. published online July 11, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2014/07/11/CIRCULATIONAHA.114.010650

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/07/11/CIRCULATIONAHA.114.010650.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Supplemental Material

Vitamin D promotes vascular regeneration

Michael Sze Ka Wong PhD, Matthias S. Leisegang PhD, Christoph Kruse MSc, Juri Vogel MSc, Christoph Schürmann PhD, Nathalie Dehne PhD, Andreas Weigert PhD, Eva Herrmann PhD, Bernhard Brüne PhD, Ajay M. Shah MD, PhD, Dieter Steinhilber, Stefan Offermanns PhD, Geert Carmeliet MD PhD, Klaus Badenhoop MD, Katrin Schröder PhD, Ralf P. Brandes MD

Supplemental Figures

Figure S1: Effect of different treatment protocols of 1,25-VitD3 on carotid artery regeneration as determined by Evans blue staining 3 days after injury. (A) High dose (1 µg/kg/d) for 5 days, (B) low dose (100 ng/kg/d) over 28 days every other day before carotid injury, (C) high dose (1 µg/kg/d) single dose at day of carotid artery injury. n>3, *p<0.05 CTL vs. 1,25-VitD3

Figure S2: 1,25-VitD3 plasma level as determined by ELISA in the serum of control and streptozotocin-diabetic mice with and without 1,25-VitD3 supplementation (100 ng/kg/d). n=5, *p<0.05 CTL vs. 1,25-VitD3

Figure S3: Efficiency of tamoxifen-stimulated Cre-mediated excision of the vitamin D receptor (VDR). (A) RT-qPCR of the VDR in endothelial cells cultured from the lung of VDR-Flox-Flox-Cdh5-Cre-ERT2^{−/−} and VDR-Flox-Flox-Cdh5-Cre-ERT2^{2/0} mice treated with tamoxifen 10 days prior to sacrifice. (B) RT-qPCR of the VDR in the carotid artery of VDR^{Flox-Flox}-SMMHC-Cre-ERT2^{−/−} and VDR^{Flox-Flox}-SMMHC-Cre-ERT2^{2/0} mice treated with tamoxifen 10 days prior to sacrifice. n=3, *p<0.05 Cre- vs. Cre+
Figure S4: Contribution of circulating cells to the effect of 1,25-VitD3 on vascular repair. (A) Whole blood platelet count of mice treated with (platelet depleted) or without (CTL) purified rat monoclonal antibodies directed against mouse GPIb (CD42b, 2 μg/g bodyweight, i.v.) and (B&D&F) Evans blue staining of carotid artery injury in mice with or without (A&B) platelet depletion, (C&D) macrophage depletion, (E&F) PMN depletion and with or without 5 days of 1,25-VitD3 pretreatment. n>3. C: Exemplary liver stain for the macrophage marker F4/80 in Kupffer cells (brown). E: Exemplary whole blood count for PMNs. *p<0.05 CTL vs. 1,25-VitD3

Figure S5: Carotid artery CXCR4 expression is not increased 1 day after injury. Relative mRNA expression of CXCR4 from the mouse carotid artery 1 day (left) and 3 days (right) after carotid artery injury in animals with or without a 5 days pretreatment of 1,25-VitD3. n=3, *p<0.05 CTL vs. 1,25-VitD3

Figure S6: Combined stimulation with 1,25-VitD3 and cytokines induces SDF1 secretion from THP1 cells. SDF1 ELISA from the conditioned medium of THP1 cells stimulated with or without 1,25-VitD3 (10 nM, 24 hours) prior to TNFα (10ng/mL) and interleukin 1β (10 ng/ml, 16 hours). n=4, *p<0.05.
Figure S7: Pathway analysis activated by the combined stimulation with 1,25-VitD3 and cytokines. Human blood-derived AMCs were stimulated with or without 1,25-VitD3 (10 nM, 24 hours) prior to TNFα (10 ng/mL) and interleukin 1β (10 ng/mL, 16 hours). n=4, *p<0.05.

(A&B) Effect on hemeoxygenase 1 and JAK2 mRNA expression.

(C&D) Effect of NFκB inhibitor or PDTC (Pyrrolidine dithiocarbamate; 10 µmol/L) on 1,25-VitD3-induced SDF1 (C) and HIF1alpha (D) mRNA expression in response to cytokines. *p<0.05 CTL vs. 1,25-VitD3, n>3.
Supplemental Material

Vitamin D promotes vascular regeneration

Michael Sze Ka Wong PhD, Matthias S. Leisegang PhD, Christoph Kruse MSc, Juri Vogel MSc, Christoph Schümann PhD, Nathalie Dehne PhD, Andreas Weigert PhD, Eva Herrmann PhD, Bernhard Brüne PhD, Ajay M. Shah MD, PhD, Dieter Steinbüchel, Stefan Offermanns PhD, Geert Carmeliet MD PhD, Klaus Badenhoop MD, Katrin Schröder PhD, Ralf P. Brandes MD

Expanded Material & Methods Section

Experimental animals and animal procedures
All experimental procedures were approved by the local governmental authorities (approval numbers: F28/14, F28/30) and were performed in accordance with the animal protection guidelines exclusively in male mice. C57BL/6 mice were purchased from Charles Rivers (Deisenhofen, Germany). HIF1αlox/lox-, LysM-Cre+/-, and HIF1αlox/lox-HIF2αlox/lox-TG were provided by one of the co-authors (N.D.). HIF1αlox/lox, 1 and HIF2αlox/lox 2 mice were initially kindly provided by R.S. Johnson (San Diego, USA). A previously LysM-Cre deleter line was used for conditional gene knockout in monocytic cells like macrophages and leukocytes 3. The generation and general characterization of VDRlox/flox and SMMHC-CreERT2 mice 3 has been described previously. Cdhl5-CreERT2 mice 6 were kindly provided by Ralf Adams, MPI Münster. Activation of CreERT2 was achieved by tamoxifen (40 mg/kg dissolved in autoclaved sunflower oil) at 1:100 dilution in 10 µl at time 0 µl at time 0 and subsequently transcardially with NaCl 0.9% to remove the excessive dye. Carotid arteries were isolated and imaged by an infrared-based laser fluorescence scanner (Odyssey, Licor, Bad Homburg, Germany) or photographed on a macro stage. In some experiments, mice were injected i.v. with 100 µL Alexa Fluor® 647-conjugated Griffonia simplicifolia isolecint-B4 (0.25 mg/mL, Life Technologies, Grand Island, NY) 30 minutes before sacrifice. Followed by fixation and DPI staining, isolecint en face staining in the carotid artery was performed. For this, 3D-tile scans were recorded with a x20 objective in a LSM510 Meta and subsequently reconstructed for surface presentation. The lectin negative area was measured and subjected to statistics.

Carotid artery injury model
Electric-injury was performed under general anesthesia by ketamin/rompun as described 9. Briefly, the carotid artery was exposed to electric injury using a haemostatic electric coagulation forceps (ERBOTOM ICC 50 HF, ERBE, Tübingen, Germany) twice juxtapose for 3 seconds to induce a 3 mm wide denudation. Wounds were closed by staples and animals were allowed to recover for 3 days followed by Evans blue staining for determination of the denuded area. Evans blue solution (2%, 200 µL) was injected via the tail vein and allowed to circulate for 10 minutes. Subsequently, animals were perfused transcardially with NaCl 0.9% to remove the excessive dye. Carotid arteries were isolated and imaged by an infrared-based laser fluorescence scanner (Odyssey, Licor, Bad Homburg, Germany) or photographed on a macro stage. In some experiments, mice were injected i.v. with 100 µL Alexa Fluor® 647-conjugated Griffonia simplicifolia isolecint-B4 (0.25 mg/mL, Life Technologies, Grand Island, NY) 30 minutes before sacrifice. Followed by fixation and DPI staining, isolecint en face staining in the carotid artery was performed. For this, 3D-tile scans were recorded with a x20 objective in a LSM510 Meta and subsequently reconstructed for surface presentation. The lectin negative area was measured and subjected to statistics.

Femoral artery ligation model
Neovascularization capacity was investigated in a murine model of severe hind limb ischemia in 6 to 8-week old mice. The deep femoral artery was ligated with an electric coagulator (ERBOTOM ICC50, ERBE, Tübingen, Germany) and subsequently the superficial femoral artery and vein as well as the epigastric arteries were completely excised. The overlying skin was closed with 3 surgical staples. Relative blood flow was determined by laser Doppler imaging (Laser Doppler Perfusion Imager System, Wilmingtom, Germany) at 7 and 14 days post-ligation. The perfusion of the ischemic and non-ischemic limb was calculated on the basis of colored histogram pixels. To minimize variables including ambient light

Streptozotocin diabetes type I model
Diabetes was induced by four consecutive daily injections of streptozotocin (STZ; 70 mg/kg body weight; Sigma-Aldrich, Munich, Germany) dissolved in 100 mmol/L sodium citrate buffer (pH 4.5). Citrate buffer only was administered to control animals. STZ-treated mice also received a subcutaneous insulin slow extended release implant (Linplant; Linshin, Ontario, Canada) to prevent early ketoadsisis. Plasma glucose levels were measured before induction of diabetes and monitored for at least 60 days (Haemo-Glukotest; Roche Diagnostics).

Wong et al.: Vitamin D and vascular regeneration
Supplemental Material
and temperature and to maintain a constant body temperature, mice were exposed to infrared light for 10 minutes before laser Doppler scans. During the scan, mice were positioned supine on a heating pad with their legs stretched and fixed.

To determine capillary density, cross-sections of adductor and semimembranous muscles embedded in Tissue Tek (Sakura, Heppenheim, Germany) were stained. After fixation in phosphate buffer (100 mmol/L, pH 7.3) containing 4% formalin the tissue was blocked with 3% bovine serum albumin and permeabilized with 0.5% Triton X-100 followed by incubation with anti-CD31 (BD Pharmingen, Heidelberg, Germany) and anti-laminin (Abcam, Cambridge, UK) and imaged by confocal microscopy.

Active vitamin D supplementation

1α,25-Dihydroxy-vitamin D3 (1,25-VitD3, 100 ng / kg / day) was dissolved in a solvent mixture of water, propylene glycol and ethanol in a 5:4:1 ratio. For the carotid artery injury model, 1,25-VitD3 or solvent were injected intraperitoneally in a series of 5 days followed by electric-injury. For the femoral artery ligation model, animals received additional injections every other day after the operation.

FACS analyses of angiogenic myeloid cells (AMCs)

Murine circulating AMCs were determined in the blood obtained by cardiac puncture in heparinized syringes. Human AMCs were isolated from whole blood of healthy donors. Plasma was obtained by centrifugation at 800 g for 10 minutes. The remaining blood fraction was diluted with 1 mL PBS containing 0.5% BSA and 2 mmol/L EDTA and was overlaid on top of 3 mL LSM 1077 lymphocyte separation medium (PAA Laboratories, Pasching, Austria) and subjected to density gradient centrifugation (800 g, 20 minutes). Murine bone marrow-derived mononuclear cells were obtained by flushing the femurs with 1 mL PBS containing 0.5% BSA and 2 mmol/L EDTA and subsequent density gradient centrifugation as mentioned above. Mononuclear cells were counted and stained for CD45, CD117, Sca-1 and Flk-1 surface expression using PE, APC, FITC or eFluor® 605NC-labeled antibodies in a dilution of 1:100 in PBS buffer after blocking non-specific Fc receptor binding. CD45, CD117 and Flk-1 antibodies were purchased from BD Pharmingen (Heidelberg, Germany), while the Sca-1 antibody was purchased from eBioscience, San Diego, CA. Gating strategies were designed using fluorescence minus one (FMO) controls and samples were acquired using a LSRIIFortessa flow cytometer and FACSDiva software 6.0 (BD Biosciences, Heidelberg, Germany).

Colony forming units (CFU)

Murine spleens were isolated, homogenized and filtered through 100 μm cell strainer (BD Falcon, Franklin Lakes, USA),followed by subsequent density gradient centrifugation as mentioned above. 1x10^5 cells were plated per 3.5 cm dish in methylcellulose (Methocult GF H4535, Stem Cell Technologies). CFUs were counted after 14 days.

Determination of vitamin D, its metabolites and cytokine plasma-level

ELISA kits from IDS were used to determine the plasma concentrations of 1,25-VitD3 and 25-hydroxy-vitamin D3 according to the instructions contained in the kit. SDF-1 plasma level was determined by ELISA-kits purchased from R&D following the manufacturer’s instructions.

Cell culture and transfection

White blood cells were plated in a density of 4x10^6 per cm² on fibronectin-coated plates in endothelial growth medium (EGM) containing 2% fetal calf serum (FCS). Medium was changed every other day until day 7.

For RNA induction or ELISA experiments, angiogenic myeloid cells (AMCs) or THP1 macrophages were treated with DMSO (Sigma-Aldrich, Munich, Germany) or 1,25-VitD3 (10 nM; Sigma-Aldrich, Munich, Germany) for 24 hours followed by the supplemental incubation with TNFα (10 ng/mL; Peprotech, Hamburg, Germany) and IL1β (10 ng/ mL; Peprotech, Hamburg, Germany) for 16 hours. For inhibition of hypoxia inducible factors, acriflavine (10 μmol/L) was used for 16 hours (Sigma-Aldrich, Munich, Germany).

AMCs were identified by their ability to stain positive for Ulex europaeus lectin and to take up 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine-labeled acetylated low density lipoprotein (DiLAc-LDL). For this, cells were incubated with DiLAc-LDL (2.4 μg/mL) at 37°C for 1 hour and subsequently exposed to fluorescein-5-isothiocyanate (FITC)-labelled Ulex europaeus agglutinin I (lectin, 10 μg/mL; Sigma-Aldrich, Munich, Germany) for 1 hour. Double positive cells were judged as AMCs and 99% of all cells in the culture were positive for both dyes. Murine blood AMCs were isolated and cultured in a similar way.

Homing experiments

Bone marrow was obtained from the femurs of healthy, untreated donor mice. Monocytic cells were treated ex vivo with cell tracker orange (Invitrogen, Carlsbad, CA, USA) and cells (5x10^6) were resuspended in 100 μL of prewarmed PBS and injected into recipient mice (i.v. via tail vein) 3 hours after the carotid artery injury. The recipient mice were sacrificed 1 day after the injury and the carotid arteries were harvest, sectioned, counter stained with DAPI and imaged by laser microscopy. The number of positive cells in 10 consecutive sections was added per artery and used for statistics.

Luciferase assay and site-directed mutagenesis

AMCs were transiently transfected with the original or Vitamin D responsive element (VDRE) mutated pGL3-HIF1α promoter (821 nt) plasmid in pGL3

Wong et al.; Vitamin D and vascular regeneration

Supplemental Material
with Transpass D2 according to the manufacturer’s protocol (New England Biolabs, Frankfurt, Germany). 24 hours after transfection cells were stimulated with DMSO or 1,25-VitD3 (10 nmol/L) for 24 hours, followed by the stimulation with TNFα (10 ng/mL) and ILβ (10 ng/mL) for 16 hours. Luciferase activity was determined with the assay kit from Promega (Mannheim, Germany) following the manufacturer’s instructions in a Berthold LB9505 luminometer (Bad Wildbad, Germany) and normalized to the empty pGL3 control vector (Promega). VDREs were predicted with the aid of the JASPAR database. The VDREs of the human HIF1α-promoter in the pGL3-HIF1α plasmid were mutated at sites 438 (tggtatctcag to tgTatAGGAgag), 626 (agggcagatac to cctgTTac) and 648 (ccgggcac to ccTtc) with the Quikchange II XL Site-directed Mutagenesis Kit from Agilent (Santa Clara, USA) according to the manufacturer’s protocol. For primer sequences, see supplementary table 1.

Chromatin immuno-precipitation (ChIP)

HEK293 cells were transiently transfected with pSG5 vectors expressing the retinoid x receptor (RXR) and the vitamin D receptor (VDR) with Fugene6 (Roche, Mannheim, Germany) according to the manufacturer’s protocol, and subsequently stimulated as indicated and subjected to ChIP as follows: Cell preparation, crosslinking and nuclei isolation was performed with the truCHIP™ Chromatin Shearing Kit (Covaris, Woburn, USA) according to the manufacturer’s protocol. Afterwards, the lyses were sonified with the Bioruptur Plus (10 cycles, 30 seconds on, 90 seconds off; Diagenode, Seraing, Belgium) at 4°C. Cell debris was removed by centrifugation and the lyses were diluted 1:3 in dilution buffer (20 mmol/L Tris/HCl pH 7.4, 100 mmol/L NaCl, 2 mmol/L EDTA, 0.5% Triton X-100 and protease inhibitors). After preclearing with 30 µL DiaMag protein A and protein G coated magnetic beads slurry (Diagenode, Seraing, Belgium) for 30 minutes at 4°C, samples were incubated over night at 4°C with 5 µL of anti-vitamin D receptor antibody (Sc-1008, Santa Cruz Biotechnology, Heidelberg, Germany), and 5% of the samples served as input. The VDR complexes were collected with 50 µL DiaMag protein A and protein G coated magnetic beads (Diagenode, Seraing, Belgium) for 3 hours at 4°C, subsequently washed twice for 5 minutes with each of the wash buffers 1-3 (Wash Buffer 1: 20 mmol/L Tris/HCl pH 7.4, 150 mmol/L NaCl, 0.1% SDS, 2 mmol/L EDTA, 1% Triton X-100; Wash Buffer 2: 20 mmol/L Tris/HCl pH 7.4, 500 mmol/L NaCl, 2 mmol/L EDTA, 1% Triton X-100; Wash Buffer 3: 10 mmol/L Tris/HCl pH 7.4, 250 mmol/L lithium chloride, 1% Nonidet, 1% sodium deoxycholate, 1 mmol/L EDTA) and finally washed with TE-buffer pH 8.0. Elution of the beads was done with elution buffer (0.1 M NaHCO3, 1% SDS) containing 1proteinase K (Diagenode, Seraing, Belgium) and shaking at 600 rpm for 1 hour at 55°C, 1 hour at 62°C and 10 minutes at 95°C. After removal of the beads, the eluate was purified with the QiaQuick PCR purification kit (Qiagen, Hilden, Germany) and subjected to qPCR analysis. As negative control, primer targeting the β-actin promoter were used. Primers amplifying the protomor region of 25-hydroxy vitamin D3-24 hydroxylase (CYP24A1) served as positive control. For primer sequences, see supplementary table 1.

Ex vivo vascular injury model

Mice were killed by exsanguination in deep isoflurane anesthesia and the remaining blood was then removed by transcardiac perfusion with Hanks buffer. Subsequently, the aorta was isolated, cleaned of adhering tissue under sterile condition, cut into two equal-size pieces. One was injured by perfusion with CHAPS (1% in 5% glucose). Both vessel segments were extensively washed afterwards in sterile Hanks buffer and transferred into separate wells of a 24 well plate filled with medium EGM containing 2% FCS and antibiotic without 1,25-VitD3. After 24 hours, the conditioned medium was used for Boyden chamber experiments and ELISA assays. The vessels were subjected to qRT-PCR.

Cell migration assay

Murine blood AMCs were kept in culture for 3 days. After detaching the cells with EDTA/Versene, 2x10³ cells in endothelial growth medium (EGM) with 2% FCS were plated into the insert of a Boyden chamber (8 µm pore size). The lower part medium was supplemented with VEGF165 (50 ng/ml; R&D) or conditioned medium. EGM with 2% FCS without cytokine supplement served as negative control, reflecting basal migration. Cells were allowed to migrate for 24 hours and then migration was stopped by adding paraformaldehyde to the chamber. Cells at the upper side of the insert-membrane were removed and cells at the lower side were stained with DAPI. Positive cells in three different fields of view were counted and migration in response to the cytokines was calculated relative to basal migration.

Conditioned medium was generated from mouse aortas dissected and cleaned of surrounding tissue. After preparation, the aortas were cut into 8 pieces of 30 µm size pieces. One was injured by perfusion with 1,25-VitD3. After 24 hours, the aortas were subjected to qPCR.

qRT-PCR

RNA was isolated from AMCs using the RNA Miniprep Kit (Bio&Sell, Feucht, Germany). cDNA synthesis was carried out with SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) and random hexamer primers; semiquantitative real-time PCR was performed with Fast Plus EvaGreen Master Mix for qPCR w/Low Rox (2x, 100 rxn) (Biotium, Hayward, CA, USA) in a Mx3005 cycler (Stratagene) with the indicated primers. Relative expressions of
target genes were normalized, analyzed by the delta-delta-CT method and given as ratio compared to control experiments. For primer sequences, see supplemental table 1.

Vitamin D treatment in healthy volunteers

A pilot study in 6 healthy volunteers (4 male, 2 female, age 32.5 ± 4.9 years, mean ± SD) who gave informed written consent, was performed. This was part of the ViDDA1 trial (registered under EUDRACT 2010-022677-34, “Influence of high dose vitamin D substitution on humoral immunity and lymphocyte function in patients with newly diagnosed and recent onset type 1 diabetes mellitus or Addison’s disease”), which was approved by the Ethical Committee of Frankfurt Medical School. Blood was taken weekly in the morning over a period of 12 weeks and vitamin D was supplemented from week 4 to 10 by a daily oral intake of 4,000 IU cholecalciferol (Vigantol Öl, Merck Serono).

Statistical analysis

Unless otherwise indicated, data are given as means ± standard error of mean (SEM). Calculations were performed with BiAS.10.12 with the exception of the linear mixed effect model. This was processed in R 3.0.2 (R Foundation for Statistical Computing, Vienna, Austria) utilizing the extension package nlme 3.1-111 and multcomp [11]. The processing and the specific model accounting for inner-individual dependencies, variance heterogeneity and suitable contrasts as well as check of normality were programmed by one of the authors (E.H.). In case of multiple testing, significance correction of the linear mixed model or Bonferroni correction was applied. A p-value of <0.05 was considered as significant.

Linear mixed effect model: Fig 1A, 1B, 3D

Paired T-test: Fig 1C, 1D

Unpaired T-test: Fig 2E, 2F, 6B, 6C, 6D, 6F, 6J, S1A, S1B, S1C, S3A, S3B, S4F, 57C, S7D

Mann-Whitney test: 2A, 2B, 2C, 2D, 2F, 4G, 6H, S4A, S4D

ANOVA followed by post hoc Bonferroni T-test for selected groups: Fig 3A, 3B, 4A, 4B, 4C, 4D, 4E, 4F, 4H, 4I, 4J, 5A, 5B, 5C, 5D, 6A, 6E, 6F, 6G, S2, S4B, S4, S5, S7, S7A, S7B

Reference List

Primer for qRT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences (5’->3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse VDR</td>
<td>Forward TGA GTC TTC CCA GGA GAG CA</td>
</tr>
<tr>
<td></td>
<td>Reverse CCA CAG ATC CGA GCC ACA TT</td>
</tr>
<tr>
<td>Human VDR</td>
<td>Forward AAG GCA CTA TTC ACC TGC CC</td>
</tr>
<tr>
<td></td>
<td>Reverse AGT AGG TGG GGT CGT AGG TC</td>
</tr>
<tr>
<td>Mouse SDF-1α</td>
<td>Forward ACT TTC ACT CTC GGT CCAC</td>
</tr>
<tr>
<td></td>
<td>Reverse TTG AGG ATT TTC AGA TGC TT</td>
</tr>
<tr>
<td>Human SDF-1α</td>
<td>Forward ATT CTT CGA AAG CCA TGTT</td>
</tr>
<tr>
<td></td>
<td>Reverse AAG CTT TCT CCA GGT ACT CC</td>
</tr>
<tr>
<td>Mouse CXCR4</td>
<td>Forward TGG GTT CTG GAG ACT ATG AC</td>
</tr>
<tr>
<td></td>
<td>Reverse TTC TTC TGG TAA CCC ATG AC</td>
</tr>
<tr>
<td>Human CXCR4</td>
<td>Forward CCG CAT CTG GAG AAC CAG CGG</td>
</tr>
<tr>
<td></td>
<td>Reverse AGG AGG TCG GCC ACT GAC AGG</td>
</tr>
<tr>
<td>Mouse POLR2A</td>
<td>Forward CTC GAA ACC AGG ATG ATC TGA CTC</td>
</tr>
<tr>
<td></td>
<td>Reverse CAC ACC CAT TGT GCC AAT GGA TAG</td>
</tr>
<tr>
<td>Human βAct</td>
<td>Forward AAA GAC CTG TAC GCC AAC A</td>
</tr>
<tr>
<td></td>
<td>Reverse GTC ATA CTC GTT CTT GCT GA</td>
</tr>
<tr>
<td>Human HIF1α</td>
<td>Forward GCT CAT CAG TTG CCA CTT CC</td>
</tr>
<tr>
<td></td>
<td>Reverse ACC AGC ATC CAG AAG TTT CC</td>
</tr>
<tr>
<td>Human JAK2</td>
<td>Forward GCC GAG TTG TAA CTA TCC</td>
</tr>
<tr>
<td></td>
<td>Reverse CGA AAT TGG GCC ATG ACA G</td>
</tr>
<tr>
<td>Human HO-1</td>
<td>Forward CAA CAT CCA GCT CTT TGA GGA G</td>
</tr>
<tr>
<td></td>
<td>Reverse ACA GCA ACT GTC GCC ACC AGA AAG</td>
</tr>
</tbody>
</table>

Primer for site-directed mutagenesis:

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Primer sequences (5’->3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human HIF1α site 438</td>
<td>Sense CTG CGT CGC TCG CCA TTG TAT AGG AAG GAA CCC GCC TCC ACC T</td>
</tr>
<tr>
<td></td>
<td>Antisense AGG TGG AGG CGG GTT CCT TCC TAT ACA ATG GCC AGC GCA G</td>
</tr>
<tr>
<td>Human HIF1α site 626</td>
<td>Sense CGC CTT CCT TCG GAG AAG TCT CAT ATT CAG ACT CGG GCT GAG C</td>
</tr>
<tr>
<td></td>
<td>Antisense GCT CAG CCC GAG TCT GGG AAA TAT GAG ACT TCT CCG AAG GAA GGC G</td>
</tr>
<tr>
<td>Human HIF1α site 648</td>
<td>Sense GCG CCT CCC AAA GCC TGT TAC CGC CTT CCT TCG G</td>
</tr>
<tr>
<td></td>
<td>Antisense CCG AAG GAA GCC GGT AAC AGG CTT TGG GAG GCG C</td>
</tr>
</tbody>
</table>
Primer for ChIP:

<table>
<thead>
<tr>
<th>Promoter</th>
<th>Primer sequences (5'->3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human ßAct</td>
<td>Forward CAA GGC GGC CAA CGC CAA AAC TCT</td>
</tr>
<tr>
<td></td>
<td>Reverse GCC ATA AAA GGC AAC TTT CGG AAC G</td>
</tr>
<tr>
<td>Human CYP24A1</td>
<td>Forward CGA AGC ACA CCC GGT GAA CT</td>
</tr>
<tr>
<td></td>
<td>Reverse CTC CTC TGC GTG CTC ATT GG</td>
</tr>
<tr>
<td>Human HIF1a 2026</td>
<td>Forward CTA TGC ACC AGA TAT TGT TC</td>
</tr>
<tr>
<td>Human HIF1a 1895</td>
<td>Reverse GGC AAG TCG TTT AAT CTC</td>
</tr>
<tr>
<td>Human HIF1a 1418</td>
<td>Forward ACA ATT GAA AGC CAC TAC AG</td>
</tr>
<tr>
<td>Human HIF1a 1335</td>
<td>Reverse ACT TCT CAC CTT TGC CTT ATG</td>
</tr>
<tr>
<td>Human HIF1a 808</td>
<td>Forward AGC AGA GTT GGG CGG CAA TC</td>
</tr>
<tr>
<td>Human HIF1a 664</td>
<td>Reverse TTT GGG AGG CGC TGC TGA GAA G</td>
</tr>
<tr>
<td>Human HIF1a 582</td>
<td>Forward TCC GCC GCT AAA CAC AGA C</td>
</tr>
<tr>
<td>Human HIF1a 435</td>
<td>Reverse CGG GTT CCT CGA GAT CCA ATG</td>
</tr>
<tr>
<td>Human HIF1a 210</td>
<td>Forward ACA AGC CAC CTG AGG AGA G</td>
</tr>
<tr>
<td>Human HIF1a 89</td>
<td>Reverse GAA GGA AAG GCA AGT CCA GAG</td>
</tr>
</tbody>
</table>