Innate Response Activator B Cells Aggravate Atherosclerosis by Stimulating
T_{H1} Adaptive Immunity

Running title: Hilgendorf et al.; IRA B aggravate atherosclerosis

Ingo Hilgendorf, MD¹*, Igor Theurl, MD, PhD^{1,2}; Louisa M.S. Gerhardt, MS¹; Clinton S. Robbins, PhD^{1,3}; Georg F. Weber, MD¹; Ayelet Gonen, PhD¹; Yoshiko Iwamoto, BS¹; Norbert Degousee, PhD²; Tobias A. W. Holderried, MD³; Carla Winter, BS^{1,6}; Andreas Zirlik, MD⁶; Herbert Y. Lin, MD¹; Galina K. Sukhova, PhD⁷; Jagdish Butany, MD⁸; Barry B. Rubin, MD, PhD⁹; Joseph L. Witztum, PhD⁴; Peter Libby, MD⁷; Matthias Nahrendorf, MD, PhD¹; Ralph Weissleder, MD, PhD^{1,10}; Filip K. Swirski, PhD¹

¹Center for Systems Biology, Massachusetts General Hospital, Boston, MA; ²Dept of Internal Medicine IV, Infectious Diseases, Immunology Rheumatology, Pneumology, University Hospital of Innsbruck, Innsbruck, Austria; ³Toronto General Research Institute, University Health Network, Toronto, ON, Canada; ⁴Dept of Medicine, UCSD, La Jolla, CA; ⁵Dept of Gastroenterology, Hepatology and Infectious Diseases, University of Duesseldorf, Duesseldorf, Germany; ⁶Dept of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany; ⁷Cardiovascular Division, Dept of Medicine, Brigham and Women’s Hospital, Boston, MA; ⁸Dept of Pathology; ⁹Division of Vascular Surgery, Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada; ¹⁰Dept of Systems Biology, Harvard Medical School, Boston, MA

*contributed equally

Address for Correspondence:
Ingo Hilgendorf, MD or Filip K. Swirski, PhD
Center for Systems Biology
Massachusetts General Hospital and Harvard Medical School Simches Research Building
185 Cambridge St.
Boston, MA 02114
Tel: 617-724-6242
Fax: 617-726-5708
E-mail: fswirski@mgh.harvard.edu or hilgendorf.ingo@mgh.harvard.edu

Abstract

Background—Atherosclerotic lesions grow via the accumulation of leukocytes and oxidized lipoproteins in the vessel wall. Leukocytes can attenuate or augment atherosclerosis through the release of cytokines, chemokines, and other mediators. Deciphering how leukocytes develop, oppose and complement each other’s function, and shape the course of disease, can illuminate understanding of atherosclerosis. Innate response activator (IRA) B cells are a recently described population of GM-CSF-secreting cells of hitherto unknown function in atherosclerosis.

Methods and Results—Here we show that IRA B cells arise during atherosclerosis in mice and humans. In response to high cholesterol diet, IRA B cell numbers increase preferentially in secondary lymphoid organs via Myd88-dependent signaling. Mixed chimeric mice lacking B cell-derived GM-CSF develop smaller lesions with fewer macrophages and effector T cells. Mechanistically, IRA B cells promote the expansion of classical dendritic cells, which then generate IFNγ-producing \(T_{H1} \) cells. This IRA B cell-dependent \(T_{H1} \) skewing manifests in an IgG1 to IgG2c isotype switch in the immunoglobulin response against oxidized lipoproteins.

Conclusions—GM-CSF-producing IRA B cells alter adaptive immune processes and shift the leukocyte response toward a \(T_{H1} \)-associated milieu that aggravates atherosclerosis.

Key words: atherosclerosis, immunology, growth factors and cytokines, B cells, Dendritic cells, T cells, Granulocyte macrophage colony-stimulating factor
Atherosclerosis is a lipid-driven inflammatory disease that mobilizes a diverse repertoire of leukocytes. Although macrophages accumulate in lesions in greatest number, other leukocytes can modulate the course of disease. Over the last twenty years, many studies have explored how leukocytes influence atherosclerosis. For example, M1 macrophages, T helper-1 (T_{H1}) cells, and B2 B cells accelerate, whereas T regulatory (T_{reg}) cells and B1 B cells attenuate lesion growth, either by augmenting or restraining inflammation. These observations have clinical implications because they suggest that harnessing protective leukocyte activities and silencing those that are harmful could furnish novel treatments for atherosclerosis and other inflammatory diseases.

Innate response activator (IRA) B cells develop in the spleen during the inflammatory phase of sepsis. IRA B cells produce GM-CSF, a pleiotropic growth factor that, although dispensable to hematopoiesis in the steady state, promotes the survival, proliferation, and activity of various leukocytes expressing its receptor. The function and source of GM-CSF in atherosclerosis remains obscure. Even though some have reported that GM-CSF protects against atherosclerosis, the weight of evidence suggests that GM-CSF is atherogenic because Ldlr^{−/−} Csf2^{−/−} mice develop smaller lesions, whereas exogenous administration of GM-CSF to atherosclerotic mice increases plaque burden and stimulates intimal cell proliferation. In Apoe^{−/−} mice, hematopoietic stem and progenitor cells (HSPC) elevate expression of the common beta chain (βc) of the GM-CSF receptor downstream of impaired reverse cholesterol transport, leading to proliferation that generates leukocytosis and monocyteosis. GM-CSF can arise from macrophages, T cells, and epithelial cells, but it remains unknown whether IRA B cells develop in atherosclerosis and, if so, whether they have functional relevance.
Methods

A detailed description of the methods is available in the online-only Data Supplement.

Animals

C57Bl/6J (WT), B6.SJL-PtprcaPepcb/BoyJ (CD45.1^+), B6.129P2(SJL)-Myd88tm1.1Defr/J (Myd88^{+/−}), B10.129S2(B6)-Ighmtm1Cgn/J (μMT), B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II), B6.129S7-Ldlrtm1Her/J (Ldlr^{−/−}) and B6.129P2-Apoetm1Unc/J (Apoe^{−/−}) were purchased from The Jackson Laboratory (Bar Harbor, ME). GM-CSF-deficient mice (Csf2^{−/−}) were kindly provided by Dr. Randy Seeley, University of Cincinnati, USA. GM-CSF-receptor deficient mice (Csf2rb^{−/−}) were kindly provided by Dr. Jeffrey Whitsett, Cincinnati Children’s Hospital Medical Center, USA. All protocols are approved by the Animal Review Committee at Massachusetts General Hospital.

Animal experiments

Mixed bone marrow chimeras were generated by lethally irradiating 8 weeks old male Ldlr^{−/−} mice and reconstituting with a 50:50 mixture of Csf2^{+/−} with WT (Controls) and μMT bone marrow cells (IRA B KO), or with CD45.1^{+}, Myd88^{−/−} and Csf2rb^{−/−} bone marrow. For adoptive transfer studies 25 x 10^6 CD19^{+} B cells from WT and Csf2^{−/−} mice, respectively, were injected intravenously twice per mouse, 4 weeks apart.

Histology

Murine aortas and spleens were embedded in Tissue-Tek O.C.T compound (Sakura Finetek) for sectioning and staining. Human spleen samples were fixed in 10% formalin and embedded in paraffin for histologic sectioning and staining.

Flow Cytometry

Antibodies used for flow cytometry are listed in the online-only Data Supplement. Data were
acquired on a BD LSRII and analyzed with FlowJo.

Reverse transcription PCR. RNA was isolated from sorted cells with the RNeasy Micro Kit (Qiagen) and from snap-frozen aortas and spleens with the RNeasy Mini Kit (Qiagen). Quantitative real-time TaqMan PCR was run on a 7500 PCR thermal cycler (Applied Biosystems).

Cell culture

Lineage-depleted bone marrow cells were co-cultured with equal numbers of IRA B cells and murine IL-4 (5000 U/ml) to generate dendritic cells. 1 x 10⁴ IRA B cell generated bone marrow derived DC (BMDC) were loaded with 100 μg/ml ovalbumin (OVA) or BSA and co-cultured with 5 x 10⁴ labelled OT-II T cells over 4 days for flow cytometric assessment of proliferation. CD4⁺ CD25⁺ Treg cells were sorted from IRA B KO and control mice and co-cultured with sorted CD45.1⁺ CD4⁺ CD25⁻ Tconv cells at increasing dilutions on T cell-depleted and irradiated splenocytes loaded with 1 μg/ml anti-CD3e. Suppression of T cell proliferation was assessed by flow cytometry after 3 days.

Statistics

Results are shown as mean ± SEM. The unpaired Student’s t test was applied to evaluate differences between two study groups. One-way ANOVA with post-hoc Dunnett’s multiple comparisons test was performed when comparing more than two groups. P-values of 0.05 and less denote significant changes.

Results

GM-CSF-producing IRA B cells expand in atherosclerosis

We asked whether IRA B cells develop in atherosclerosis. The spleens of both Ldlr⁻/⁻ and Apoe⁻
mice consuming a diet high in fat and cholesterol (HCD) contained a population of GM-CSF-producing cells. Most of these were IgMhigh B220+ CD23low CD21low CD138high CD43high VLA4high IRA B cells, resembling IRA B cells generated by LPS stimulation (Figure 1A, Supplemental Figure 1A), as originally described11. Immunofluorescence (IF) staining for GM-CSF revealed a population of GM-CSF-producing IgM+ B cells in the marginal zone and red pulp of the spleen (Figure 1B), a location where IRA B cells typically reside. Analysis of various organs showed preferential IRA B cell accumulation in the spleen, although the bone marrow and lymph nodes also harbored smaller IRA B cell populations (Figure 1C). IRA B cell numbers rose most dramatically and progressively in Apoe−/− mice (Figure 1D), a finding that agrees with the prevailing notion that Apoe−/− mice display more severe inflammation and atherosclerosis than Ldlr−/− mice. B cells accumulate in the aortic adventitia20, but we did not detect IRA B cells in the aorta, indicating that IRA B cells do not furnish lesional GM-CSF21, and suggesting that IRA B cells do not affect lesions locally. Humans with severe coronary and peripheral artery disease contained more GM-CSF+ IgM+ IRA B cells in the spleen compared to humans without atherosclerotic disease (Figure 1E, Supplemental Figure 1B, C). Thus, IRA B cells accumulate in secondary lymphoid organs in humans and mice with atherosclerosis. Future studies will need to determine the exact triggers and risk factors responsible for IRA B cell production.

During experimental sepsis, IRA B cells arise by engaging Myd88-dependent Toll-like-receptors (TLR)11. To test whether IRA B cells require Myd88 in atherosclerosis, we generated mixed chimeras by lethally irradiating Ldlr−/− mice and reconstituting with a mixture of wild type (WT) CD45.1+ and Myd88+/− CD45.2+ bone marrow cells (Supplemental Figure 1D). After reconstitution, mice consumed HCD for 12 weeks. CD45.1+ WT, but not CD45.2+ Myd88−/−
cells, developed into IRA B cells, indicating a requirement for direct Myd88 engagement in B cells (Supplemental Figure 1E).

IRA B cells aggravate atherosclerosis

Determining the impact of IRA B cells on atherosclerosis required selective depletion of GM-CSF from B cells. To achieve this, we adapted the mixed chimeric strategy (Figure 2A). Ldlr^{−/−} mice were lethally irradiated and reconstituted with a mixture of bone marrow cells from Csf2^{−/−} (i.e., GM-CSF^{−/−}) and μMT mice (i.e., B cell-deficient). In the reconstituted animals, B cells were the only population completely lacking the capacity to produce GM-CSF because only Csf2^{−/−} cells could give rise to B cells. As controls, we reconstituted Ldlr^{−/−} mice with bone marrow from Csf2^{−/−} and WT mice, thus ensuring that differences between the groups – should any arise – would exclusively reflect B cell-derived GM-CSF deficiency while preserving GM-CSF production by other sources. RT-PCR analysis on sorted B cells, T cells, and myeloid cells confirmed the selective deletion of GM-CSF from B cells (Figure 2B). After 6 weeks of reconstitution, we profiled the leukocyte repertoires in the Csf2^{−/+}/μMT (henceforth simply referred to as “IRA B KO mice”) and the Csf2⁺/WT (control) mice. The blood, spleen, bone marrow and peritoneal cavity contained similar numbers of leukocyte subsets in both groups (Supplemental Figure 2A-D), indicating successful reconstitution and a similar leukocyte basal population before the triggering of disease.

After reconstitution, the animals consumed HCD for 10 weeks. GM-CSF expression in the spleen of IRA B KO mice was reduced by 70%, which shows a dominant role for IRA B cells as a source of GM-CSF in the spleen during atherosclerosis (Supplemental Fig 2E). GM-CSF production by other leukocytes was similar between the groups (Supplemental Fig 2F), as were body weights and plasma cholesterol levels (Supplemental Fig 3A). The absence of IRA B
cells, however, yielded smaller atherosclerotic lesions in the aorta and in particular the aortic root (Figure 2C, D), diminished lipid- and macrophage-rich areas, and reduced numbers of CD4 T cells, but did not change the smooth muscle cell and collagen content. The changes in lesion size and macrophage content did not depend on circulating monocyte and neutrophil number (Supplemental Figure 3B), as might be expected. Moreover, blood Ly-6C^{high} monocytes expressed similar levels of CCR2, VLA4, and CD62L (Supplemental Figure 3C), which argued against a defect in monocytes’ capacity to accumulate.

IRA B cells promote the expansion of TH1 effector cells

Numerous studies have identified a role for CD4 T cells in atherosclerosis. Naive CD4 T cells can differentiate into various helper subsets exhibiting either protective or atherogenic properties^{1-4, 7, 10, 22}. The observation that lesions in IRA B KO mice accumulated fewer CD4 T cells prompted us to investigate this leukocyte population in more detail. The blood of IRA B KO mice contained both effector CD4^{high}CD62L^{low} CD4 T cells and regulatory Foxp3⁺ T_{reg} T cells (Figure 3A). At the onset of the experiment, both groups contained equal numbers of these subsets in the blood and spleen (Figure 3B), but after 10 weeks of HCD IRA B KO mice developed fewer effector T cells in the blood, spleen, and para-aortic lymph nodes compared to controls. T_{reg} cells, on the other hand, developed similarly in both groups in terms of number and suppressive function (Figure 3B, Supplemental Figure 4A, B).

Among effector T cells, IFNγ-producing T_{H1} cells augment atherosclerosis^{2, 10, 22, 23}. We detected fewer IFNγ-producing T_{H1} cells in blood, spleen, and lymph nodes in IRA B KO mice compared to controls after 10 week HCD feeding (Figure 3C, D). Neither group differed in the number of splenic T_{H17} or IL-4-producing T_{H2} cells (Supplemental Figure 4C). Do IRA B cells shape an antigen-specific T_{H1} milieu? In atherosclerosis, it is thought that low-density
lipoproteins (LDL) generate an adaptive immune response, presumably due to a break in peripheral tolerance against self antigens. LDL also undergoes oxidation, which can mobilize \(T_{H1} \) responses via antigen presentation in the context of oxidative stress-related danger signals. \(T_{H1} \) cells contribute to isotype switching, and thus influence antigen-specific humoral immunity. T cell-derived IFN\(\gamma \), for example, induces IgG2a/c and dampens IgG1 production, whereas IL-4 has the opposite effect. In these experiments, IRA B KO mice were impaired in generating \(T_{H1} \)-dependent IgG2c antibodies against copper (Cu)-oxidized and MDA-modified LDL, even though total IgG and IgM levels increased similarly in both groups (Figure 3E-G and Supplemental Figure 4D-G). Titers of the atheroprotective IgM natural antibody E06 against oxidation-specific epitopes remained unaffected (Supplemental Figure 3C). Hence, as IRA B cell number rose in secondary lymphoid organs, so did the number of effector IFN\(\gamma \)-producing \(T_{H1} \) cells and concentration of antigen-specific, IFN\(\gamma \)-dependent IgG2c. That said, we reasoned that IRA B cells did not augment T cell numbers directly because T cells do not express the GM-CSF receptor.

IRA B cells promote the generation of classical dendritic cells

Effector T cells arise in lymphoid organs when their T cell receptor (TCR) recognizes antigen on DC. In the context of specific secondary signals, antigen presented on MHCII can give rise to effector \(T_{H1} \) cells that expand, enter the circulation and tissue, and participate in immunity. Unlike T cells, DC and their precursors express the GM-CSF receptor, and might therefore be directly influenced by IRA B cells. To test this hypothesis, we enumerated DC in the spleen, where IRA B cells expand most prominently. Three populations of CD11c\(^+\) MHCII\(^+\) classical (c)DC were identifiable: CD11b\(^+\) CD8\(^-\) CD103\(^-\), CD11b\(^-\) CD8\(^+\) CD103\(^-\), and CD11b\(^-\) CD8\(^+\) CD103\(^+\) (Figure 4A). Before the onset of atherosclerosis, both mouse groups contained similar...
numbers of all three subsets, in agreement with the observation that GM-CSF does not affect the
generation of splenic DC in the steady state33,34. During inflammation and with increased GM-
CSF, DC expand33,35. Consequently, over the course of HCD consumption, control mice
selectively increased the number of CD11b\(^+\) cDC (Figure 4B). In contrast, IRA B KO mice
maintained their cDC numbers at steady state levels in the spleen (Figure 4B) and lymph nodes
(Figure 4C). Remarkably, not only did IRA B KO mice generate fewer cDC, but these cDC also
expressed less TH1-priming IL-12p40 (Figure 4D). Although there were no differences in CD86
and CD40 expression, MHCII decreased slightly on CD11b\(^+\) cDC in IRA B KO mice
(Supplemental Figure 5A). IRA B cell deficiency neither affected the generation of GMP and
CDP in the bone marrow, nor the number of preDC in the bone marrow and spleen, which argues
against an IRA B cell-dependent mobilization and expansion of DC progenitors (Supplemental
Figure 5B).

To determine whether the changes in cDC subset and function depended on the direct
interaction of GM-CSF with cDC, we reconstituted lethally irradiated Ldlr\(^{−/−}\) mice with a 50:50
mixture of bone marrow cells from CD45.1\(^+\) WT mice and CD45.2\(^+\) mice deficient in the common
beta chain of the GM-CSF-receptor (Csf2rb\(^{−/−}\)), and placed them on HCD for 3 months (Figure
4E). Whereas the CD45.1/CD45.2 splenic cDC chimerism was ~50:50 among the CD8\(^+\) subset,
chimerism was skewed towards the CD45.1\(^+\) WT cells (60:40) among CD11b\(^+\) cDC, suggesting
that Csf2rb\(^{−/−}\) cells were impaired in generating CD11b\(^+\) cDC (Figure 4F). This observation agrees
with an earlier report that exogenous GM-CSF administration augmented the number of CD11b\(^+\)
but not CD8\(^+\) cDC in the spleen36. Moreover, IL-12p40 expression was lower in sorted Csf2rb\(^{−/−}\)
cDC compared to WT cDC (Figure 4G), thereby reproducing the main effects we observed in IRA
B KO mice and suggesting that IRA B cells influence cDC directly via GM-CSF.
Since dendritic cells can differentiate from bone marrow precursors through culture with recombinant (r)GM-CSF and IL-4, we wondered whether IRA B cells can act as GM-CSF sources capable of generating functionally active DC. We sorted IRA B cells from LPS-stimulated WT mice (Figure 4H) and placed them in culture with lineage-depleted (i.e., enriched for HSPC) bone marrow cells and IL-4 (Figure 4I). After 8 days, MHCII+ CD11c+ CD40+ CD86+ DC appeared (Figure 4J). As controls, we cultured bone marrow cells with IL-4 alone or with B cells from Csf2−/− mice plus IL-4, and enumerated fewer DC (Figure 4K). The group cultured with IRA B cells yielded more cells with characteristic dendritic cell morphology (Figure 4L), thus complementing the surface marker characteristics. To determine the functionality of IRA B cell-generated DC, we pulsed them with ovalbumin (OVA) and co-cultured with OVA-specific transgenic OT-II CD4+ cells that had been labeled with a tracer. In the absence of OVA, OT-II cells did not proliferate but, when OVA was added, T cells proliferated robustly, as determined by the progressive loss of their tracer dye (Figure 4M). Likewise, IRA B cells sorted from spleens of atherosclerotic Ldlr−/− mice generated functional bone marrow-derived DC capable of processing ovalbumin for effective antigen presentation and OT-II cell proliferation (Supplemental Figure 5C, D). These experiments indicate that IRA B cells indeed stimulate the generation of mature DC, which can promote antigen-specific T cell expansion.

Transfer of GM-CSF-competent B cells aggravates atherosclerosis

If lesions are smaller in the absence of IRA B cells, could the adoptive transfer of GM-CSF-competent B cells into IRA B KO mice give rise to IRA B cells and reverse the phenotype by promoting IFNγ-producing T_{H1} cells and atherogenesis? To test this conjecture, we adoptively transferred WT B cells (i.e., B cell capable of producing GM-CSF) and Csf2−/− B cells into IRA
B KO mice on HCD, twice, 4 weeks apart (Figure 5A). To establish whether IRA B cells develop in recipient animals, we transferred CD45.1+ WT B cells into CD45.2+ IRA B KO mice and profiled their phenotype after 8 weeks of HCD. Remarkably, a population of CD45.1+ GM-CSF+ IRA B cells appeared in the spleen (Figure 5B), thus allowing us to determine the impact of IRA B cell delivery on the development of atherosclerosis. The transfer of WT but not Csf2−/− B cells increased GM-CSF production in the spleen by over 50% and gave rise to a larger number of splenic cDC and blood effector T cells, including IFNγ-producing Th1 cells (Figure 5C, D). Moreover, we found augmented expression of the Th1-transcription factor Tbet and Th1-associated cytokine IFNγ in atherosclerotic lesions of mice receiving WT but not Csf2−/− B cells or vehicle only (Figure 5E). However, expression of Treg transcription factor Foxp3, Treg-associated cytokines TGFβ1 and IL-10, Th2-associated GATA3 and IL-4, and Th17-associated RORγt and IL-17, remained unaffected (Figure 5F, G). Quantification of lesion size and morphology, as determined by ORO, Mac3, CD4, SMA, and Masson’s trichrome staining, correlated these findings with those reported in Figure 2: mice receiving WT B cells had larger lesions, with more macrophages and T cells, compared to mice receiving Csf2−/− or no B cells (Figure 5H-L). Altogether, these data indicate that IRA B cells aggravate atherosclerosis by stimulating DC production and shifting the host response towards Th1-associated immunity (Figure 6).

Discussion

DC are professional antigen presenting cells that, in the context of secondary signals such as IL-12, can generate IFNγ-producing Th1 cells capable of activating macrophages and promoting isotype switching in B cells. In atherosclerosis, Th1-type immunity promotes disease, but the
orchestrating pathways remain poorly understood. This study reveals that IRA B cells can shape immunity in atherosclerosis. By expressing GM-CSF in microenvironments that support the production of mature DC, IRA B cells operate in a strategic location and deliver a potent signal that instructs the host to mount an adaptive-like immune response.

In murine disease models that depend on antigen sensitization and challenge, such as rheumatoid arthritis, multiple sclerosis, and myocarditis, GM-CSF deficiency ameliorates disease, suggesting a major role for the growth factor in DC-mediated generation of adaptive immunity. Our data expand on these observations by showing that, in atherosclerosis, IRA B cells are major sources of DC-promoting GM-CSF. In the steady state, when IRA B cells are exceedingly rare – or when they are absent altogether – splenic DCs develop normally, indicating that cellular sources other than IRA B cells maintain this population. In response to danger, however, mobilization of IRA B cells stimulates the developmental expansion of mature CD11b+ cDC, a subset whose dependence on GM-CSF in atherosclerosis was previously unrecognized. These changes translate to the increase of IFNγ-producing T cells and OxLDL-specific and Th1-dependent IgG2c antibodies.

Assessing the role of B cells in atherosclerosis is complex, in part due to the difficulty in separating the intrinsic biological effects of B cells from the effects of the antibodies they secrete, and because of the increasing evidence for a variety of functionally distinct B cell subsets. Considerable data support an atheroprotective role of B1 cells, particularly B1a cells, which are believed to protect from atherosclerosis by secreting natural oxidized lipoprotein-scavenging IgM antibodies. Controversy surrounds the role of B2 cells, however, which are the main producers of adaptive IgG antibodies. Clinically, high anti-oxLDL IgG levels in cardiovascular patients positively correlate with disease burden. But how do they function?
On the one hand, IgG-mediated antigen scavenging may provide protection, similar to natural IgM antibodies. On the other hand, IgG isotypes bind variably to different Fc receptors, which can either activate or inhibit target cells such as macrophages, irrespective of antigen binding. Signalling via different Fc receptors can thus have opposing effects on atherosclerosis, as studies in mice deficient either for the activating FcγR or the inhibitory FcγRIIb have shown\(^42\). Adding to the complexity, IgG subclasses exhibit different activation-to-inhibition ratios\(^45\). IRA B cell-dependent production of the IgG2c isotype, which has the highest ratio, may therefore be consistent with the observation that IRA B cells aggravate atherosclerosis. Beyond antibodies, B cells are also sources of cytokines and chemokines, such as regulatory IL-10\(^6\) and monocyte-mobilizing MCP3/CCL\(^7\)\(^46\). While the role of these subsets in atherosclerosis is still unknown, our study on yet another class of mediator— a growth factor – reveals that B cells can aggravate atherosclerosis by generating T\(_{H1}\)-priming cDC.

One somewhat puzzling observation is that a B cell should be a major source of GM-CSF in the first place. After all, B cells participate fundamentally in humoral immunity, and so it may be counter-intuitive that B cells should also act in the generation of DC, the cells specialized in the afferent limb of the T cell response. Yet, IRA B cells may be ideally suited for a sentinel role in adaptive immunity. The spleen screens blood for pathogens and B cells are the spleen’s most numerous occupants. B cells physically interact with dendritic cells in the spleen to initiate T cell-independent immunity\(^47\). Moreover, recent studies have shown that signaling via Myd88 in B cells is important to DC function in lupus and T\(_{H1}\) priming\(^48,49\). The finding that IRA B cells require signaling via Myd88 raises the possibility that the link between Myd88 signaling in B cells and DC function in lupus likewise involves B cell-derived GM-CSF. Strategically located and equipped with a plethora of receptors capable of recognizing molecular patterns, IRA B cells
may indeed represent a cellular node that bridges innate and adaptive immunity.

The function of the pleiotropic cytokine GM-CSF depends on concentration, location, and timing of expression. Although it is remarkable that a small population of B cells secreting GM-CSF elicited a significant difference in lesion size, ORO area, and macrophage and T cell content, it should be noted that other leukocytes, including macrophages and T cells, can also produce GM-CSF\(^{21,50}\). Therefore, attention to the cellular source may be critical to understanding a cytokine’s pleiotropic behavior. This study focused on the interplay of GM-CSF-producing IRA B cells with DC partly because IRA B cells selectively increased in secondary lymphoid organs where DC reside. Even though we did not observe effects of IRA B cells on monocytosis and neutrophilia, IRA B cells could elicit other effects on myeloid cells as disease progresses. Similarly, the absence of IRA B cells in the aorta in our setting does not preclude their accumulation and local influence in more advanced disease. Future studies will need to determine how alternative cellular sources of GM-CSF at various stages of disease influence atherosclerosis.

HMG-Co-A inhibitors (statins) have proven benefit in reducing cardiovascular events in individuals in broad categories of risk in part through direct antiinflammatory actions. Yet, despite treatment with the best available therapeutics, a considerable burden of residual events threatens individuals prone to complications of atherosclerosis. This challenge has energized efforts at targeting inflammation. Understanding the complex, redundant, and interlinked networks of innate and adaptive immunity implicated in atherogenesis is essential to the development of effective but nuanced immune-targeting approaches. An integrated, systems-wide model that charts how the immune system recognizes harmful atherosclerosis-promoting molecular patterns, how it incorporates and propagates this information, and how it ultimately
impacts disease should aid the development of specific and finely-tuned treatments. The function of IRA B cells described here illuminates a previously unknown regulatory node operating in atherosclerosis, and is worthy of consideration as a candidate for therapeutic intervention.

Acknowledgments: The authors thank Michael Waring and Adam Chicoine for sorting cells (Harvard Medical School). The authors thank Eugenia Shvartz, Thibaut Quillard and Benjamin G. Chousterman for technical support. The authors thank Andrew H. Lichtman (Brigham and Women’s Hospital) for a fruitful discussion.

Funding Sources: This work was supported in part by NIH grants 1R01HL095612 (to F.K.S.), P01 HL 088093 (to J.L.W.), R01HL080472 (to P.L.), and Canadian Institutes of Health Research grant MOP 126205 (to B.B.R.). I.H. was supported by the German Research Foundation and the Society of Thrombosis and Haemostasis Research. I.T. was supported by the Max Kade Foundation. L.MS.G. was supported by the Boehringer Ingelheim Funds. G.F.W. was supported by the German Research Foundation. C.S.R. was supported by the American Heart Association postdoctoral fellowship and the Massachusetts General Hospital Executive Committee on Research Postdoctoral Award.

Conflict of Interest Disclosures: None.

References:

Figure Legends:

Figure 1. GM-CSF producing IRA B cells expand in atherosclerosis. (A) Identification of GM-CSF$^+$ B220$^+$ IgMhigh IRA B cells in spleens of Ldlr$^{-/-}$ and Apoe$^{-/-}$ mice after 3 months of HCD by flow cytometry and (B) immunofluorescence histochemistry. (C) Flow cytometry based enumeration of IRA B cells in peripheral blood (per ml), total bone marrow, spleen, peritoneal lavage, four para-aortic lymph nodes and aorta in aged-matched Ldlr$^{-/-}$, C57Bl/6 WT and Apoe$^{-/-}$ mice after 3 months of normal chow diet (gray) and HCD (white), respectively (n ≥ 3 mice per group). Cell counts are presented as mean ± SEM, * p ≤ 0.05, ** p ≤ 0.01, comparing chow vs. HCD per organ. (D) Kinetics of IRA B cell development in spleens of Apoe$^{-/-}$ mice. 8 week old Apoe$^{-/-}$ mice were placed on HCD and sacrificed after 4, 8, 12 and 24 weeks on HCD to quantify IRA B cell numbers (n ≥ 3 mice per time point). Cell counts are presented as mean ± SEM. (E) On the left, identification of IgM$^+$ GM-CSF$^+$ IRA B cells in the spleen of a patient with atherosclerosis. On the right, quantification of IRA B cells in spleen sections of patients with (white) or without (gray) symptomatic cardiovascular disease (CVD). Cells were counted in 12 randomly selected visual fields of 0.1mm2 per sample. The combined number of IRA B cells in all 12 visual fields per patient was divided by the total area analyzed (12 x 0.1mm2). Results are presented as means ± SEM,** p ≤ 0.01, n = 4 per group. For all flow cytometric plots, the ticks represent 0, 102, 103, 104, 105 fluorescence units, except axes labeled “SSC,” for which the ticks represent 0, 50 000, 100 000, 150 000, 200 000, and 250 000 fluorescence units.

Figure 2. IRA B cells promote atherosclerosis. (A) For generation of mixed bone marrow chimeras with B cell restricted GM-CSF deficiency (IRA B KO) lethally irradiated 8 week old
Ldlr−/− mice were reconstituted with a 50:50 mixture of GM-CSF deficient (Csf2−/−) and B cell deficient (μMT) bone marrow (white). Control mice were reconstituted with a 50:50 mixture of GM-CSF deficient (Csf2−/−) and WT bone marrow (gray). After 6 weeks of reconstitution mice were placed on HCD for another 10 weeks. (B) Validation of B cell restricted GM-CSF deficiency in IRA B KO mice after reconstitution and 10 weeks of HCD. Identification of GM-CSF (Csf2) mRNA expression by semi-quantitative reverse transcription PCR in sorted CD3+ (T cells), CD19+ (B cells) and CD11b+ (myeloid cells) splenocytes from control and IRA B KO mice. Rpl19 serves as the housekeeping gene. (C) En face Oil-Red-O (ORO) staining of excised aortas from control and IRA B KO mice after 10 weeks of HCD on the left and quantification of lesion area on the right (n = 7 per group). Results are presented as means ± SEM, ** p ≤ 0.01, gray color for control, white color for IRA B KO mice. (D) Representative H&E staining of aortic root sections from control (gray) and IRA B KO (white) mice after 10 weeks of HCD with quantification of lesion size in two independent experiments (n ≥ 20 per group). Results are presented as means ± SEM. In addition, immunohistology depicting ORO-, Mac3-, smooth muscle actin (SMA), Masson’s trichrome (Masson) and CD4-positive staining of aortic root lesions representative of both groups with quantification of n ≥ 10 samples per group. Results are presented as mean ± SEM, * p ≤ 0.05, ** p ≤ 0.01.

Figure 3. IRA B cells promote the generation of T_{H1} effector cells in atherosclerosis. (A) Representative dot plots showing gating for CD3+CD4+CD44{high}CD62L{low} T effector (T_{eff}) cells and CD3+CD4+Foxp3{+} regulatory T cells (T_{reg}) in blood. (B) Kinetics of T_{eff} and T_{reg} cell development in blood and spleen as well as proportion of T_{eff} cells in para-aortic lymph nodes during 10 week HCD feeding of IRA B KO (white) and control (gray) mice. Results are
presented as mean ± SEM, * p ≤ 0.05, ** p ≤ 0.01, comparing IRA B KO vs. control mice at 10 weeks, n ≥ 6 per group. (C) Representative dot plots showing gating for CD3+ CD4+ IFNγ+ T cells in blood. (D) Quantification of IFNγ-producing T cells in blood, spleen and para-aortic lymph nodes after 10 week HCD feeding of IRA B KO (white) and control (gray) mice. Results are presented as mean ± SEM, * p ≤ 0.05, n ≥ 10 per group. (E) Kinetics of total IgG and IgM serum levels during 10 week HCD feeding of IRA B KO (white) and control (gray) mice. Results are presented as mean ± SEM, n ≥ 6 per group and time point. (F) Quantification of IgG2c antibody titers against MDA-LDL and copper-oxidized LDL (CuOxLDL) in 1:25 diluted individual serum samples, n ≥ 10 per group. Results are presented as mean ± SEM, * p ≤ 0.05, ** p ≤ 0.01. (G) Quantitative ratio of IgG2c and IgG1 titers against MDA-LDL and copper-oxidized LDL (CuOxLDL) in 1:25 diluted individual serum samples, n ≥ 10 per group. Results are presented as mean ± SEM fold changes of the IgG2c : IgG1 ratio to illustrate shifts in isotype switching between control and IRA B KO mice, * p ≤ 0.05, ** p ≤ 0.01.

Figure 4. IRA B cells promote the generation of classical dendritic cells (cDC) in atherosclerosis. (A) Representative dot plots showing gating for CD19– MHCIIhigh CD11chigh classical (c)DC, CD8– CD11b+, CD8+ CD11b– and CD8+ CD103+ subsets in the spleen. (B) Kinetics of splenic cDC subset development during 10 week HCD feeding of IRA B KO (white) and control (gray) mice. Results are presented as mean ± SEM, * p ≤ 0.05, ** p ≤ 0.01, comparing IRA B KO vs. control mice at 10 weeks, n ≥ 6 per group. (C) Identification and quantification of the proportion of cDC in para-aortic lymph nodes. Results are presented as mean ± SEM, * p ≤ 0.05, n ≥ 10 per group. (D) Quantification of IL-12p40 expression in splenic cDC sorted from IRA B KO (white) and control (gray) mice by real-time PCR. Results are
presented as mean ± SEM fold change of $2^{ΔCt}$, * $p ≤ 0.05$, n = 10 per group. (E) Ldlr−/− mice were lethally irradiated, reconstituted with a 50:50 mixture of CD45.1+ WT (black) and CD45.2+ Csf2rb−/− (white) bone marrow and placed on HCD for 3 months. (F) Assessment of chimerism for CD45.1 (WT in black) and CD45.2 (Csf2rb−/− in white) in CD11b+ and CD8+ splenic cDC. Results are presented as mean ± SEM, * $p ≤ 0.05$, n = 5 per group. (G) Quantification of IL-12p40 expression in sorted CD45.1 (WT in black) and CD45.2 (Csf2rb−/− in white) splenic cDC by real-time PCR. Results are presented as mean ± SEM fold change of $2^{ΔCt}$, * $p ≤ 0.05$, n = 5 per group. (H) Flow assisted cell sorting of CD23low IgMhigh CD43high CD138high cells from WT and Csf2−/− mice after 4 x 25mg/day LPS i.p. Representative dot plot showing enrichment for GM-CSF− IRA B cells in WT mice. Dashed lines represent isotype controls. (I) Representative dot plot showing MHCII and CD11c expression in lineage depleted (Lin = CD3, CD90.2, CD19, B220, NK1.1, Ly6G) CD45.1+ bone marrow cells before in vitro culture. Dashed lines represent isotype controls. (J) Representative dot plot showing high MHCII, CD11c, CD86 and CD40 expression on bone marrow derived DC (BMDC) generated through co-culture with IRA B cells and IL-4 over 8 days. Dashed lines represent isotype controls. (K) Enumeration of MHCII+ CD11c+ BMDC after co-culture with medium alone (dark gray), medium plus IL-4 (black), IRA B cells and IL-4 (gray), or corresponding B cells from LPS challenged GM-CSF−/− mice with IL-4 (white). Results are presented as mean ± SEM, * $p ≤ 0.05$, comparing WT vs. all other groups by ANOVA, n ≥ 3 per group. (L) Evaluation of dendritic cell morphology of BMDC generated with IRA B cells or Csf2−/− B cells. Representative phase contrast microscopy images are shown on the left. Quantification of cells with typical dendritiform protrusions per visual field is shown on the right. Results are presented as mean ± SEM analyzed in 6 visual fields per well and group, * $p ≤ 0.05$, ** $p ≤ 0.01$. (M) CD4+ CD25− OT-II cells were co-cultured with IRA B cell-
generated BMDC loaded with ovalbumin (OVA; 100μg/ml) or BSA (100μg/ml) for 4 days. Representative histograms show cell divisions of OT-II T cells labeled with a cell tracer dye.

Figure 5. Transfer of GM-CSF competent B cells aggravates atherosclerosis. (A) Experimental strategy for B cell adoptive transfer. Naive IRA B KO mice were divided into three groups receiving either 2.5 × 10⁷ CD19⁺ B cells from WT (gray) or Csf2−/− (white) mice (n = 7 per group) or vehicle (DPBS) alone (black) (n = 5) at week 0 and 4 of a 8 week period of HCD feeding. (B) Representative dot plots showing identification of IRA B cells in the spleen of a CD45.2⁺ IRA B KO recipient on HCD 8 weeks after transfer of 25 × 10⁶ CD45.1⁺ WT B cells twice, 4 weeks apart. (C) Quantification of GM-CSF (Csf2) expression in whole spleen tissue of IRA B KO mice 8 weeks after transfer of WT (gray), Csf2−/− (white) (n = 7 per group) or no B cells (black; n = 5) by real-time PCR. Results are presented as mean ± SEM fold change of 2^ΔCt, * p ≤ 0.05, comparing WT vs. the other groups by ANOVA. (D) Enumeration of spleen cDC, blood T effector cells, and blood IFNγ-producing T cells in recipients of WT (gray) cells compared to those receiving Csf2−/− (white) B cells (n = 7 per group) or vehicle (black; n = 5) after 8 weeks HCD feeding. Results are presented as mean ± SEM, * p ≤ 0.05, comparing WT vs. the other groups by ANOVA. (E-G) Quantification of T_{H1}-associated Tbet and IFNγ, T_{reg}-associated Foxp3, TGFβ1 and IL-10, and T_{H2}- and T_{H17}-associated GATA3, IL-4, RORγT and IL-17 expression in aortic tissue of WT (gray) versus Csf2−/− (white) B cell recipients (n = 7 per group) and vehicle group (black; n = 5) by real-time PCR. Results are presented as mean ± SEM fold change of 2^ΔCt, * p ≤ 0.05, comparing WT vs. the other groups by ANOVA. (H) Quantification of ORO-rich areas in aortic root sections of recipients of WT (gray) versus Csf2−/− (white) B cells (n = 7 per group) and vehicle group (black; n = 5) on the right and representative
images on the left. Results are presented as mean ± SEM, * p ≤ 0.05, comparing WT vs. the other groups by ANOVA. (I-L) Representative images and quantification of Mac3-, CD4-, SMA-positive and Masson’s trichrome staining in aortic root sections of the three groups. Results are presented as mean ± SEM, * p ≤ 0.05, comparing WT vs. the other groups by ANOVA.

Figure 6. Model of IRA B cell-dependent T\textsubscript{H1} skewing during atherosclerosis. During atherosclerosis IRA B cells arise in secondary lymphoid organs via Myd88-dependent signaling and promote the generation of classical IL-12 producing classical dendritic cells (cDC). CD4+ T-helper cells that recognize disease related antigens (i.e. oxidation specific epitopes) presented by these cDC differentiate into IFN\textgamma--producing T\textsubscript{H1} cells. T\textsubscript{H1} cells infiltrate atherosclerotic lesions and stimulate macrophages. Antigen-specific interaction between T\textsubscript{H1} cells and B cells leads to IFN\textgamma-dependent isotype switching from IgG1 to IgG2a/c which carry the highest Fc\textgamma-receptor mediated activation capacity. By instructing T\textsubscript{H1}-priming cDC IRA B cells aid in bridging innate and adaptive immunity. Solid arrows depict functional relationship and dashed arrows depict spatial relationship.
Figure 1

Panel A: Flow cytometric analysis of splenic IRA B cell populations in Ldlr^{−/−} HCD and Apoe^{−/−} HCD mice. The figures show gating strategies for identifying IRA B cells using anti-IgM-APC and anti-IgG2a-PE antibodies.

Panel B: Immunofluorescence images of splenic IRA B cells in Ldlr^{−/−} HCD mice, highlighting white pulp regions.

Panel C: IRA B cell organ distribution in Ldlr^{−/−} chow, Ldlr^{−/−} HCD, wt chow, and Apoe^{−/−} HCD mice.

Panel D: IRA B cell kinetics in Apoe^{−/−} spleens, showing the number of IRA B cells over time.

Panel E: Immunofluorescence images of the spleen of a patient with CVD, showing increased IRA B cell numbers compared to non-CVD spleens.

Note: The images and graphs are illustrative and require detailed interpretation for full understanding.
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Innate Response Activator B Cells Aggravate Atherosclerosis by Stimulating T_{H1} Adaptive Immunity

Circulation. published online January 31, 2014;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2014/01/31/CIRCULATIONAHA.113.006381

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2014/01/31/CIRCULATIONAHA.113.006381.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Overarching aims and description of the study. *Aim 1:* To quantify IRA B cells in two mouse models of atherosclerosis and in human atherosclerosis. These data are shown in Figure 1 and Supplemental Figure 1. *Aim 2:* To determine whether IRA B cells are important in mouse atherosclerosis and to profile key features such as lesion size, cell accumulation, etc. To achieve this, mixed chimeric mice were generated (described below). These data are shown in Figure 2 and Supplemental Figures 2 and 3. *Aim 3:* To profile the observed differences in T cells more rigorously. These data are shown in Figure 3 and Supplemental Figure 4. *Aim 4:* To link IRA B cells with the observed differences mechanistically. These data are shown in Figure 4 and Supplemental Figure 5 describing the interaction between IRA B cells and Dendritic cells. *Aim 5:* To rescue the phenotype and thus link IRA B cells to the phenotype functionally. These data are shown in Figure 5. Overall, the study used 235 mice. After generation of mixed chimeric mice, the blood leukocyte profile was analyzed and only animals that were reconstituted successfully were placed in the study. Typically ~93% of mixed chimeras were reconstituted and used in the study. The number of mice used in each experiment is indicated in the Figure legends. All mice admitted to the study survived the intended duration of the study.

Supplemental Methods

Animal models and in vivo interventions. *Mixed bone marrow chimeras:* 8 weeks old male *Ldlr*–/– mice were lethally irradiated (950cGy) and reconstituted with a 50:50 mixture of *Csf2*–/– with WT (Controls) and µMT bone marrow cells (IRA B KO), respectively. In analogy male *Ldlr*–/– were reconstituted with a 50:50 mixture of CD45.1+ and *Myd88*–/– or *Csf2rb*–/– bone marrow. To induce atherosclerosis *Ldlr*–/– mice consumed a high-fat/cholesterol diet (HCD; D12108C, Research Diets, New Brunswick, NJ, USA) and *Apoe*–/– were placed on a Western diet (TD.88137, Harlan Teklad, Indianapolis, IN, USA) at 8 weeks of age for different time periods as indicated in the text. Bone marrow chimeras were switched to HCD 6 weeks after reconstitution. *Adoptive transfer:* B cells from WT and *Csf2*–/– mice were isolated by magnetic cell separation. Pooled cell suspensions from spleens and peritoneal lavages were incubated with 4 µl anti-CD19-PE Ab (Biolegend, San Diego, CA, USA) per 1 x 10^8 cells in sterile 2% FBS (fetal bovine serum, Atlanta Biologicals, Lawrenceville, GA, USA), 0.5% BSA (bovine serum albumin, MP Biomedicals, Solon, OH, USA) in PBS for 30 min on ice, washed and incubated with 100 µl anti-PE MACS beads (Miltenyi Biotec, Auburn, CA, USA) per 1 x 10^8 cells in 0.5% BSA, 2mM EDTA in PBS for another 30 min on ice. Labeled cells were positively selected in a Midi MACS separator and LS column according to the manufacturer’s instructions. Cells were manually counted in a Neubauer chamber, a purity of 93% and viability of over 95% were confirmed by flow cytometric analysis and Trypan blue staining, respectively. At 6 weeks after reconstitution IRA B KO mice received either 25 x 10^6 B cells/mouse from WT or *Csf2*–/– mice by tail vein injection. Mice were placed on HCD and received another 25 x 10^6 B cells/mouse after 4 weeks. Mice were sacrificed after 8 weeks on HCD. When 25 x 10^6 CD45.1+ CD19+ cells were transferred, twice, 4 weeks apart into CD45.2+ IRA B KO mice, 66,542 ± 24,556 CD45.1+ IRA B cells were still retrieved after 8 weeks (n = 3, mean ± SEM).

Cell isolation. Peripheral blood was collected by retroorbital bleeding with heparinized capillaries, and erythrocytes were lysed in RBC Lysis buffer (Biolegend). Peritoneal lavages and organs were harvested at day of sacrifice. Spleens, femurs, aortas and paraaortic lymph nodes (1 proximal, 1 abdominal, 2 distal lymph nodes at aortic bifurcation per mouse) were excised after vascular perfusion with 10 ml sterile PBS. Minced spleens and flushed bone marrow were strained through a 40 µm-nylon mesh (BD Biosciences, San Jose, CA, USA). Spleen cell suspensions were further subjected to RBC lysis. Aortas were minced and digested in 450 U/ml collagenase I, 125 U/ml collagenase XI, 60 U/ml DNase I and 60 U/ml hyaluronidase (Sigma-Aldrich, St. Louis, MO, USA) PBS for 1 h at 37°C while shaking. Lymph nodes were minced and digested in 168 U/ml collagenase III (Worthington Biochemicals, Lakewood, NJ, USA), 60 U/ml DNase I (Sigma-Aldrich), 2% FBS RPMI-1640 (Cellgro, Manassas, VA, USA) for 1h at 37°C while shaking. Cells were counted in a Neubauer chamber. One femur contains ~5% of all bone marrow cells 1. Bone marrow cell counts were extrapolated accordingly. *Cell sorting:* IRA B cells were expanded in vivo by 4 daily intraperitoneal injections of 25mg LPS per mouse or by 3 months of HCD in
Ldlr^{+/−} mice. Spleens from LPS stimulated WT and Csf2^{+/−} mice and from atherosclerotic Ldlr^{+/−} mice were homogenized and incubated with 4 µl anti-CD138-Biotin Ab (clone 281-2, BD Biosciences) per 1 x 10⁸ cells in sterile 2% FBS, 0.5% BSA in PBS for 30 min on ice, followed by incubation with 100 µl anti-Biotin MACS beads (Miltenyi Biotech) per 1 x 10⁸ cells in 0.5% BSA, 2mM EDTA in PBS for another 30 min on ice. Cells were positively selected with a Midi MACS separator and LS column and stained for anti-IgM-Fitc (BD Biosciences), anti-CD45.2-PerCp-Cy5.5 (BD Biosciences), anti-CD23-PECy7 (Biolegend), anti-CD43-APC (BD Biosciences), Streptavidin-Alexa Fluor 700 (Life Technologies, Carlsbad, CA, USA), anti-CD19-APCCy7 (Biolegend). CD45.2⁺, CD23^{low}, IgM⁺, IgD⁺, CD138^{high} cells were sorted on a FACS Aria II cell sorter (BD Biosciences). Splenocytes from OT-II mice were stained with anti-CD45.2-Fitc (BD Biosciences), anti-CD4-PE (BD Biosciences), anti-CD25-APC (BD Biosciences), and transgenic CD4⁺CD25⁺ T cells were sorted on a FACS Aria II cell sorter. Splenocytes from IRA K0 and controls and from CD45.1⁺ C57Bl/6J mice were incubated with 4 µl anti-CD19-Biotin Ab (BD Biosciences) and anti-CD11b-Biotin (BD Biosciences) per 1 x 10⁸ cells in sterile 2% FBS, 0.5% BSA in PBS for 30 min on ice, followed by incubation with 100 µl anti-Biotin MACS beads (Miltenyi Biotech) per 1 x 10⁸ cells in 0.5% BSA, 2mM EDTA in PBS for another 30 min on ice. Cells were negatively selected with a Midi MACS separator and LS column enriching for T cells and stained for anti-CD45.2-Fitc (BD Biosciences), anti-CD4-PE (BD Biosciences), anti-CD25-APC (BD Biosciences), anti-CD45.1-Alexa700 (Biolegend). Regulatory T cells (T_{reg}) from IRA K0 and control mice were sorted as CD45.2⁺CD4⁺CD25⁺ cells, while conventional T cells (T_{conv}) were sorted as CD45.1⁺CD4⁺CD25⁺ cells on a FACS Aria II cell sorter (BD Biosciences). TCR<beta>- B220[−] MHCI⁺, CD11c^{high} cDC were sorted from splenocytes directly into RLT buffer for subsequent RNA isolation.

Serum analysis. Cholesterol measurement: Serum was collected after overnight fasting. Total cholesterol levels were measured with the Cholesterol E colorimetric assay (Wako Chemicals, Richmond, VA, USA) in a Safire² microplate reader (Tecan, Maennedorf, Switzerland) according to the manufacturer’s instructions. VLDL, LDL and HDL cholesterol were determined by Skylight Biotech (Skylight Biotech, Inc., Japan). Immunoglobulin (Ig) measurement: Total serum IgG and IgM were measured by ELISA (Bethyl Laboratories, Montgomery, TX, USA) according to the manufacturer’s instructions. Isotype- and antigen-specific antibody titers were determined by chemiluminescent enzyme immunoassays as previously described². In brief, antigens were coated at 5 µg/mL PBS overnight at 4°C (IgG and IgG_{2c} (goat anti-ms-IgG (Pierce 21160)), IgG₁ (Rat anti-ms-IgG1 (BD 553445)), AB-12, CuOxLDL, MDA-LDL). The plates were blocked with 1% BSA in TBS, serially diluted antisera from individual mice were added, and the plates incubated for 1.5h at room temperature. Bound plasma immunoglobulin (Ig) isotype levels were detected with various anti-mouse Ig isotype-specific alkaline phosphatase (AP) conjugates (Abcam) using LumiPhos 530 (Lumigen, Southfield, MI, USA) solution, and a Dynex Luminometer (DyneX Technologies, Chantilly, VA, USA). Data are expressed as relative light units counted per 100 milliseconds (RLU/100 ms). GM-CSF ELISA: GM-CSF was measured in undiluted serum with the Mouse GM-CSF Quantikine ELISA Kit (assay range 7.8-500pg/ml) according to the manufacturer’s instructions.

Histology. Spleens were embedded in Tissue-Tek O.C.T compound (Sakura Finetek, Torrance, CA, USA), frozen in ice-cold 2-Methylbutane (Fisher Scientific, Fair Lawn, NJ, USA) and sectioned into 6 µm slices yielding 30-40 sections per mouse. The following antibodies were used for immunofluorescence staining: Anti-GM-CSF (clone MP1-31G6; Abcam, Cambridge, MA, USA), secondary biotinylated anti-rat IgG (Vector Laboratories, Burlingame, CA, USA), streptavidin-Alexa Flour 594 (Life technologies), and FITC anti-IgM (clone I1/41; BD Biosciences). Images were recorded using a BX63 motorized microscope (Olympus, Center Valley, PA, USA). Murine aortic roots were embedded in Tissue-Tek O.C.T compound, frozen and sectioned into 5 µm slices yielding 30-40 sections per root. Sections that capture the maximum lesion area were used to compare lesion sizes between study groups. Adjacent sections were used for additional immunohistochemical staining. Following stains were performed to assess lesions size and composition: Hematoxylin and eosin (H&E), Oil-Red-O (ORO; Sigma-Aldrich) for lipids, anti-Mac3 (clone M3/84; BD Biosciences) for macrophages, anti-α-smooth muscle actin (ab5694; Abcam) for smooth muscle cells (SMA), Masson’s Trichrome staining for collagen (Masson), anti-CD4 (clone RM4-5; BD Biosciences) for T helper cells. Biotinylated secondary antibodies
and avidin-complex were used, and all sections counterstained with hematoxylin. Images were recorded using a Nanozoomer 2.0RS (Hamamatsu Photonics, Hamamatsu City, Japan). En-face ORO staining was performed on pinned aortas after fixation in 10% formalin. Human spleen samples were obtained from surgical specimens and autopsy at the Department of Pathology, Toronto General Hospital, Toronto, ON, Canada. All immunohistochemistry studies on human patients samples were approved by the research ethics board at University Health Network. Spleens from 4 patients without a history or signs of cardiovascular disease upon examination were compared to those from 4 patients with symptomatic cardiovascular disease. Samples were fixed in 10% formalin and embedded in paraffin for histologic sectioning (4 μm thick slices). Following dewaxing and heat-induced antigen retrieval sections were blocked with donkey serum for 10min and stained with primary antibodies rabbit anti-human GM-CSF (bs-3790R, Bioss Inc. MA, USA) and goat anti-human IgM (NB7436, Novus Biologicals, CO, USA) over night. Donkey anti-rabbit Cy3 and donkey anti-goat Cy5 were used as secondary antibodies (Millipore, Billerica, MA, USA) for immunohistochemical staining. Images were recorded with an Olympus Fluo View 1000 confocal laser scanning microscope (Olympus, Tokyo, Japan).

Flow Cytometry. Cell suspensions were stained in PBS supplemented with sterile 2% FBS and 0.5% BSA. The following monoclonal antibodies were used for flow cytometric analysis: anti-Ly6C (clone AL-21, BD Biosciences), anti-CD34 (clone RAM34, BD Biosciences), anti-IgM (clone II/41, BD Biosciences), anti-CD45.1 (clone A20, Biolegend), anti-CD45.2 (clone 104, BD Biosciences), anti-CD86 (clone GL1, BD Biosciences), anti-CD3e (clone 145-2C11, ebioscience), anti-CD4 (clone GK1.5, Biolegend), anti-CD8 (clone 53-6.7, BD Biosciences), anti-CD90.2 (clone 1A8, BD Biosciences), anti-Gr-1 (clone RB6-8C5, ebioscience), anti-CD11b (clone M1/70, BD Biosciences), anti-CD115 (clone AFS98, ebioscience), anti-CD21 (clone 7E6, Biolegend), anti-CD49b (clone DX5, BD Biosciences), anti-NK1.1 (clone PK136, BD Biosciences), anti-CD11c (clone HL3, BD Biosciences), anti-CD11b (clone M1/70, BD Biosciences), anti-CD11c (clone HL3, BD Biosciences), anti-CD115 (clone AFS98, ebioscience), anti-CD21 (clone 7E6, Biolegend), anti-CD24 (clone B3B4, Biolegend), anti-CD40 (clone 3/23, Biolegend), anti-CD43 (clone S7, BD Biosciences), anti-CD93(clone AA4.1, BD Biosciences), anti-CD49dVLA4(R1-2, BD Biosciences), anti-CD44 (clone IM7, Biolegend), anti-CD117/ckit (clone 2B8, BD Biosciences), anti-Ly6A/Scal (clone D7, ebioscience), anti-CD127/ILRα (clone A7R34, ebioscience), anti-CD138 (clone R35-39E, BD Biosciences), anti-CD44 (clone IM7, Biolegend), anti-CD117/ckit (clone 2B8, BD Biosciences), anti-Ly6A/Scal (clone D7, ebioscience), anti-CD127/ILRα (clone A7R34, ebioscience), anti-CD138 (clone R35-39E, BD Biosciences), anti-CD44 (clone IM7, Biolegend), anti-CD117/ckit (clone 2B8, BD Biosciences), anti-Ly6A/Scal (clone D7, ebioscience), anti-CD127/ILRα (clone A7R34, ebioscience), anti-CD138 (clone R35-39E, BD Biosciences), anti-CD44 (clone IM7, Biolegend), anti-CD117/ckit (clone 2B8, BD Biosciences), anti-Ly6A/Scal (clone D7, ebioscience), anti-CD127/ILRα (clone A7R34, ebioscience), anti-CD138 (clone R35-39E, BD Biosciences), anti-CD44 (clone IM7, Biolegend). For intracellular staining cells were fixed and permeabilized with BD Cytofix/Cytoperm (BD Biosciences) according to the manufacturer’s instructions. For intracellular staining of IFNγ, IL-4, and IL-17, cell suspensions were stimulated in 2% FBS RPMI-1640 medium with 20 ng/ml PMA and 1 μg/ml ionomycin (Sigma-Aldrich) in the presence of GolgiStop and GolgiPlug (BD Biosciences) for 3 hours at 37°C, 5% CO2 prior to fixation and permeabilization. For proliferation assays, target cells were labeled with Cell Tracer Violet (Life Technologies) and live cells were identified with Fixable Viability Dye eFluor 780 (ebioscience). Data were acquired on a LSRII and analyzed with FlowJo (Tree Star, Ashland, OR, USA). Specifically, monocytes were identified as CD45⁺, Lin− (Lin₁ = Ter119, CD3, CD90.2, CD19, B220, NK1.1, CD49b, Ly6G), CD11b⁺, MHCII_{low}, CD11c_{low}, CD115⁺ cells, subdivided into Ly6^{Chigh} and Ly6C_{low} cells. Neutrophils were identified as CD45⁺, Lin−, CD11b⁺, MHCII_{low}, CD11c_{low}, SSC_{high}, Ly6C_{int} cells. Unless otherwise noted, B cells were identified as CD45⁺, CD19⁺ cells. CD4⁺ and CD8⁺ T cells were identified within the CD45⁺, CD19⁺ population. Classical Dendritic cells (DC) were identified as CD45⁺, CD11⁺, MHCII_{high}, CD11c_{high} cells. PreDC were identified as CD45⁺, Lin₁−, F4/80⁺, CD11b⁺, CD115⁺, MHCII_{low}, CD11c₊ cells. Lin₂− (Lin₂ = Ter119, CD3, CD90.2, CD19, B220, NK1.1, CD49b, Gr-1, CD11b, CD11c, IL7Ra), kit⁺, Scal⁺, CD34_{high}, CD16/32_{high} myeloid progenitors were identified as GMP when CD115⁺ and as ckit_{high} MDP and ckit_{low} CDP when CD115⁺.

Reverse transcription PCR. Cells: 1 x 10⁵ sorted CD3⁺, CD19⁺, CD11b⁺ splenic cells were lysed in RLT buffer with 1% β-mercaptoethanol. RNA was isolated with the RNeasy Micro Kit (Qiagen, Venlo, Netherlands) followed by cDNA transcription with the iScript Select cDNA Synthesis Kit (Bio Rad,

Cell culture. Bone marrow cells from CD45.1⁺ mice were incubated with anti-CD3-Biotin (clone 145-2C11, Biolegend), anti-CD90.2-Biotin (clone 53-2.1, BD Biosciences), anti-CD19-Biotin (clone 53-2.1, BD Biosciences), and housekeeping gene β-actin (clone 4352341E; Applied Biosystems, Carlsbad, CA, USA). Semi-quantitative PCR for GM-CSF (Mm00450960_{m1}; Applied Biosystems), Foxp3 (Mm00475162_{m1}; Applied Biosystems), GATA3 (Mm00484683_{m1}; Applied Biosystems), RORγt (Mm01261022_{m1}; Applied Biosystems), IFNγ (Mm01168134_{m1}; Applied Biosystems), IL-4 (Mm00445259_{m1}; Applied Biosystems), IL-10 (Mm00439614_{m1}; Applied Biosystems), IL-12b (Mm00434174_{m1}; Applied Biosystems), IL-17a (Mm00439618_{m1}; Applied Biosystems), TGFβ1 (Mm01178820_{m1}; Applied Biosystems), Csf2 (Mm01290062_{m1}; Applied Biosystems), and housekeeping gene β-actin (Mm01168134_{m1}; Applied Biosystems) was run on a 7500 PCR thermal cycler (Applied Biosystems).

Bone marrow-derived DC (BMDC) were transferred into U-shaped wells of a 96-well plate and loaded with 100 µg/ml ovalbumin (OV A; Sigma-Aldrich A7641) or 100 µg/ml BSA in a final volume of 200 µl/well. IRA B cell generated bone marrow cells were cultured in 1 ml RPMI-1640 supplemented with 10% FBS, 25 mM HEPES, 2mM L-glutamine, 50 µM β-mercaptoethanol, 100 U/ml penicillin, 100 U/ml streptomycin (complete medium) in a 24 well plate (Cellgro). 7 x 10⁵ LPS induced IRA B cells and corresponding Csf2^{−/−} B cells, respectively, were added to the culture together with 5000 U/ml murine IL-4 (Peptotech, Rocky Hill, NJ, USA) at day 0 and day 5 with replacing medium. Adherent cells were harvested after 8 days of culture, counted and stained for Dendritic cell (DC) marker expression with flow cytometric antibodies. In analogy 1 x 10⁵ IRA B cells (IgM^{high}, CD3^{−/−}, CD43^{high}, CD43^{high}, CD138^{−/−} isolated from atherosclerotic Ldlr^{−/−} mice (3 months on HCD) were co-culture with 1 x 10⁵ Lin^{−/−} bone marrow cells in a flat-bottom 96-well plate. For T cell proliferation assays 1 x 10⁴ WT IRA B cell generated bone marrow derived DC (BMDC) were transferred into U-shaped wells of a 96-well plate and loaded with 100 µg/ml ovalbumin (OVA; Sigma-Aldrich A7641) or 100 µg/ml BSA in a final volume of 200 µl/well. Ldlr^{−/−} IRA B cell generated BMDC were kept in the flat-bottom 96-well plate and loaded with 100 µg/ml OVA or BSA. Sorted CD4^{−/−}, CD25[−] T cells from OT-II mice were stained with Cell Tracer Violet (Life Technologies) according to the manufacturer’s instructions. Thereafter 5 x 10⁴ OT-II CD4 T cells were added to each well and harvested after 4 days of co-culturing for flow cytometric assessment of proliferation cycles. For T_{reg} suppression assay C57Bl/6J splenocytes were incubated with anti-CD90.2-Biotin Ab (clone 53-2.1, BD Bioscience) at 4 µl/1 x 10⁸ cells followed by incubation with 100 µl anti-Biotin MACS beads (Miltenyi Biotec) per 1 x 10⁸ cells. After passing through a Midi MACS separator and LS column negatively selected cells were counted in the lineage depleted flow-through. 7 x 10⁵ Lin^{−/−} bone marrow cells were cultured in 1 ml RPMI-1640 supplemented with 10% β-mercaptoethanol followed by RNA extraction with the RNeasy Mini Kit (Qiagen, Venlo, Netherlands). Quantitative real-time TaqMan PCR for β-actin (Mm00439618_{m1}; Applied Biosystems), Foxp3 (Mm00439614_{m1}; Applied Biosystems), Csf2 (Mm00475162_{m1}; Applied Biosystems), GATA3 (Mm00484683_{m1}; Applied Biosystems), RORγt (Mm01261022_{m1}; Applied Biosystems), IFNγ (Mm01168134_{m1}; Applied Biosystems), IL-4 (Mm00445259_{m1}; Applied Biosystems), IL-10 (Mm00439614_{m1}; Applied Biosystems), IL-12b (Mm00434174_{m1}; Applied Biosystems), IL-17a (Mm00439618_{m1}; Applied Biosystems), TGFβ1 (Mm01178820_{m1}; Applied Biosystems), Csf2 (Mm01290062_{m1}; Applied Biosystems), and housekeeping gene β-actin (4352341E; Applied Biosystems) was run on a 7500 PCR thermal cycler (Applied Biosystems).
Supplemental Figure 1: IRA B cell phenotype and ontogeny. (A) Surface marker expression profile of IRA B cells isolated from spleens of LPS challenged C57Bl/6 (4 x 25mg/day LPS i.p.) and atherosclerotic Ldlr\(^{-/-}\) and Apoe\(^{-/-}\) mice (3 months on HCD). GM-CSF\(^{+}\) leukocytes are depicted in red and GM-CSF\(^{-}\) leukocytes in grey. (B) Isotype staining controls on human spleen sections. (C) Characteristics of patients with and without cardiovascular disease (CVD). (D) Ldlr\(^{-/-}\) mice were lethally irradiated, reconstituted with a 50:50 mixture of CD45.1\(^{+}\) WT and CD45.2\(^{+}\) Myd88\(^{-/-}\) bone marrow and placed on HCD for 3 months. (E) Discrimination of Myd88\(^{-/-}\) and Myd88\(^{+/+}\) (WT) splenocytes based on CD45.2 and CD45.1 staining and flow cytometry. Further staining for GM-CSF, B220 and IgM allowed for identification of GM-CSF\(^{+}\) IRA B cells in the CD45.1\(^{+}\) WT but not the CD45.2\(^{+}\) Myd88\(^{-/-}\) B cell population. Representative dot plots are shown for one of three mixed chimeras.)
Supplemental Figure 2: Leukocyte subsets in reconstituted mixed bone marrow chimeras. (A) Enumeration of monocytes (Mono), neutrophils (Neutro), CD4+ and CD8+ T cells (CD4 Tc, CD8 Tc), CD19+ B cells (CD19 B) in the spleen of control (gray) and IRA B KO (white) mice 6 weeks after reconstitution. Results are presented as mean ± SEM, n = 6 per group. (B) Identification and quantification of splenic B cell subsets in both groups 6 weeks after reconstitution. The CD21^{high} CD23^{low} population contains marginal zone B cells, CD21^{low} CD23^{low} cells encompass B1 and plasma cells, and B2/T2 cells are CD23^{high}. Results are presented as mean ± SEM, n = 6 per group, controls in gray and IRA B KO mice in white. (C) Splenic B cell expression of antigen presenting and costimulatory molecules MHCII, CD86 and CD40 as determined by flow cytometry. Results are presented as mean fluorescent intensity (MFI) ± SEM, n = 6 per group. (D) Leukocyte subsets in blood, spleen, bone marrow and peritoneum of control (gray) and IRA B KO (white) mice 6 weeks after reconstitution. Results are presented as mean ± SEM, n = 6 per group. (E) Quantification of GM-CSF (Csf2) expression in whole spleen tissue of IRA B KO (white) and control (gray) mice by real-time PCR. Results are presented as mean ± SEM fold change of 2^{ΔCt}, ** p ≤ 0.01, n ≥ 20 per group. (F) Relative contribution of non-B cells to leukocyte derived GM-CSF production as assessed by flow cytometry. Results are presented as mean ± SEM, n = 7 per group.
Supplemental Figure 3: IRA B cell deficiency does not affect monocytosis and hypercholesterolemia. (A) Measurement of total body weight, serum levels of total cholesterol (n ≥ 10 per group) and VLDL, LDL and HDL cholesterol (3 pooled samples of n ≥ 6 mice per group) after 10 week HCD feeding. Results are presented as mean ± SEM. (B) Enumeration of total monocytes, Ly6C^{high} monocytes, neutrophils and CD11b^{low} F4/80^{high} red pulp macrophages in blood, spleen or bone marrow after 10 week HCD feeding. Results are presented as mean ± SEM, n ≥ 10 per group, * p ≤ 0.05, controls in gray and IRA B KO mice in white. (C) Expression of CCR2, VLA4 and CD62L on Ly6C^{high} blood monocytes after 10 week HCD feeding as determined by flow cytometry. Quantification of MFI presented as mean ± SEM fold change between control (gray) and IRA B KO (white) mice, n ≥ 10 per group.
Supplemental Figure 4: IRA B cells influence T_{H1} cell-dependent anti-OxLDL isotype switching but not T_{reg} suppressive function. (A) Regulatory T cell (T_{reg}) suppression assay. WT CD4^{+} CD25^{-} conventional T cell (T_{conv}) were co-cultured with CD4^{+} CD25^{+} T_{reg} cells sorted from IRA B KO and control mice after 10 week HCD feeding at increasing dilutions as indicated. Representative histograms show proliferation of cell tracer dye-labeled T_{conv} cells in response to soluble anti-CD3e (1 µg/ml) and T cell-depleted, irradiated spleen stimulator cells under the suppressive influence of T_{reg} cells. (B) Dose-dependent quantification of T_{reg}-induced suppression of T_{conv} proliferation. Results are presented as mean ± SEM, n = 4 per group, controls in gray circles and IRA B KO mice in white squares. (C) On the left representative dot plot showing intracellular staining of CD3^{+} CD4^{+} T cells for IL-4 and IL-17. On the right quantification of IL-4-producing T_{H2} and IL-17-producing T_{H17} cells in spleens of IRA B KO (white) and control (gray) mice after 10 week HCD feeding. Results are presented as mean ± SEM, n = 7 per group. (D) Antibody binding dilution curves for total serum IgG_{2c} and IgG_{1} antibodies. Results are presented as mean for triplicates of pooled samples, n ≥ 6 per group, controls in gray circles and IRA B KO mice in white squares. (E, F) Quantification of IgG_{1} and total IgG antibody titers against MDA-LDL and copper-oxidized LDL (CuOxLDL) in 1:25 diluted individual serum samples, n ≥ 10 per group. Results are presented as mean ± SEM, * p ≤ 0.05, controls in gray and IRA B KO mice in white. (G) Quantification of anti-AB1-2-IgM (EO6) antibody titers in 1:25 diluted individual serum samples, n ≥ 10 per group. Results are presented as mean ± SEM, controls in gray and IRA B KO mice in white.
Supplemental Figure 5: IRA B cell deficiency does not affect generation of cDC progenitors.

(A) Expression of MHCII, CD86, and CD40 on CD8− CD11b+ splenic cDC as determined by flow cytometry in IRA B KO (white) and control (gray) mice after 10 week HCD feeding. On the left representative histograms show mean fluorescence intensities (MFI) for MHCII, CD86 and CD40 compared to isotype controls (dashed line). On the right quantification of MFI presented as mean ± SEM fold change between control (gray) and IRA B KO (white) mice, n ≥ 10 per group, * p ≤ 0.05. (B) Enumeration of granulocyte-macrophage progenitors (GMP), common dendritic cell progenitor (CDP) and preDC precursor in bone marrow and spleen after 10 week HCD feeding. Results are presented as mean ± SEM, n ≥ 10 per group, controls in gray and IRA B KO mice in white. (C) Flow assisted cell sorting of CD23low IgMhigh CD43high CD138high (IRABldlr−/− HCD) cells from atherosclerotic Ldlr−/− mice (3 months on HCD). Dashed lines represent isotype controls. (D) CD4+ CD25− OT-II cells were co-cultured
with IRA B_{Ldr{+/-}} HCD cell-generated BMDC loaded with chicken ovalbumin (100µg/ml) or BSA (100µg/ml) for 4 days. Representative histograms show cell divisions of CD4^{+} OT-II cells labeled with a cell tracer dye.

Supplemental References: