Activation of Histone Deacetylase-6 (HDAC6) Induces Contractile Dysfunction through Derailment of α-Tubulin Proteostasis in Experimental and Human Atrial Fibrillation

Running title: Zhang et al.; HDAC6 inhibition protects against AF

Deli Zhang, MSc1; Chia-Tung Wu, MD2,3; XiaoYan Qi, PhD2; Roelien A.M. Meijering, MSc4; Femke Hoogstra-Berends, BSc1,4; Artavazd Tadevosyan, MSc2; Gunseli Cubukcuoglu Deniz, PhD5,6; Serkan Durdu, MD, PhD5,6,7; Achmet Ruchan Akar, MD, FRCS (CTh)6,7; Ody C.M. Sibon, PhD8; Stanley Nattel, MD2,9; Robert H. Henning, MD, PhD1; Bianca J.J.M. Brundel, PhD1

1Dept of Clinical Pharmacology, University Medical Center Groningen, University of Groningen, The Netherlands; 2Research Center and Dept of Medicine; Montreal Heart Institute and Université de Montréal, Montreal, Canada; 3Chang-Gung Memorial Hospital and Chang-Gung University, Taoyuan, Taiwan, Republic of China; 4Nyken BV, Groningen, The Netherlands; 5Ankara University Biotechnology Institute, Ankara, Turkey; 6Ankara University Stem Cell Institute, Ankara, Turkey; 7Dept of Cardiovascular Surgery, Ankara University School of Medicine, Turkey; 8Dept of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands; 9Dept of Pharmacology, McGill University, Montreal, Canada

Address for Correspondence:
Bianca J.J.M. Brundel, PhD
Department of Clinical Pharmacology
University of Groningen, UMCG
A. Deusinglaan 1
9713AV Groningen, The Netherlands
Tel: +31503632810
Fax: +31503632812
E-mail: B.J.J.M.Brundel@umcg.nl

Journal Subject Code: Basic science research:[132] Arrhythmias - basic studies
Abstract

Background—Atrial Fibrillation (AF) is characterized by structural remodeling, contractile dysfunction and AF progression. HDACs influence acetylation of both histones and cytosolic proteins, thereby mediating epigenetic regulation and influencing cell proteostasis. As the exact function of HDACs in AF is unknown, we investigated their role in experimental and clinical AF models.

Methods and Results—Tachypacing of HL-1 atrial cardiomyocytes and *Drosophila* pupae hearts significantly impaired contractile function (amplitude of Ca$^{2+}$ transients (CaT) and heart wall contractions). This dysfunction was prevented by inhibition of HDAC6 (tubacin) and sirtuins (nicotinamide). Tachypacing induced specific activation of HDAC6, resulting in α-tubulin deacetylation, depolymerization and degradation by calpain. Tachypacing-induced contractile dysfunction was completely rescued by dominant negative HDAC6 mutants with loss of deacetylase activity in the second catalytic domain, which bears α-tubulin deacetylase activity (TDAC). Further, *in vivo* treatment with the HDAC6 inhibitor tubastatin A protected atrial tachypaced dogs from electrical remodeling (APD shortening, L-type Ca$^{2+}$ current reduction, AF promotion) and cellular Ca$^{2+}$-handling/contractile dysfunction (loss of CaT amplitude, sarcomere contractility). Finally, atrial tissue from patients with AF also showed a significant increase in HDAC6 activity and reduction in the expression of both acetylated and total α-tubulin.

Conclusions—AF induces remodeling and loss of contractile function, at least in part through HDAC6 activation and subsequent derailment of α-tubulin proteostasis and disruption of the cardiomyocyte microtubule structure. *In vivo* inhibition of HDAC6 protects against AF-related atrial remodeling, disclosing the potential of HDAC6 as a therapeutic target in clinical AF.

Key words: atrial fibrillation, epigenetics, cardiomyocyte, molecular biology, HDAC6, Drosophila, acetyl tubulin
Introduction

Atrial Fibrillation (AF) is the most common persistent clinical tachyarrhythmia and a significant contributor to cardiovascular morbidity and mortality.\(^1\) AF is progressive in nature because of atrial remodeling, which provides a further substrate for the arrhythmia. As the expansion of the AF substrate is not addressed by current drug therapies, the likelihood of conversion to sinus rhythm declines with persistence of the arrhythmia.\(^1\) Thus there is a need for treatments limiting or reversing the cellular substrates for AF, i.e. the molecular changes that cause structural remodeling and drive the development and progression of the arrhythmia.\(^2\) Identification of druggable targets in these pathways comprises an initial step towards such “upstream therapy”.\(^3\)

Several observations suggest a prominent role for epigenetic regulation in the promotion of AF. Epigenetic regulation refers to processes that influence the packaging and/or processing of nuclear DNA, thus controlling the on/off states of multiple genes with discrete switches. Epigenetic regulation thus profoundly affects cellular proteostasis, i.e. the homeostasis of protein production, degradation and function.\(^4,5\) Derailment of proteostasis has been implicated in the pathogenesis of multiple diseases, including cardiovascular disorders.\(^5\) Importantly, the packaging of chromatin is largely dependent on the acetylation status of histones\(^6\), which is controlled by histone acetyl transferases and deacetylases (HATs and HDACs, respectively). Evidence for epigenetic regulation in AF originates from observations that the (re)activation of the fetal gene program in cardiomyocytes promotes AF.\(^7,8\) Furthermore, genetically modified mice with increased HDAC activity are prone to develop atrial arrhythmia and reveal substrates for AF, such as a reduction in connexin 40 expression, cardiac hypertrophy and fibrosis.\(^9\) Thus, HDACs substantially affect cardiomyocyte proteostasis and may participate in AF progression. HDACs affect not only the protein acetylation status of histones, but also target many
cytoplasmic proteins, including structural proteins such as α-tubulin. Alpha-tubulin is a key component of the microtubule network and its acetylation influences microtubular composition and organization, thereby modulating Ca\(^{2+}\) signaling and contractility. Thus, acetylation of α-tubulin may represent a second mechanism by which HDACs influence cardiomyocyte proteostasis and AF progression.

Recently, progress has made in understanding the crucial role of HDACs in cardiac development and pathogenesis. Eighteen mammalian HDACs are classified into four groups based on their structure, complex formation and expression pattern: Class I (HDAC1, 2, 3 and 8), class IIa (HDAC4, 5, 7 and 9), class IIb (HDAC6 and 10), class III (Sirt1 to 7) and class IV (HDAC11). Several HDAC inhibitors reveal promising therapeutic effects as they attenuate cardiac hypertrophy, fibrosis and contractile dysfunction in mice atria. However, the specific HDAC(s) that contribute to the development of a substrate for AF is/are still unknown. The aim of the present study was to identify HDACs involved in the structural and functional remodeling in AF, with the use of cellular and \textit{in vivo} experimental models, as well as atrial-tissue samples from AF-patients.

Methods

This section contains a brief summary of the principal methods. For details, see Supplemental data.

HL-1 cardiomyocyte model

HL-1 cardiomyocytes derived from adult mouse atria were obtained from Dr. William Claycomb (Louisiana State University, New Orleans, LA, USA) and cultured as previously described. The cardiomyocytes were normal paced (1Hz) or tachypaced (5Hz) with a C-Pace100TM-culture.
pacer (IonOptix Corporations). Ca\(^{2+}\) transient (CaT) measurements were performed as previously described.\(^{16,17}\)

Before pacing, HL-1 cardiomyocytes were treated with HDAC inhibitors described in

Table 1. All inhibitors were obtained from Sigma. The non-active analogue niltubacin (1 \(\mu\)mol/L) was added as a control for tubacin. To study the effect of HDAC6 on CaT, HL-1 cardiomyocytes were transfected with pcDNA3.1+ (empty plasmid), HDAC6 wild type (wt), HDAC6 mutant in the first catalytic domain (HDAC6 m1), HDAC6 mutant in the second catalytic domain (HDAC6 m2), or HDAC6 mutant in both domains (HDAC6 m1-2), by the use of Lipofectamine 2000 (Invitrogen). The HDAC6 plasmids were a kind gift from Dr. Alexander Bershadsky.

Drosophila stocks, tachypacing and heart wall contraction assays

Wild type W1118 strains were obtained from Genetic Services Inc., Massachusetts. All flies were maintained at 25°C on standard medium. After fertilization, adult flies were removed and HDAC inhibitors (Table 1) were added into the medium containing fly embryos. After 2 days, pre-pupae were selected for tachypacing as previously described.\(^{18,19}\) Briefly, transparent pupae were placed on 1% agarose gel in PBS. Groups of 5 pupae were subjected to tachypacing (4Hz, 20 min) by the use of a C-Pace100™-Culture Pacer (IonOptix Corporation). Before and after tachypacing, movies of whole pupae visualized through a microscope at 10x magnification were obtained in triplicate periods of 10 seconds. Heart wall contractions were analyzed using image J software.

Canine model

Animal handling procedures followed National Institutes of Health guidelines (NIH Publication No. 85-23, revised 1996) and were approved by the Animal Research Ethics Committee of the Montreal Heart Institute. Adult mongrel dogs were divided into 3 groups: sham with
administration of tubastatin A vehicle (N=6, mean body weight 25.2±1.2 kg), atrial tachypacing with administration of tubastatin A vehicle (ATP, N=6, mean body weight 25.7±0.8 kg), and ATP with tubastatin A 1 mg/kg/day administered with continuous infusion via osmotic pump (N=6, mean body weight 25.7±1.3 kg). All dogs underwent the same surgical procedure and AF induction measurements, as mentioned in Supplemental data.

Atrial cardiomyocyte isolation

After electrophysiological study, the heart was excised and immersed in oxygen-saturated Tyrode solution (in mmol/L NaCl 136, KCl 5.4, MgCl₂ 1, CaCl₂ 2, NaH₂PO₄ 0.33, HEPES 5 and dextrose 10, pH 7.35 by NaOH). The left atrium (LA) was isolated from the heart with intact blood supply and used to isolate cardiomyocytes as described in Supplemental data.

Ca²⁺ imaging and cellular contractility assessment

Atrial cardiomyocytes were incubated with indo-1 AM (5 μmol/L, dissolved in pluronic F-127 2.5 μg/ml in 20% DMSO) for 8 minutes followed by perfusion with Tyrode’s solution containing 1.8 mmol/L Ca²⁺ for 40 minutes before measurement. An integrated system (IonOptix Corporation, Milton, MA) with a video-based edge-detection device and dual-excitation fluorescence photomultiplier was used to monitor Ca²⁺ transients and cell-contractility. Further experimental details are mentioned in Supplemental data.

Cell Electrophysiology Recordings

The whole-cell perforated-patch technique was used to record APs at 37°C and 1 Hz in current-clamp mode and tight-seal patch-clamp to record currents in voltage-clamp mode at 37°C as described in the Supplemental data. Clampfit 9.2 (Axon), GraphPad Prism 5.0, and Origin 5.0 were used for data analysis.

Patients
Prior to surgery, one investigator assessed patient characteristics (Table 2) as described before. RA and LA appendages (RAAs and LAAs, respectively) were obtained from patients with paroxysmal (PAF) and permanent AF (PeAF) and control patients in sinus rhythm (SR). The PeAF and PAF group included patients with lone AF or AF with underlying mitral valve disease (MVD). After excision, atrial appendages were immediately snap-frozen in liquid nitrogen and stored at −80°C. The study conforms to the principles of the Declaration of Helsinki. The Institutional Review Board approved the study, and patients gave written informed consent.

Tissue was used to perform various assays. Unfortunately, the tissue yield per patient was insufficient to perform all the assays on each patient sample. However, at least n=3 samples per group were used for the individual tests, as indicated in the legend section.

Calpain activity measurement

The calpain activity measurement in human tissue was performed as described previously. Suc-Leu-Leu-Val-Tyr-7-amino-4-methyl-coumarin (AMC, Sigma), was used as calpain substrate. Protein extracts (25 μg) were added to 20 μmol/L AMC in 300μl Tris-buffered saline. AMC release was measured by fluorometry (360nm excitation; 430nm emission, Spectrometer LS50B, PerkinElmer) after 30 minutes incubation at room temperature.

HDAC and HDAC6 TDAC domain activity measurements

The overall HDAC activity was measured by utilizing a fluorimetric HDAC activity assay kit (Sigma) according to the manufacturer’s instructions (for details see Supplemental data). The HDAC6 activity assay was developed as previously described with minor changes. Atrial tissue samples were lysed in non-denaturing buffer (CellLytic™, Sigma) supplemented with protein inhibitor cocktail (Roche). HL-1 cardiomyocytes and cardiomyocytes isolated from dogs were lysed in PBS (pH7.4) containing 0.5% Triton X-100 and protein inhibitor cocktail (Roche),
followed by sonification and centrifugation. Protein concentrations were determined by Bio-Rad Protein Assay Kit (Biorad) and 30 µg of HL-1 cardiomyocytes, 50 µg of dogs cardiomyocytes, or 100 µg of tissue extracts were diluted in PBS buffer (total volume 100 µl) in a 96-well plate. HDAC6 inhibitor tubacin (30 µmol/L), which inhibits the TDAC domain of HDAC6, or vehicle were added (30 min at 37°C). Then, 5 µl of 1 mmol/L stock solution of synthetic HDAC class I/IIb substrate I-1875 (Bachem) was added (2.5 hr at 37°C). The reaction was stopped with 50 µl of stop solution (PBS with 1.5% Triton X-100, 3 µmol/L TSA, and 0.75 mg/ml trypsin).
Fluorescence was measured by a BioTek Synergy 4 plate reader (360nm excitation and 460nm emission). Background signals were subtracted. To correct for quenching of the AMC signal by colored tissue extracts, an additional reference set of samples and buffer blanks with AMC (Alfa Aesar, 5 µl of 80 µmol/L stock) instead of substrate was included. The reference AMC signals were used to calculate quenching ratios relative to the AMC buffer blank signal. Each raw fluorescence value from the substrate-containing samples was divided by the corresponding quenching ratio, followed by subtraction of the substrate background. HDAC6 TDAC domain activity was calculated as the amount of HDAC activity blocked by tubacin.

Protein extraction and Western blot analysis

HL-1 or dog cardiomyocytes or tissue samples were lysed in RIPA buffer as described before.\(^{17}\) In short, equal amounts of protein were separated on SDS-PAGE gels, transferred onto nitrocellulose membranes and probed with anti-acetylated α-tubulin (Sigma), anti-α- tubulin (Sigma), anti-human HDAC6 (Cell Signaling), anti-mouse HDAC6 (Cell Signaling), anti-HA tag (Sigma) or anti-GAPDH (Fitzgerald). Blots were subsequently incubated with HRP-conjugated anti-mouse or anti-rabbit secondary antibodies (Dako). Signals were detected by the ECL-detection method (Amersham) and quantified by densitometry (Syngene, Genetools).
Polymerized and depolymerized α-tubulin fractions and drug treatment

Polymerized and depolymerized (soluble monomers) α-tubulin were fractionized as previously described with minor changes.21 In brief, after one rinse in PBS, HL-1 cardiomyocytes were washed in microtubule-stabilizing buffer (MSB) (0.1 mol/L PIPES, pH 6.93, 1 mmol/L EGTA, 1 mmol/L MgCl₂, 2 mol/L glycerol) and then incubated for 3 minutes with 0.5 ml MSB containing 0.5% Triton X-100 and protein inhibitor cocktail (Roche). After incubation, the supernatant contained the soluble depolymerized α-tubulin fraction and was transferred to a new tube. The remaining HL-1 cardiomyocytes were washed once with MSB buffer and then lysed with RIPA buffer. The collected lysate contains the polymerized tubulin.

For testing the effect of drugs on (de-)polymerization status of α-tubulin, 20 μmol/L calpain inhibitor, PD150606 (Calbiochem), was added to HL-1 cardiomyocytes 2 hours prior to tachypacing as described before.17 HDAC6 inhibitor, tubacin (1 μmol/L), was added to cells 12 hours prior to tachypacing. HL-1 cardiomyocytes were tachypaced for 8 hours, followed by isolation of polymerized and depolymerized α-tubulin fractions as described above.

Statistical analysis

Results are expressed as mean ± SEM. Biochemical analyses were performed at least in duplicate. Multiple-group comparisons were obtained by ANOVA, with one-way ANOVA for non-repeated measurements and two-way ANOVA for repeated-measurement analyses. Individual group-mean differences were evaluated with Student’s t-test and Bonferroni correction. Correlation was determined using the Spearman correlation test. All P-values were two-sided. P<0.05 was considered statistically significant. SPSS version 20 was used for all statistical evaluations.
Results

HDAC6 and sirtuins mediate tachypacing-induced contractile dysfunction in cardiomyocytes and Drosophila

We initially determined which HDAC classes were involved in cardiomyocyte remodeling by utilizing various HDAC inhibitors in tachypaced HL-1 cardiomyocytes and *Drosophila* (Table 1). Inhibition of HDAC6 by tubacin and of sirtuins by nicotinamide protected against the tachypacing-induced reduction of CaT (Figure 1A, B; Supplemental movies S1-S7). In contrast, niltubacin (the inactive analogue of tubacin), and the pan-HDAC inhibitors, TSA and sodium butyrate, did not protect from CaT loss, despite reducing overall HDAC activity (Figure 1C, D). These findings indicate that HDAC6 and sirtuins are involved in tachypacing-induced remodeling in the *in vitro* HL-1 cardiomyocyte model. To extend these findings to a second experimental model, similar experiments were conducted in tachypaced *Drosophila.*

Tachypacing induced a marked reduction in contractility in non-treated *Drosophila* (Figure 2A, B). Similar to the findings in tachypaced HL-1 cardiomyocytes, inhibition of HDAC6 and sirtuins attenuated tachypacing-induced contractile dysfunction in *Drosophila*, while TSA and sodium butyrate were ineffective (Figure 2A, B, Supplemental Figure S1, movies S8-S18). Tachypacing did not affect overall HDAC activity significantly in HL-1 cardiomyocytes or *Drosophila* (Supplemental Figure S2A, B), indicating activation of specific HDACs during tachypacing.

Tubulin catalytic domain (TDAC) of HDAC6 modulates the loss of CaT and microtubule network through deacetylation of α-tubulin

As tubacin inhibits HDAC6 by blocking the TDAC domain of HDAC6 and protects against tachypacing-induced contractile dysfunction in both tachypaced HL-1 cardiomyocytes and
Drosophila, we investigated whether HDAC6 becomes activated by tachypacing. A significant increase in HDAC6 TDAC domain activity and HDAC6 expression (Figure 3A, B) was observed after 6 and 8 hours of tachypacing HL-1 cardiomyocytes. To further support HDAC6 involvement, dominant negative HDAC6 mutants with disrupted catalytic domains were studied. Successful transfection of the various constructs was assessed by Western blot (Figure 3C). HL-1 cardiomyocytes transfected with the control plasmid, wild-type HDAC6, or disruption of the first catalytic domain of HDAC6 (HDAC domain) continued to show significant reductions in CaT after tachypacing (Figure 3D, E). In contrast, disruption of the second catalytic domain (TDAC domain) of HDAC6, or both HDAC and TDAC domains, rescued tachypaced HL-1 cardiomyocytes from CaT loss (Figure 3D, E). This finding demonstrates that tachypacing-induced CaT reduction is mediated by the TDAC activity of HDAC6.

Since the TDAC domain of HDAC6 conveys the deacetylation of α-tubulin\(^1\), the expression of acetyl α-tubulin over the time-course of tachypacing was determined. Tachypacing caused a significant reduction in α-tubulin acetylation after 6 hours (Figure 4A, B), which was followed by a significant reduction in total α-tubulin levels after 8 hours (Figure 4A, C). Tubacin attenuated both the tachypacing-induced deacetylation and degradation of α-tubulin (Figure 4D-F). The reduction in acetyl α-tubulin was specific, since no significant changes in the overall acetylation level of proteins or histones were observed between control and tachypaced HL-1 cardiomyocytes (Supplemental Figure S3).

Alpha-tubulin, together with β-tubulin, forms the microtubule network, which are structural polymers supporting the architecture, contractile function and the active transport of cytoplasmic constituents, including mitochondria and endoplasmic reticulum.\(^5,22\) Moreover, HDAC6-induced deacetylation of α-tubulin results in the depolymerization of microtubules\(^12,\)
To examine whether tachypacing-induced HDAC6 activation causes CaT loss via depolymerization of microtubules, HL-1 cardiomyocytes were stained for α-tubulin and acetyl α-tubulin and the structure of microtubules was determined in cardiomyocytes treated with or without tubacin. Tachypacing significantly reduced the amount of total α-tubulin and acetyl α-tubulin, an effect prevented by tubacin (Figure 5A, B). In addition, tachypacing significantly reduced the amount of polymerized microtubules, indicating disruption of the microtubule structure (Figure 5A, B). Finally, tubacin protected against tachypacing-induced depolymerization of microtubules (Figure 5A, B). The polymerization of α-tubulin was assessed by separation of polymerized from depolymerized microtubules in control and tachypaced HL-1 cardiomyocytes. Similar to confocal experiments, tubacin attenuated the tachypacing-induced reduction of polymerized and depolymerized α-tubulin (Figure 5C). These observations demonstrate that tachypacing induces deacetylation and depolymerization of α-tubulin, and subsequent disruption of the microtubules. Although acetylated α-tubulin is a substrate for both HDAC6 and Sirt2, the sirtuin inhibitor nicotinamide did not prevent tachypacing-induced deacetylation, depolymerization and degradation of α-tubulin (Supplemental Figure S4).

Overall, these findings indicate a prominent role for HDAC6 in tachypacing-induced cardiomyocyte remodeling through TDAC-induced deacetylation and depolymerization of α-tubulin and subsequent disruption of the microtubule network and loss of CaT.

Tachypacing induces calpain-mediated degradation of depolymerized α-tubulin

The Ca\(^{2+}\) dependent protease calpain is known to degrade depolymerized but not polymerized α-tubulin.\(^{25}\) Since we previously demonstrated a key role for activated calpain in the degradation of contractile proteins in experimental and human AF\(^{17,26}\), we tested its involvement in the tachypacing-induced degradation of depolymerized α-tubulin. Inhibition of calpain by PD150606
mitigated tachypacing-induced degradation of α-tubulin (Figure 6A). Furthermore, PD150606 only attenuated the degradation of depolymerized α-tubulin, without affecting the depolymerization status of microtubules or deacetylation of α-tubulin (Figure 6B, C, Supplemental Figure S5). Together, these data imply that deacetylated and depolymerized microtubules are susceptible to degradation by calpain.

Increased HDAC6 activity modulates calpain-induced degradation of α-tubulin in patients with AF

To investigate whether similar changes in HDAC6 are found in patients with AF, HDAC6 TDAC domain activity and HDAC6 expression were determined in LAA and/or RAA of PeAF patients and controls in SR. Both HDAC6 TDAC domain activity and HDAC6 expression were significantly increased in patients with PeAF versus SR (Figure 7E, F) and HDAC6 activity correlated with the duration of PeAF (Supplemental Figure S6D). Furthermore, the amount of acetylated α-tubulin and total tubulin was determined in SR-controls and patients with PAF or PeAF. PAF and PeAF patients showed a significant reduction in the amount of acetylated α-tubulin (Figure 7A, B). Reduction of acetylated α-tubulin was more pronounced in LAA versus RAA in patients with PeAF and inversely correlated with the duration of AF (Supplemental Figure S6A, B, E, F). Further, similar to the findings in experimental models, both the total HDAC activity and overall acetylation level of proteins did not differ between patients with PeAF, PAF and SR (Supplemental Figure S2C, S3C). Total α-tubulin levels were significantly reduced in PAF and PeAF (Figure 7A, C), and α-tubulin levels correlated inversely with calpain activity in LAA (Figure 7D, Supplemental Figure S6C). Thus, the results in human AF are in line with the experimental findings in tachypaced HL-1 cardiomyocytes.

HDAC6 inhibition by tubastatin A protects against AF-related remodeling in dogs
To obtain proof of concept that HDAC6 inhibition protects against AF remodeling in vivo, dogs subjected to 7 days of ATP were treated with the HDAC6 inhibitor tubastatin A (1 mg/kg per day). ATP substantially increased the duration of AF in untreated animals, an effect prevented by tubastatin A (Figure 8A). Furthermore, tubastatin A protected against ATP-induced electrical remodeling (APD shortening, I_{CaL} reduction, Figure 8B, C), as well as CaT reduction and contractile dysfunction (loss of cell shortening and sarcomere contractility, Figure 8D-F). Finally, HDAC6 activity and HDAC6 expression were significantly increased in ATP dogs (Figure 8G, H) and tubastatin A attenuated the ATP-induced HDAC6 TDAC domain activity enhancement in ATP dogs (Figure 8G). Although degradation of α-tubulin was not observed in ATP dogs, the ratio of acetylated α-tubulin to total α-tubulin was reduced in ATP dogs, and was not significantly changed by ATP in tubastatin A treated dogs (Figure 8I). Thus, HDAC6 appears to play a significant role in AF-related remodeling in vivo.

Discussion

Here, we identify HDAC6 as a potentially key enzyme in the development of the substrate underlying AF progression. Tachypacing of HL-1 cardiomyocytes increases HDAC6 activity and expression, resulting in TDAC-domain dependent deacetylation/depolymerization and calpain-mediated degradation of α-tubulin with subsequent disruption of the microtubule network. HDAC6 inhibition by tubacain conserved the microtubule structure and prevented depolymerized α-tubulin from degradation by calpain. Ultimately, this derailment of α-tubulin proteostasis causes contractile dysfunction (proposed model in Figure 7G). Consistent with our experimental data, patients with PeAF show increased HDAC6 TDAC domain activity and expression, and increased deacetylation and degradation of α-tubulin, which inversely correlates with calpain...
activity. Finally, in vivo HDAC6 inhibition by tubastatin A protected against atrial remodeling in a dog model of AF. Together, our results identify inhibition of the TDAC domain of HDAC6 as a promising upstream therapeutic target to conserve α-tubulin proteostasis and attenuate cardiomyocyte remodeling in AF.

Prominent role for HDAC6 in AF-induced loss of proteostatic control

The current study identifies HDAC6 as the most prominent HDAC in AF and a key enzyme in the derailment of the proteostasis that underlies structural and functional remodeling and AF progression.\(^3\) HDAC6 is a member of the class IIb HDACs and is essentially cytoplasmic.\(^27\) HDAC6 deacetylates α-tubulin\(^10\), which impairs control of cell proteostasis by depolymerization of the microtubule network.\(^12,23,24\) This function of HDAC6 is involved not only in protein misfolding diseases, such as Parkinson’s\(^28\) and Huntington’s disease\(^29\), but also in cancer.\(^30\)

Furthermore, HDAC6 is the only cytosolic HDAC with two catalytic domains.\(^31\) The second domain is mainly responsible for its TDAC activity.\(^4,32\) Several lines of evidence suggest that HDAC6 promotes AF by deacetylation of α-tubulin. First, tachypacing-induced remodeling was prevented by treatment with the specific HDAC6 inhibitor tubacin, a drug mainly inhibiting the TDAC domain of HDAC6.\(^11\) In accord, we found that tubacin exclusively changed acetylation status of α-tubulin, without effect on overall protein or histone acetylation. Others have also shown that HDAC6 inhibition by tubacin increases the acetylation of α-tubulin.\(^23\) Secondly, dominant negative mutation of the TDAC domain of HDAC6, the domain conveying the deacetylation of α-tubulin, prevented tachypacing-induced reduction of CaT, while dominant negative mutation of its histone acetylating domain was without protective effect. In accordance with these findings in experimental AF, we found increased TDAC activity of HDAC6 in patients with PeAF to coincide with deacetylation of α-tubulin.
In addition, we identified depolymerization of the microtubule network as the likely downstream step conveying the action of tachypacing-induced HDAC6 activation underlying AF progression. Our results demonstrate HDAC6-induced deacetylation of α-tubulin to promote a shift from the polymerized microtubule structure towards the depolymerized form, which is susceptible to degradation by the protease calpain. Accordingly, in patients with PeAF, we found both activation of HDAC6 and deacetylation and degradation of α-tubulin, which correlated inversely with calpain activity. These results indicate disruption of the microtubule structure in patients with PeAF. Disrupted microtubule structure causes reductions in contraction, I_Ca,L, connexin 40 levels and CaT amplitude in cardiomyocytes, and might therefore also underlie AF progression. The involvement of calpain is in accord with our previous observations that calpain is strongly activated during experimental and clinical AF and with data showing degradation of brain α-tubulin by calpain.

In addition to tubacin, the sirtuin inhibitor nicotinamide protected cardiomyocytes and Drosophila from tachypacing. It is conceivable that inhibition of deacetylation of α-tubulin also underlies the protective effect of nicotinamide since tubacin and nicotinamide inhibit different HDACs that function in concert. However, in contrast to previous reports, nicotinamide did not prevent deacetylation and depolymerization of α-tubulin. Other mechanism(s) may convey a protective effect of nicotinamide in AF, such as increased availability of NAD+. It is unclear which member(s) of the sirtuin family mediate(s) the protective effects of nicotinamide. Further research is warranted to elucidate the molecular mechanism(s) of nicotinamide mediated cardioprotection. While effective in a model of cardiac hyperthrophy, the pan-HDAC inhibitors sodium butyrate and TSA proved ineffective in our models, in spite of their inhibition of deacetylation of α-tubulin. Most likely, this beneficial effect of pan-HDAC inhibition in our AF...
models is offset by effects to increase acetylation of other proteins38 such histone H4 (Supplemental Figure S7).

Therapeutic implications

The efficacy of drugs presently used in AF is limited.1 Thus, pharmacological approaches preventing or limiting the substrate for the promotion of AF (“upstream therapy”) are warranted.1

There are strong indications that loss of proteostatic control in cardiomyocytes represents an important substrate for the development and progression of AF.3 The current study shows HDAC6-induced α-tubulin deacetylation and microtubule disruption to play a role in AF.

Therefore, pharmacological inhibition of the major α-tubulin deacetylating enzyme, HDAC6, represents a potentially promising target for upstream therapy. Since tubacin is not suitable for \textit{in vivo} studies39, other HDAC6 inhibitors, such as tubastatin A and ACY-1215 have been developed, and show beneficial effects in mice models for neurodegenerative diseases and cancer.39-41 In the current study, we provide the first evidence for the efficacy of HDAC6 inhibitors in AF by demonstrating tubastatin A to protect against atrial remodeling in tachypaced dogs. As the specific inhibition of HDAC6 has not been associated with any serious toxicity so far30, the current study suggests that HDAC6 is an interesting potential drug target for upstream therapy of AF.

Limitations of the study

Our notion that HDAC6 activation contributes to human AF is based on the analysis of patients with lone AF or AF originating from mitral valve disease. Whether HDAC6 activation also contributes to the etiology of AF of different origin needs to be established. Furthermore, although we obtained proof of concept of the beneficial effect of HDAC6 inhibition in AF, additional research should clarify if HDAC6 inhibition also reverses the structural remodeling of
cardiomyocytes in AF.

Funding Sources: This study was supported by the Dutch Heart Foundation (2007B217 and 2009B024 to BB, DZ, RM), the European Community, European Fund for Regional Development (Operationeel Programma Noord-Nederland 2007-2012, OP-EFRO to BB, FH), TUBITAK (grant 108S375 to GCD, SD and ARA), and UMCG Imaging and Microscopy Center (NWO-grants 40-00506-98-9021 and 175-010-2009-023), NWO VICI grant (865.10.012 to OS), the Canadian Heart and Stroke Foundation (SN), the Canadian Institutes of Health Research (SN: MGP6957 and MOP44367), the Fondation Leducq (European-North American Atrial Fibrillation Research Alliance, SN), and FRSQ-RSCV/HSFQ doctoral scholarship to AT.

Conflict of Interest Disclosures: B. Brundel is a scientific advisor and F. Hoogstra-Berends, who executed confocal measurements, is an employee of Nyken BV, a company holding intellectual property interests in heat shock protein targeting as a treatment in AF.

References:

34. Leach RN, Desai JC, Orchard CH. Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes. *Cell Calcium.* 2005;38:515-526.

Table 1. Overview protective effects of HDAC inhibitors in tachypaced HL-1 cardiomyocytes and *Drosophila melanogaster*.

<table>
<thead>
<tr>
<th>Class</th>
<th>HDACs</th>
<th>IC50</th>
<th>Concentration in HL-1</th>
<th>Concentration in Drosophila</th>
<th>Protection in HL-1</th>
<th>Protection in Drosophila</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSA</td>
<td>I</td>
<td>HDAC1,2,3,8</td>
<td>20 nmol/L HDAC1<sup>39</sup></td>
<td>10 nmol/L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IIa</td>
<td>HDAC4,5,7,9</td>
<td>1.2 nmol/L HDAC6<sup>39</sup></td>
<td>1 mmol/L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IIb</td>
<td>HDAC6,10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>HDAC11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium Butyrate</td>
<td>I</td>
<td>HDAC1,2,3,8</td>
<td>30 μmol/L HDAC1<sup>42</sup></td>
<td>2 mmol/L</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>IIa</td>
<td>HDAC4,5,7,9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>III</td>
<td>Sirt1-Sirt7</td>
<td>88 μmol/L Sirt1<sup>43</sup></td>
<td>10 mmol/L</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Tubacin</td>
<td>IIb</td>
<td>HDAC6</td>
<td>4 nmol/L HDAC6<sup>39</sup></td>
<td>1 μmol/L</td>
<td>++</td>
<td>++</td>
</tr>
</tbody>
</table>

-, no significant protective effect; ++ *P*<0.01 vs control TP; +++ *P*<0.001 vs control TP.
Table 2. Baseline demographic and clinical characteristics of patients with paroxysmal AF (PAF), permanent AF (PeAF) and control patients in sinus rhythm

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>PAF</th>
<th>PeAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>17</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>RAA (n)</td>
<td>17</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>LAA (n)</td>
<td>14</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>Age</td>
<td>58 ± 5</td>
<td>50 ± 3</td>
<td>61 ± 3</td>
</tr>
<tr>
<td>Months of AF (median, range)</td>
<td>–</td>
<td>–</td>
<td>8 (0.1–56)</td>
</tr>
<tr>
<td>Days of SR before surgery (median, range)</td>
<td>–</td>
<td>10 (0.5–210)</td>
<td>–</td>
</tr>
<tr>
<td>Hours of last episode AF (median, range)</td>
<td>–</td>
<td>12 (0.2–24)</td>
<td>–</td>
</tr>
<tr>
<td>AF/day (median, range (%))</td>
<td>–</td>
<td>2 (0.2–70)</td>
<td>–</td>
</tr>
<tr>
<td>Underlying heart disease (n) / surgical procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lone AF/Maze</td>
<td>0 (0%)</td>
<td>7 (54%)</td>
<td>7 (25%)</td>
</tr>
<tr>
<td>MVD/MV replacement or repair</td>
<td>17(100%)</td>
<td>6 (46%)</td>
<td>21 (75%)</td>
</tr>
<tr>
<td>Medication (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE / ARB</td>
<td>10 (59%)</td>
<td>5 (38%)*</td>
<td>15 (54%)</td>
</tr>
<tr>
<td>Digoxin</td>
<td>1 (6%)</td>
<td>1 (8%)</td>
<td>11 (39%)*</td>
</tr>
<tr>
<td>Calcium Channel Blocker</td>
<td>5 (29%)</td>
<td>3 (23%)</td>
<td>8 (29%)</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>13 (77%)</td>
<td>3 (23%)*</td>
<td>8 (29%)</td>
</tr>
</tbody>
</table>

Values are presented as mean value ± SEM or number of patients. Maze: atrial arrhythmia surgery; MVD: mitral valve disease. *P<0.05 vs SR.

Figure Legends:

Figure 1. HDAC6 and sirtuin inhibitors protect against CaT reductions in tachypaced HL-1 cardiomyocytes. A) Representative CaT of HL-1 cardiomyocytes after normal pacing (NP, 1 Hz) or tachypacing (TP, 5Hz). HL-1 cardiomyocytes were pre-treated with TSA, sodium butyrate (SoBu), nicotinamide (Nic), tubacin or niltubacin, followed by normal or tachypacing and measurement of CaT. B) Quantified CaT amplitude of NP and TP HL-1 cardiomyocytes, each from groups indicated. **P<0.01 vs control NP; #P<0.05 vs control TP. n>=15 cardiomyocytes for each group. C) Efficiency of pan-HDAC inhibitors was tested by using an HDAC activity assay and D) the specific HDAC6 inhibitor tubacin was tested by Western blot analysis of acetylated α-tubulin (A-Tub). Concentration of drugs used as mentioned in Table 1. *P<0.05 vs control.
Figure 2. HDAC6 and sirtuin inhibitors protect against tachypacing-induced contractile dysfunction in the heart wall of Drosophila melanogaster. A) (I) HDAC inhibitors were added to the food and pre-pupae were selected for normal (NP) or tachypacing (TP) (arrows). (II) Pre-pupae were subjected to tachypacing by placing them on an agarose gel connected to electrodes, followed by monitoring of the heart wall contraction rate. (III) Representative heart wall contractions monitored before TP, during TP and after TP with or without pre-treatment with TSA, sodium butyrate (SoBu), nicotinamide (Nic), or tubacin at concentrations as indicated in Table 1. B) Quantified data showing heart wall contraction rates each from groups as indicated. ***P<0.001 vs control before TP; #P<0.01 vs control TP, n=9-18 pupae for each group.

Figure 3. Tachypacing activates HDAC6 and inhibition of TDAC catalytic domain of HDAC6 rescues tachypacing-induced CaT loss in HL-1 cardiomyocytes. A) Time-course of tachypacing (TP)-induced HDAC6 activity. HDAC6 TDAC activity is significantly increased after 6h and 8h TP. B) Western blot showing TP to increase HDAC6 expression level after 6h and 8h TP. *P <0.05, **P <0.01 vs control 0h C) Representative Western blot showing transfected HL-1 cardiomyocytes overexpressing the wild-type HDAC6 (HDAC6 wt), and the three mutants with impaired deacetylating activity i.e. HDAC6 m1, HDAC6 m2 or HDAC6 m1-2. Control cells are transfected with empty plasmid, pCDNA3.1. D) Representative CaT of normal paced (NP) or TP HL-1 cardiomyocytes transfected with HDAC6 wt, HDAC6 m1, HDAC6 m2 or HDAC6 m1-2. E) Quantitative data showing HL-1 cardiomyocytes transfected with HDAC6 m2 or HDAC6 m1-2 reveal protective effects against tachypacing-induced CaT reductions. ***P<0.001 vs control NP, #P<0.001 vs control TP, n=32-80 cardiomyocytes for each group.
Figure 4. Tachypacing induces deacetylation and degradation of α-tubulin, which is prevented by HDAC6 inhibition. A) Representative Western blot showing tachypacing (TP)-induced reductions in acetyl α-tubulin (A-Tub) and degradation of α-tubulin (Tub). B) and C) Quantified data of 3 independent western blots showing a significant reduction in acetyl α-tubulin after 6h and α-tubulin after 8h tachypacing. *P < 0.05, **P < 0.01 vs control 0h TP D) Representative Western blot showing HDAC6 inhibition by tubacin protects against tachypacing-induced deacetylation and degradation of α-tubulin. E) and F) Quantified data of 3 independent Western blots showing the amount of acetyl α-tubulin (E) and α-tubulin Tub (F) for the treatments as indicated. Control HL-1 cardiomyocytes were treated with DMSO (solvent of tubacin).

P < 0.01 vs Control NP. #P < 0.01 vs Control TP.

Figure 5. Inhibition of HDAC6 protects against tachypacing-induced degradation of α-tubulin and depolymerization of microtubules. A) Typical example of an immunofluorescent staining of α-tubulin (Tub, green), acetyl α-tubulin (A-Tub, red) in normal paced (NP) and tachypaced (TP) HL-1 cardiomyocytes. Tachypacing induces depolymerization of microtubules (yellow) which is preserved by tubacin. B) Quantification of the amount of acetyl- and α-tubulin and polymerized microtubules in NP and TP HL-1 cardiomyocytes. TP significantly decreased the amount of acetyl- and α-tubulin and polymerized α-tubulin, which was prevented by tubacin. Number of cardiomyocytes per condition: 100-250. C) Representative Western blot showing tachypacing-induced reductions in polymerized α-tubulin and degradation of depolymerized α-tubulin (Tub), in line with decreased acetylation of polymerized and depolymerized α-tubulin (A-Tub). Tubacin protected against the depolymerization and degradation of α-tubulin, and revealed increased levels of acetyl α-tubulin. GAPDH was used to show successful separation of polymerized and
depolymerized fractions. Control HL-1 cardiomyocytes were treated with DMSO (solvent of tubacin). **P<0.01 vs Control NP. #P< 0.01 vs Control TP. §P<0.01 vs control NP.

Figure 6. Calpain inhibitor PD150606 attenuates tachypacing-induced degradation of depolymerized α-tubulin. A) Representative Western blot showing pre-treatment with calpain inhibitor PD150606 to attenuate tachypacing (TP)-induced α-tubulin (Tub) degradation. B) Representative Western blot showing the effect of PD150606 on tachypacing-induced reductions in polymerized α-tubulin and degradation of depolymerized α-tubulin. Tachypacing-induced degradation of depolymerized α-tubulin is attenuated by PD150606. No effect of PD150606 on the amount of TP-induced depolymerization (Tub) or deacetylation of α-tubulin (A-Tub) was observed. GADPH was used to indicated the successful separation of polymerized and soluble α-tubulin. C) Quantification of three independent experiments showing TP-induced degradation of depolymerized α-tubulin, which was prevented by PD150606. *P<0.05 vs Control NP

Figure 7. Patients with AF reveal reduced levels of acetylated and total α-tubulin and induction of HDAC6 activity and expression. A) Representative Western blot of α-tubulin (Tub) and acetyl α-tubulin (A-Tub) and GADPH in patients with PAF, PeAF and control SR. B) Quantification of acetyl α-tubulin and C) α-tubulin in patients with SR, PAF, and PeAF, showing a significant reduction in α-tubulin and acetyl α-tubulin in PAF and PeAF compared to SR. D) Significant inverse correlation between tissue calpain activity and the amount of α-tubulin in LAA. (●) represents PAF (n=11), (○) represents PeAF (n=16), (○) represents SR (n=3). E) HDAC6 TDAC activity is induced in PeAF (n=15) compared to SR (n=18). *P<0.05 vs SR. F) Top panel: representative Western blot of HDAC6 and GADPH expression levels in patients with PeAF and
controls in SR. Bottom, quantified data showing a significant increase in HDAC6 expression in PeAF compared to SR (n=23 for SR, n=21 for PeAF). G) Proposed model for AF-induced HDAC6 activity as a key enzyme in the derailment of α-tubulin proteostasis, microtubule disruption and contractile dysfunction, which underlies AF progression. HDAC6 causes α-tubulin deacetylation and subsequent depolymerization of microtubules into monomeric α-tubulin, which are degraded by calpain. Tubacin blocks TDAC activity of HDAC6 and thereby prevents the initial α-tubulin deacetylation and further downstream effects of derailment. PD150606 blocks activation of calpain, thereby preventing degradation of α-tubulin, but not AF-induced deacetylation and depolymerization of microtubules.

Figure 8. HDAC6 inhibitor tubastatin A protects against atrial remodeling in dog model for AF. ATP-induced atrial remodeling, measured as A) the duration of induced AF (n=6 dogs for all groups), B) shortening of action potential duration (ADP90, n=15-29 cardiomyocytes), C) reductions in L-type Ca^{2+} current (I_{Ca,L}, n=21-27 cardiomyocytes), D) loss of CaT (n=19-38 cardiomyocytes), E) loss of cell shortening (n=13-31 cardiomyocytes), and F) loss of sarcomere shortening (n=19-55 cardiomyocytes). All ATP-induced atrial remodeling endpoints were significantly attenuated by tubastatin A treatment. G) HDAC6 TDAC activity is induced in ATP and attenuated in ATP dogs treated with tubastatin A. H) Top panel shows representative Western blot, below quantified data revealing HDAC6 expression to be induced in ATP only and ATP tubastatin A dogs. I) Representative Western blot of α-tubulin (Tub) and acetyl α-tubulin (A-Tub) and GADPH in groups as indicated. Below ratio A-Tub/Tub is reduced in ATP dogs and attenuated in ATP dogs treated with tubastatin A. *P<0.05, **P<0.01, ***P<0.001 vs nonpaced (NP) dogs. #P<0.05, ##P<0.01, ###P<0.001 vs ATP dogs.
Figure 1
Figure 2

A

Drosophila life cycle

B

Heart rate (% of basal)

Control Control TSA SoBu Nic Tubacin

After TP

*** *** *** # #
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

A

SR

PAF

PeAF

<table>
<thead>
<tr>
<th>R</th>
<th>L</th>
<th>R</th>
<th>L</th>
<th>R</th>
<th>L</th>
<th>R</th>
<th>L</th>
</tr>
</thead>
</table>

B

A-Tub/GAPDH

P=0.02

P<0.001

C

Tub/GAPDH

SR

PAF

PeAF

D

Calpain activity (a.u.)

R=-0.56, P=0.001

E

HDAC6 activity (a.u.)

SR

PeAF

F

HDAC6/GADPH

SR

PeAF

G

Acetyl

α-tubulin

microtubules

deaetylation

depolymerization

HDAC6

Tubacin

HDAC6

Tubacin

Calpain

PD150606

AF

α-tubulin (monomers)

degradation

disruption of microtubules

deraiment of proteostasis

contractile dysfunction

Figure 7

SR

PeAF
Activation of Histone Deacetylase-6 (HDAC6) Induces Contractile Dysfunction through Derailment of α-Tubulin Proteostasis in Experimental and Human Atrial Fibrillation

Circulation. published online October 21, 2013;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2013/10/21/CIRCULATIONAHA.113.005300

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/10/21/CIRCULATIONAHA.113.005300.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/
Supplemental Data

Supplemental Methods:

Canine model

Dogs were anesthetized with acepromazine (0.07 mg/kg i.m.), ketamine (5.3 mg/kg i.v.), diazepam (0.25 mg/kg, i.v.), and isoflurane (1.5%), intubated, and ventilated. One bipolar pacing lead was fixed into the right atrial (RA) appendage via the left jugular vein under fluoroscopic guidance. The tip was connected to a programmable pacemaker (Star Medical, Japan). Osmotic pumps (2 ml with one-week delivery; Alzet, Cupertino, CA) filling with either 50% DMSO alone (for sham and ATP group) or tubastatin A in 50% DMSO were implanted subcutaneously. For ATP and ATP + tubastatin A groups, the pacemakers were turned on 24 hours after surgery to stimulate the RA at 600 bpm for 7 successive days. The ECG was checked daily to ensure AF during pacing. At the end of the study, all dogs were anesthetized with morphine (2mg/kg s.c.) and α-chloralose (120mg/kg i.v. bolus followed by 29.25mg/kg/hr i.v. infusion), intubated and ventilated. Body temperature was maintained at 37°C. After midline sternotomy, the pericardium was opened and 2 bipolar electrodes were fixed to the RA appendage (one for pacing, one for signal recording). For AF-induction, the RA was paced at 50 Hz for 3-10 seconds. A total of 5-10 AF episodes were recorded to calculate the mean AF duration in each dog. An AF episode >30 minutes was considered sustained, and the electrophysiological study was terminated. Cardioversion was avoided to prevent tissue damage, which precludes further cellular and molecular studies. In one sham dog, substantial electrophysiological derangements were observed at terminal study, including significant sinus node dysfunction and prolonged AF, as well as signs of senescence. These results could not be predicted at study initiation, because electrophysiological data were not obtained prior to the terminal study. The results of that dog were excluded for all analyses because of presumed underlying heart disease. To avoid bias due to
exclusion from the sham group of a dog with prolonged AF, we also excluded from analysis the results of individual dogs with the longest-lasting AF in each of the other 2 groups (ATP+vehicle and ATP+tubastatin A).

Atrial cardiomyocyte isolation

After electrophysiological study, the heart was excised and immersed in oxygen-saturated Tyrode solution (in mmol/L NaCl 136, KCl 5.4, MgCl₂ 1, CaCl₂ 2, NaH₂PO₄ 0.33, HEPES 5 and dextrose 10, pH 7.35 by NaOH). The left atrium (LA) was isolated from the heart with intact blood supply. The left circumflex coronary artery was cannulated and perfused with Ca²⁺-containing (1.8 mmol/L) Tyrode solution for 10 minutes, followed by Ca²⁺-free Tyrode-solution perfusion for another 10 minutes. All leaking branches were ligated. The tissue was then perfused with Ca²⁺-free Tyrode-solution containing 150 U/mL collagenase (Worthington, type II) and 0.1% bovine serum albumin (BSA) for 60 minutes. Digested LA-tissue was harvested and carefully stirred. Isolated cells were centrifuged (500 rpm, 3 minutes) to separate cardiomyocytes from fibroblasts. Cardiomyocytes were stored in Tyrode-solution containing 200 μmol/L Ca²⁺ for Ca²⁺-imaging studies and in Kraft-Bruhe solution (in mmol/L: K-glutamate 100, K-aspartate 10, KCl 25, KH2PO4 10, MgSO4 2, taurine 20, EGTA 0.5, glucose 20, HEPES 5, and 1% BSA) for patch clamping.

Cardiomyocyte Ca²⁺ imaging and cellular contractility assessment

Isolated cardiomyocytes were stimulated at 1 Hz and all measurements were performed at 35±2°C. Cell-Ca²⁺ recording was obtained as previously described with the use of Indo-1 AM. Cells were exposed to UV light (wave-length 340 nm) and the exposure was controlled with an electronic shutter to minimize photo bleaching. Emitted light was reflected into a spectral separator, passed through parallel filters at 400 and 500 nm (±10 nm), detected by matched photomultiplier tubes, and electronically filtered at 60 Hz. Background fluorescence was removed by adjusting the 400- and
500-nm channels to 0 over an empty field of view near the cell. Fluorescence signal ratios (R) were recorded and converted to $[\text{Ca}^{2+}]_i$ following the equation developed by Gryniewicz et al.2:

$$[\text{Ca}^{2+}]_i = K_d \beta [(R - R_{\text{min}})/(R_{\text{max}} - R)]$$

where β is the ratio of the 500-nm signals at very low and saturating $[\text{Ca}^{2+}]_i$. Intracellular K_d for indo-1 was 844 nM. Cell and sacromere contractility was detected by automatic edge-detection and 5 successive beats were averaged for each measurement.

Cell Electrophysiology Recordings

Borosilicate glass electrodes (Sutter Instruments, Novato, CA) filled with pipette solution were connected to a patch-clamp amplifier (Axopatch 200A, Axon Instruments, Foster City, CA). Electrodes had tip resistances of 2-4 MΩ. For perforated-patch recording, nystatin-free intracellular solution was placed in the tip of the pipette by capillary action (~30 s), then pipettes were back-filled with nystatin-containing (600 μg/mL) pipette solution. Data were sampled at 5 kHz and filtered at 1 kHz. Whole cell currents are expressed as densities (pA/pF). Junction potentials between bath and pipette solutions averaged 10.5 mV and were corrected for APs only. KB-solution contained (mmol/L): KCl 20, KH$_2$PO$_4$ 10, dextrose 10, mannitol 40, L-glutamic acid 70, β-OH-butyric acid 10, taurine 20, and EGTA 10 and 0.1% BSA (pH 7.3, KOH). Tyrode’s solution contained (mmol/L): NaCl 136, CaCl$_2$ 1.8, KCl 5.4, MgCl$_2$ 1, NaH$_2$PO$_4$ 0.33, dextrose 10, and HEPES 5, titrated to pH 7.3 with NaOH. The pipette solution for AP-recording contained (mmol/L) GTP 0.1, potassium-aspartate 110, KCl 20, MgCl$_2$ 1, MgATP 5, HEPES 10, sodium-phosphocreatine 5, and EGTA 0.005 (pH 7.4, KOH). The extracellular solution for Ca^{2+}-current (I_{Ca}) measurement contained (mmol/L): tetraethylammonium-chloride 136, CsCl 5.4, MgCl$_2$ 1, CaCl$_2$ 2, NaH$_2$PO$_4$ 0.33, dextrose 10, and HEPES 5 (pH 7.4, CsOH). Niflumic acid (50 μmol/L) was added to inhibit Ca^{2+} dependent Cl$^-$-current, and 4-aminopyridine (2 mmol/L) to suppress I_{to}. The pipette solution for I_{Ca}-recording contained (mmol/L)
CsCl 120, tetraethylammonium-chloride 20, MgCl$_2$ 1, EGTA 10, Mg-ATP 5, HEPES 10, and Li-GTP 0.1 (pH 7.4, CsOH).

Slot Blotting and Western Blotting

Slot blot analysis was performed as described previously. In short, frozen RAA and LAA of patients, pre-pupae of *Drosophila* or HL-1 cardiomyocytes were lysed in RIPA buffer. Protein concentration was measured according to the Bradford method (Bio-Rad, The Netherlands). Equal amounts (10µg) of heat-denatured protein were used for Western blotting or spotted on nitrocellulose membranes (Stratagene) by the use of a slot blot apparatus (Bio-Rad) and checked by staining with Ponceau S solution (Sigma). After blocking with skim milk, membranes were incubated with primary antibody against acetyl lysine (Cell Signaling), acetyl Histone 3 (Cell Signaling), or GAPDH (Fitzgerald), followed by incubation with secondary HRP-conjugated anti-rabbit antibody (Amersham). Signals were detected by the ECL-detection method (Amersham) and quantified by densitometry (Syngene Genetools).

In vitro calpain mediated α-tubulin degradation assay

To measure α-tubulin degradation by calpain in vitro, α-tubulin was isolated from HL-1 cardiomyocytes by immunoprecipitation with non-denaturing lysis buffer (Tris HCl pH 8, 137 mmol/L NaCl, 10% glycerol, 1% Nonidet P-40 (NP-40), and 2 mmol/L EDTA). A/G beads (Santa Cruz) were coated with α-tubulin antibody (Sigma) to pull down α-tubulin from HL-1 cardiomyocyte lysate. To detach α-tubulin from the beads, the beads were incubated with elution buffer (0.2mol/L glycine pH2.5) at room temperature for 10 min. After centrifugation, beads were removed and the eluate containing α-tubulin was transferred to a new tube, followed by adjustment to physiological pH by adding neutralization buffer (1mol/L Tris PH9.5, 1/10 v/v of elution buffer). To detect degradation of
α-tubulin by calpain, calpain I (Merck/Calbiochem) was incubated with the same amount of α-tubulin eluate in reaction buffer (PBS with 2mmol/L CaCl₂) for 1 hour at room temperature. After incubation, loading buffer (10% SDS, 50% glycerol, 0.33mol/L Tris HCl pH=6.8, 10% beta-mercaptoethanol, 0.05% bromophenol blue) was added to the tube followed by 5 min boiling. Western blot analysis was used to detect α-tubulin.

HDAC activity measurements

The overall HDAC activity was measured by utilizing a fluorimetric HDAC activity assay kit (Sigma) according to the manufacturer’s instructions. Briefly, normal or tachypaced HL-1 cardiomyocytes or atrial tissue samples were lysed in non-denaturing buffer (Cellytic™ MT Cell Lysis Reagent, Sigma). Protein concentrations were determined by Bio-Rad Protein Assay Kit (Bio-Rad). Fluorescence was measured with a fluorimeter (Bio-tek instruments FLx800) at 360nm excitation and 460nm emission wavelength. To test efficiency of HDAC inhibitors in HL-1 cardiomyocytes, lysates were incubated with the HDAC inhibitors as described in Table 1. Blank samples and samples with HeLa cell nuclear extracts were used as negative and positive controls, respectively.
Supplemental Figures

Figure S1

![Bar graph showing HDAC activity comparison across different conditions](image)

Figure S2

A HL-1 cardiomyocytes

![Bar graph showing HDAC activity comparison in HL-1 cardiomyocytes](image)

B Drosophila

![Bar graph showing HDAC activity comparison in Drosophila](image)

C Human

![Bar graph showing HDAC activity comparison in Human](image)
Figure S3

A HL-1 cardiomyocytes

B Drosophila

C Human

D NP TP

Acetyl/lysine

0.0 0.2 0.4 0.6 0.8 1.0 1.2

NP TP

Acetyl/lysine

0.0 0.2 0.4 0.6 0.8 1.0 1.2

NP TP

Acetyl/lysine relative to SR

0.0 0.2 0.4 0.6 0.8 1.0 1.2

SR PAF PeAF

Acetyl/lysine relative to SR

0.0 0.2 0.4 0.6 0.8 1.0 1.2

SR PAF PeAF

0h 2h 4h 6h 8h 0h 2h 4h 6h 8h

NP TP

Ace-H3 GADPH
Figure S6

A

\[\begin{array}{ccc}
\text{SR} & \text{PAF} & \text{PeAF} \\
0.4 & 0.2 & 0.1 \\
0.0 & 0.0 & 0.0 \\
\end{array} \]

B

\[\begin{array}{ccc}
\text{SR} & \text{PAF} & \text{PeAF} \\
2.0 & 1.5 & 0.5 \\
0.5 & 0.3 & 0.2 \\
\end{array} \]

C

\[R = 0.74, P < 0.001 \]

D

\[R = 0.45, P < 0.01 \]

E

\[R = 0.65, P = 0.006 \]

F

\[R = 0.61, P = 0.01 \]

Figure S7

C Tub Niltub Nic SoBu TSA

A-tub

GAPDH

A-H4

GAPDH
Supplemental Figure Legends

Figure S1: Efficacy of HDAC inhibitors to reduce overall HDAC activity in Drosophila. All the HDAC inhibitors significantly reduced HDAC activity at the concentrations used as described in Table 1. *P<0.05 vs control, **P<0.01 vs control (without HDAC inhibitor).

Figure S2: No significant changes in overall HDAC activity after tachypacing of HL-1 cardiomyocytes, Drosophila and in clinical AF. Overall HDAC activity was tested using the HDAC activity assay kit. No changes in total HDAC activity were observed between (A) normal (NP) and tachypaced (TP) HL-1 cardiomyocytes and (B) Drosophila and (C) between patients in normal sinus rhythm (SR, n=6) and permanent AF (PeAF, n=6). Experiments were performed in at least in duplicate series.

Figure S3: No significant changes in overall acetyl lysine and acetyl histone H3 levels after tachypacing of HL-1 cardiomyocytes, Drosophila or during clinical AF. Insets in panel A-C are representative slot blots showing overall lysine levels in normal (NP) or tachypaced (TP) (A) HL-1 cardiomyocytes, (B) Drosophila and (C) human paroxysmal (PAF), permanent AF (PeAF) and controls in sinus rhythm (SR). Graphs show quantified data demonstrating the absence of significant changes between the groups as indicated. D) Western blot showing no significant differences in acetyl histone H3K9 (Ace-H3) levels between NP and TP HL-1 cardiomyocytes. All experiments were performed in at least duplicate series.

Figure S4: Nicotinamide does not prevent tachypacing-induced deacetylation of α-tubulin and depolymerization of microtubules. A) Typical example of an immunofluorescent staining of α-tubulin (green), acetyl α-tubulin (red) in normal paced (NP) and tachypaced (TP) HL-1 cardiomyocytes. Tachypacing with or without nicotinamide treatment, induces depolymerization of microtubules (yellow) which is not prevented by pre-treatment with nicotinamide. B) Quantification of α-tubulin (Tub), acetylated α-tubulin (A-Tub) and amount of polymerized tubulin (microtubules) after NP and
TP. TP significantly reduced the amount of Tub, A-Tub and and polymerized α-tubulin, which was not prevented by nicotinamide (100-250 cells per condition). C) Representative Western blot showing tachypacing-induced reductions in total α-tubulin and acetyl tubulin which was not prevented by nicotinamide pretreatment. #P< 0.01 vs Control NP.

Figure S5: **Depolymerized α-tubulin is degraded by calpain in vitro.** A) Depolymerized α-tubulin was incubated with increasing amounts of calpain, which resulted in accelerated degradation of α-tubulin. B) Calpain-induced α-tubulin degradation was attenuated by the calpain inhibitor PD150606.

Figure S6: **Patients with AF reveal reduced levels of acetylated and total α-tubulin in LAA.** A) Quantification of acetyl α-tubulin and B) α-tubulin in RAA and LAA. In patients with PeAF, LAAs show significant reductions in acetyl and total α-tubulin compared to RAAs. (RAA, n=16 for SR, n=12 for PAF, n=25 for PeAF; LAA, n=14 for SR, n=11 for PAF, n=27 for PeAF) C) Significant inverse correlation between tissue calpain activity and the amount of acetyl α-tubulin in LAA. (●) represents PAF (n=11), (◇) represents PeAF (n=16), (○) represents SR (n=3). D) Significant correlation between duration of PeAF and HDAC6 activity. Included are RAA and LAA of SR patients (n=12) and PeAF (n=7). E) and F) Significant inverse correlation between duration of AF and expression of α-tubulin (E) and acetyl α-tubulin (F) in LAA of patients with lone PeAF (●, n=7) or PeAF with mitral valve disease (◇, n=9).

Figure S7: **Pan HDAC inhibitors TSA and sodium butyrate, but not tubacin, induce histone H4 acetylation, while all three drugs do acetylate α-tubulin.** Representative Western blots showing the acetylated α-tubulin and histone H4 levels (A-H4) in HL-1 cardiomyocytes treated with various HDAC inhibitors as indicated. Concentration of drugs used as mentioned in Table 1 and for niltubacin 1µM was used.

Movie S1: **Time-lapse movie shows CaT after 8 hours normal pacing (1Hz) of HL-1 cardiomyocytes.** Images were acquired at 2 ms intervals.
Movie S2: Time-lapse movie shows CaT after 8 hours tachypacing (4Hz) of HL-1 cardiomyocytes. Images were acquired at 2 ms intervals.

Movie S3: Time-lapse movie shows CaT after 8 hours tachypacing (4Hz) of HL-1 cardiomyocytes pretreated with TSA. Images were acquired at 2 ms intervals.

Movie S4: Time-lapse movie shows CaT after 8 hours tachypacing (4Hz) of HL-1 cardiomyocytes pretreated with Sodiumbutyrate. Images were acquired at 2 ms intervals.

Movie S5: Time-lapse movie shows CaT after 8 hours tachypacing (4Hz) of HL-1 cardiomyocytes pretreated with Nicotinamide. Images were acquired at 2 ms intervals.

Movie S6: Time-lapse movie shows CaT after 8 hours tachypacing (4Hz) of HL-1 cardiomyocytes pretreated with Tubacin. Images were acquired at 2 ms intervals.

Movie S7: Time-lapse movie shows CaT after 8 hours tachypacing (4Hz) of HL-1 cardiomyocytes pretreated with Niltubacin. Images were acquired at 2 ms intervals.

Movie S8: Time-lapse movie shows heart wall contractions of an early pupa of a W1118 genetic background before tachypacing, during tachypacing (4Hz) **Movie S9** and after tachypacing **Movie S10**.

Movie S11: Time-lapse movie shows heart wall contractions of an early pupa of a W1118 genetic background pretreated with TSA before tachypacing, and after tachypacing **Movie S12**.

Movie S13: Time-lapse movie shows heart wall contractions of an early pupa of a W1118 genetic background pretreated with Sodiumbutyrate before tachypacing, and after tachypacing **Movie S14**.
Movie S15: Time-lapse movie shows heart wall contractions of an early pupa of a W1118 genetic background pretreated with Nicotinamide before tachypacing, and after tachypacing **Movie S16.**

Movie S17: Time-lapse movie shows heart wall contractions of an early pupa of a W1118 genetic background pretreated with Tubacin before tachypacing, and after tachypacing **Movie S18.**

Supplemental References

