Oxidized CaMKII Triggers Atrial Fibrillation

Running title: Purohit et al.; oxCaMKII and AF

Anil Purohit, MBBS, PhD1,*; Adam G. Rokita, MD, PhD1,*; Xiaoqun Guan, PhD1; Biyi Chen, PhD1; Olha M. Koval, PhD1; Niels Voigt, MD, PhD2; Stefan Neef, MD, PhD3; Thomas Sowa, BTA3; Zhan Gao, PhD1; Elizabeth D. Luczak, PhD1; Hrafnhildur Stefansdottir, MD1; Andrew C. Behunin, MD1; Na Li, PhD4; Ramzi N. El-Accaoui, MD1; Baoli Yang, MD, PhD5; Paari Dominic Swaminathan, MBBS1; Robert M. Weiss MD1; Xander H.T. Wehrens, MD, PhD4; Long-Sheng Song, MD, MS1; Dobromir Dobrev, MD, PhD2; Lars S. Maier, MD, PhD3; Mark E. Anderson, MD, PhD1,6

1Dept of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA; 2Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany, and Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; 3Cardiology and Pneumology, German Heart Center, University Hospital Goettingen, Goettingen, Germany; 4Dept of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX; 5Dept of Obstetrics and Gynecology; 6Dept of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA

Address for Correspondence:
Mark E. Anderson, MD, PhD
University of Iowa
285 Newton Road, CBRB 2256
Iowa City, IA 52242
Tel: 319-356-2745
Fax: 319-356-8608
E-mail: mark-e-anderson@uiowa.edu

Journal Subject Codes: Basic science research:[132] Arrhythmias - basic studies, Etiology:[5] Arrhythmias, clinical electrophysiology, drugs
Abstract

Background—Atrial fibrillation is a growing public health problem without adequate therapies. Angiotensin II (Ang II) and reactive oxygen species (ROS) are validated risk factors for atrial fibrillation (AF) in patients, but the molecular pathway(s) connecting ROS and AF is unknown. The Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a ROS activated proarrhythmic signal, so we hypothesized that oxidized CaMKII\(\overline{\alpha}\) (ox-CaMKII) could contribute to AF.

Methods and Results—We found ox-CaMKII was increased in atria from AF patients compared to patients in sinus rhythm and from mice infused with Ang II compared with saline. Ang II treated mice had increased susceptibility to AF compared to saline treated WT mice, establishing Ang II as a risk factor for AF in mice. Knock in mice lacking critical oxidation sites in CaMKII\(\overline{\alpha}\) (MM-VV) and mice with myocardial-restricted transgenic over-expression of methionine sulfoxide reductase A (MsrA TG), an enzyme that reduces ox-CaMKII, were resistant to AF induction after Ang II infusion.

Conclusions—Our studies suggest that CaMKII is a molecular signal that couples increased ROS with AF and that therapeutic strategies to decrease ox-CaMKII may prevent or reduce AF.

Key words: atrial fibrillation, calcium/calmodulin-dependent protein kinase II, angiotensin II, reactive oxygen species, arrhythmia (mechanisms)
Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia. AF produces lifestyle-limiting symptoms and increases the risk of stroke and death, but current therapies have limited efficacy. The renin-angiotensin-system is upregulated in cardiovascular disease and elevated Angiotensin II (Ang II) favors AF. Ang II activates NADPH oxidase, leading to increased ROS and fibrillating atria are marked by increased reactive oxygen species (ROS). We recently identified the multifunctional Ca\(^{2+}\) and calmodulin-dependent protein kinase II (CaMKII) as a ROS sensor and proarrhythmic signal. Oxidation of critical methionines (281/282) in the CaMKII regulatory domain lock CaMKII into a constitutively active, Ca\(^{2+}\) and calmodulin-independent conformation that is associated with cardiovascular disease. Based on this information, we asked if oxidized CaMKII (ox-CaMKII) could be a biomarker and proarrhythmic signal for connecting increased atrial ROS to AF. We found that ox-CaMKII was increased in atrial tissue from patients with AF compared to patients in sinus rhythm, and in atrial tissue from Ang II-infused, compared to saline-infused, mice. We used a validated mouse model of AF induction by rapid right atrial pacing and found that mice with prior Ang II infusion were at significantly higher risk of AF compared to vehicle-infused mice. We tested AF induction in Ang II and vehicle-infused mice with genetically engineered resistance to CaMKII oxidation by knock-in replacement of methionines 281/282 with valines in CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease or by myocardial-targeted antioxidant therapy by transgenic over-expression of methionine sulfoxide reductase A (MsrA), an enzyme that reduces ox-CaMKII. Collectively, our results support a view that Ang II promotes AF induction by increasing ROS, ox-CaMKII, CaMKII activity, sarcoplasmic reticulum Ca\(^{2+}\) leak and delayed afterdepolarizations (DADs). Our findings provide novel insights into a ROS and
Ang II-dependent mechanism of AF by linking oxidative stress to dysfunctional intracellular Ca2+ signaling via ox-CaMKII and identify a potential new approach for treating AF by targeted antioxidant therapy.

Methods

Human samples and immunodetection of ox-CaMKII. The human samples were provided by the Georg-August-University Goettingen and the University of Heidelberg after approval by the local ethics committee of the Georg-August-University Göttingen and the Medical Faculty Mannheim, University of Heidelberg (#2011-216N-MA). Each patient gave written informed consent. The investigation conforms to the principles outlined in the Declaration of Helsinki.

Right atrial appendage tissue samples were obtained from patients undergoing thoracotomy with sinus rhythm or with AF (Table 1) as published previously.17 For immunostaining experiments a total of 9 samples were studied including 5 patients with sinus rhythm and 4 patients with AF (Table 1A). For immunoblotting a total of 51 samples were studied including 25 patients with SR and 26 patients with AF (Table 1B). The patient charts were reviewed by the authors to obtain relevant clinical information. See Supplemental Material for detailed methods.

Mouse Models and Experimental Methods

All mice used in the study were available to us in C57Bl6 background. All experiments were performed in male mice 8-12 weeks of age. In total we studied 262 mice. Numbers for each experimental group are provided in the figures or figure legends. See Supplemental Material for detailed methods.

Statistics

Data are presented as mean ± SEM. P values were assessed with a Student’s t-test (2-tailed),
ANOVA or two-way ANOVA, as appropriate, for continuous data. The effect of Ang II compared to saline on ox-CaMKII, CaMKII, and ox-CaMKII/CaMKII ratio was tested within each mouse genotype (strain) and compared among the four genotypes using the two-way analysis of variance (ANOVA). The factors that were tested in the ANOVA model were genotype (WT, MM-VV, p47cre and MsrA TG), treatment (Ang II versus saline), and genotype treatment interaction effect. A significant genotype treatment interaction (*) indicated that the effect of Ang II (versus saline) differed significantly among the strains. Post hoc comparisons after ANOVA were performed using the Bonferroni test. Discrete variables were analyzed by Fisher’s exact test. Statistical analyses were made with GraphPadPrism or SAS version 3.9, and the null hypothesis was rejected for p < 0.05. See Supplemental Material for detailed methods.

Results

Oxidized CaMKII is increased in AF

Patients with AF have increased atrial CaMKII activity18,19 and high circulating levels of serum markers for oxidative stress.4,5 We first obtained right atrial tissue from patients undergoing cardiac surgery (Table 1) and measured ox-CaMKII using a validated antiserum against oxidized Met 281/282 in the CaMKII regulatory domains.6 These pilot immunofluorescence studies on atrial tissue samples made available upon consent by patients with AF or normal sinus rhythm (Table 1A) showed significantly (p<0.05) higher (~2.5 fold) ox-CaMKII levels in patients with AF (Figure 1A and B). Based on these initial findings, we measured ox-CaMKII in atrial tissue from a larger cohort of patients (Table 1B; for complete gels see supplementary Figure 1) in sinus rhythm (N = 25) or AF (N = 26) using Western blots, and confirmed that AF patients have significantly elevated expression of ox-CaMKII, while there was no difference in total CaMKII
(Figure 1C-F). The patient characteristics in the two groups (Table 1) were similar in terms of age, presence of hypertension, diabetes and left ventricular ejection fraction, recognized risk factors for AF. The subgroup of AF patients that were not treated with angiotensin converting enzyme inhibitor (ACE-i) or angiotensin receptor blockers (ARB) showed the highest levels of ox-CaMKII and total CaMKII (Supplementary Figure 1A and B). Taken together, these findings showed a positive association between AF and increased expression of atrial ox-CaMKII and a loss of this association in AF patients treated with ACE-i or ARBs.

Ang II treatment enhances AF susceptibility

To test the hypothesis that ox-CaMKII contributes to AF we developed a mouse model of AF by infusing wild type (WT) mice with Ang II (2000 ng/kg/min) or an equal volume of normal saline via osmotic mini-pumps for three weeks. We previously established that this dose of Ang II caused a significant increase in atrial ox-CaMKII and resulted in serum Ang II levels similar to those measured in heart failure patients. In order to test if Ang II treatment can promote AF we performed burst pacing in the right atrium of anesthetized mice, using an established method (Figure 2A-C). Mice treated with Ang II showed significantly higher AF induction rates compared to saline treated mice (64% [9/14] versus 18% [2/14], p=0.018 Fisher’s exact test) (Figure 2D). Ang II is known to contribute to hypertension, left ventricular hypertrophy and heart failure, all established clinical risk factors for AF. Therefore, we measured blood pressure (BP) by tail-cuff and assessed left ventricular size and systolic function by echocardiography. As expected, Ang II treatment significantly increased systolic BP (Figure 2E; p<0.01) and left ventricular mass (Figure 2F; p<0.001). Ang II treated mice maintained a normal left ventricular ejection fraction, similar to saline-infused control mice (Figure 2G). These data showed that Ang II infusion increased the susceptibility of mice to AF induction by rapid right atrial pacing.
and established a framework for us to test the hypothesized role of ox-CaMKII in promoting AF. ox-CaMKII is critical for AF

In order to test if ox-CaMKII was required for AF induction in our model we used oxidation resistant knock in MM-VV mice (Supplementary Figure 2).22 CaMKII with the MM-VV mutation is resistant to oxidative activation but retains normal Ca^{2+} and calmodulin dependent activation and is capable of transitioning into a Ca^{2+} and calmodulin independent enzyme after threonine 287 autophosphorylation.6 The MM-VV mice were significantly resistant to AF induction after Ang II infusion, compared to WT controls (Figure 3A), suggesting that ox-CaMKII is required for increased AF susceptibility in Ang II infused mice. WT mice treated with Ang II showed significantly higher (~2.7 fold; 95% confidential interval, CI: 1.4, 5.1) levels of atrial ox-CaMKII compared to saline treated mice. As expected, Ang II infusion increased ox-CaMKII less in MM-VV (~2.1 fold; 95% CI: 1.1, 4.0) than in control WT mice (Figure 4A and B). When indexed to total CaMKII levels (Supplementary Figure 3A and B) this increase in ox-CaMKII was much higher (~14.2 fold; 95% CI: 5.9, 34.5) in Ang II treated WT mice (Figure 4C). The residual increase in ox-CaMKII in the MM-VV mice likely results from expression of CaMKII, a myocardial CaMKII isoform not affected by the MM-VV mutation.23 However, despite the greater increase in ox-CaMKII in WT compared to MM-VV mice, Ang II-related ROS production was increased in both WT and MM-VV mice to a similar degree (Supplementary Figure 4). Interestingly, Ang II treated WT mice showed a significant decrease in total CaMKII levels (Supplementary Figure 3A and B) suggesting feedback inhibition of total CaMKII expression.

Atrial lysates from MM-VV mice showed significantly less Ca^{2+} and calmodulin-independent activity after Ang II treatment, but retained WT level CaMKII activity increases in
response to isoproterenol (Supplementary Figure 2A). At 8 weeks MM-VV mice had body weight (Supplementary Figure 2B) and BP (Figure 3B) that were similar to WT mice, suggesting CaMKIIδ methionine 281/282 oxidation did not affect basal BP or developmentally appropriate growth. CaMKII is known to regulate the chronotropic response to stress and mice with CaMKII inhibition have a smaller increase in heart rate with isoproterenol treatment compared to controls.24 Isolated Langendorff-perfused hearts from WT and MM-VV mice had similar resting heart rates (Supplementary Figure 2C) and comparable heart rate increases after isoproterenol treatment (Supplementary Figure 2D), suggesting that CaMKII dependent physiological heart rate increases do not require CaMKIIδ methionine oxidation. L-type Ca\(^{2+}\) currents were similar in MM-VV and WT mice, and L-type Ca\(^{2+}\) current facilitation, a CaMKII-dependent phenotype, was also preserved in MM-VV mice.25,26 KN-93, a small molecule CaMKII inhibitor,27 significantly reduced facilitation in WT and MM-VV mice (Supplementary Figure 5). MM-VV mice and WT controls showed similar increases in systolic BP (Figure 3B) and heart weight (Figure 3C) or left ventricular mass estimated by echocardiography after Ang II infusion (Supplementary Figure 6), suggesting that ox-CaMKIIδ is dispensable for hypertensive and myocardial hypertrophic actions of Ang II. Taken together, these findings indicate loss of methionines 281/282 in CaMKIIδ selectively reduce the pro-arrhythmic actions of Ang II in a pacing-induced model of AF.

NADPH oxidase and MsrA regulate ox-CaMKII and AF susceptibility

Ang II increases intracellular ROS in myocardium by activating NADPH oxidase and p47\(^{-/-}\) mice, lacking functional NADPH oxidase, are resistant to Ang II dependent increases in ROS and ox-CaMKII.6 Atrial lysates from Ang II treated p47\(^{-/-}\) mice did not show an increase in ox-CaMKII (Figure 4), and the p47\(^{-/-}\) mice were also resistant to Ang II-mediated increases in AF.
(Figure 3A), but showed similar increases in BP (Figure 3B), overall heart weight (Figure 3C) and estimated left ventricular mass (Supplementary Figure 6) after Ang II treatment compared to WT controls. ox-CaMKII is reduced by MrSA and transgenic mice with myocardial-delimited MrSA overexpression (MrSA TG) have increased atrial MrSA protein (Supplementary Figure 3C) and are resistant to ROS induced myocardial injury. We found that Ang II treated MrSA TG mice showed decreased AF induction compared to Ang II-treated WT mice (Figure 3A) and had similar atrial ox-CaMKII expression compared to saline treated controls (Figure 4). Ang II induced increases in ROS production seen in WT atria were absent in atria from MrSA TG mice (Supplementary Figure 4), suggesting that MrSA sensitive targets represent an important component of Ang II mediated atrial oxidation. The protection from AF in MrSA TG mice appeared to be independent of pressor effects of Ang II, because MrSA TG and WT mice showed similar increases in BP (Figure 3B). Taken together, these findings suggest that NADPH oxidase dependent ROS and elevated ox-CaMKII are critical for the proarrhythmic actions of Ang II in pacing-induced AF and that targeted antioxidant therapy, by MrSA over-expression, can reduce or prevent AF in Ang II-infused mice.

Ang II increases Ca\(^{2+}\) sparks and triggered action potentials

CaMKII contributes to increased sarcoplasmic reticulum Ca\(^{2+}\) leak in mice with a RyR2 mutation modeled after a human arrhythmia syndrome, catecholaminergic polymorphic ventricular tachycardia, in a goat model of AF and in atrial myocytes isolated from patients with AF. Atrial myocytes from patients with AF show increased CaMKII activity and increased CaMKII-dependent ryanodine receptor phosphorylation at serine 2814. Furthermore, CaMKII inhibition with KN-93 reduced the open probability of single RyR2 channels and prevented the increased frequency of sarcoplasmic reticulum Ca\(^{2+}\) sparks in atrial myocardium biopsied from
AF patient.18,29 Based on this knowledge, we asked if increased RyR2 Ca2+ leak also contributed to the mechanism of AF in WT Ang II infused mice and measured diastolic Ca2+ sparks, a marker of RyR2 Ca2+ leak.30 Atrial myocytes from Ang II treated WT mice showed a significant (p<0.05) increase in spontaneous Ca2+ sparks compared to atrial myocytes from saline treated control mice (Figure 5A and B). Other Ca2+ spark parameters and sarcoplasmic reticulum Ca2+ content were not different between the saline and Ang II treated WT mice (Supplementary Figure 7). In contrast to findings in WT mice, the atrial myocytes isolated from Ang II treated MM-VV mice did not show an increase in Ca2+ sparks compared to saline treated MM-VV mice (Figure 5A and B). A significantly greater proportion of atrial myocytes isolated from Ang II treated WT mice showed DADs, compared to atrial myocytes from saline treated mice (Figure 5C and D, p=0.03; Fisher’s exact test). In contrast, atrial myocytes from Ang II infused MM-VV mice did not show a significant increase in DADs compared to the atrial myocytes from saline treated MM-VV mice. We interpret these data to suggest that the proarrhythmic effects of Ang II infusion depend upon an increase in ox-CaMKII, sarcoplasmic reticulum Ca2+ leak and DADs.

Mice with CaMKII-resistant RyR2 are protected from AF after Ang II infusion

Enhanced CaMKII-mediated phosphorylation of serine 2814 on RyR2 is associated with an increased susceptibility to acquired arrhythmias, including AF.31 Based on our findings that atrial myocytes from Ang II infused WT mice developed more Ca2+ sparks than atrial myocytes from saline-infused mice, we hypothesized that the proarrhythmic actions of ox-CaMKII require access to RyR2 serine 2814. We tested this hypothesis by treating mutant S2814A knock-in mice (lacking serine 2814)9 with Ang II or saline and performing right atrial burst pacing. The S2814A mice were highly resistant to Ang II mediated AF (Figure 6A). Similarly, AC3-I mice with transgenic myocardial expression of a CaMKII inhibitory peptide32 were also resistant to
the proarrhythmic effects of Ang II infusion on pacing-induced AF (Figure 6A). S2814A, AC3-I and WT mice, all developed similar BP increases (Figure 6B) and cardiac hypertrophy (Figure 6C) in response to Ang II, indicating that these mice were not resistant to the hemodynamic effects of Ang II, but were nevertheless protected from AF.

Discussion

AF usually develops in patients with underlying structural heart disease, such as left ventricular hypertrophy, coronary artery disease, valve disease and congestive heart failure.33 Elevated ROS is a common feature of these conditions.33 The dose of Ang II used in our model produces a four-fold increase in plasma Ang II compared to saline controls,7 similar to increases in Ang II observed in heart failure patients compared to non-hypertensive controls.21 Despite the extensive evidence of elevated ROS in structural heart disease, clinical trials with antioxidants have generally been unsatisfactory.34-36 One potential obstacle to developing effective antioxidant therapies is lack of detailed understanding of molecular pathways that are affected by ROS. The renin-angiotensin-system is one of the best understood pathways that contributes to ROS production in AF patients.37 In the current study, we created a model of AF by infusing mice with Ang II for three weeks and assembled a cohort of genetically altered mice to rigorously test a novel molecular pathway that links oxidative stress to AF (Figure 7). Our current study provides strong evidence that CaMKII is a critical ROS sensor for transducing increased ROS into enhanced AF susceptibility in mice and suggests that atrial ox-CaMKII could contribute to AF in patients.

CaMKII and increased ROS are now widely recognized to contribute to cardiac arrhythmias.8,38,39 Recent studies suggest that patients with persistent AF have elevated markers
of oxidative stress in serum and depleted levels of atrial glutathione. Under increased oxidative stress CaMKII is activated by oxidation of methionines (M281/282), which lock it into a constitutively active conformation, suggesting a possible role for ox-CaMKII as a ROS activated proarrhythmic signal in AF. Our laboratory recently demonstrated that ox-CaMKII plays a major role in sinus node dysfunction, adverse post-myocardial infarct remodeling and cardiac rupture. In the current study, we investigated the role of ox-CaMKII in AF. Human atria (Figure 1) and Ang II treated WT mouse atria showed significantly elevated ox-CaMKII (Figure 4). Atrial myocytes from Ang II treated WT mice had a higher frequency of spontaneous Ca²⁺ sparks and DADs compared to controls (Figure 5). Based on these findings we hypothesized that oxidation of methionines 281/282 on CaMKIIδ causes diastolic sarcoplasmic reticulum Ca²⁺ leak and DADs, cellular AF triggers. To definitively test this hypothesis we used a recently developed knock-in mouse (MM-VV) where CaMKIIδ, the myocardial CaMKII isoform implicated in myocardial disease, is resistant to oxidative activation. Ang II treatment did not increase Ca²⁺ and calmodulin independent CaMKII activity (Supplementary Figure 2A), Ca²⁺ sparks (Figure 5A and B), DADs (Figure 5C and D) or enhance AF susceptibility in MM-VV mice (Figure 3A). It is important to note that the MM-VV mutant form of CaMKIIδ selectively ablates the response to oxidation while retaining other aspects of CaMKII molecular physiology, such as activation by Ca²⁺ and calmodulin and constitutive activation by threonine 287 autophosphorylation. Thus, the residual AF observed in Ang II infused MM-VV mice could be a result of non-oxidation-dependent mechanisms for CaMKIIδ activation in our model. We found that atrial tissue from AF patients treated with ACE-i or ARBs did not show elevated ox-CaMKII, suggesting that Ang II stimulation oxidizes CaMKII in human atria and that ox-CaMKII independent pathways are operative in AF patients. AF in
patients is more complex than AF in our Ang II infused mice. In particular, patients present with variable chronicity, tissue and structural changes. In contrast the triggers for our mice are uniform (i.e. Ang II infusion and rapid right atrial pacing) and result in a similar, modest degree of hypertrophy. We interpret the data showing that an increase in ox-CaMKII in AF patients is reduced or eliminated by clinical antagonist drugs that reduce Ang II signaling to validate our findings in mice that Ang II increases ox-CaMKII. However, we suppose that the presence of AF in patients on ACE-i or ARBs means that other pathways also result in AF. Our sample is not powered to ask if AF resistance to Ang II antagonist drugs represents later stage disease, but this is our hypothesis. Furthermore, CaMKII can be activated independently of oxidation, although oxidation appears to be the primary pathway for activating CaMKII during Ang II infusion. Thus, it is unknown if CaMKII is also important for AF progression in the group of patients treated by Ang II antagonist drugs who exhibit normal levels of ox-CaMKII.

Although we did not see higher total CaMKII in AF patients (as compared with patients in sinus rhythm), the sub-group of AF patients who were not treated with ACE-i or ARBs did show significantly elevated CaMKII levels, supporting prior studies that reported elevated CaMKII activity in AF. In contrast to the situation in patients, total CaMKII expression was reduced in mice after sub-acute Ang II infusion. While the mechanism(s) for the variable response of CaMKII expression in mice and patients is unclear, the change in CaMKII expression in mice and in humans in response to manipulation of the Ang II pathway supports the idea that CaMKII is a fundamental component of Ang II signaling. The relatively small number of patient samples is not powered for analysis of AF subtypes, but human AF may transition from paroxysmal to persistent and permanent (chronic) forms. In contrast, our mouse model is simpler because it is triggered by a single upstream event (i.e. Ang II infusion) and
elicited in a highly controlled environment by rapid atrial pacing. The resistance of MM-VV mice to AF provides new evidence that oxidative activation of CaMKIIδ is important for initiation of AF, while the finding that ox-CaMKII is elevated in atrial tissue from AF patients and particularly in AF patients naive to Ang II antagonist therapies suggests this pathway may also participate in human AF. Thus, our findings in MM-VV mice provide strong, mechanistic evidence that ox-CaMKII plays a critical role in proarrhythmic responses to Ang II. Our studies showed that mice deficient in NADPH oxidase (p47^{−/−}) and mice expressing increased MsrA are also resistant to AF (Figure 3A), suggesting that selectively targeted antioxidant therapies could be effective in preventing or reducing AF.

CaMKII has the potential to catalyze phosphorylation of diverse targets, such as ion channels and Ca²⁺ homeostatic proteins, and is therefore poised to promote AF by several candidate mechanisms. RyR2 serine 2814 is a validated CaMKII phosphorylation target and multiple recent studies show that serine 2814 phosphorylation promotes diastolic sarcoplasmic reticulum Ca²⁺ release with the potential to trigger atrial and ventricular arrhythmia triggering DADs, including AF. Increased frequency of atrial ectopic impulses and AF are positively associated and this relationship may be important in our mouse model of Ang II infusion and pacing-induced AF. RyR2^{R176Q/+} knock-in mice have diastolic sarcoplasmic reticulum Ca²⁺ leak and rapid atrial pacing increases phosphorylation of RyR2 serine 2814 leading to significantly more AF than in WT mice. We found that S2814A mice were highly resistant to Ang II mediated AF (Figure 6A). Our studies do not rule out a potential contribution of other CaMKII substrate proteins in AF, but do support the conclusion that RyR2 serine 2814 is an important downstream CaMKII target for proarrhythmic actions of Ang II.

Clinically, there appears to be an overlap in sinus node dysfunction and AF. Almost
half of patients enrolled in the Mode Selection Trial (MOST) with sinus node dysfunction had a history of AF48, but a clear mechanistic link between increased risk of AF and sinus node dysfunction is unknown. In recent studies we showed that Ang II and diabetes-induced CaMKII oxidation caused sinus node dysfunction by increased pacemaker cell death and fibrosis,7 while MM-VV mice are resistant to sinus node dysfunction evoked by hyperglycemia.22 Here we provide evidence that ox-CaMKII increases susceptibility for AF via increased diastolic sarcoplasmic reticulum Ca2+ release, showing that the proarrhythmic actions of ox-CaMKII may occur in cardiomyocytes by increasing sarcoplasmic reticulum Ca2+ leak or by enhanced cell death. Our findings suggest that the clinical association between sinus node dysfunction and AF might have a mechanistic basis because sinus node dysfunction and AF are downstream consequences of elevated ox-CaMKII.

Acknowledgments: We are thankful to Dr Miriam B. Zimmerman for her help with statistical analysis of the data. We are also thankful to Kathy Zimmerman and Melissa Davis who performed mouse echocardiograms. We acknowledge Jinying Yang for her assistance in maintaining mouse colonies. We thank Chantal Allamargot and the University of Iowa Microscopy Research Facility for their assistance in microscopic imaging and Shawn Roach for graphic art. The authors thank cardiac surgeons of Heart Centers Göttingen and Heidelberg for kind provision of human atrial tissue samples.

Funding Sources: This work was funded by National Institutes of Health (NIH) Grants R01-HL 079031, R01-HL096652, and R01-HL070250, R01-HL071140 (to MEA), RR026293, the European Union (large-scale FP7 grant “European Network for Translational Research in Atrial Fibrillation, EUTRAF, to DD), the University of Iowa Research Foundation, two Fondation Leducq grants (“Transatlantic Alliance for CaMKII Signaling”, 08CVD01 to MEA, LSM, XHTW and “European-North American Atrial Fibrillation Research Alliance”, 07CVD03, to DD), and by DZHK (German Center for Cardiovascular Research to D.D.). AP’s salary was
supported by an American Heart Association (AHA) post-doctoral fellowship grant 10POST3620047. AGR is supported by a Career Development Award from the Fondation Leducq. NL’s salary was supported by AHA grant 12BGIA1205207. XHTW is supported by AHA grant 13EIA14560061 and NIH grants R01-HL089598 and R01-HL091947. PDS’s salary was supported by a Kenneth M Rosen Fellowship and Max Schaldach Fellowship from the Heart Rhythm Society and University of Iowa Cardiovascular Research Center Interdisciplinary Research Fellowship.

Conflict of Interest Disclosures: MEA is a cofounder of Allosteros Therapeutics, a biotech aiming to develop enzyme inhibitors to treat arrhythmias.

References:

FA, Hasenfuss G, Maier LS. CaMKII-dependent diastolic SR Ca\(^{2+}\) leak and elevated diastolic Ca\(^{2+}\) levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134-1144.

37. Iravanian S, Dudley SC. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. *Heart Rhythm.* 2008;5:S12-S17.

41. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial

44. Anderson ME. Multiple downstream proarrhythmic targets for calmodulin kinase II: moving beyond an ion channel-centric focus. Cardiovasc Res. 2007;73:657-666.

Table 1. Summary of patient characteristics. **A.** Patient characteristics for immunofluorescence studies in Figure 1A and **B.** Patient characteristics for immunoblotting experiments in Figure 1C-F.

<table>
<thead>
<tr>
<th>Variable</th>
<th>A sinusrhythm (N=5)</th>
<th>A atrial fibrillation (N=4)</th>
<th>B sinusrhythm (N=25)</th>
<th>B atrial fibrillation (N=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>67±6</td>
<td>72±3</td>
<td>70±2</td>
<td>74±1</td>
</tr>
<tr>
<td>Males</td>
<td>4 (80.0)</td>
<td>3 (75.0)</td>
<td>11 (44.0)</td>
<td>15 (57.7)</td>
</tr>
<tr>
<td>Rhythm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxysmal AF</td>
<td>0 (0.0)</td>
<td></td>
<td>5 (19.2)</td>
<td></td>
</tr>
<tr>
<td>Persistent/Permanent AF</td>
<td>4 (100.0)</td>
<td></td>
<td>15 (57.7)</td>
<td></td>
</tr>
<tr>
<td>Unclassified AF</td>
<td>0 (0.0)</td>
<td></td>
<td>6 (23.1)</td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABG</td>
<td></td>
<td>19 (76.0)</td>
<td>8 (30.8)</td>
<td></td>
</tr>
<tr>
<td>Valve surgery</td>
<td>2 (8.0)</td>
<td></td>
<td>9 (34.6)</td>
<td></td>
</tr>
<tr>
<td>CABG + Valve surgery</td>
<td>4 (16.0)</td>
<td></td>
<td>8 (30.8)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>5 (100.0)</td>
<td>4 (100.0)</td>
<td>1 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>3 (60.0)</td>
<td>1 (25.0)</td>
<td>22 (88.0)</td>
<td>19 (73.1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>4 (80.0)</td>
<td>4 (100.0)</td>
<td>17 (68.0)</td>
<td>15 (57.7)</td>
</tr>
<tr>
<td>Valve disease</td>
<td>1 (20.0)</td>
<td>3 (75.0)</td>
<td>6 (24.0)</td>
<td>5 (19.2)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1 (20.0)</td>
<td>0 (0.0)</td>
<td>5 (20.0)</td>
<td>4 (15.4)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1 (20.0)</td>
<td>0 (0.0)</td>
<td>4 (16.0)</td>
<td>9 (34.6)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>5 (100.0)</td>
<td>2 (50.0)</td>
<td>1 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEI/ARBs</td>
<td>2 (40.0)</td>
<td>2 (50.0)</td>
<td>19 (76.0)</td>
<td>18 (69.2)</td>
</tr>
<tr>
<td>Beta blocker</td>
<td>3 (60.0)</td>
<td>4 (100.0)</td>
<td>17 (68.0)</td>
<td>20 (76.9)</td>
</tr>
<tr>
<td>Ca channel blocker</td>
<td>1 (20.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Peripheral Calcium channel blocker</td>
<td>4 (16.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Diuretics</td>
<td>8 (32.0)</td>
<td></td>
<td>20 (76.9)</td>
<td></td>
</tr>
<tr>
<td>Statins</td>
<td>4 (80.0)</td>
<td>3 (75.0)</td>
<td>18 (72.0)</td>
<td>10 (38.5)</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td>1 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Echocardiography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA diameter (mm)</td>
<td>42.3±3</td>
<td>51.7±1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF >45%</td>
<td>13 (52.0)</td>
<td>10 (38.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF 35-45%</td>
<td>7 (28.0)</td>
<td>5 (19.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF <35%</td>
<td>0 (0.0)</td>
<td>2 (7.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF (average %)</td>
<td>57.6±5.7</td>
<td>47.5±7.5</td>
<td>50±2</td>
<td>48±2</td>
</tr>
</tbody>
</table>

Values are mean ± SEM or N (%). *p<0.05, Student's t-test, sinus rhythm versus atrial fibrillation (AF) from the same panel.
Figure Legends:

Figure 1. ox-CaMKII is increased in atria from patients with Atrial Fibrillation (AF). A. Representative immunofluorescence images using antiserum against ox-CaMKII in fixed sections of right atrial tissue from patients with sinus rhythm (SR) or AF. B. Image quantification showing significantly higher ox-CaMKII in patients with AF compared to SR (*p<0.05, Student’s t-test). C. Representative immunoblots with ox-CaMKII antiserum in right atrial tissue homogenates from patients in SR or AF. D. Quantification of immunoblots showing significantly higher ox-CaMKII expression in patients with AF compared to SR (*p<0.05, Student’s t-test). The % value indicates the mean ox-CaMKII/GAPDH ratio as normalized to the mean ox-CaMKII/GAPDH ratio in the SR group. E. Representative immunoblots with total CaMKII antiserum in right atrial tissue homogenates from patients in SR or AF. F. Quantification of immunoblots showing similar total CaMKII expression in patients with AF and SR (p=0.3, Student’s t-test). The % value indicates the mean CaMKII/GAPDH ratio as normalized to the mean CaMKII/GAPDH ratio in the SR group. The numerals shown in the bars indicate the sample size in each group, here and in subsequent figures.

Figure 2. Ang II treatment increases AF inducibility in WT mice. A. Representative atrial (A-EGM) and ventricular (V-EGM) intracardiac electrograms and lead II surface ECG immediately after burst pacing show AF or SR in WT mice treated with Ang II or saline for 3 weeks. B. Contrasting R-R interval variability in AF and SR (C). Blue bars indicate calculated values from lead II ECGs shown in panel A. D. Higher AF inducibility in the Ang II treatment group (*p<0.05, Fisher’s exact test). E. Increase in systolic blood pressure (sBP) in WT mice after 3
weeks of Ang II treatment (**p<0.01, Student’s t-test). The numerals shown in the graph indicate the number of mice in each group. F. Significantly higher echocardiographically estimated left ventricular (LV) mass in Ang II treated mice compared to saline controls (**p<0.001, Student’s t-test). G. Similar LV ejection fraction (LVEF) in Ang II and saline treated mice.

Figure 3. CaMKII oxidation is critical to Ang II mediated AF. A. MM-VV, p47"" and MsrA TG mice were resistant to Ang II mediated AF (*p<0.05 versus Ang II treated MM-VV, p47"" and MsrA TG mice, Fisher’s exact test). B. All mice in panel A (WT, MM-VV, p47"" and MsrA TG) showed a pressor response to Ang II. C. Ang II treatment induced cardiac hypertrophy as assessed by heart weight normalized to body weight (all comparisons versus saline controls from each genotype after 3 weeks of treatment; *p<0.05, ** p<0.01 and ***p<0.001, Student’s t-test).

Figure 4. ox-CaMKII in atria after Ang II or saline treatment. A. Atrial lysate immunoblots from WT, MM-VV, p47"" and MsrA TG mice treated with Ang II or saline for 3 weeks and probed with an antiserum for ox-CaMKII. For quantification, ox-CaMKII bands were normalized to the total protein loading as assessed with Coomassie staining of the membrane. B. Increase in ox-CaMKII with Ang II treatment expressed as relative to the saline treated group. From each genotype 4 saline treated mice were used as controls. *p<0.05, for WT Ang II versus WT saline (*), in all other genotypes Ang II versus saline p>0.05; in addition, p=0.02 for WT Ang II versus MsrA TG Ang II and p=0.05 for MM-VV Ang II versus MsrA TG Ang II. C. Fold change in ox-CaMKII (over total CaMKII) in Ang II as relative to saline treated mice of the same genotype. From each genotype 4 saline treated mice were used as controls. ***p<0.001 versus WT saline,
*p<0.05 versus MM-VV saline, #p<0.05 versus MsrA TG saline. WT Ang II versus p47^{-/-} Ang II, P = 0.001, WT Ang II versus MsrA TG Ang II, P<0.0001, MM-VV Ang II versus MsrA TG Ang II, P=0.001. Data were analyzed using two-way ANOVA (for treatment and genotype) with Bonferroni post-hoc comparisons.

Figure 5. Ang II promotes Ca²⁺ sparks and DADs. A. Representative examples of Ca²⁺ sparks in atrial myocytes from Ang II and saline treated WT and MM-VV mice. B. Summary of Ca²⁺ spark frequency data in atrial myocytes from Ang II treated mice compared to saline treated mice (*p<0.05 versus saline; Student’s t-test); WT saline (N=23 cells from 5 mice), WT Ang II (N=30 cells from 4 mice), MM-VV saline (N=36 cells from 4 mice) and MM-VV Ang II (N=28 cells from 4 mice). C. Examples of stimulated action potentials and a spontaneous, DAD triggered action potential. D. Higher incidence of DADs in atrial myocytes from Ang II treated WT mice (*p<0.05 versus saline, Fisher’s exact test) but not in Ang II treated MM-VV mice compared to saline controls. Numerals show cells with DADs/total cells studied for each group.

Figure 6. CaMKII activation and RyR2 serine 2814 are required for AF in Ang II infused mice. A. AC3-I and S2814A mice were treated with Ang II for 3 weeks and then burst paced to induce AF. AC3-I and S2814A mice were resistant to Ang II mediated AF promotion compared to WT Ang II treated mice (*p<0.05 versus all, Fisher’s Exact test, N=number of mice tested in each group). B. AC3-I and S2814A mice show similar systolic blood pressure (sBP) elevation after treatment with Ang II. Final sBP measurements were performed on three consecutive days prior to AF induction as shown in panel A. The numerals in the graph indicate the number of mice in each group. C. Ang II treatment causes similar cardiac hypertrophy in AC3-I and S2814A mice.
compared to saline controls (***p<0.001 versus AC3-I saline and **p=0.01 versus S2814A saline).

Figure 7. Schematic to illustrate the proposed mechanism of AF in Ang II infused mice. Ang II binding activates NADPH oxidase (NOX) to increase reactive oxygen species (ROS), leading to oxidation of methionines 281/282 in CaMKII (ox-CaMKII). Elevated ox-CaMKII phosphorylates serine 2814 on RyR2, causing enhanced diastolic Ca\(^{2+}\) leak that promotes AF triggering DADs. Genetically modified mice were used to test key steps of the proposed pathway.
Figure 1
Figure 2

A-EGM
V-EGM
Lead II

WT Ang II
500 ms

WT Saline
500 ms

R-R interval (ms)

Consecutive beats

SR

D
AF Inducibility (%)

E
sBP (mm Hg)

F
LV mass (mg)

G
LVEF (fraction)

WT Saline	WT Ang II
14 | 14

N=6

12 | 15

12 | 15

N=6
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Oxidized CaMKII Triggers Atrial Fibrillation
Anil Purohit, Adam G. Rokita, Xiaojun Guan, Biyi Chen, Olha M. Koval, Niels Voigt, Stefan Neef, Thomas Sowa, Zhan Gao, Elizabeth D. Luczak, Hrafnhildur Stefansdottir, Andrew C. Behunin, Na Li, Ramzi N. El Accaoui, Baoli Yang, Paari Dominic Swaminathan, Robert M. Weiss, Xander H. T. Wehrens, Long-Sheng Song, Dobromir Dobrev, Lars S. Maier and Mark E. Anderson

Circulation. published online September 12, 2013;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2013/09/12/CIRCULATIONAHA.113.003313

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/09/12/CIRCULATIONAHA.113.003313.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL
Methods

Immunofluorescence staining. Human right atrial appendage tissue was placed in Tyrode’s solution. Tissue was then cryopreserved and sectioned at 10μm thickness. For all immunofluorescence staining, the slides were air dried for 5 minutes, fixed in formalin for 30 minutes, and washed in PBS, 3 times, 5 minutes each. The sections were incubated with a blocking buffer (3% gelatin from cold water fish skin, 0.1% Triton X, and 2 mg/ml BSA in PBS) with normal serum. The tissue was incubated overnight in the primary antibody (rabbit anti–mouse ox-CaMKII). The next day slides were washed in PBS and the tissue incubated with appropriate secondary antibodies for 1 hour. The slides were then washed and cover-slipped with VECTASHIELD (Vector Laboratories) with DAPI mounting medium.

Immunoblotting for human samples. Patient atrial myocardium was homogenized in Tris buffer as previously reported containing (in mM) Tris-HCl 20, NaCl 200, NaF 20, Na3VO4 1, DTT 1, 1% Triton X-100 (pH 7.4) and complete protease-inhibitor cocktail (Roche). Protein concentration was determined by BCA assay (Pierce Biotechnology). Protein concentration was adjusted to 1 μg/μl with phosphate buffered saline (PBS) and 5 X Laemmli buffer without β-mercaptoethanol was added (1:20) and samples were heated to 95°C for 30 min. Denatured tissue homogenates were subjected to Western blotting (8% SDS-polyacrylamide gels) using anti-CaMKII (1:15000, gift from D. M. Bers, University of California, Davis, CA) and anti-ox-CaMKII (1:15000) antibodies.
Chemi-luminescent detection was done with SuperSignal West Pico Substrate (Pierce).

Mouse Models and Experimental Methods. p47^{-/-} mice were purchased from Jackson Labs. Mice with transgenic myocardial CaMKII inhibition (AC3-I)¹, MM-VV knock-in mice² and MsrA transgenic mice³ were generated by our laboratory as described. S2814A knock-in mice were generated by the Wehrens laboratory.⁴ All animal studies were reviewed and approved by the IACUC of the University of Iowa.

HR and BP measurements. One week prior to the start of each experiment, mice were trained on the tail cuff BP equipment (Visitech BP-2000 blood pressure analysis system). HR and BP recorded for four consecutive days. The readings from days 1-2 were discarded and days 3-4 were averaged for the baseline value. Saline or Ang II pumps were implanted after collecting the baseline data. HR and BP were measured for at least 4 days a week (to maintain habituation to the apparatus and handling) for 3 weeks. The last 3 days of data were averaged to assess the effect of 3 weeks of treatment.

Mini-osmotic pump implantation. Mini-osmotic pumps (Alzet model 1004, 0.11 µl/hr, 28 days) containing saline or Ang II (2000 ng/kg/min) were inserted subcutaneously under anesthesia (ketamine/xylazine- 87.5/12.5 mg/kg), as previously reported.⁵

Transthoracic Echocardiography: We recorded transthoracic echocardiograms in conscious mice three weeks after Ang II pump implantation, as previously
Images were acquired and analyzed by an operator blinded to mouse genotype and treatment.

In vivo Electrophysiology (EP studies). Mice were anesthetized with isoflurane (2% for induction and 1.5% for maintenance of anesthesia; Isotec100 Series Isoflurane Vaporizer; Harvard Apparatus). During EP studies the mouse body temperature was monitored by an intra-rectal probe and controlled using mousepad circuit board equipped with a heating element (Mousepad, THM 100, Indus Instruments, USA). All studies were performed at 37.0 ± 0.5°C. We used a Millar 1.1F octapolar EP catheter (EPR-800; Millar Instruments) inserted via the right jugular vein, as previously described. A computer-based data acquisition system (Powerlab 16/30; ADI instruments) was used to record a 1-lead body surface ECG and up to 4 intracardiac bipolar electrograms (Labchart Pro software, version 7; AD Instruments). In brief, right atrial pacing was performed using 2 ms current pulses delivered by an external stimulator (STG-3008; Multi Channel Systems). Using an automated stimulator, inducibility of atrial fibrillation was tested by decremental burst pacing. Burst pacing started at a 40 ms cycle length, decreasing by 2 ms every 2 seconds to a cycle length of 20 ms. Burst pacing was repeated one minute after the previous burst concluded or the termination of AF. Burst pacing was performed for a total of five times in each mouse. AF was defined as the occurrence of rapid and fragmented atrial electrograms with irregular AV-nodal conduction and ventricular rhythm for at least 1 second. If at least 2 bursts (out of 5) produced AF, the mouse was considered inducible. Mice with < 2 bursts of AF were considered non-inducible.
Immunoblotting for mouse samples. Mice were sacrificed at the end of Ang II or saline infusion 3 weeks after implantations of the mini-osmotic pumps. Hearts were excised, and the atria were separated from the ventricles and flash frozen in liquid nitrogen. Atria were then homogenized in modified RIPA buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% v/v NP-40, and 0.5% w/v deoxycholate), containing a mixture of protease and phosphatase inhibitors. Equal amounts of protein were fractionated on NuPAGE Bis-Tris gels (Invitrogen) and transferred onto PVDF membranes (Bio-Rad). After blocking nonspecific binding with 5% w/v non-fat milk powder in TBS-T (50 mM Tris-HCl, pH 7.6, 150 mM NaCl, and 0.1% v/v Tween-20), blots were incubated in primary antibodies (ox-CaMKII [1:500] and CaMKII [1:250]) overnight at 4°C. The same procedure was applied for atrial immunoblots from untreated MsrA transgenic and WT littermate mice incubating with a primary anti-MsrA antibody (1:1000, abcam). Blots were washed in TBS-T and incubated with appropriate HRP-conjugated secondary antibodies. Protein bands were detected using ECL reagent (Lumi-Light, Roche), and loading was monitored by Coomassie staining of the blots after antibody probing. Atrial lysates from Ang II treated mice were run side by side on the same gel with lysates from saline treated mice from the same genotype. Quantification was performed using Image J analysis software (version 1.46, NIH).

ROS detection. Murine left atria, acquired as described above, were mounted and flash frozen in Tissue Freezing Medium (Triangle Biomedical Sciences, Durham). The tissue was then cryo sectioned (30 μm), rinsed with PBS and
incubated in DHE (2 × 10^{-2} M, Invitrogen) for 15 minutes at room temperature in darkness as previously described with minor alterations. Fluorescence was measured using a laser scanning confocal microscope (Zeiss 510 and 710; excitation at 488 nm and detection at 585 nm by using a long-pass filter). For quantification and analysis, tissue fluorescence was corrected for the nuclear fluorescence signal and normalized to the area of the imaged tissue section using Image J analysis software (version 1.46, NIH).

Atrial myocyte isolation. Atrial myocytes were isolated from adult mouse hearts using an established protocol with minor modifications.

Voltage clamp. Voltage and current signals were measured with an Axon 200B patch-clamp amplifier controlled by a personal computer using a Digidata 1320A acquisition board driven by pClamp 8.0 (Axon Instruments). We used perforated (amphotericin B) patch for \(I_{\text{Ca}} \) and action potential studies. All experiments were conducted at \(T=35^\circ\text{C} \). Recording pipettes, fabricated from borosilicate glass, had tip diameters of 2–3 μm and resistance of 2–4 MΩ, when filled with recording solution. All solutions were adjusted to 275–295 mOsm.

Ca^{2+} Imaging. Calcium imaging was performed as described previously. Briefly, atrial myocytes were loaded with Fluo-3 AM (5 μM, 20 min) at room temperature. After de-esterification, the cells will be perfused with normal Tyrode solution (1.8 mM Ca^{2+}). Confocal Ca^{2+} imaging will be performed with a laser scanning confocal microscope (LSM 510 Meta, Carl Zeiss) equipped with a NA=1.35, 63x lens. Line-scan measurement of Ca^{2+} transients, SR content and sparks were acquired at a sampling rate of 1.93 ms/line along the longitudinal
axis of the myocytes. \(\text{Ca}^{2+} \) sparks were measured under resting conditions. Steady state \(\text{Ca}^{2+} \) transients were achieved by a 30 sec pacing at 1 Hz. Sarcoplasmic reticulum \(\text{Ca}^{2+} \) content was measured as a global \(\text{Ca}^{2+} \) release induced by 20 mM caffeine. All digital images were processed with IDL 6.0 (Research System Inc).

Statistics. Data are presented as mean ± SEM. P values were assessed with a Student’s t-test (2-tailed), ANOVA or two-way ANOVA, as appropriate, for continuous data. Post hoc comparisons after ANOVA were performed using the Bonferroni test. Discrete variables were analyzed by Fisher’s exact test. The null hypothesis was rejected for \(p < 0.05 \). From the fitted ANOVA model, tests of mean contrast were performed to test for differences between Ang II versus saline within each genotype (mouse strain) with p-values adjusted using Bonferroni’s method to account for the number of tests performed (i.e. adjusted for 4 tests corresponding to each genotype). Similarly, tests of mean contrast were also used for pair-wise comparison of the Ang II versus saline differences between the genotypes with the p-value adjusted using the Bonferroni step-down method (adjusted for pairwise comparisons among all genotypes, or a total of 6 comparisons). The two-way ANOVA was performed on the natural log (Ln) transformation of the (normalized to Coomassie) ox-CaMKII, CaMKII, and ox-CaMKII/CaMKII ratio data. This was done because the data were not normally distributed and there was inequality of variance among the genotype-treatment groups. By applying the Ln transformation, the data distribution was normalized and homogeneity of variance was achieved. Since the mean estimates from the
ANOVA are in the Ln transformed scale, these were back-transformed to obtain means in the original scale, which corresponds to the geometric mean. The ratio of Ang II relative to saline group means in the original scale were computed by back-transformation of the difference between Ang II and saline treatment group means in the Ln scale.
References

Figure legend for supplementary figures:

Supplementary Figure 1. Subgroup analysis of CaMKII expression in patients. Immunoblotting was performed on atrial tissue obtained from patients in SR and AF using antisera against ox-CaMKII (A) and total CaMKII (B). Patients with AF were divided into two subgroups based on their use of angiotensin converting enzyme inhibitors (ACE-i) or angiotensin receptor blockers (ARB), and the respective ox-CaMKII (A) and total CaMKII (B) levels were compared with levels in the SR group (*p<0.05 and p values as shown above, one-way ANOVA with post-hoc Tukey test). The % values indicate the mean ox-CaMKII/GAPDH ratio (panel A) and CaMKII/GAPDH ratio (panel B) in the subgroups as normalized to the corresponding mean values in the SR groups. C. Complete films for total CaMKII and GAPDH immunoblots with red boxes highlighting the bands shown in Figure 1E. All lanes were included in the analysis. D. Complete films for ox-CaMKII and GAPDH immunoblots with red boxes highlighting the bands shown in Figure 1C.

Supplementary Figure 2. Characterization of MM-VV mice.

A. Similar increase in Ca^{2+} and calmodulin independent CaMKII activity with Isoproterenol treatment (daily injections) in WT and MM-VV mice, but no increase with Ang II in MM-VV mice as compared to WT littermates (*p<0.05 ANOVA, post-hoc Tukey test). B. MM-VV and WT mice had similar body weights at 8 weeks of age. C. Similar baseline heart rates (HR) in Langendorff-perfused hearts from WT and MM-VV mice at 8 weeks of age. D. Similar increases in HR
(% over baseline shown in E) in response to 10 mM isoproterenol (Student’s t-test) between WT and MM-VV Langendorff-perfused hearts.

Supplementary Figure 3. Atrial CaMKII and MsrA expression

A. Immunoblots for total CaMKII from atrial lysates isolated from mice treated with Ang II or saline for 3 weeks. For quantification, CaMKII bands were normalized to the total protein loading as assessed with Coomassie staining of the membrane. **B.** Summary data for total CaMKII expression in Ang II treated mice relative to saline treated mice of the same genotype. From each genotype 4 saline treated mice were used as controls. **p<0.01 versus WT saline, in addition p = 0.002 for WT Ang II versus MsrA TG Ang II and p = 0.013 for WT Ang II versus p47⁻/⁻ Ang II. Data were analyzed using two-way ANOVA (for treatment and genotype) with Bonferroni post-hoc comparison. **C.** Immunoblots for MsrA from atrial lysates isolated from MsrA TG and WT littermates. Coomassie staining of the membrane was used as a loading control.

Supplementary Figure 4. Atrial ROS in Ang II and saline treated mice.

A. Representative DHE fluorescence images taken in cryo-preserved left atrial myocardium from WT, MM-VV, p47⁻/⁻ and MsrA TG mice after 3 weeks of Ang II or saline infusion. Horizontal calibration bars indicate 100 μm. **B.** Summary of left atrial DHE fluorescence data. For each genotype, the bars represent the mean intensity of DHE fluorescence in the Ang II group as relative to DHE fluorescence in the saline group. From each genotype 4 saline treated mice were
used as controls. *p<0.05 versus saline from the WT and the MM-VV group separately.

Supplementary Figure 5. L-type Ca2+ current facilitation.
A. Peak L-Type Ca2+ currents recorded from atrial myocytes of WT and MM-VV mice (N=2 and 3 mice per group, respectively). **B.** Summary data for maximal facilitation of L-Type Ca2+ currents. Atrial myocytes from WT and MM-VV mice show similar peak L-type Ca2+ current density and facilitation (same amount of mice per group as in A). Facilitation is abolished by the CaMKII inhibitor KN-93 (500nM). *p<0.001 for WT versus WT + KN-93 and for MM-VV versus MM-VV + KN-93, and #p<0.05 WT versus MM-VV (Student’s t-test). Each point represents an N=5-7 cells. **C.** Exemplary L-Type Ca2+ current tracings from the 1st and 4th voltage command step (-40 to 0 mV) in panel B to demonstrate facilitation.

Supplementary Figure 6. Hypertrophic response to Ang II.

LV mass as estimated by echocardiography performed after 3 weeks of Ang II or saline treatment (all comparisons versus saline controls, *p<0.05 and ***,p<0.001, Student’s t-test).

Supplementary Figure 7. Ca2+ spark parameters and sarcoplasmic reticulum Ca2+ content in WT mice.

A. Average spatial width (FWHM, full-width at half-maximal amplitude in μm). **B.** Average duration (FDHM, full duration at half-maximal amplitude in ms). **C.** Average amplitude of spontaneous Ca2+ sparks in WT atrial myocytes treated with 3 weeks of Ang II or saline. Ang II N=46 cells from 6 mice and saline N=23
cells from 5 mice; no significant differences between Ang II and saline
treatments. D. Sarcoplasmic reticulum (SR) Ca$^{2+}$ transient and Ca$^{2+}$ content
(rapid SR depletion with 20 mM caffeine spritz) were similar in atrial myocytes
from Ang II and WT saline treated mice (N=4 mice each group).
Supplementary Figures

Supplementary Figure 1

A. ox-CaMKII

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>AF without ACE-i/ARB</th>
<th>AF with ACE-i/ARB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression in %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>7</td>
<td>18</td>
</tr>
</tbody>
</table>

B. CaMKII

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>AF without ACE-i/ARB</th>
<th>AF with ACE-i/ARB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression in %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>

C. CaMKII Gel 3

D. ox-CaMKII

GAPDH

P < 0.01 P < 0.05
Supplementary Figure 2

A

Ca\(^{2+}\)/CaM independent CaMKII activity

- **WT**
 - Saline: 5
 - Ang II: 6
 - Isoproterenol: 4

- **MM-VV**
 - Saline: 5
 - Ang II: 6
 - Isoproterenol: 4

B

Body weight (mg)

- **WT**
 - 7
- **MM-VV**
 - 8

C

Heart Rate (bpm)

- **WT**
 - NS
- **MM-VV**
 - NS

D

% change in HR with Iso

- **WT**
 - 5
- **MM-VV**
 - 7
Supplementary Figure 3

A

<table>
<thead>
<tr>
<th></th>
<th>CaMKII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ang II</td>
<td>WT</td>
</tr>
<tr>
<td></td>
<td>MM-VV</td>
</tr>
<tr>
<td></td>
<td>p47<sup>-/-</sup></td>
</tr>
<tr>
<td></td>
<td>MsrA TG</td>
</tr>
</tbody>
</table>

B

![Bar chart showing CaMKII ratio for different conditions](image)

C

![Western blot images for TG, MsrA, and WT](image)
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6

![Bar chart for LV mass (mg)](image)

Supplementary Figure 7

![Bar charts for various measurements](image)