Identifying Locations for Public Access Defibrillators using Mathematical Optimization

Running title: Chan et al.; Optimizing public access defibrillator locations

Timothy C. Y. Chan, PhD¹; Heyse Li, BASc¹; Gerald Lebovic, PhD²; Sabrina K. Tang, BASc¹;
Joyce Y. T. Chan, BASc¹; Horace C. K. Cheng, BASc¹; Laurie J. Morrison, MD, MSc³,⁴;
Steven C. Brooks, MD, MHSc³,⁵

¹Dept of Mechanical and Industrial Engineering; ⁴Div of Emergency Medicine, Dept of Medicine, University of Toronto, Toronto; ⁵Applied Health Research Centre; ³Rescu, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ⁵Dept of Emergency Medicine, Queen’s University at Kingston, Kingston, ON, Canada

Address for Correspondence:
Timothy C. Y. Chan, PhD
Department of Mechanical and Industrial Engineering
University of Toronto
5 King’s College Road
Toronto, ON, M5S 3G8, Canada.
Tel: 416-946-5721
Fax: 416-978-7753
E-mail: tcychan@mie.utoronto.ca

Journal Subject Code: Treatment:[25] CPR and emergency cardiac care
Abstract:

Background—Geo-spatial methods using mathematical optimization to identify clusters of cardiac arrests and prioritize public locations for defibrillator deployment have not been studied. Our objective was to develop such a method and test its performance against a population-guided approach.

Methods and Results—All public location cardiac arrests in Toronto, Canada from December 16, 2005 to July 15, 2010, and all automated external defibrillator (AED) locations registered with Toronto Emergency Medical Services as of September 2009, were plotted geographically. Current AED coverage was quantified by determining the number of cardiac arrests occurring within 100 meters of a registered AED. Clusters of cardiac arrests without a registered AED within 100 meters were identified. Using mathematical optimization techniques, cardiac arrest coverage improvements were computed and shown to be superior to results from a population-guided deployment method. There were 1310 eligible public location cardiac arrests and 1669 registered AEDs. Of the eligible cardiac arrests, 304 were within 100 meters of at least one registered AED (23% coverage). The average distance from a cardiac arrest to the closest AED was 281 meters. With AEDs deployed in the top 30 locations, an additional 112 historical cardiac arrests would be covered (32% total coverage) and the average distance to the closest AED would be 262 meters.

Conclusions—Geographical clusters of cardiac arrests can be easily identified and prioritized using mathematical modeling. Optimized AED deployment can increase cardiac arrest coverage and decrease the distance to the closest AED. Mathematical modeling can augment public AED deployment programs.

Key words: automated external defibrillator, cardiac arrest, cardiopulmonary resuscitation, defibrillation, resuscitation
Introduction

Out-of-hospital cardiac arrest (OHCA) is a significant public health problem, killing an estimated 300,000 people in North America annually\(^1\). The probability of survival after cardiac arrest decreases up to 10\% with each minute of delay between collapse and treatment\(^2,3\). Only 5-10\% of patients who suffer OHCA survive to hospital discharge\(^1,4\). Cardiopulmonary resuscitation (CPR) including quality chest compressions and early defibrillation can improve chances of survival for victims of OHCA. Patients suffering a witnessed cardiac arrest with a shockable rhythm who receive prompt CPR and defibrillation have markedly improved survival rates\(^5-7\). Public access defibrillation (PAD) programs which deploy AEDs in public settings are feasible and have been associated with a doubling in survival from OHCA\(^8-10\). However, in the real world setting, AEDs are used prior to EMS arrival in less than 3\% of OHCA\(^4\). Effective use of an AED in the event of a cardiac arrest emergency requires that: (1) an AED is in close proximity to the location of the cardiac arrest, (2) lay responders are aware of the location of the AED, and (3) lay responders are willing and able to retrieve and use the AED on the cardiac arrest victim. This investigation focuses on optimizing the first requirement.

Current guidelines suggest that areas associated with the highest risk of cardiac arrest should be targeted for AED deployment\(^8\). However, the method of identifying these cardiac arrest “hotspots” to optimize AED deployment in any given community is not clear. Throughout this paper, we will refer to a cardiac arrest hotspot as a location with the occurrence of one or more historical cardiac arrests (over the 4.5 year time interval of the project) having no registered AED within a 100 meter radius.

Several studies have attempted to identify high risk locations and building types for cardiac arrest\(^11-17\). These approaches have consistently identified facilities such as transportation
hubs and large athletic venues as high risk, where it is thought that high population density drives the incidence of cardiac arrest upwards. However, once the obvious choices for AED placement are identified and addressed, the challenge becomes one of deploying AEDs throughout the rest of the city in an efficient manner that maximizes coverage. For example, for a building type category that has a high incidence of cardiac arrest, but whose many constituent facilities are geographically dispersed, it may be prohibitively expensive to place an AED in each building in that category. On the other hand, buildings in close geographical proximity may each belong to building categories with low cardiac arrest incidence, but, as a group may have above average cardiac arrest incidence. A pure building-type strategy would miss such a geographical hotspot. Furthermore, many cardiac arrests occur outside in a public area or on the street – building-type analyses are typically unable to differentiate between different outdoor areas. Lastly, the generalizability of AED deployment strategies based on building-type information may be limited, due to the heterogeneity of population demographics, local culture, and infrastructure from city to city.

In this paper, we present a mathematical optimization methodology, based on a well-established and previously validated optimization model for facility location, to identify geographical hotspots of cardiac arrest and prioritize them for public access defibrillator deployment. We also develop a population-guided AED deployment method for comparison. We present our results specific to the City of Toronto as an example of our methodology, which could be applied to other cities with available historical cardiac arrest data. The specific objectives of this study are (1) to quantify the level of coverage of historical cardiac arrests provided by registered public access defibrillators in Toronto, (2) to compare optimization and population-guided AED deployment methods, (3) to identify underserved cardiac arrest hotspots
that may be target areas for future AED deployment, (4) to quantify the improvement potential through geographical optimization of AED locations using our optimization model.

Methods

Study Setting

Toronto has a population of approximately 2.5 million, a population density of 3972.4 people per km² and covers 630.18 km² of land. The city is served primarily by a single Emergency Medical Service (EMS), but units from other bordering EMS services may respond to emergencies if they are the closer. There is a tiered response to emergency calls with the fire department and multiple EMS units often deployed to a single emergency call.

Study Design

We conducted a retrospective observational study of consecutive EMS-attended cardiac arrest episodes occurring within the boundaries of the City of Toronto, Canada.

Cardiac Arrest Episode Selection

We considered all atraumatic cardiac arrest episodes occurring within the City of Toronto from December 16, 2005 to July 15, 2010 for inclusion in our study. We identified eligible episodes by the episode location postal code. Street address or latitude/longitude was used when a postal code was unavailable. Atraumatic cardiac arrest episodes were included regardless of initial cardiac arrest rhythm or presumed cause. We excluded those episodes that occurred in residential, nursing home or health care facility settings, or where it was not possible to determine with certainty the exact location of the cardiac arrest.

Data Sources

Cardiac Arrest Data
The Resuscitation Outcomes Consortium (ROC) is a North American consortium of 11 coordinating centers and over 200 emergency medical services to enable multi-center randomized controlled trials in cardiac arrest and life-threatening trauma. The ROC Epistry-Cardiac Arrest database is a large registry of consecutive OHCAs attended by ROC EMS providers. For this study, we used cardiac arrest cases from the local Epistry database occurring in the City of Toronto. Each entry in the database includes geographical information regarding the location of the cardiac arrest derived from dispatch data and the pick-up location indicated by paramedics on the ambulance call report. A specific field in the database identifies if a cardiac arrest occurred in a public setting or not. Patient demographics and clinical information regarding the characteristics of the cardiac arrest and treatment provided are also recorded for each episode. Approval for this study was obtained from our institutional research ethics board.

Locations of registered AEDs

We obtained a list of 1669 registered AEDs in Toronto as of September 2009 from Toronto EMS. Toronto EMS dispatch aimed to register all AEDs placed by the several regional PAD programs and also advertised on its website for private owners of AEDs in the public setting to register their AEDs. The registration of public location AEDs is voluntary in Ontario. AEDs are registered in this database with the exact mailing address of the building in which it was placed and a contact phone number. These data are integrated into a computer-assisted dispatch system used by the 911 operator.

Potential locations for new AEDs

We used data from the 2009 City of Toronto Employment Survey (http://www.toronto.ca/demographics/surveys.htm, accessed August 22, 2011) obtained from the
City of Toronto’s City Planning Division to determine potential locations for AEDs. This annual survey aims to identify every business establishment in the City of Toronto. Data from the survey are gathered each summer by trained surveyors who canvas the entire city in person and conduct face-to-face structured interviews with representatives from over 75,000 business establishments. In 2009, these businesses resided in 25,851 unique buildings in the City of Toronto. The survey collects location data on each of the buildings in which a surveyed business resides, including the number of floors within the building and number of businesses in each building. We used the geographic data corresponding to the unique buildings in this database to determine potential sites for public location AEDs.

Daytime census population

The City of Toronto’s City Planning Division used data from the 2006 Canadian Census to provide us with an estimate of the daytime population within each census tract (CT). The daytime population for each CT was calculated as the CT resident population, minus the employed labor force (number of people in the CT who are employed), plus the place of work population (number of people who work in the CT)\(^2\).

Analyses

Geographical data conversion

Geographical data for all registered AEDs (in the form of street addresses), buildings in City of Toronto (latitude/longitude coordinates), and historical cardiac arrest cases (mix of addresses and latitudes/longitudes) were converted into the Universal Transverse Mercator (UTM) format. The UTM system is similar to the well-known latitude/longitude system in its ability to uniquely identify a point on the Earth’s surface. One of the advantages of the UTM system is that it is based in meters, rather than degrees and minutes, facilitating the calculation of distances. Once
the data were converted into UTM coordinates, we plotted all data points in ArcGIS (Esri, Redlands, California), a geographic information system software program. The distance from each cardiac arrest location to each current and potential AED location was calculated using the Euclidean (i.e., straight line) metric.

Analysis #1: Current cardiac arrest coverage level

Once all the pairwise cardiac arrest-AED distances were calculated, we determined how many historical cardiac arrests occurred within 100 meters of a registered AED. The one hundred meter coverage radius was chosen based on the approximate maximum distance an AED could be transported by a bystander in a 1.5 minute walk as outlined in an AHA recommendation for community AED placement\(^8\). This analysis addresses the first objective of quantifying the level of cardiac arrest coverage provided by currently registered AEDs.

Analysis #2: Comparing optimization and population-guided AED placement strategies

To address the second objective of this paper, we developed an optimization model based on the Maximal Covering Location Problem (MCLP)\(^{19}\). Details are provided in the supplemental materials. Our model aimed to identify a set of locations where placing AEDs would maximize the number of additional historical cardiac arrests that could be covered within a 100 meter radius, above and beyond the number covered by existing registered AEDs. In our model, we assumed existing registered AEDs could not be moved. The decision variables were the locations of the additional AEDs to be deployed, to be chosen from our database of buildings in Toronto. The model had one adjustable parameter, \(N\), which specified the maximum number of locations where additional AEDs could be deployed. Solving the optimization problem with the parameter \(N\) set to 10, for example, would result in the identification of the top 10 cardiac arrest locations where additional AEDs would cover the most cardiac arrests. We ran the optimization
model for values of N of 20, 40, 60, 80, and 100. A separate optimization problem was solved for each value of N. We used the AMPL (AMPL Optimization LLC, Albuquerque, NM) software language to code the algebraic formulation of the model, and used the CPLEX (IBM Corp., Armonk, NY) solver to solve the corresponding optimization problem. The problems each took less than 15 seconds to solve using a desktop computer with 6 GB of RAM and a quad-core 2.67 GHz processor.

We developed a population-guided AED placement method as an alternative for comparison with the optimization method. A population-guided model was thought to reflect a “common sense” deployment approach which is less complex and could be conducted without historical cardiac arrest data or an optimization model. We distributed the daytime population in each CT among the buildings (from the Toronto Employment Survey database) situated in that CT, proportional to the number of floors in each building. For each building, we took the fraction of the number of floors it had relative to the total number of floors in all buildings in the CT, and assigned that fraction of the daytime population in the CT to that building. Then, all buildings in Toronto were rank ordered based on its assigned population, and the top N were chosen as locations for AED placement. The values of N chosen were 20, 40, 60, 80, and 100.

We also conducted a sensitivity analysis of the above approach by implementing a variant using the number of businesses in each building, instead of the number of floors, to proportionally distribute population in each CT.

To test the optimization method versus the population method, we applied McNemar’s test for paired proportions23. We used 10-fold cross-validation$^{24, 25}$ where in each scenario, 90% of the cardiac arrests (i.e., the training set) were used by the optimization model to determine the N optimal AED locations, which were then used to measure the coverage provided to the
remaining 10% of cardiac arrests (i.e., the testing set). The testing sets were disjoint across the 10 scenarios. We solved the optimization model for each value of N 10 times, one for each scenario, and summed the coverage results over all testing data sets. We evaluated the population-guided method on the same 10 testing sets. The combined results were used to construct a two-by-two matched pairs table for each value of N where the diagonals counted the concordant pairs (the number of cardiac arrests covered by both optimization and population methods and the number covered by neither) while the off-diagonals counted the discordant pairs (the number covered by only one of the two methods). McNemar’s test was performed on the two-by-two table for each value of N, and an associated p-value was calculated. In addition, 95% confidence intervals for paired proportions, centered at zero, were constructed for all values of N.

Analysis #3: Optimization of AED placement

To address the third and fourth objectives, we applied the optimization model to the full cardiac arrest dataset for each value of N from 0 to the maximum number needed to cover all historical cardiac arrests.

Results

During this time period, there were 15 786 atraumatic cardiac arrests recorded in the greater Toronto area. After applying the exclusion criteria, there were 1310 public location cardiac arrests that occurred within the City of Toronto during the time period considered (see Figure 1). Examples of public locations were outdoor settings, schools, public transportation venues, and commercial establishments. Demographics and cardiac arrest episode characteristics for the included cardiac arrests can be seen in Table 1.
Analysis #1: Current cardiac arrest coverage level

Out of the 1310 public cardiac arrests considered, 304 of them occurred within 100 meters of one of the 1669 pre-existing registered public AEDs, which corresponds to a coverage percentage of 23% (304/1310). The average distance from a historical cardiac arrest to the closest AED was 281 meters. We also conducted a post-hoc analysis of the data stratified by whether the cardiac arrests occurred downtown or not, motivated by the observation that cardiac arrest density appeared to be significantly different between the areas when visualized using ArcGIS.

Downtown was defined as the collection of census tracts that matched the downtown area defined by the City of Toronto26 and covers 16.45 km2 of land. There were 266 cardiac arrests that occurred downtown and 1044 cardiac arrests that occurred outside of downtown. The study data spanned 1688 days, and assuming 365 days per year, the downtown cardiac arrest density was 3.5 cardiac arrests per km2 per year. Outside of downtown, the cardiac arrest density was 0.4 cardiac arrests per km2 per year. The results summarized in Table 2 show that the percentage of cardiac arrests covered in downtown was almost three times higher than outside of downtown, and that the mean distance to the closest AED in downtown was approximately 60% lower. The population of Toronto was 2,503,281 in 2006, which translates to 11.3 public location cardiac arrests per 100,000 people per year.

Figure 2 overlays historical cardiac arrests and existing AEDs on a map of the City of Toronto. The shaded pink region corresponds to downtown. While there are many registered AEDs spread throughout Toronto, the vast majority have not historically been located within 100 meters of a cardiac arrest. Figure 3 highlights the downtown area.

Analysis #2: Comparing optimization and population-guided AED placement strategies

After removing the 304 cardiac arrests that were covered by the existing AEDs, 1006 remained.
Each of the 10 scenarios comprised a testing set with 100 cardiac arrests and a training set with the remaining 906. Table 3 displays the two-by-two table with the paired proportions for the case \(N = 100 \). Similar tables were constructed for the other values of \(N \). A p-value < 0.0001 (Chi-squared statistic was 32.93 on one degree of freedom) was obtained from McNemar’s test for \(N = 100 \).

Figure 4 compares the coverage provided by the optimization method with the population-guided method. The midpoint of a confidence interval indicates the number of additional cardiac arrests covered using the optimization method as compared to the population method. The error bars represent 95% confidence intervals around the midpoint. As we are using a paired difference in proportion centered at zero, the confidence intervals indicate statistical significance at the 95% level (p-values were all less than 0.0001).

The sensitivity analysis showed that using the number of businesses in each building to proportionally distribute the daytime population in each CT, instead of the number of floors, produced almost identical results. In particular, the optimization method covered more cardiac arrests than the business-based population-guided method across all levels of \(N \).

Analysis #3: Optimization of AED placement

Figure 5 shows the results from running the optimization model on the full set of cardiac arrest data, varying the maximum number of locations for additional AED deployment. For example, placing AEDs in the top 30 locations resulted in coverage of an additional 112 historical cardiac arrests, corresponding to an overall coverage percentage of 32\% (416/1310; a nine percentage point improvement over the baseline calculated in Analysis #1). In this case, the average distance from a cardiac arrest to the closest AED decreased to 262 meters. Reducing the distance a bystander needs to travel by approximately 20 meters, or up to 40 meters round trip,
has the potential to shave off close to half a minute in response time. Each cardiac arrest hotspot in the top 30 was composed of at least three cardiac arrests. After placing AEDs in the top 111 locations, each subsequent AED placed covered one historical cardiac arrest.

Figure 6 illustrates an example output of the optimization, identifying the top 30 locations for additional AED deployment.

Discussion

Previous studies have indicated that strategic initiatives are needed to target high-incidence areas of cardiac arrest, and that without a coordinated approach to AED deployment, paradoxical placement could result, with many AEDs placed in areas of low cardiac arrest incidence\(^1^4\). This study demonstrates that strategic placement of AEDs in a limited number of sites may result in an increase in cardiac arrest coverage in a large urban center. Such an increase will correspond to a decrease in the average distance from a cardiac arrest to the nearest AED, and may ultimately result in faster response times and improved outcomes. According to both the European Resuscitation Council\(^2^7\) and American Heart Association\(^8\) recommendations for AED deployment (placing AEDs in areas with one cardiac arrest every two and five years, respectively), the top 30 cardiac arrest hotspots identified would be locations recommended for AED placement. The results shown in **Table 2** highlight the epidemiological paradox of AED efficiency in dense, downtown settings versus more rural settings outside downtown. In particular, almost half of all downtown cardiac arrests were covered by an existing AED, whereas only 17% of cardiac arrests outside downtown were covered. This drop in coverage contrasts sharply with the number of AEDs and cardiac arrests outside downtown, which is about four times more than the number of AEDs and cardiac arrests inside downtown.
Our optimization model should be viewed as a decision-support tool to help prioritize placement of AEDs, make efficient use of public, donor or private funds directed towards PAD programs, and potentially maximize survival based on geographical patterns of cardiac arrest. Because AEDs are expensive and cannot be placed everywhere, our model allows a decision maker to quantify the trade-off between the number of AEDs deployed and coverage.

Geographical optimization of AED placement should be seen as a complementary approach to existing AED deployment methods. After identifying priority hotspots through our optimization model, a detailed study of the buildings in the area should be conducted before deciding on specific locations to place AEDs. Data from other building-specific analyses may inform these “micro” level decisions. For instance, the hours a building is open is an important consideration. The locations identified for potential AED deployment in this paper tended to have many other buildings nearby, either next door or across the street. Therefore, given an optimal location identified by our model, it seems likely that there would be many candidate locations that would provide equal coverage with at least one having regular business hours. The specific results of where to place the AEDs in the City of Toronto to optimize coverage of potential cardiac arrests are not meant to be generalizable to other cities; rather it is the optimization methodology itself which we believe can be translated and used by other cities to generate customized recommendations using their region-specific data and pre-existing AED deployment patterns.

Our model is based on a well-established, previously validated model used to solve the problem of optimally locating public facilities19. Since then, similar models have been developed to determine the deployment of preventative healthcare facilities28-30 and blood banks31, as well as for EMS applications like ambulance location32 and EMS station location problems33. As opposed to generating a simple ranked list of hotspots based on the number of
uncovered cardiac arrests, the priority locations determined by the optimization model will change depending on the choice of the parameter \(N \) (the number of locations where AEDs may be deployed). Since each choice of \(N \) results in the solving of an independent optimization problem, our model is able to properly account for overlap between the radii of nearby AEDs, as well as account for cardiac arrests that are already covered by previously deployed AEDs.

Optimization models can also be used to test different hypotheses or policies regarding AED deployment. For example, the coverage provided by deploying AEDs in all gas stations in a region to treat cardiac arrests that occur on the street can be explored computationally. Potential partnerships with businesses such as coffee shops or restaurants to deploy AEDs in their retail facilities could be evaluated computationally in terms of coverage provided by their network of locations. Lastly, a similar model could be used to “right-size” the number of public access defibrillators needed in a given region. Decision makers interested in achieving a particular service or coverage level (e.g., 95% of historical cardiac arrests must be within a 100 meter distance or a 2 minute travel time from a public access defibrillator) provided by public AEDs in their region could leverage a similar mathematical model as the one used in this paper to calculate the number and locations of the AEDs required.

Deploying public AEDs in accordance with population density is a very intuitive and appealing idea, but challenging to implement in practice. Population data are often only captured at the census tract level, which lacks the geographical granularity needed for public AED deployment decisions. Detailed building data similar to what we collected in this paper may not be easy to obtain. Lastly, obtaining daytime population data may be a challenge, since census information is based on residential addresses. Given the challenges with obtaining granular daytime population data, and the better performance of the optimization method over the
population-guided methods demonstrated in this paper, the effort to develop population cardiac arrest databases for use in optimization-guided health interventions may be justified.

The analyses in this paper were conducted from a geo-spatial point of view. Physical obstacles like doors, walls, corners, and multiple floors were not explicitly modeled. Our analyses are meant to provide a high-level view of geographies or regions where there are higher densities of cardiac arrests that are underserved by existing registered AEDs, and which therefore may be appropriate places to focus effort in placing future AEDs. By measuring coverage of historical cardiac arrests and identifying historical hotspots as potential geographies for future AED deployment, we implicitly assume that the past distribution of cardiac arrests is representative of the future. It has been shown in at least one city that the incidence of cardiac arrest within census tracts is relatively stable from year to year34. The cross-validation approach taken in this paper is one method to account for variability in cardiac arrest locations.

The database of building locations from the City of Toronto was used as our “grid” on which to identify cardiac arrest hotspots, but not all of those buildings would be an appropriate location in which to place an AED – actual deployment will require on-site evaluation to consider architectural details and building function. Furthermore, many buildings will require multiple AEDs in order to service all the potential need (e.g., multi-storey buildings). However, this database does provide a convenient mechanism to evaluate a diverse set of geographical points dispersed across the city, and is generally aligned with the distribution of population density. Therefore, it is reasonable to assume that potential locations for new AEDs will be in close proximity to buildings in this database.

It is important to recognize that our concept of “coverage” and actual AED usage are completely separate issues. Our claim is not that an AED within 100 meters will definitely be
used. Rather, the coverage radius is used to quantify how many AEDs have a chance of being used. Our focus is purely on identifying geographical hotspots and determining the existence of nearby AEDs; we make no claim on understanding actual bystander behavior and the resulting AED usage in cardiac arrest situations. Due to the relatively short distances bystanders are expected to travel to retrieve a nearby AED, we believe the straight line metric provided a reasonable approximation to distance travelled on foot. Interventions that increase bystander recruitment to a cardiac emergency or bystander awareness of AED locations at the time of a cardiac arrest have the potential to increase the coverage radius of an AED. For example, trained bystanders could act as an extension of EMS if they are alerted through a cellular phone of a nearby cardiac arrest and respond accordingly. Instead of round-trip travel by a bystander close to the victim, a targeted responder can make a one-way trip with an AED, cutting the travel time in half or, equivalently, doubling the coverage radius\(^{35}\). A faster response time is associated with an increase in the likelihood of a shockable initial rhythm. Figure 5 shows that as more AEDs are added to the system, the incremental value of each addition decreases. These results highlight the need to both optimize AED deployment in a large urban center and integrate the AED network with EMS and lay responders.

Registration of AEDs is not mandatory in Ontario and many other jurisdictions around the world. The list of registered AEDs obtained from Toronto EMS may not capture all publicly accessible AEDs in Toronto. However, we believe this is only a mild limitation. A 911 operator would not be able to direct a caller to an unregistered AED, so the likelihood that it would be used in a cardiac arrest is probably low, even if it is nearby. Unregistered AEDs tend to be purchased corporately and remain under lock and key as part of the institutional response to an internal emergency. Thus, we believe using our list of registered AEDs is a reasonably accurate
way to determine coverage of cardiac arrest cases that are reported to 911. Another limitation of this data source is that it does not include the date the AED was installed (or provide any guarantee the AED is still present and functional). The result is that the calculations of cardiac arrest coverage will be overestimated. However, our focus has been on the change in coverage and change in distance to the closest AED relative to a baseline, which means that while absolute values will be overestimated, relative values should be fairly accurate. In any case, this data limitation reinforces the need to develop local and national registries of publicly-accessible AEDs, and to involve public health organizations, emergency medical services and the public itself in helping to register AEDs.

Lastly, defibrillation is only one component of the optimal bystander response to cardiac arrest. Good quality bystander CPR is arguably a more important component of bystander resuscitation given that it is indicated for nearly all atraumatic cardiac arrest victims; an AED is effective for the minority of OHCA patients who have a shockable cardiac rhythm at any time. Any analysis that identifies cardiac arrest clusters should not only guide the rational placement of AEDs, but also direct focused efforts to increase bystander CPR through awareness campaigns, training or the establishment of organized first responder programs.

Conclusions

A mathematical optimization model can be used to detect geographical hotspots of cardiac arrest and drive regionally-customized strategic initiatives aimed at deploying public access defibrillators in areas of a city with the highest incidence of cardiac arrest. In particular, we demonstrate that an appropriate optimization model can outperform population-guided approaches to AED deployment. By targeting appropriate areas for AED deployment, coverage
of potential cardiac arrest sites can be increased, and the distance a lay responder needs to travel in order to retrieve an AED can be decreased. Mathematical modeling and optimization methods should be a part of a comprehensive, data-driven approach to AED deployment in public access defibrillation programs.

Acknowledgments: The authors acknowledge the helpful feedback given by audience members at the AHA Scientific Sessions 2010 and the NAEMSP Annual meeting 2011 on early presentations of this research. We are also grateful to Jiandong Su and Anuar Turgulov for help with gathering demographic data associated with the cardiac arrest data included in this paper. The local Epistry dataset is derived from source documentation provided by Toronto Regional EMS and Fire services participating in the Resuscitation Outcomes Consortium clinical trials. The quality and timeliness of the data are attributed to in-kind resources from all the participating services and providers, to which the investigators are grateful. Lastly, we are grateful to Bill Warren and Ram Naguleswaran at the City Planning Division of the City of Toronto for providing us with data from the Toronto Employment Survey and for their help in calculating the daytime census data.

Funding Sources: This research was funded by a start-up grant from the Department of Mechanical and Industrial Engineering at the University of Toronto. Summer student support was provided in part by an Undergraduate Summer Research Award from the Natural Sciences and Engineering Research Council of Canada. Dr. Brooks is supported by a Heart and Stroke Foundation of Canada Jumpstart Resuscitation Research Scholarship. Dr. Morrison is supported by the Robert and Dorothy Pitts Chair in Acute Care and Emergency Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael’s Hospital and the National Institute of Health ROC Grant. The ROC Epistry study is supported by a cooperative agreement (5U01 HL077863) with the National Heart, Lung and Blood Institute in partnership with the National Institute of Neurological Disorders and Stroke, The Canadian Institutes of Health Research (CIHR)—Institute of Circulatory and Respiratory Health, Defence Research and Development Canada, the Heart and Stroke Foundation of Canada, and the American Heart Association.
Conflict of Interest Disclosures: None.

References:

Table 1. Demographic characteristics of included public location cardiac arrests

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All included cardiac arrests (n=1310)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age, y (±SD)</td>
<td>59.4 ± 17.6</td>
</tr>
<tr>
<td>Male</td>
<td>59.1 ± 17.0</td>
</tr>
<tr>
<td>Female</td>
<td>60.8 ± 19.9</td>
</tr>
<tr>
<td>Male sex, n (%)*</td>
<td>1052 (80.3)</td>
</tr>
<tr>
<td>Witnessed by bystander, n (%)*</td>
<td>582 (44.4)</td>
</tr>
<tr>
<td>Received bystander CPR, n (%)*</td>
<td>499 (38.1)</td>
</tr>
<tr>
<td>Received bystander AED, n (%)*</td>
<td>70 (5.3)</td>
</tr>
<tr>
<td>Initial heart rhythm, n (%)*†</td>
<td></td>
</tr>
<tr>
<td>Shockable</td>
<td>421 (32.1)</td>
</tr>
<tr>
<td>Not shockable</td>
<td>843 (64.4)</td>
</tr>
<tr>
<td>Survival to discharge*, n (%)‡</td>
<td>160 (12.2)</td>
</tr>
</tbody>
</table>

*Number of missing/not noted cases: Male sex (17), Witnessed by bystander (13), Received bystander CPR (32), Received bystander AED (76), Average interval between 911 call to EMS vehicle arrival (21), initial heart rhythm (46), Survival to discharge (4)
† Shockable includes VT, VF and patients listed as “shockable”. Not shockable includes PEA, asystole, patients listed as “not shockable”, and patients where the initial rhythm was not obtained because resuscitation was ceased prior to rhythm analysis.

Table 2. Baseline cardiac arrest coverage provided by existing registered AEDs in Toronto.

<table>
<thead>
<tr>
<th>Area</th>
<th>Total # CAs</th>
<th>Total # AED</th>
<th>Total # CA covered</th>
<th>Coverage (%)</th>
<th>Mean dist. to closest AED (m)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>266</td>
<td>303</td>
<td>130</td>
<td>49</td>
<td>129 ± 103</td>
</tr>
<tr>
<td>Outside downtown</td>
<td>1044</td>
<td>1366</td>
<td>174</td>
<td>17</td>
<td>319 ± 237</td>
</tr>
<tr>
<td>Overall</td>
<td>1310</td>
<td>1669</td>
<td>304</td>
<td>23</td>
<td>281 ± 229</td>
</tr>
</tbody>
</table>

*Plus-minus values are mean ± SD.

Table 3. Coverage of cardiac arrests according to the optimization (N = 100) and population-guided methods.

<table>
<thead>
<tr>
<th>Population-guided method</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization method</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>882</td>
<td>26</td>
<td>908</td>
</tr>
<tr>
<td>Yes</td>
<td>87</td>
<td>5</td>
<td>92</td>
</tr>
<tr>
<td>Total</td>
<td>969</td>
<td>31</td>
<td>1000</td>
</tr>
</tbody>
</table>
Figure Legends:

Figure 1. Criteria for cardiac arrest episode inclusion/exclusion.

Figure 2. The geographical distribution of public location cardiac arrests from December 16, 2005 – July 15, 2010 and registered AEDs as of September 2009.

Figure 3. Public location cardiac arrests and registered AEDs in and around downtown Toronto.

Figure 4. Number of additional cardiac arrests that the optimization method covers over the population-guided method.

Figure 5. Increase in cardiac arrest coverage and decrease in average distance between cardiac arrests and the closest AED as a function of increasing AED deployment.

Figure 6. Locations of top 30 uncovered cardiac arrest hotspots in Toronto.
Figure 1

Atraumatic cardiac arrests in Greater Toronto Area

15 786

- Public
 - Within City of Toronto
 - 1310
 - Outside City of Toronto
 - 444
- Private
 - 13 916
- Unknown
 - 116
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Legend
- Public Cardiac Arrests
- Registered AEDs
- Downtown Toronto
- Top 30 Locations for Additional AEDs
Identifying Locations for Public Access Defibrillators using Mathematical Optimization
Timothy C. Y. Chan, Heyse Li, Gerald Lebovic, Sabrina K. Tang, Joyce Y. T. Chan, Horace C. K. Cheng, Laurie J. Morrison and Steven C. Brooks

Circulation. published online April 3, 2013;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2013/04/03/CIRCULATIONAHA.113.001953

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/04/03/CIRCULATIONAHA.113.001953.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/
Supplemental Material

Supplemental Methods

The mathematical model we use is shown below.

- x_j is a binary variable indicating whether cardiac arrest j is covered or not
- y_i is a binary variable indicating whether an AED is placed in location i or not
- a_{ij} is a binary data parameter that indicates whether cardiac arrest j is coverable (within 100 meters) of location i
- N is the number of locations in which AEDs are placed
- I is the number of potential locations in which to place AEDs
- J is the number of cardiac arrests in our dataset

Maximize \[\sum_{j=1}^{J} x_j \]
Subject to \[\sum_{i=1}^{I} y_i = N \]
\[x_j \leq \sum_{i=1}^{I} a_{ij} y_i, \text{ for all } j = 1, ..., J \]
\[x_j \in \{0, 1\}, \text{ for all } j = 1, ..., J \]
\[y_i \in \{0, 1\}, \text{ for all } i = 1, ..., I \]

This is a binary optimization model also known as the Maximal Covering Location Problem\(^1\).

References