AHA Consensus Statement

Strategies for Improving Survival After In-Hospital Cardiac Arrest in the United States: 2013 Consensus Recommendations

A Consensus Statement From the American Heart Association

Laurie J. Morrison, MD, MSc, Chair; Robert W. Neumar, MD, PhD; Janice L. Zimmerman, MD; Mark S. Link, MD; L. Kristin Newby, MD, MHS, FAHA; Paul W. McMullan, Jr, MD, FAHA; Terry Vanden Hoek, MD; Colleen C. Halverson, RN, MS; Lynn Doering, RN, DNSc, FAHA; Mary Ann Peberdy, MD, FAHA; Dana P. Edelson, MD, MS, FAHA; on behalf of the American Heart Association Emergency Cardiovascular Care Committee, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease

The goal of this statement is to develop consensus recommendations aimed at measuring and optimizing outcomes after in-hospital cardiac arrest (IHCA). For the purposes of this statement, IHCA is defined as a cardiac arrest that occurs in a hospital (whether the patient is admitted or not) and for which resuscitation is attempted with chest compressions, defibrillation, or both.

IHCA Consensus Process

Members of the writing group were selected for their expertise in cardiac resuscitation and post–cardiac arrest care. Monthly telephone conferences and “webinars” over a 10-month period were used to define the scope of the statement and to assign writing teams for each section. The first draft of each section was discussed and sent to the chair to be compiled into a single document. Revised versions were then sent to all writing group members until consensus was achieved. The final draft underwent 3 sets of independent peer review before publication.

IHCA Conflict of Interest or Relationships With Industry

The American Heart Association (AHA) is committed to the highest ethical standards. The AHA believes that having experts who have a relationship with industry or other relevant relationships on writing groups can strengthen the writing group effort when these relationships are transparent and managed.

The AHA conflict of interest policy requires each member to declare relevant and current conflicts of interest. The chair may not have any relationship with industry relevant to the topic. The majority of writing group members (defined as >50% +1) must be free of relevant relationships with industry. Every writing group member agrees to maintain his or her current status with respect to relationships with industry throughout the development of the manuscript to publication. In addition, each member formally declares his or her conflict of interest or relationship with industry at the time of publication. All members of this writing group were compliant with this policy (“Writing Group Disclosures”).

Brief Overview

IHCA has not received the same level of focused research as out-of-hospital cardiac arrest (OHCA). There are many gaps in science, policy, and institutional application and accountability for the care of these patients. There is variation across hospitals, regions, and nations in how IHCA are defined and

The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

This statement was approved by the American Heart Association Science Advisory and Coordinating Committee on January 3, 2013. A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

© 2013 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0b013e31828b2770
counted and whether they are reported annually as an accreditation requirement or a metric of hospital performance. This scientific statement is organized into the following 4 sections to provide consensus recommendations based on scientific evidence from IHCA studies or reasonable extrapolation from the OHCA literature:

1. Epidemiology (incidence and outcome)
2. Best practices (institutional infrastructure, care pathways, and process of care for each time interval [prearrest, intra-arrest, and postarrest])
3. Appeal for a culture change and standardized reporting and benchmarking
4. Conclusions and recommendations

This consensus statement on IHCA provides healthcare providers, clinical leaders, administrators, regulators, and policy makers with an overview of the various issues related to reporting, planning, and performing best practices as they relate to IHCA.

Epidemiology

Without a comparable data set composed of uniform definitions and reliable data abstraction across hospitals, it is challenging to identify interventions that are effective and safe. It is also difficult to count and report the incidence and outcomes of IHCA without a standardized method of defining the denominator, which has led to confusion in the literature and affects the generalizability of study results. More important, there is a common assumption that scientific advances in OHCA are directly applicable to the epidemiology and treatment of IHCA, with no consideration given to the different causes and burden of comorbidities that contribute to IHCA epidemiology. This assumption may be flawed, but current guidelines lump the literature together to guide resuscitation.

In most institutions, counting IHCA is challenging. One method is to count the number of times the hospital’s emergency response team is activated. This may be a flawed measure, because it can overcount (by including nonarrests) or undercount (by missing arrests in which victims were resuscitated by local staff without activation of the emergency response team, or missing arrests that occur in the emergency department [ED], operating rooms, cardiac procedure suites, and sometimes intensive care units [ICUs]).

The incidence of IHCA is not just a measure of the burden of illness; it is also a measure of the institutional response and system of care in the prevention of IHCA. Whereas IHCA outcomes may be a more refined measure of institutional readiness and effectiveness in the treatment of IHCA, the Joint Commission requires a common standard of care across the inpatient and contiguous outpatient areas of the hospital, yet in practice, variability may exist in the institutional response based on the geography of the event (Table 1). Because all arrests that occur within the confines of a hospital test that hospital’s response and system of care, a strategy should be in place to ensure comprehensive monitoring and institutional reporting of outcomes for arrests in patients, employees, and visitors in all areas, including the ED, diagnostic services, surgical suites, long-term care, and employee areas.

Hospitals that provide care for both acute and long-term patients may not consistently include or separate these patients when reporting incidence. Long-term care facilities and specialized facilities (eg, psychiatric care) may be physically located within a hospital but operate under a separate license. Another important issue that must be addressed to ensure consistent reporting of institutional IHCA is how to count multiple arrests in the same patient during the same admission; each arrest in the same patient may be counted differently across institutions.

Finally, institutional variation in implementation of do-not-attempt-resuscitation (DNAR) orders for patients before or after IHCA and how DNAR patients are counted may skew reported incidence and survival rates. Hospitals that frequently implement DNAR orders before IHCA may report lower incidences and higher survival rates than hospitals that infrequently implement DNAR orders. The institutional rate of survival will be dramatically affected if the institutional practice is to declare most patients DNAR after IHCA or to withdraw life-sustaining therapy. By one estimate from a registry of 207 hospitals, as many as 63% of patients with IHCA who achieve return of spontaneous circulation (ROSC) may be declared DNAR, and 44% may have life support withdrawn. In 1 study, there was a significant increase (15%) in the calculated survival-to-discharge rate when patients who were declared DNAR after an initial arrest were excluded. This suggests that DNAR rates can have a significant effect on reported outcome measures, and standard methods that account for the use of DNAR orders before or after IHCA must be implemented.

Published Estimates of Incidence

Given the lack of consistency in reporting, estimates of incidence and outcome should be reviewed and compared with caution. Single-institution studies using Utstein criteria have reported large variations in hospital-wide incidence rates of adult IHCA, ranging from 3.8 to 13.1 per 1000 admissions. A systematic review and meta-analysis of rapid response systems within 41 hospitals (academic and community) involving >1 million admissions described an incidence of IHCA occurring outside of ICUs of 3.66 per 1000 adult admissions and 1.14 per 1000 pediatric admissions. Because 45% of adult arrests and 65% of pediatric arrests occur in ICUs, by extrapolation, the hospital-wide rate of cardiac arrests is likely to be closer to 6.65 and 3.26 per 1000 admissions for adults and children, respectively. Given the estimated 32.2 million adult admissions and 1.8 million pediatric admissions (Healthcare Cost and Utilization Project data), extrapolation of the rapid response team data yields ≈200,000 adult cardiac arrests and ≈6000 pediatric cardiac arrests in the United States each year (Table 2). The adult estimate was confirmed by a recently published extrapolation that used data from 150 hospitals participating in the Get With The Guidelines–Resuscitation registry. This volunteer registry, funded by the AHA, was formerly known as the National Registry for Cardiopulmonary Resuscitation,
Remarkably, these estimates are similar to those for emergency medical services–assessed (treated and untreated) OHCAs. On the basis of US census data and available incidence data, it is estimated that each year ≈300,000 adult and 7,000 pediatric OHCAs occur. Published estimates can be affected by rearrest rates as well. Ninety-two percent of admitted patients who have a cardiac arrest have only 1 arrest during the index hospitalization; however, 7% have 2 arrests during the same admission, and, surprisingly, 1% have ≥3 arrests.

Recommended Definition of Incidence

The incidence of IHCA in admitted patients should be calculated by dividing the total number of patients who receive chest compressions, defibrillation, or both by the number of patients admitted to the hospital. Admitted patients in the or the NRCPR. Remarkably, these estimates are similar to those for emergency medical services–assessed (treated and untreated) OHCAs. On the basis of US census data and available incidence data, it is estimated that each year ≈300,000 adult and 7,000 pediatric OHCAs occur. Published estimates can be affected by rearrest rates as well. Ninety-two percent of admitted patients who have a cardiac arrest have only 1 arrest during the index hospitalization; however, 7% have 2 arrests during the same admission, and, surprisingly, 1% have ≥3 arrests.

Recommended Definition of Incidence

The incidence of IHCA in admitted patients should be calculated by dividing the total number of patients who receive chest compressions, defibrillation, or both by the number of patients admitted to the hospital. Admitted patients in the

Table 1. Variability of Institutional Response to In-Hospital Cardiac Arrest

<table>
<thead>
<tr>
<th>Type of Patient/Arrest</th>
<th>Potential Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHCA</td>
<td></td>
</tr>
<tr>
<td>Arrives alive at ED with pulse</td>
<td>ED staff</td>
</tr>
<tr>
<td>Arrives with ongoing active resuscitation attempt</td>
<td>ED staff</td>
</tr>
<tr>
<td>OHCA rearrest in ED</td>
<td>ED staff</td>
</tr>
<tr>
<td>Outpatient cardiac arrest</td>
<td>ED staff</td>
</tr>
<tr>
<td>ED patient</td>
<td>ED staff</td>
</tr>
<tr>
<td>ED patient admitted to hospital, waiting for inpatient bed</td>
<td>ED staff</td>
</tr>
<tr>
<td>Same-day surgery</td>
<td>ED staff Operating staff</td>
</tr>
<tr>
<td>Diagnostic tests and therapy</td>
<td>ED staff Cardiac arrest team</td>
</tr>
<tr>
<td>IHCA</td>
<td></td>
</tr>
<tr>
<td>Inpatient</td>
<td>ED staff* Cardiac arrest team</td>
</tr>
<tr>
<td>Operating room</td>
<td>ED staff* Operating staff</td>
</tr>
<tr>
<td>Critical care unit</td>
<td>ED staff* Critical care staff Cardiac arrest team</td>
</tr>
<tr>
<td>Recovery room</td>
<td>ED staff* Critical care staff Cardiac arrest team</td>
</tr>
<tr>
<td>Nonpatient cardiac arrest</td>
<td>ED staff* Cardiac arrest team</td>
</tr>
<tr>
<td>Staff with arrest anywhere</td>
<td>ED staff* Cardiac arrest team</td>
</tr>
<tr>
<td>Visitors with arrest anywhere</td>
<td>ED staff* Cardiac arrest team</td>
</tr>
</tbody>
</table>

Institutional response may differ across various locations where cardiac arrest occurs. This variability stresses the importance of good tracking of incidence and outcome to know how well the institution is performing in terms of prevention, response, and outcome.

ED indicates emergency department; IHCA, in-hospital cardiac arrest; and OHCA, out-of-hospital cardiac arrest.

*ED staff refers to institutions where the ED provides 24/7 (24 hours a day, 7 days a week) coverage for the hospital. This may occur in hospitals without 24/7 in-house support for critical care units.

Table 2. Published Incidence and Outcome Estimates of IHCA (Adult and Pediatric)

<table>
<thead>
<tr>
<th></th>
<th>Estimate by Admissions</th>
<th>Estimate by Population/Year</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>6.65/1000</td>
<td>200,000</td>
<td>Chan et al(9) Nadkarni et al(10)</td>
</tr>
<tr>
<td>Pediatric</td>
<td>3.26/1000</td>
<td>6000</td>
<td>Chan et al(9) Nadkarni et al(10)</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival to discharge</td>
<td>...</td>
<td>18%</td>
<td>Nadkarni et al(10)</td>
</tr>
<tr>
<td>CPC good</td>
<td>...</td>
<td>73%</td>
<td>Nadkarni et al(10) and Fiser(19) Booth et al(20)</td>
</tr>
<tr>
<td>Survival at 1 year</td>
<td>...</td>
<td>6.60%</td>
<td>Booth et al(20)</td>
</tr>
<tr>
<td>Survival at 3 years</td>
<td>...</td>
<td>5.20%</td>
<td>Booth et al(20)</td>
</tr>
<tr>
<td>Pediatric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival to discharge</td>
<td>...</td>
<td>27%</td>
<td>Nadkarni et al(10)</td>
</tr>
<tr>
<td>CPC good</td>
<td>...</td>
<td>65%</td>
<td>Nadkarni et al(10) and Fiser(19) Booth et al(20)</td>
</tr>
</tbody>
</table>

CPC indicates cerebral performance categories; and IHCA, in-hospital cardiac arrest.
ICU and critical care units, recovery room, and operating room should be counted in the denominator, and the number of patients who experience an arrest in these areas should be included in the numerator. All patients with a DNAR order before the index cardiac event should be excluded. This seems intuitive, because the index event will be the patient’s last event; however, the presence of a DNAR order is often missed, which leads to activation of the emergency response team and initiation of resuscitative efforts only for hospital staff to find out about the DNAR order midarrest and then withdraw care. These patients should not be counted in IHCA incidence or outcome measures (Figure 1).

The incidence of IHCA in ED patients should include all patients who were registered in the ED and patients admitted to the hospital but who remained in the ED awaiting a bed before their index IHCA. This group of patients would exclude those with OHCA that occurred before their arrival in the ED and patients with OHCA who experienced another arrest on arrival in the ED. The incidence calculation should exclude all nonadmitted patients with OHCA or cardiac arrest that occurred outside the ED (outpatient settings) who were transferred to the ED after resuscitation while awaiting an in-hospital bed or were admitted directly to a hospital bed, because the true denominator of this type of patient is unknown (Figure 2). The incidence of IHCA among long-term care patients should be reported separately, using their respective denominator in a fashion similar to that shown in Figure 1.

For patients with >1 IHCA during a single hospitalization, only the first IHCA is counted as the index cardiac arrest regardless of how many times the patient rearrests. If a patient has an arrest during >1 admission, then the first cardiac arrest that occurs in each separate admission is counted.

Published Estimates of Outcome
Although survival-to-discharge rates vary between studies, overall survival to hospital discharge has remained essentially unchanged for decades5 (Figure 3). In a retrospective analysis of the data from ≥1000 US hospitals in the Nationwide Inpatient Sample, survival of post-IHCA patients was determined by use of the International Statistical Classification of Diseases and Related Health Problems (ICD)-9 code 427.5, “cardiac arrest,” to identify patients with IHCA and patients who presented to the ED in cardiac arrest who were eventually admitted to the hospital.17 The study suggested that there was a 3% increase in in-hospital survival rates among IHCA patients between 2000 and 2004 (Figure 4). In a registry of 36,902 adults (≥18 years of age) and 880 children (<18 years old), survival to discharge after IHCA was higher in children than in adults for all rhythms (27% versus 18%); however, arrests that occurred in the delivery room and the ICU were

Figure 1. Reporting of incidence, survival, and do-not-attempt-resuscitation (DNAR) rate for patients admitted to an in-hospital bed with in-hospital cardiac arrest (IHCA). ROSC indicates return of spontaneous circulation. *All admitted patients includes all patients admitted in any in-hospital bed in any location of the hospital, including operating rooms, recovery, critical care units, procedural and diagnostic laboratories, and public areas. †Excludes admitted patients in the emergency department and patients designated DNAR after treatment for IHCA.
18 years. Good short-term neurological outcomes after IHCA, 5.2% alive at discharge, 5.2% alive at 1 year, and 3% alive at 3 years.18 Short-term survival after IHCA and found 6.6% overall but only 3.9% in patients who received vasopressors (Figure 6). In one report, survival-to-discharge rates after IHCA among critical care patients were 15.9% (Table 4).

Survival outcomes across different types of institutions, at different times, and of various subgroups have also been reported. A higher survival rate has been correlated with larger, teaching, and urban hospitals in some studies,5,17 but others report lower survival rates in metropolitan or teaching hospitals, perhaps related to the severity of underlying illness18 (Table 5; Figure 5). In addition, survival rates after IHCA have been reported to be lower at night and during weekends21 (Figure 6). In one report, survival-to-discharge rates after IHCA among critical care patients were 15.9% overall but only 3.9% in patients who received vasopressors before the arrest.22 In a study of 433985 elderly patients (≥65 years of age) who underwent in-hospital cardiopulmonary resuscitation (CPR), 18.3% survived to discharge (95% confidence interval, 18.2–18.5). There was no significant change in survival rates over time. Survival rates were lower in this subgroup of elderly patients when they were admitted to a skilled nursing facility and in patients who received care in a metropolitan or teaching hospital, and these findings were attributed to an overrepresentation of patients with more severe illness in these treatment facilities.23

Recommended Definition of Outcome
Survival to hospital discharge is the minimum standard, and survival to 30 days is preferred. In addition, a measure of functional survival (e.g., cerebral performance category or Modified Rankin Scale at discharge or at 30 days). Outcomes should be reported for all patients who are admitted to the hospital who do not have a DNAR order before arrest who are treated with either chest compressions or defibrillation (Figure 1). Arrests that occur in the ED should be reported separately and should not include patients whose initial arrest occurred out of hospital or people who were visitors, staff, or outpatients (Figure 2). DNAR rates should be defined by the number of patients with a DNAR status (before an index cardiac arrest) per 1000 admitted patients. The DNAR status of the patient after arrest is not included in the DNAR rate. The DNAR rate of patients before arrest should be reported separately for acute and long-term care inpatients. The rates of DNAR status assignment after arrest should be reported and compared with similar institutions to ensure that performance is in line with the standard of care.

Best Practices
The best practices are divided into 3 temporal sections: Prearrest, intra-arrest, and postarrest. The discussion for each period includes (1) a brief introduction, (2) the structural aspects of the institutional response (personnel, training, equipment), (3) care pathways followed during the time interval (early identification, focus on CPR and early defibrillation, comprehensive postarrest care), and (4) process issues related to how care is provided and quality improvement measures (real-time feedback, automated equipment that can replace staff and deliver similar care, withdrawal of life-sustaining therapy).

Table 3. First Documented Rhythm in Pediatric and Adult Cardiac Arrests

<table>
<thead>
<tr>
<th>First Documented Rhythm</th>
<th>Pediatric Cardiac Arrest (n=880)</th>
<th>Adult Cardiac Arrest (n=36902)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asystole</td>
<td>350 (40)</td>
<td>13024 (35)</td>
<td>0.006</td>
</tr>
<tr>
<td>VF or pulseless VT</td>
<td>120 (14)</td>
<td>8361 (23)</td>
<td><0.001</td>
</tr>
<tr>
<td>VF</td>
<td>71 (8)</td>
<td>5170 (14)</td>
<td><0.001</td>
</tr>
<tr>
<td>Pulseless VT</td>
<td>49 (6)</td>
<td>3191 (9)</td>
<td>0.001</td>
</tr>
<tr>
<td>PEA</td>
<td>213 (24)</td>
<td>11963 (32)</td>
<td><0.001</td>
</tr>
<tr>
<td>Unknown by documentation</td>
<td>197 (22)</td>
<td>3554 (10)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

PEA indicates pulseless electrical activity; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Adapted and used with permission from Nadkarni et al.10 Copyright © 2006 American Medical Association. All rights reserved.
Table 4. Outcomes of In-Hospital Pulseless Cardiac Arrest by First Documented Pulseless Arrest Rhythm*

<table>
<thead>
<tr>
<th>Variable</th>
<th>NF or Pulseless VT (n=120)</th>
<th>Pediatric (n=350)</th>
<th>Adult (n=8361)</th>
<th>Asystole (n=13024)</th>
<th>Pediatric (n=213)</th>
<th>Adult (n=11 963)</th>
<th>PEA (n=197)</th>
<th>Adult (n=3 554)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any ROSC</td>
<td>80 (66.7)</td>
<td>5629 (67.3)</td>
<td>184 (52.6)</td>
<td>5858 (45.0)</td>
<td>123 (57.7)</td>
<td>6270 (52.4)</td>
<td>137 (69.5)</td>
<td>2062 (58.0)</td>
</tr>
<tr>
<td>ROSC >20 min</td>
<td>74 (61.7)</td>
<td>5185 (62.0)</td>
<td>157 (44.9)</td>
<td>4997 (38.4)</td>
<td>108 (50.7)</td>
<td>5135 (42.9)</td>
<td>120 (60.9)</td>
<td>1866 (52.5)</td>
</tr>
<tr>
<td>Survival to discharge</td>
<td>35 (29.2)</td>
<td>3013 (36.0)</td>
<td>78 (22.3)</td>
<td>1379 (10.6)</td>
<td>57 (26.8)</td>
<td>1340 (11.2)</td>
<td>66 (33.5)</td>
<td>753 (21.2)</td>
</tr>
<tr>
<td>Neurological outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>22 (62.9)</td>
<td>2268 (75.3)</td>
<td>43 (55.1)</td>
<td>841 (61.0)</td>
<td>36 (63.2)</td>
<td>834 (62.2)</td>
<td>35 (53.0)</td>
<td>447 (59.4)</td>
</tr>
<tr>
<td>Poor</td>
<td>1 (2.9)</td>
<td>264 (8.8)</td>
<td>16 (20.5)</td>
<td>243 (17.6)</td>
<td>13 (22.8)</td>
<td>222 (16.6)</td>
<td>11 (16.7)</td>
<td>111 (14.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>12 (34.3)</td>
<td>481 (16.0)</td>
<td>19 (24.4)</td>
<td>295 (21.4)</td>
<td>8 (14.0)</td>
<td>284 (21.2)</td>
<td>20 (30.3)</td>
<td>195 (25.9)</td>
</tr>
</tbody>
</table>

Values are number (%) of patients.

PEA indicates pulseless electrical activity; ROSC, return of spontaneous circulation; VF, ventricular fibrillation; and VT, ventricular tachycardia.

*First documented pulseless rhythm was defined as the first electrocardiographic rhythm documented at the time the patient became pulseless. Good neurological outcome was prospectively defined as cerebral performance category (CPC) 1 or 2 for adults; the comparable pediatric cerebral performance category (PCPC) of 1, 2, or 3 for children on hospital discharge; or no change from baseline CPC or PCPC.

Reprinted with permission from Nadkarni et al.10 Copyright © 2006 American Medical Association. All rights reserved.

Best Practices: Prearrest

Brief Introduction to Prearrest

In the pre-IHCA period, several aspects of preparation are important. These include placement of defibrillators and code carts (or crash carts); establishment of emergency response teams; training of IHCA code team personnel in clinical resuscitation care, as well as team leadership and resource management; and development of a comprehensive performance review process, cardiac monitoring, and documentation in the medical record about the level of resuscitation appropriate for the patient (eg, DNAR status).

Structural Aspects of the Institutional Response

Defibrillators and Code Carts

Manual defibrillators or automated external defibrillators (AEDs) and code carts should be readily accessible to any patient area, and all staff should know the location of this equipment and how to use it. In general, a defibrillator and code cart should be in close proximity to enable defibrillation of any patient in cardiac arrest within 2 minutes.24 This may be achieved by staff carrying resources to the scene of the arrest rather than moving a cart; regardless of how staff access the defibrillator and code cart, it is most important that access be rapid. To minimize delays and confusion, it may be advisable to standardize defibrillator equipment across the institution.25 Ideally, staff should have the capacity to receive feedback on the quality of CPR at the point of care. This may include voice or visual cues on the quality of CPR (depth, interruptions or hands-off time, compression rate) that are measured and reported by the defibrillator, a handheld device, or alternative technology.26 Additionally, staff should have access to physiological feedback about the quality of CPR at the point of care (eg, quantitative end-tidal CO2 or waveform capnography defined as continuous noninvasive measurement and graphic display of end-tidal CO2), at a minimum and intra-arterial pressure monitoring as outlined in the 2010 AHA guidelines for CPR and ECC.27 There should be a process in place to

Table 5. Severity of Disease Predictors for Nonsurvivors and Survivors of Cardiac Arrest

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nonsurvivors (n=683)</th>
<th>Survivors (n=49)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at arrest, y</td>
<td>66±12</td>
<td>59±12</td>
<td><0.01</td>
</tr>
<tr>
<td>Comorbidity score on discharge</td>
<td>3.0±1.5</td>
<td>2.6±1.6</td>
<td>0.03</td>
</tr>
<tr>
<td>Duration of resuscitation attempt, min</td>
<td>22.6±13</td>
<td>19.9±18</td>
<td>0.58</td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>42±18</td>
<td>42±18</td>
<td>0.67</td>
</tr>
<tr>
<td>VT/VF</td>
<td>122 (18)</td>
<td>25 (52)</td>
<td><0.01</td>
</tr>
<tr>
<td>Medication use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACE-I/ARB</td>
<td>270 (40)</td>
<td>30 (67)</td>
<td>0.01</td>
</tr>
<tr>
<td>β-Blocker</td>
<td>217 (31)</td>
<td>27 (56)</td>
<td><0.01</td>
</tr>
<tr>
<td>Antiarrhythmic</td>
<td>50 (8)</td>
<td>10 (20)</td>
<td>0.05</td>
</tr>
<tr>
<td>Calcium channel blocker</td>
<td>216 (32)</td>
<td>19 (39)</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Data are presented as mean±SD or n (%).

ACE-I indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; VF, ventricular fibrillation; and VT, ventricular tachycardia.

*P value contrasts the 2 categories.

Reprinted from Bloom et al18 with permission from Elsevier. Copyright © 2007, Elsevier Inc.
collect and review the resuscitation data from the defibrillator and any other device or source documentation that captures data at the scene in a timely manner as a source of postevent feedback to the team.26 Code carts should be stocked with the necessary ACLS medications and intubation and respiratory supplies, and, where applicable, specialty-specific supplies (eg, pediatric supplies, cesarean section tray).

Rapid Response Teams

Rapid response teams were established to prevent IHCA in patients whose condition is deteriorating.20,30 These teams are usually composed of varying combinations of physicians, nurses, respiratory therapists, and pharmacists and can be summoned to the bedside of a patient who is noted to have an acute clinical decompensation or is thought to be at immediate risk of IHCA and other immediate life-threatening events. Although the theory is compelling, data on the effectiveness of these teams have actually been mixed.31,32 A recent meta-analysis suggests that although rapid response teams may decrease the incidence of IHCA outside the ICU, they have not convincingly demonstrated significant improvements in survival rates.8 Possibilities for these counterintuitive results are (1) early identification and transfer of the patient to the ICU, where the patient subsequently experiences an IHCA, and (2) increased use of DNAR orders.33 Other possibilities include failure to trigger the team when signs of deterioration are noted and poor surveillance methods for identifying clinical deterioration.34

Code Teams

The Joint Commission1 requires that resuscitation services and equipment be provided to patients according to the hospital’s protocol and that resuscitation outcomes be collected and reviewed. In addition, The Joint Commission requires that evidence-based programs be used to train staff in the need for resuscitation and the use of resuscitation equipment and techniques. However, The Joint Commission does not mandate the composition of code teams. The American Board of Internal Medicine and the Accreditation Council for Graduate Medical Education likewise do not mandate composition or even training of code teams, although the new Accreditation Council for Graduate Medical Education common program requirements clearly emphasize the need for adequate supervision and graded progressive responsibility as core tenets within graduate training in medicine.35 To fulfill the requirements of The Joint Commission, all hospital staff responsible for the care of patients should be trained in basic life support. This training should include how to recognize a patient whose condition is deteriorating, call for help, start CPR, direct others to get the nearest AED, and use the AED. A designated emergency response team (eg, code blue in some hospitals) must be available at all times. Code team composition is mandated by individual hospitals and may consist of nurses, respiratory therapists, pharmacists, physicians, and clergy, as well as security personnel. Mechanisms for triggering a specialty-specific emergency response team for unique situations such as pediatric and maternal-fetal arrests should be available if such clinical situations are a possibility at a specific hospital. A code team leader is responsible for guiding the resuscitative efforts. Code team members must have ACLS Provider cards and be on duty in the hospital and available to respond to codes at all times.27

Education and Training

All hospital staff should know how to recognize cardiac arrest, call for help, perform chest compressions, and use an AED at the level of a bystander until staff with training in the care of patients with cardiac arrest respond to the event. Some hospitals have made this a minimum requirement for hiring, and others have mandated it as a minimum requirement for continued employment, with annual retraining of all staff. Education and training of IHCA code team staff are critical to improved performance and better outcomes.36 IHCA is a relatively low-frequency event, and IHCA code team members have reported feeling ill prepared to lead and participate as members of the team.37 IHCA treatment generally relies on code teams whose personnel composition changes frequently, and members may not be focused solely on providing emergency resuscitation care. Therefore, there may be aspects of training and skills retention related to providing intra-arrest care that are unique to the hospital setting and require frequent retraining of the team to maintain skills, minimize errors, and optimize outcome.38,39 Simulation training in addition to ACLS training of house staff at an academic hospital ICU was associated with greater adherence to the AHA Guidelines for CPR and ECC.40

Very few studies have reported the effect of training on survival from IHCA. In 1 study performed at a 550-bed tertiary care center, the survival rate of patients initially resuscitated by a nurse trained in ACLS was almost 4 times higher (37.5% versus 10.3%) than when resuscitation was initiated by a nurse without ACLS training.41 One study with some methodological concerns reported an increase in short- and long-term survival rates with ACLS-trained personnel.42

One of the more promising training strategies may involve the use of simulation-based mock codes. A recent study

Figure 6. Survival to discharge rate and total arrests by time category and day of week. Error bars represent 95% confidence intervals. Reprinted with permission from Peberdy et al.21 Copyright © 2008, American Medical Association. All rights reserved.
conducted over the course of 48 months suggested that monthly random mock codes that used a simulator and occurred in various patient locations within the hospital were correlated with improved survival rates for pediatric arrest of >50%. These rates were higher than the 2008 national average.43 In a simulation model evaluation of ventricular fibrillation (VF) IHCA resuscitation, patients were more likely to receive more defibrillations when the physician team arrived early (median arrival 50 seconds after onset). In all cases, there was a median delay of 85 seconds until CPR was started, and 100 seconds elapsed before the first defibrillation. These data suggest that gaps in knowledge, reluctance to act, and team work all need to be addressed through improved training.44

Care Pathways

Prevention Through Early Identification

IHCA is frequently preceded by clinical deterioration that is evident in symptoms and changes in vital signs that could be identified and treated by trained in-hospital staff.45 As a result, greater emphasis has been placed on prevention of these events, based on the assumption that earlier identification and intervention to stabilize these patients can prevent IHCA.46,47 In 2008, The Joint Commission47 introduced patient safety goals, in which goal 16 specifically targets improved recognition of and response to changes in a patient’s condition.48 An observational study of surgical and medical wards reported that 1 of 5 patients developed abnormal vital signs, and >50% of these events went unnoticed by nursing staff. The patients with abnormal vital signs had a 3-fold higher 30-day mortality rate.49 A nested, controlled, in-hospital trial comparing prearrest patients with control subjects at 48 hours before the event suggested that the Modified Early Warning Scores were different, but the authors noted that this scoring system does not include significant predictors such as diastolic and pulse pressures.50 A study that examined circadian variability and a large registry study of >58,000 IHCA both demonstrated lower survival rates during nights and weekends.51,52 Interventions to address consistent and comprehensive staff training in monitoring vital signs, including quantitative end-tidal CO₂ waveform capnography and electrocardiographic (ECG) tracings, as well as anticipation of bad outcomes, initial response, and ACLS skills may enable earlier detection, better treatment, and better survival rates regardless of time of day or day of the week.

Very few high-quality evaluations of training interventions to improve the early identification of prearrest patients exist.34 The more promising educational interventions are the Immediate Life Support55 and the Acute Life-Threatening Events Recognition and Treatment56 courses; however, high-quality evaluations of their efficacy are still pending. A longitudinal multicenter study57 of the Acute Life-Threatening Events Recognition and Treatment course suggested an increase in prearrest calls, a reduction in the number of IHCA, and improved survival-to-discharge rate after IHCA. A before-and-after comparison of a 1-day course, based on a needs assessment, failed to show any difference; however, only 67% of the nursing staff were trained.55

ECG and Physiological Monitoring

It is important to keep in mind that many arrests are unmonitored and unwitnessed. Brady et al56 reported improved survival to discharge and favorable neurological outcome with either monitoring or direct observation compared with unmonitored or unwitnessed IHCA. This retrospective look at registry data also suggested that there was no additional advantage of cardiac monitoring compared with staff observation of the event, which reinforces that early identification and trained response are key.56 That said, it is very difficult to predict who will experience a cardiac arrest. A tiered approach to the use of ECG monitoring may alert hospital personnel to a life-threatening arrhythmia before the clinical discovery of an unconscious patient; thus, it can save critical minutes from the onset of IHCA to the start of resuscitative efforts.

A 2004 AHA scientific statement provided some guidance on who should be monitored with electrocardiography.57 Class I indications for monitoring include the following:

- Patients resuscitated from sudden cardiac death
- Patients in the early phase of acute coronary syndromes
- Patients with unstable coronary syndromes and newly diagnosed high-risk coronary lesions
- Adults and children who have undergone cardiac surgery
- Patients who have undergone nonurgent percutaneous coronary intervention (PCI) with complications
- Patients who have undergone implantation of an automated defibrillator lead or a pacemaker lead and who are considered pacemaker dependent
- Patients with a temporary pacemaker or transcutaneous pacing pads
- Patients with atrioventricular block
- Patients with arrhythmias and Wolff-Parkinson-White syndrome
- Patients with long-QT syndrome and arrhythmias
- Patients with intra-aortic balloon pumps
- Patients with acute heart failure
- Patients with indications for intensive care
- Patients undergoing conscious sedation
- Patients with unstable arrhythmias
- Pediatric patients with symptoms of arrhythmia

Class II indications (may be beneficial in some patients) include the following:

- Patients with post–acute myocardial infarction (AMI)
- Patients with chest pain syndromes not thought to be acute coronary syndromes
- Patients who have undergone uncomplicated nonurgent coronary intervention
- Patients who have been administered antiarrhythmic drugs that are not potentially proarrhythmic
- Patients with implanted pacemakers who are not pacemaker dependent
- Patients with uncomplicated ablation of arrhythmia
- Patients with diagnostic coronary angiography
- Patients evaluated for syncope thought to be noncardiac
- Patients with DNAR orders who may have arrhythmias that cause discomfort

Selected low-risk patients admitted with chest pain may not need ECG monitoring.58,59 ECG monitoring must be of high quality in capturing the trigger of true arrests (sensitivity) and
for avoidance of false alarms (specificity). Sufficient staffing is critical to allow a prompt and appropriate response to the alarms by a nurse or technician.

Other physiological monitoring is also necessary in disease-specific subgroups of patients. Arterial blood pressure monitoring may be performed noninvasively or invasively for patients at risk for hemodynamic instability. Respiratory monitoring is of particular use in patients with sleep apnea. Pulse oximetry for monitoring of patients with pulmonary disease is quite valuable. Quantitative end-tidal
\[\text{CO}_2 \] waveform capnography is recommended for ventilation with a bag-mask, for intubated patients, and for those undergoing conscious sedation.

Process Issues

Plan for Routine Debriefing

It is important to put in place a process for postevent debriefing that best fits the culture of the institution, the resources, and the timing of data capture and analysis. It is important to define a priori who will lead the debriefing (preferably people trained as facilitators) and when it will occur. Debriefing is used to identify best practices unique to the institution, to optimize performance, and to address emotional responses related to the specific event. The impact of debriefing to date has been measured against performance and short- and long-term survival; however, other outcomes, such as factors related to team building, psychological responses, and retention, have not been studied. Debriefing sessions that review clinical and defibrillator-recorded information from a code may improve some but not all aspects of code team performance. In 1 study, debriefing with audiovisual feedback was associated with significantly improved rates of ROSC (59.6% versus 44.6%, \(P = 0.03 \)) but did not change survival-to-hospital discharge rates (7.4% versus 8.9%, \(P = 0.69 \)). Further study is needed to evaluate routine debriefing with respect to the capacity to build and retain teams, who should conduct the debriefing, when the debriefing should occur, and to define the cost-effectiveness of this intervention.

DNAR Orders

Resuscitation is not always desired by the individual, and in many cases it is medically futile. Advance directives, living wills, and durable power of attorney for health care and patient self-determination ensure that patient preferences will guide care even when the patient is unable to make decisions on his or her own. Advance planning by the patient or proxy decision maker is ultimately in the best interest of the patient, because studies have shown that these decisions are associated with better care, quality of life, and bereavement adjustment by caregivers. Advance directives should be discussed with and documented for all patients admitted to the hospital. DNAR orders should be completed, signed, and dated by the physician after a documented discussion with the patient and/or family or legal representative. This will avoid unwanted or futile resuscitation and the subsequent need for early withdrawal of life-sustaining therapy. It is important to be frank with the patient and explain the probability of surviving IHCA, because most older patients readily understand prognostic information and can make decisions on whether they would like to receive CPR. The DNAR order should preferably state either full resuscitation or no attempt at resuscitation; however, certain situations or patient or family preferences may warrant explicit instructions about which interventions to withhold or provide (eg, CPR without intubation, medications without CPR). This may include but is not limited to vasopressor agents, blood products, advanced airway interventions, nutrition, fluids, analgesia, sedation, anti-arrhythmic drugs, and defibrillation.

Best Practices: Intra-arrest

Brief Introduction to Intra-arrest Care

High-quality CPR, with optimal chest compressions and ventilations, and early defibrillation are cornerstones of intra-arrest treatment that have improved survival from OHCA. There is growing evidence that optimizing these treatment cornerstones for IHCA could also improve outcomes in this setting. Periodic evaluation of residents trained in pediatric advanced life support revealed that they did not meet performance standards specified by the 2010 AHA Guidelines for CPR and ECC, which suggests that training is not enough to ensure performance. Implementation strategies to ensure timely access to equipment, visual reminders, regular testing, and point-of-care feedback may be required to optimize the translation of guidelines into practice during cardiac arrest.

Structural Aspects of the Institutional Response

Mechanical Chest Compressions

The use of mechanical chest compression devices in the in-hospital setting has been reported, particularly in settings where the performance of manual CPR is difficult, such as during in-hospital transport and PCI. Mechanical devices include active compression-decompression and load-distributing band devices that automatically compress the chest. There are reports that mechanical chest compression devices improve coronary perfusion pressures during IHCA compared with manual chest compressions. IHCA studies of mechanical compression devices have been limited to small case series involving a handful of patients. As an example of the current literature on this subject, a recent case series of 28 patients with IHCA who presented in pulseless electrical activity (PEA) and were treated with mechanical chest compressions demonstrated a 50% rate of survival to discharge and a 46% rate of good neurological outcome. If these devices are used, it is important to provide training that minimizes interruptions in chest compressions during use of the device; however, there are limited data to support the routine use of these devices for IHCA.

Automated External Defibrillators

AEDs may play a role in improving early defibrillation times, particularly in less intensively monitored areas of the hospital. Approximately half of all IHCA occur outside the ICU. Implementation of a public access defibrillation program at a tertiary care hospital included targeted placement of AEDs in areas where time from arrest to arrival of a defibrillator would be >3 minutes, including time spent in parking garages and on walkways between buildings. In a study of 439 patients with IHCA, a program to equip and train nurses outside of the ICU setting to use AEDs resulted in an 86% rate of ROSC for patients with pulseless ventricular tachycardia (VT)/VF and a 47% rate of survival to hospital discharge. In another study, placement of AEDs in 14 locations that could be easily reached from all wards and diagnostic rooms within 30 seconds was
combined with a 2-hour AED training program for medical officers, nurses, and administrative and technical staff. In the 18 recorded cases of pulseless VT/VF, rates of ROSC and survival to hospital discharge were 88.9% and 55.6%, respectively. Although these studies did not compare AED resuscitation rates with prior non-AED rates, 1 study did show an improvement in outcomes of patients with pulseless VT/VF. After implementation of a program that included education and encouraged use of manual biphasic defibrillators in AED mode, as well as placement of AEDs in all outpatient clinics and chronic care units, IHCA survival to discharge improved by 2.6 times from 4.9% to 12.8%. AEDs performed similarly to biphasic manual defibrillators in AED mode. A recent large registry study of IHCAs suggested that there was no association with increased survival and use of an AED with VF and pulseless VT and decreased survival with the nonshockable initial rhythms. The decrease in survival from nonshockable rhythms could be attributed to the mandatory time off the chest to allow for analysis and shock delivery with an AED. Time to first contact by the cardiac arrest team was not compared in this study, and it is likely that AEDs were placed in areas less well served by the cardiac arrest team, representing a potential selection bias. In addition, AEDs were grouped with manual defibrillators that could be used in AED mode, but it was unknown whether the latter were used in manual or automatic mode, which makes it harder for the AED group to demonstrate superiority over the manual mode. Additional randomized clinical trials are required to evaluate and optimize use of AEDs in the hospital.

Automated External Cardioverter-Defibrillators
Automated external cardioverter-defibrillators (AECDs) may play a role in more intensively monitored areas of the hospital. These devices differ from AEDs in that they provide continuous cardiac monitoring with 2 pads placed on the patient's chest and can automatically defibrillate shockable rhythms. In a prospective study of AECD monitoring of ED patients considered to be at risk for pulseless VT/VF (n=55), the average interval between onset of arrhythmia and first defibrillation was 33 seconds and resulted in a 94.4% rate of ROSC. A prospective trial (Automatic External Defibrillation Monitoring in Cardiac Arrest; ClinicalTrials.gov, unique identifier NCT00382928) has completed enrollment of telemetry patients with IHCA randomly assigned to a cardiac arrest team or standard CPR plus AECD monitoring. The AECD in the study was programmed to deliver one 150-J biphasic shock to patients with IHCA occurring outside the telemetry ward. The primary end point was time to defibrillation, with secondary outcomes including neurological status and survival to discharge and 3-year follow-up. Preliminary data demonstrated that 1 of 192 enrolled patients experienced sustained pulseless VT during AECD monitoring, and this patient was successfully defibrillated within 17 seconds. There were no events in the control group; however, during the same period, mean time to shock for pulseless VT/VF IHCA that occurred outside the telemetry ward was 230±50 seconds.

Care Pathways
Performance of CPR
A major opportunity for hospitals to improve patient care involves monitoring and improving CPR performance. Optimizing ventilations (a ratio of 30:2) and providing chest compressions at a rate of 100/min and a depth of at least 5 cm while minimizing pauses (hands-off time) will improve outcomes from IHCA. Despite the importance of chest compressions in cardiac arrest outcome, they are rarely performed according to guideline recommendations. In studies of IHCA, chest compression rates were too slow >30% of the time. In addition, 33% of compressions were too shallow, and ≥20% of resuscitation time consisted of interruptions and no-flow time. Rescuer fatigue contributes to poor-quality CPR, and rescuers who provide ventilations and compressions should be replaced or should switch places after each 2-minute cycle. Strategies for improving the quality of each component of CPR are reviewed below.

Decrease Interruptions in Chest Compressions
Bystander CPR and CPR provided by healthcare professionals improve outcomes in OHCA and IHCA, respectively. Interruptions in chest compressions may decrease the compression fraction, which has been associated with decreased survival rates in OHCA. Some out-of-hospital strategies that include continuous compressions without pauses for ventilations have been associated with improved outcomes. Interruptions for even a few seconds can decrease coronary blood flow, and are associated with worsened neurological outcome in animal models, and may decrease survival to discharge in OHCA. Pauses in chest compressions of ≥10 seconds’ duration have been associated with decreased success of defibrillation. A correctly performed compression-to-ventilation ratio of 30:2 should be consistent, with 2 ventilations delivered within 2 seconds off the chest for each set of 30 compressions or 4 to 6 seconds off the chest per minute during the 2 minutes between rhythm analyses. To reduce hands-off time during analysis and charging, newer versions of defibrillator software enable interpretation of the ECG and continuous charging of the capacitor during chest compressions, which minimizes the pause to a few seconds before the shock is delivered.

Avoid Hyperventilation
Excessive ventilation rates are often observed during CPR for OHCA and IHCA. Fast ventilation rates in the laboratory are associated with increased intrathoracic pressures, lower coronary perfusion pressures, and decreased survival rates. Devices that prompt or time ventilation through timing lights or audio cue during CPR may be useful to prevent excessive ventilation. In addition to improving quality of chest compressions, code team debriefing with audiovisual feedback has been associated with a decrease in mean ventilation rates from 18/min to 13/min.

Optimize Chest Compression Depth
Greater chest compression depth and a decreased preshock pause interval before defibrillation have been associated with increased defibrillation success and ROSC after IHCA. Adequate chest compression depth in OHCA has been associated with survival to hospital admission, but improved survival to discharge as a function of adequate chest compression depth has not yet been demonstrated in either OHCA or IHCA. The 2010 AHA Guidelines for CPR and ECC have changed the emphasis to a depth of at least 5 cm with each compression.
The depth of compression in the IHCA setting has likely been overestimated because of movement of the patient’s mattress with manual chest compressions. Recent simulation studies demonstrated that even with the use of a backboard, mattress compression can account for as much as 40% of measured compression depth in patients with IHCA. When a single accelerometer is applied to the sternum to measure chest compressions, as used in the majority of clinical studies, the actual compression depth is overestimated by as much as 20 to 33 mm, depending on mattress type. Thus, deeper chest compressions in the IHCA setting may be needed to compensate for mattress movement if it cannot be neutralized by the use of a backboard.

Provide Early Defibrillation
Approximately 25% of patients with IHCA have a shockable rhythm of pulseless VT/VF. Despite proximity to advanced health care, >30% of patients with IHCA have defibrillation times of >2 minutes after arrest. Defibrillation times longer than 2 minutes after IHCA have been associated with decreased rates of survival to hospital discharge. Delays were also associated with black race, noncardiac admitting diagnosis, time of arrest during evenings and weekends, and hospitals with <250 beds. When nonphysicians are allowed to perform defibrillation, it can save critical seconds to minutes until the emergency response team arrives. Strategies used to increase early defibrillation after IHCA include use of hands-free pads (which decrease preshock pause), use of AEDs in non-ICU settings, and use of AEDs.

Identify and Treat Underlying Causes
The most common causes of IHCA include cardiac arrhythmia, acute respiratory insufficiency, and hypotension. Studies show that asystole and PEA are more common than VF in adult IHCA, with only 25% of patients having VF or pulseless VT as the initial rhythm, whereas children were more likely to present with asystole (40% versus 35% in adults). The frequency of PEA as the first presenting rhythm in adult IHCA is 30% and has remained unchanged over many years. Only 10% of patients with IHCA who present with an initial rhythm of PEA or asystole have neurologically intact survival. Thus, identification and treatment of the reversible causes that may present with PEA/asystole are important during IHCA. Very little has been published on the specific causes of PEA in this setting; however, expert opinion suggests that a substantial number of cases may be secondary to respiratory insufficiency and shock and may respond to targeted therapy. A number of special situations may cause IHCA and require unique interventions that are disease specific. A detailed overview of these situations is provided in the sections on special considerations and pediatrics of the 2010 AHA Guidelines for CPR and ECC.

Process Issues
Use Real-Time Feedback
Devices that prompt or time ventilation (eg, timing lights) and guide rhythm of chest compressions (eg, metronome) and quality of compressions (eg, quantitative end-tidal CO2 wave-form capnography) during IHCA may be helpful. A cohort study with historical controls demonstrated improvements in chest compressions and ventilations with point-of-care feedback, but no difference was found in either ROSC or survival to hospital discharge. Audio prompting of chest compressions through use of technology as simple as a metronome has been found to improve blood flow during CPR both in animal models and during resuscitation attempts in humans. A recent randomized trial on OHCA demonstrated that point-of-care feedback did not improve patient outcomes in well-trained services participating in randomized controlled trials, whereas Edelson et al demonstrated the usefulness of employing quality of CPR measures during real IHCA to evaluate the efficacy of training, and this finding was subsequently verified for both OHCA and IHCA in a systematic review in 2009. The latter suggested that there was good evidence to support the use of point-of-care feedback in training and that it may be beneficial in clinical application. Point-of-care feedback on CPR quality is generally thought to be helpful, and it makes sense in IHCA, because staff are accustomed to using technology to guide care.

Best Practices: Postarrest
Brief Introduction to Postarrest
For patients who achieve ROSC, variability in survival rates between hospitals exists and can range from 54% to 32%. Higher-volume hospitals and teaching hospitals have the highest survival rate, which averages 38% for patients who have an arrest outside the ICU and 32% for patients who have an arrest in the ICU. Clinical investigation focused on improving outcomes of patients who achieve ROSC after IHCA has been limited and has made it necessary for practitioners to extrapolate from OHCA studies when developing diagnostic and treatment strategies. Patients with ROSC after cardiac arrest in any setting will suffer from a complex combination of pathophysiological processes previously described as the post–cardiac arrest syndrome. Key components include (1) postarrest brain injury, (2) postarrest myocardial dysfunction, (3) systemic ischemia/reperfusion response, and (4) persistent acute and chronic pathology that precipitated cardiac arrest. Persistence of preexisting conditions and precipitating pathologies after ROSC provide significant challenges in management of patients resuscitated from IHCA (Table 6). Multisystem organ failure is a more common cause of death in the ICU after initial resuscitation from IHCA than after OHCA. Patient management is also affected by the location of the arrest within the hospital (Table 1), the intensity of support (eg, mechanical ventilation and vasopressor therapy), and invasive monitoring in place at the time of arrest (Table 2). In all cases, optimal post-IHCA care requires a well-coordinated multidisciplinary team. Clinical trials evaluating treatment strategies in postarrest patients are lacking for both OHCA and IHCA. Much of the evidence is based on animal studies, cohort comparisons, and extrapolations from diseases that share similar characteristics, such as sepsis.

Structural Aspects of the Institutional Response
Comprehensive postarrest care requires access to and collaboration between a multidisciplinary team of providers, including emergency medicine (if the arrest occurs in the ED), cardiology, interventional cardiology, cardiac electrophysiology, intensive care, and neurology. If these services are not available, the institution needs to have in place an interhospital transfer agreement
Table 6. Post–Cardiac Arrest Syndrome: Pathophysiology, Clinical Manifestations, and Potential Treatments

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Pathophysiology</th>
<th>Clinical Manifestation</th>
<th>Potential Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post–cardiac arrest brain</td>
<td>• Impaired cerebrovascular autoregulation</td>
<td>• Coma</td>
<td>• Therapeutic hypothermia</td>
</tr>
<tr>
<td>injury</td>
<td>• Cerebral edema (limited)</td>
<td>• Seizures</td>
<td>• Early hemodynamic optimization</td>
</tr>
<tr>
<td></td>
<td>• Postischemic neurodegeneration</td>
<td>• Myoclonus</td>
<td>• Airway protection and mechanical ventilation</td>
</tr>
<tr>
<td>Post–cardiac arrest myocardal dysfunction</td>
<td>• Global hypokinesis (myocardial stunning)</td>
<td>• Cognitive dysfunction</td>
<td>• Seizure control</td>
</tr>
<tr>
<td></td>
<td>• ACS</td>
<td>• Persistent vegetative state</td>
<td>• Controlled reoxygenation (SaO₂, 94%–96%)</td>
</tr>
<tr>
<td>Systemic ischemia/reperfusion response</td>
<td>• Systemic inflammatory response syndrome</td>
<td>• Secondary parkinsonism</td>
<td>• Supportive care</td>
</tr>
<tr>
<td></td>
<td>• Impaired vasoregulation</td>
<td>• Cortical stroke</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Increased coagulation</td>
<td>• Brain death</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Adrenal suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent precipitating pathology</td>
<td>• Impaired tissue oxygen delivery and utilization</td>
<td>• Reduced cardiac output</td>
<td>• Early revascularization of AMI</td>
</tr>
<tr>
<td></td>
<td>• Impaired resistance to infection</td>
<td>• Hypotension</td>
<td>• Early hemodynamic optimization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dysrhythmias</td>
<td>• Intravenous fluid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cardiovascular collapse</td>
<td>• Inotropes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IABP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• LVAD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ECMO</td>
</tr>
</tbody>
</table>

ACS indicates acute coronary syndrome; AMI, acute myocardial infarction; CNS, central nervous system; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; ECMO, extracorporeal membrane oxygenation; IABP, intra-aortic balloon pump; IV, intravenous; LVAD, left ventricular assist device; PCAS, post–cardiac arrest syndrome; and PE, pulmonary embolism.

Reprinted with permission from Neumar et al. Copyright © 2008, American Heart Association, Inc.

and a process to ensure access to these resources within the first 6 hours after arrest if therapeutic hypothermia cannot be initiated in the sending facility. The timing of transfers should take into consideration the time-sensitive nature of potential interventions such as PCI and therapeutic hypothermia.

Care Pathways

Induction of Goal-Directed Mild Therapeutic Hypothermia

Mild therapeutic hypothermia (32°C to 34°C) improves outcome of comatose survivors of witnessed OHCA when the initial rhythm is VF. Similar studies have not been performed in patients who achieve ROSC after IHCA. The potential detrimental or beneficial effect of mild therapeutic hypothermia on active pathologies, comorbidities, and ongoing therapies must be considered. The role of therapeutic hypothermia in the management of IHCA and with initial rhythms other than VF in either the out-of-hospital or in-hospital setting is an important knowledge gap that needs to be addressed by future research. Despite this gap in research, the 2010 AHA Guidelines for CPR and ECC recommend that induced hypothermia may be considered for comatose adult patients with ROSC after IHCA of any initial rhythm.113

Coronary Reperfusion for ST-Segment Elevation Myocardial Infarction

PCI for patients resuscitated from IHCA is an important therapeutic consideration. According to the Get With The Guidelines–Resuscitation data, only 11% of treated IHCA are caused by AMI.10 In a retrospective review of 110 survivors of IHCA caused by VF, only 30 patients (27%) underwent cardiac catheterization on the day of the arrest, and of these, only 13 patients had an ECG with results consistent with ST-segment–elevation myocardial infarction or new left bundle-branch block. Patients who underwent cardiac catheterization were more likely to survive than those who did not receive cardiac catheterization. Of those who underwent catheterization, 17 patients had a successful PCI.112 In post-IHCA patients, management of suspected AMI should be similar to management of AMI in the nonarrest population; however, the extension of indications for immediate PCI beyond ST-segment–elevation myocardial infarction or new left bundle-branch block remains controversial. A recent observational study of survivors of OHCA who were treated with therapeutic hypothermia and selected for cardiac catheterization demonstrated that at least 1 significant coronary lesion existed in 58% of patients without any ST-segment elevation.113
This association suggests that a more liberal practice of offering emergent cardiac catheterization with PCI may be helpful in all arrests of presumed cardiac origin independent of ECG findings after IHCA; however, clinical trials are required before practice should change to manage this controversial subgroup of patients with angiography and PCI. It is recommended that all IHCA patients with ROSC after arrest with ST-segment-elevation myocardial infarction or new left bundle-branch block undergo emergent angiography and, when indicated, PCI.27

Seizure Prophylaxis

There are no controlled clinical trials that address the issue of seizure prophylaxis in post-IHCA patients.119,120 Randomized trials comparing single-dose diazepam, magnesium, or thiopental with placebo suggest that there is no difference in neurological outcome.121,122 The 2010 AHA Guidelines for CPR and ECC do not recommend seizure prophylaxis in post-IHCA patients.111

Seizure Treatment

Two studies, 1 cohort123 and 1 randomized trial,122 suggest that the incidence of seizures in post-IHCA patients is 5% to 21% with or without therapeutic hypothermia. It is anticipated that the actual rates may be even higher than reported because the occurrence of seizures in the comatose patient may not be clinically apparent without continuous electroencephalography. The 2010 AHA Guidelines for CPR and ECC recommend frequent or continuous electroencephalographic monitoring of all comatose survivors of cardiac arrest.111 Some studies suggest that post-IHCA seizures may be challenging to treat and respond poorly to anticonvulsant therapies124–126; however, the guidelines advocate prompt and aggressive treatment after the first seizure in post-IHCA patients and status epilepticus when it occurs.119,120

Glucose Control

Hyperglycemia is likely to develop in the post-IHCA patient, but the optimum blood glucose concentration or interventional strategy to manage blood glucose in the post-IHCA period for in-hospital or out-of-hospital arrest is unknown. Evidence from several retrospective studies127–131 suggests an association of higher glucose concentrations with increased mortality or worse neurological outcomes. Only 1 study examined the association of glucose concentration with outcomes in survivors of IHCA.127 These studies do not provide evidence that an interventional strategy to manage glucose concentrations will alter outcomes in post-IHCA patients.

Only 1 randomized trial132 evaluated strict glucose control (72 to 108 mg/dL [4 to 6 mmol/L]) compared with moderate glucose control (108 to 144 mg/dL [6 to 8 mmol/L]) in survivors of OHCA presenting with VF and treated with induced hypothermia. The use of strict glucose control did not demonstrate a survival benefit at 30 days, and the study was stopped for futility after only 25% of the planned sample size was enrolled. Randomized interventional trials of glucose control in survivors of IHCA have not been performed. Studies performed in critically ill patients also do not support efforts to control glucose in a low range.133,134 The largest randomized trial of intensive glucose control (81 to 108 mg/dL [4.5 to 6 mmol/L]) versus conventional glucose control (144 to 180 mg/dL [8 to 10 mmol/L]) in ICU patients135 reported increased mortality in patients treated with intensive glucose control (odds ratio for intensive control, 1.14; 95% confidence interval, 1.02–1.28; P=0.02). Intensive therapy to control glucose concentration in critically ill patients consistently results in more

Table 7. Post–Cardiac Arrest Syndrome: Monitoring Options

<table>
<thead>
<tr>
<th>General Intensive Care Monitoring</th>
<th>More Advanced Hemodynamic Monitoring</th>
<th>Cerebral Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Arterial catheter</td>
<td>• Echocardiography</td>
<td>• EEG (on indication/continuously): early seizure detection and treatment</td>
</tr>
<tr>
<td>• Oxygen saturation by pulse oximetry</td>
<td>• Cardiac output monitoring (either noninvasive or PA catheter)</td>
<td>• CT/MRI</td>
</tr>
<tr>
<td>• Continuous ECG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CVP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ScvO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Temperature (bladder, esophagus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Urine output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Arterial blood gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Serum lactate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Blood glucose, electrolytes, CBC, and general blood sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Chest radiograph</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CBC indicates complete blood count; CT/MRI, computed tomography/magnetic resonance imaging; CVP, central venous pressure; ECG, electrocardiogram; EEG, electroencephalogram; PA, pulmonary artery; and ScvO2, central venous oxygen saturation.

Reprinted with permission from Neumar et al.107 Copyright © 2008, American Heart Association, Inc.
frequent episodes of severe hypoglycemia (usually defined as blood glucose concentration ≤40 mg/dL [2.2 mmol/L]), and hypoglycemia may be associated with worse outcomes in critically ill patients.136,137 On the basis of current evidence and experience, glucose concentrations of 144 to 180 mg/dL (10 mmol/L) are reasonable in adult patients after cardiac arrest (both IHCA and OHCA), and control of glucose concentration within a lower range (<110 mg/dL [<6.1 mmol/L]) should not be implemented after arrest because of the increased risk of hypoglycemia.

Process Issues

Use of a Comprehensive Protocol

There are no randomized controlled trials evaluating the use of a comprehensive protocol of care for post-IHCA patients. Before-and-after studies suggest that the successful implementation of a standardized protocol addressing the complexity and comprehensiveness of care for post-OHCA patients results in a decrease in in-hospital mortality.123,138

Withdrawal of Life-Sustaining Therapy and Prognostication After IHCA

Registry data suggest that prognostication of futility in care may be premature, especially given improvement in outcomes emerging with the use of therapeutic hypothermia.5 The average length of stay for survivors of IHCA was 2 weeks; it was <2 days for those who died in the hospital despite aggressive treatment or for those whose care was withdrawn.5 Two days is too short, and futility cannot be accurately prognosticated in most cases at this interval after arrest. Among 24,132 comatose survivors of IHCA admitted to critical care units in the United Kingdom, treatment was withdrawn in 28.2% at a median of 2.4 days (interquartile range, 1.5 to 4.1 days).139 The Get With The Guidelines—Resuscitation data suggest that 63% of patients with ROSC after an IHCA are declared DNR, and 44% of these have life-sustaining care withdrawn, yet only 8% are declared clinically brain dead.2 The average length of stay was 1.5 days for those who died in the hospital, which may suggest that many patients have withdrawal of life support before accurate neurological prognostication. The current guidelines suggest that prognostication should wait until after 24 hours in a patient who was not treated with therapeutic hypothermia and after 72 hours in a patient who was treated with therapeutic hypothermia (Table 8). Beyond these intervals, the accuracy of prognostication will depend on both the modalities used and the time after ROSC. Most importantly, current guidelines state that there is not a single prognostic test that can safely and adequately predict outcome.66,111 (Table 8). This means that a composite of prognostic modalities combined with clinical judgment continues to guide decisions about when to withdraw life-sustaining therapy after aggressive treatment.

Organ Donation After IHCA

The reported incidence of clinical brain death in patients with sustained ROSC after IHCA ranges from 8% to 16%.5,140 These patients can and should be evaluated for organ donation. In the 2003 Get With The Guidelines—Resuscitation study, only 1.3% of patients had organ recovery, which suggests much more aggressive procurement strategies are required.5

Changing Culture and Standardizing Reporting and Benchmarking

IHCA resuscitative efforts are perceived by healthcare providers to be futile, and post-IHCA patients are often assigned a hopeless prognosis.195,196 Improving outcomes for IHCA requires a change in the culture through standardized reporting, knowledge, training, and better systems of care. IHCA outcomes will respond to aggressive management, attention to detail, implementation of guideline-based management, and standardized performance measurement, as well as improvement initiatives.107,115,138

Changing the Cultural Aspects of IHCA Care

The current culture of hopelessness in outcomes from IHCA may stem from the lack of knowledge and uniform reporting standards and may breed impatience and early withdrawal of life-sustaining therapy, which no doubt contributes to the consistently low survival rates that have remained unchanged for decades. Survival is a product of science, education, and implementation.123,197,198

Survival = Science × Education × Implementation

Of the 3 factors, there is the least evidence to guide implementation in IHCA, but there is substantial literature on knowledge translation in other disease entities from which one can extrapolate to ICHA care. Perception drives institutional culture and individual behavior. To change perception requires information from a credible source; institutional acceptance by a majority, including the leadership; and translation into point-of-care tools that assist with adherence with each and every patient. Information must be useful, desirable, accessible, credible, findable, and usable.199 Pathman et al200 suggested that there are 4 stages to change: Awareness, agreement, adoption, and adherence. Publication of guidelines alone does not incite the rapid dissemination of information and eager adoption. Prehospital services and providers took an average of 1.5 years to implement the 2005 AHA Guidelines for CPR and ECC201 and even longer to adopt the process of uploading the CPR process data and using the data to guide care through feedback and universal reporting of outcomes.202 Social networks suggest that stories trump data and relationships trump stories. Perhaps institutions working to transform practice should celebrate their stories and build relationships across departments and programs internally and partners externally (community survivor groups). Inherently, every healthcare provider wants to give the best possible care. Drawing on what we know about knowledge translation to guide effective implementation and the power of the social network to engage and effect change, it is possible for institutions to transform the culture of hopelessness into one of helpfulness and pride.

Capturing and Reporting the Data: IHCA Benchmarking

The current approach to surveillance of IHCA incidence, process, and outcomes relies heavily on billing information, which is insufficient because of limitations of coding as it relates to ICHA in all 3 commonly used coding systems: Diagnosis-Related Group (DRG), the ICD, and Current Procedural
Terminology (CPT). This approach needs to change to conform to universal reporting standards of incidence and outcome.

There are a number of DRG and ICD-10 codes for cardiac arrest and postarrest care, and this permits discretionary recording based on the preference or training of the coder (Table 9). For example, DRG 129 is “cardiac arrest, unexplained,” and ICD-9 427.5 is “cardiac arrest”; however, there are probably a dozen other DRGs that could be used for “explained” that are not specific to cardiac arrest; for example, DRG 121 is “circulatory disorder with AMI and major complications discharged alive.” The ICD-9 code 427.5 is labeled “cardiac arrest”; however, this coding produces substantial noise when used to report IHCA. For example, this code can be used as a primary diagnosis for (1) patients who have only transient ROSC and die in the ED or (2) patients who have ROSC and survive to be admitted to the hospital but die before the cause of the arrest is determined, and as a secondary diagnosis for (1) patients who have an IHCA during the course of hospitalization and are resuscitated or (2) patients who present to the ED in cardiac arrest with a discernible cause and survive to be admitted to the hospital. Furthermore, health data coders may not include code 427.5, preferring to rank other codes higher (eg, comorbidities), which will skew the coded incidence of IHCA. The ICD-9 code 427.5 appears to be preferred but not exclusively used by coders for patients who achieve ROSC.

A study of all non-DNAR hospitalized patients reported that ICD-9 code 427.5 had a 43% sensitivity for identifying patients with treated IHCA. Similarly, ICD-9 code 427.4, “ventricular fibrillation and flutter,” could be used both for patients undergoing in-patient electrophysiological procedures and those with IHCA.

A recent study attempted to use billing data to determine the incidence of IHCA in Medicare patients >65 years of age. Investigators used 2 procedural codes derived from ICD-9, 99.60 for “cardiopulmonary resuscitation, not otherwise specified,” and 99.63 for “closed chest cardiac massage,” to calculate an incidence of 2.73 IHCA per 1000 admissions. This estimate included resuscitations irrespective of location within the hospital, and patients who did not get billed for either procedure, which is not uncommon in the in-hospital setting, would have been excluded. Furthermore, this study may not be representative of the hospitalized patient population as a whole, because it was limited to patients >65 years of age.

To address these coding challenges, a current CPT code for therapeutic hypothermia does not exist. Specific ICD codes for “inpatient cardiac arrest” and “postarrest syndrome” and a CPT code for “postarrest therapeutic hypothermia” would greatly enhance the utility of billing data based on IHCA surveillance. CPT codes for defibrillation and CPR exist and are tied to remuneration, but they are infrequently and inconsistently used because the incremental benefit of billing is modest and may contribute to undercounting IHCA. To bill these codes requires the presence of the attending physician at the resuscitation, which does not always occur in teaching hospitals.

As a result, tracking of incidence and mortality rates for IHCA as a measured outcome for performance at a local, regional, or national level has not been applied with the same scrutiny as that directed at other cardiac processes such as AMI and congestive heart failure. As health care evolves and performance measurement plays an increasing role in reimbursement and performance improvement, it is critical that IHCA incidence, outcome, and treatment variables become measurable entities and that they be reported as mandatory components for regulators and reimbursement bodies.

The Get With The Guidelines–Resuscitation registry provides a universal platform to report IHCA and outcomes in a comparable way across institutions that choose to and can afford to capture the data. Participating hospitals require that some staffing be directed to support data capture; however, in return for this investment, the hospital receives consistent comparable reports on institutional performance relevant to IHCA, including outcomes.

Need for Public Reporting of IHCA
Currently, IHCA statistics are internally collected but not publicly reported. Public reporting of comparative information on patient outcomes among physicians and hospitals is intended to facilitate informed decision making by patients and referring physicians. Such quality information also has the potential benefit of providing feedback on patient care, thereby identifying areas for quality improvement and motivation to improve adherence to guidelines and overall performance. Among the potential drawbacks of reported outcome measures is the pressure placed on physicians and hospitals to avoid performing measurable and reported interventions in the sickest, highest-risk patients. Despite careful efforts to develop risk adjustment methods that account for severity of illness in mortality reporting, there is concern that current models do not accurately reflect mortality risk in the sickest patients undergoing PCI and that the consequent effect is physician mistrust of outcomes measures and avoidance of PCI in the highest-risk patients, who may nevertheless benefit from the procedure.

Suggested strategies to address this dilemma include the following:

1. Improve risk adjustment methods for the highest-risk patients to include a “compassionate use” category and bring attention to hospitals and physicians who appropriately treat this population.
2. Provide adequately resourced data collection methods as part of mandated outcomes reporting.
3. Develop risk-adjusted reporting standards that can be applied nationally as opposed to state-specific standards.
4. Develop and report measures that address appropriateness of care given to the sickest patients.

Thus, any call for public reporting of outcomes and interventions in IHCA first requires the development of measurement and adjustment tools to adequately account for severity of illness and other comorbid factors and incorporate these strategies.

The Impact on IHCA of Establishment of Cardiac Arrest Centers Is Unknown
IHCA may occur in any institution with or without the capacity to provide comprehensive timely post-IHCA care. Optimal treatment of patients with postarrest syndrome requires
Table 8. Neuroprognostication When Treated or Not Treated With Therapeutic Hypothermia

<table>
<thead>
<tr>
<th>Diagnostic Tests</th>
<th>No Treatment With Therapeutic Hypothermia*</th>
<th>Treatment With Therapeutic Hypothermia*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥24 h</td>
<td>≥72 h</td>
</tr>
<tr>
<td></td>
<td>Poor Outcome (CPC 3 or 4 or Death) Reliability</td>
<td>Poor Outcome (CPC 3 or 4 or Death) Reliability</td>
</tr>
</tbody>
</table>
| GCS total score | ... | <5 at 48 h FPR 0%, 95% CI 0%–6%
(15,14) | ... | ... |
| GCS motor score | ... | 1 at 72 h FPR 5%, 95% CI 2%–9%
(13,14) | ... | ... |
| Pupillary light and corneal reflexes | ... | ... | ... | ... |
| Vestibulo-ocular reflex | Absence at ≥24 h FPR 0%, 95% CI 0%–14%
(13,14,15) | Bilateral absence of N20 component of evoked potentials at ≥24–72 h in comatose patients secondary to hypoxic-anoxic origin is fatal FPR 0%, 95% CI 0%–69%; FPR 3%, 95% CI 0%–14%; and FPR 0%, 95% CI 0%–13%
(13,14,44) | ... | ... |
| Median nerve somatosensory-evoked potentials measured | Bilateral absence of N20 component of evoked potentials at ≥72 h in comatose patients secondary to hypoxic-anoxic origin is fatal FPR 0%, 95% CI 0%–69%; FPR 3%, 95% CI 0%–14%; and FPR 0%, 95% CI 0%–13%
(13,14,44) | ... | ... | ... |
| Brainstem auditory evoked potentials | Abnormal recorded 1–56 d after | ... | ... | ... |
| Myoclonus | Observed | ... | ... | ... |
| EEG | Generalized suppression to <20 µV FPR 3%, 95% CI 0%–9%
(11,12,13,18,19,32,113,114) | ... | Generalized suppression to <20 µV FPR 3%, 95% CI 0%–9%
(11,12,13,18,19,32,113,114) | Status epilepticus FPR 7%, 95% CI 1%–25%
(10,13,14) and FPR 11.5%, 95% CI 3%–31%
(10,13,14) |
| Blood and CSF biochemical markers | BNP, procalcitonin, interleukins, TNF, sTREM-1, CSF-CXBB, S100, NSE, LDH, GGT, neurofilament, acid phosphatase, lactate, pyruvate, T-lymphocyte cell markers | ... | ... | ... |
| | Not recommended: clinical application limited because cutoff values for PPV vary across studies and because of lack of adjustment for confounders that affect marker performance
(15,16,17,18,19,32,113,114) | ... | ... | ... |

(Continued)
Table 8. (Continued)

<table>
<thead>
<tr>
<th>Diagnostic Tests</th>
<th>No Treatment With Therapeutic Hypothermia*</th>
<th>Treatment With Therapeutic Hypothermia*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥24 h</td>
<td>≥72 h</td>
</tr>
<tr>
<td></td>
<td>At 48 h</td>
<td></td>
</tr>
<tr>
<td>Poor Outcome (CPC 3 or 4 or Death)</td>
<td>Reliability</td>
<td>Poor Outcome (CPC 3 or 4 or Death)</td>
</tr>
<tr>
<td>Brain MRI</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Brain CT</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Brain SPECT</td>
<td>Decreased cerebral blood flow, particularly in frontal and temporal lobes, which persists on repeated imaging</td>
<td>...</td>
</tr>
<tr>
<td>Cerebral angiography</td>
<td>Delayed cerebral circulation time</td>
<td>...</td>
</tr>
<tr>
<td>Transcranial Doppler</td>
<td>Delayed hyperemia</td>
<td>...</td>
</tr>
<tr>
<td>Nuclear medicine</td>
<td>Abnormal uptake in cerebral cortices</td>
<td>...</td>
</tr>
<tr>
<td>Near-infrared spectroscopy</td>
<td>...</td>
<td>Limitations include lack of comparative standard, nonmodern technique, sample size too small, and lack of uniform interval after arrest and withdrawal of care</td>
</tr>
<tr>
<td>Bispectral index monitoring</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Clinical decision rule</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

BNP indicates brain natriuretic peptide; CI, confidence interval; CKBB, creatine kinase BB; CPC, cerebral performance categories; CSF, cerebrospinal fluid; CT, computed tomography; EEG, electroencephalographic; ellipses (...), unknown; FPR, false-positive rate; GCS, Glasgow Coma Scale; GOT, glutamate oxaloacetate transaminase; LDH, lactate dehydrogenase; MRI, magnetic resonance imaging; NSE, neuron-specific enolase; PPV, positive predictive value; SPECT, single-photon emission computed tomography; sTREM-1, soluble triggered receptor expressed on myeloid cells-1; and TNF, tumor necrosis factor.

*In the absence of confounders, including hypotension, use of sedatives, or neuromuscular blockers.
Table 9. Coding Variability for Cardiac Arrest

<table>
<thead>
<tr>
<th>Source</th>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICD-10</td>
<td>427.5</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>ICD-9</td>
<td>99.6</td>
<td>Cardiopulmonary resuscitation not otherwise specified (CPR)</td>
</tr>
<tr>
<td>ICD-9</td>
<td>99.63</td>
<td>Closed chest cardiac massage</td>
</tr>
<tr>
<td>DRG</td>
<td>129</td>
<td>Cardiac arrest, unexplained</td>
</tr>
<tr>
<td>DRG</td>
<td>121</td>
<td>Circulatory disorder with acute myocardial infarction and major complication discharged alive</td>
</tr>
</tbody>
</table>

CPR indicates cardiopulmonary resuscitation; ICD, International Statistical Classification of Diseases and Related Health Problems; and DRG, Diagnosis-Related Group.

Conclusions

This consensus statement on IHCA provides healthcare providers, clinical leaders, administrators, regulators, and policy makers with an overview of the various issues related to reporting, planning, and performing best practices as related to IHCA. This statement also documents what is unknown about IHCA and what aspects of IHCA need to be changed to advance the care of IHCA. Much of the science behind the current guidelines for IHCA has been extrapolated from OHCA, which may not be appropriate, given the differences in causes and outcomes, team configuration, and access to resources. IHCA lacks uniformity in documentation and reporting, lacks the science to guide some of the therapeutic interventions in this patient population, and is perceived by many to be hopeless, which suggests a cultural impediment to change. Current regulatory and accreditation standards do not include the required incentives nor the mandate for universal reporting, and as a result, the institutional response is inconsistent. Very few registry or population-based options exist to capture the data, and some interventions have good levels of evidence but suffer from lack of adherence to practice guidelines. Much more could be done to improve IHCA care at the level of the provider, the institution, and the healthcare system. This consensus document will guide implementation strategies to assist clinicians in adhering to current practice guidelines when providing care and achieving benefit for patients and the system of healthcare delivery that pertains to IHCA. It identifies the gaps in science and provides justification for future studies. To enable this needed transformation, a list of recommendations is provided to guide institutional leaders, regulatory bodies, and research funding agencies.

Recommendations

Institutional Leaders and Healthcare Providers

1. Establish and report patient self-determination of care documentation, including explicit DNAR status, as a routine practice in all admissions.
2. Establish competency of all hospital staff in recognizing cardiac arrest, performing chest compressions, and using an AED.
3. Implement best practices across all phases of IHCA care with a continuous quality improvement program.
4. Track and report complete IHCA incidence and survival to hospital discharge, as well as functional outcome at discharge, using universal definitions to ensure that the numerator and denominator are standardized for IHCA across all hospitals.
5. Implement a standardized, evidence-based prognostication approach to prevent premature withdrawal of life-sustaining therapy.
6. Optimize the process for successful organ and tissue recovery after death.

Regulatory

7. Mandate reporting of IHCA incidence and survival as an accreditation benchmark using universal definitions to
ensure a standardized numerator and denominator across all hospitals.
8. Mandate reporting of rates of DNAR status (before index cardiac arrest) per 1000 admissions.
9. Modify ICD coding to collect reliable administrative data on IHCA.

Research Funding Agencies

10. Make all aspects of IHCA care, including but not limited to epidemiology, therapy, education, and implementation issues such as patient safety, team composition, and debriefing, priorities for research funding to address the significant gaps in knowledge.

National and International Bodies Setting Resuscitation Guidelines

11. Consider developing guidelines for OHCA that are separate from those for IHCA so that gaps in knowledge are more readily documented and levels of evidence can be adjusted accordingly.

Disclosures

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurie J. Morrison</td>
<td>St. Michael’s Hospital, University of Toronto</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Lynn Doering</td>
<td>UCLA</td>
<td>NIH grant 1R01NR012003†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dana P. Edelson</td>
<td>The University of Chicago</td>
<td>National Heart, Lung, and Blood Institute K23 Career Development Award†; Philips Healthcare†; Philips Medical Systems†; Clinical Research Loan Repayment†; Memorandum of understanding resuscitation quality programs trial–Laerdal/ American Heart Association†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Colleen C. Halverson</td>
<td>Texas Woman’s University at Dallas</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mark S. Link</td>
<td>Tufts Medical Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul W. McMullan, Jr</td>
<td>St. Thomas Heart, Nashville, TN</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Robert W. Neumar</td>
<td>University of Michigan School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>L. Kristin Newby</td>
<td>Duke University Medical Center</td>
<td>Pending: AHRQ grant submitted June 2010; grant not funded†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Ann Peberdy</td>
<td>Virginia Commonwealth University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Terry Vanden Hoek</td>
<td>The University of Illinois at Chicago</td>
<td>Medtronic Heart Rescue Grant Illinois (no direct salary support); Searle Foundation Chicago Biomedical Consortium Grant (no direct salary support); pending NIH NHLBI grant (15% salary support)*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(continued)
Writing Group Disclosures, Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janice L. Zimmerman</td>
<td>The Methodist Hospital Physician Organization</td>
<td>Astute Medical, Inc. grant support (all funds to my institution for incurred costs)*</td>
<td>None</td>
<td>American College of Chest Physicians*; American College of Physicians*; Society of Critical Care Medicine*; Weil Institute of Critical Care Medicine*; Kansas City Southwest Clinical Society*</td>
<td>Callaway and Associates*; Dave Salivar*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Clifton Callaway</td>
<td>University of Pittsburgh</td>
<td>National Institutes of Health grant to University of Pittsburgh†</td>
<td>Medivance Inc: Loan of cooling equipment*</td>
<td>Take Heart Austin*; Society for Critical Care Medicine*; Sudden Cardiac Arrest Association*</td>
<td>None</td>
<td>Patent Royalties—Medtronic ERS†; Apple Computer†</td>
<td>None</td>
<td>UPMC Health System: Provider of in-hospital health care†</td>
</tr>
<tr>
<td>Daniel Davis</td>
<td>University of California San Diego</td>
<td>NIH†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jo Kramer-Johansen</td>
<td>Oslo University Hospital, Norway</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Elizabeth Mancini</td>
<td>University of Texas at Arlington</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vinay Nadkarni</td>
<td>Children’s Hospital Philadelphia</td>
<td>NIH†</td>
<td>None</td>
<td>Laerdal Foundation for Acute Care Medicine†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Elizabeth H. Sinz</td>
<td>Pennsylvania State University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>American Heart Association, Associate Science Editor†</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Janice L. Zimmerman</td>
<td>The Methodist Hospital Physician Organization</td>
<td>Astute Medical, Inc. grant support (all funds to my institution for incurred costs)*</td>
<td>None</td>
<td>American College of Chest Physicians*; American College of Physicians*; Society of Critical Care Medicine*; Weil Institute of Critical Care Medicine*; Kansas City Southwest Clinical Society*</td>
<td>Callaway and Associates*; Dave Salivar*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Daniel Davis</td>
<td>University of California San Diego</td>
<td>NIH†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jo Kramer-Johansen</td>
<td>Oslo University Hospital, Norway</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mary Elizabeth Mancini</td>
<td>University of Texas at Arlington</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Vinay Nadkarni</td>
<td>Children’s Hospital Philadelphia</td>
<td>NIH†</td>
<td>None</td>
<td>Laerdal Foundation for Acute Care Medicine†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Elizabeth H. Sinz</td>
<td>Pennsylvania State University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (1) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.
References

7. 1992;179:283–287.

34. 1992;121:68–74.
Science With Treatment Recommendations. American Heart Association and American Red Cross International Consensus on First Aid educational strategies (I) compared with no such strategies (C) improve CPR efficacy of an ACLS training program for resuscitation from cardiac arrest. Chest. 2009;80:743–751.

Improving Survival After In-Hospital Cardiac Arrest

100. Peberdy MA, Callaway CW, Neumar RW, Geocadin RG, Zimmerman JL, Donnino M, Gabrielli A, Silvers SM, Zaritsky AL, Merchant RM, Callaway CW. Improving Survival After In-Hospital Cardiac Arrest 23

Morrison et al.
normoglycemic blood glucose levels in the therapeutic management of patients within 12h after cardiac arrest might not be necessary. Resuscitation. 2008;76:214–220.

140. Castrén M. In adult and pediatric patients with ROSC after cardiac arrest (prehospital or in-hospital) (P), does the use of seizure prophylaxis or effective seizure control (I) improve outcome (O) compared to no prophylaxis or effective seizure control (C), improve outcome (O) (eg. survival)? Worksheet ALS-PA-050A. In: Appendix: evidence-based worksheets. 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Care with Treatment Recommendations and 2010 American Heart Association and American Red Cross International Consensus on First Aid Science With Treatment Recommendations. Circulation. 2010;122(suppl 2):S606–S638.

Key Words: AHA Scientific Statements ▪ cardiac arrest
Strategies for Improving Survival After In-Hospital Cardiac Arrest in the United States: 2013 Consensus Recommendations: A Consensus Statement From the American Heart Association

Laurie J. Morrison, Robert W. Neumar, Janice L. Zimmerman, Mark S. Link, L. Kristin Newby, Paul W. McMullan, Jr, Terry Vanden Hoek, Colleen C. Halverson, Lynn Doering, Mary Ann Peberdy and Dana P. Edelson

on behalf of the American Heart Association Emergency Cardiovascular Care Committee, Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, and Council on Peripheral Vascular Disease

Circulation. published online March 11, 2013;

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2013/03/11/CIR.0b013e31828b2770.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/