2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: Executive Summary

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

ACCF/AHA Guideline

2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: Executive Summary

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the American College of Emergency Physicians and Society for Cardiovascular Angiography and Interventions

WRITING COMMITTEE MEMBERS*
P. O’Gara, MD, FACC, FAHA, Chair†; Frederic G. Kushner, MD, FACC, FAHA, FSCAI, Vice Chair‡; Donald E. Casey, Jr, MD, MPH, MBA, FACP, FAHA; Mina K. Chung, MD, FACC, FAHA; James A. de Lemos, MD, FACC; Steven M. Ettinger, MD, FACC§; J. Fang, MD, FACC, FAHA; Francis M. Fesmire, MD, FACEP; Barry A. Franklin, PhD, FAHA; Christopher B. Granger, MD, FACC, FAHA†; Harlan M. Krumholz, MD, SM, FACC, FAHA; Jane A. Linderbaum, MS, CNP-BC; David A. Morrow, MD, MPH, FACC, FAHA; L. Kristin Newby, MD, MHS, FACC, FAHA∥; Joseph P. Ornato, MD, FACC, FAHA, FACP, FACEP; Narith Ou, PharmD∥∥; Martha J. Radford, MD, FACC, FAHA; Jacqueline E. Tamis-Holland, MD, FACC; Carl L. Tommaso, MD, FACC, FAHA, FSCAI; Cynthia M. Tracy, MD, FACC, FAHA; Y. Joseph Woo, MD, FACC, FAHA; David X. Zhao, MD, FACC***

ACCF/AHA TASK FORCE MEMBERS

Jeffrey L. Anderson, MD, FACC, FAHA, Chair; Alice K. Jacobs, MD, FACC, FAHA, Immediate Past Chair; Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect; Nancy M. Albert, PhD, CCNS, CCRN, FAHA; Ralph G. Brindis, MD, MPH, MACC; Mark A. Creager, MD, FACC, FAHA; David DeMets, PhD; Robert A. Guyton, MD, FACC, FAHA; Judith S. Hochman, MD, FACC, FAHA; Richard J. Kovacs, MD, FACC; Frederick G. Kushner, MD, FACC, FAHA; E. Magnus Ohman, MD, FACC; William G. Stevenson, MD, FACC, FAHA; Clyde W. Yancy, MD, FACC, FAHA

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACCF/AHA representative. ‡FACC representative. §ACCF/AHA Task Force on Practice Guidelines liaison. ||ACCF/AHA Task Force on Performance Measures liaison. ¶ACEP representative. #Society for Cardiovascular Angiography and Interventions representative. **Former Task Force member during this writing effort.

This document was approved by the American College of Cardiology Foundation Board of Trustees and the American Heart Association Science and Advisory Coordinating Committee in June 2012.

The online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRC.0b013e3182742c84/-/DC1. The online-only Comprehensive Relationships Table is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIR.0b013e3182742c84/-/DC1.

This article is copublished in the Journal of the American College of Cardiology and Catheterization and Cardiovascular Interventions.

Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.cardiosource.org) and the American Heart Association (my.americanheart.org). A copy of the document is available at http://my.americanheart.org/statements by selecting either the “By Topic” link or the “By Publication Date” link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay@wolterskluwer.com.

Expert peer review of AHA Scientific Statements is conducted at the AHA National Center. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the “Policies and Development” link.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the “Copyright Permissions Request Form” appears on the right side of the page.

(Circulation. 2013;127:00-00.)

© 2012 by the American College of Cardiology Foundation and the American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org

DOI: 10.1161/CIR.0b013e3182742c84
Table of Contents

Preamble ... 000
1. Introduction 000
 1.1. Methodology and Evidence Review 000
 1.2. Organization of the Writing Committee .. 000
 1.3. Document Review and Approval 000
2. Onset of Myocardial Infarction: Recommendations 000
 2.1. Regional Systems of STEMI Care,
 Reperfusion Therapy, and Time-to-Treatment
 Goals 000
 2.2. Evaluation and Management of Patients With
 STEMI and Out-of-Hospital Cardiac Arrest ... 000
3. Reperfusion at a PCI-Capable Hospital:
 Recommendations 000
 3.1. Primary PCI in STEMI 000
 3.2. Aspiration Thrombectomy 000
 3.3. Use of Stents in Patients With STEMI 000
 3.4. Antiplatelet Therapy to Support Primary
 PCI for STEMI 000
 3.5. Anticoagulant Therapy to Support Primary
 PCI .. 000
4. Reperfusion at a Non–PCI-Capable Hospital:
 Recommendations 000
 4.1. Fibrinolytic Therapy When There Is an
 Anticipated Delay to Performing Primary
 PCI Within 120 Minutes of FMC 000
 4.2. Adjunctive Antithrombotic Therapy With
 Fibrinolysis 000
 4.2.1. Adjunctive Antiplatelet Therapy With
 Fibrinolysis 000
 4.2.2. Adjunctive Anticoagulant Therapy With
 Fibrinolysis 000
 4.3. Transfer to a PCI-Capable Hospital After
 Fibrinolytic Therapy 000
 4.3.1. Transfer of Patients With STEMI to a
 PCI-Capable Hospital for Coronary
 Angiography After Fibrinolytic Therapy .. 000
5. Delayed Invasive Management: Recommendations 000
 5.1. Coronary Angiography in Patients Who
 Initially Were Managed With Fibrinolytic
 Therapy or Who Did Not Receive Reperfusion 000
 5.2. PCI of an Infarct Artery in Patients Who
 Initially Were Managed With Fibrinolysis or
 Who Did Not Receive Reperfusion Therapy 000
 5.3. PCI of a Noninfarct Artery Before Hospital
 Discharge 000
 5.4. Adjunctive Antithrombotic Therapy to Support
 Delayed PCI After Fibrinolytic Therapy 000
 5.4.1. Antiplatelet Therapy to Support PCI
 After Fibrinolytic Therapy 000
 5.4.2. Anticoagulant Therapy to Support PCI
 After Fibrinolytic Therapy 000
6. Coronary Artery Bypass Graft Surgery:
 Recommendations 000
 6.1. CABG in Patients With STEMI 000
 6.2. Timing of Urgent CABG in Patients With STEMI
 in Relation to Use of Antiplatelet Agents 000
7. Routine Medical Therapies: Recommendations 000
 7.1. Beta Blockers 000
 7.2. Renin-Angiotensin-Aldosterone System
 Inhibitors 000
 7.3. Lipid Management 000
8. Complications After STEMI: Recommendations 000
 8.1. Treatment of Cardiogenic Shock 000
 8.2. Implantable Cardioverter-Defibrillator
 Therapy Before Discharge 000
 8.3. Pacing in STEMI 000
 8.4. Management of Pericarditis After STEMI 000
 8.5. Anticoagulation 000
9. Risk Assessment After STEMI: Recommendations 000
 9.1. Use of Noninvasive Testing for Ischemia
 Before Discharge 000
 9.2. Assessment of LV Function 000
 9.3. Assessment of Risk for Sudden Cardiac Death 000
10. Posthospitalization Plan of Care:
 Recommendations 000
References .. 000
Appendix 1. Author Relationships With Industry
 and Other Entities (Relevant) 000
Appendix 2. Reviewer Relationships With Industry
 and Other Entities (Relevant) 000

Preamble

The medical profession should play a central role in evaluating
the evidence related to drugs, devices, and procedures for the
detection, management, and prevention of disease. When prop-
erly applied, expert analysis of available data on the benefits and
risks of these therapies and procedures can improve the quality
of care, optimize patient outcomes, and favorably affect costs by
focusing resources on the most effective strategies. An organized
and directed approach to a thorough review of evidence has
resulted in the production of clinical practice guidelines that
assist physicians in selecting the best management strategy for
an individual patient. Moreover, clinical practice guidelines can
provide a foundation for other applications, such as performance
measures, appropriate use criteria, and both quality improvement
and clinical decision support tools.

The American College of Cardiology Foundation (ACCF)
and the American Heart Association (AHA) have jointly
produced guidelines in the area of cardiovascular disease
since 1980. The ACCF/AHA Task Force on Practice Guide-
lines (Task Force), charged with developing, updating, and
revising practice guidelines for cardiovascular diseases and
procedures, directs and oversees this effort. Writing com-
mittees are charged with regularly reviewing and evaluating all
available evidence to develop balanced, patient-centric rec-
ommendations for clinical practice.

Experts in the subject under consideration are selected by
the ACCF and AHA to examine subject-specific data and
write guidelines in partnership with representatives from
other medical organizations and specialty groups. Writing
committees are asked to perform a literature review; weigh
the strength of evidence for or against particular tests,
treatments, or procedures; and include estimates of expected
outcomes where such data exist. Patient-specific modifiers,
comorbidities, and issues of patient preference that may
influence the choice of tests or therapies are considered.
When available, information from studies on cost is considered, but data on efficacy and outcomes constitute the primary basis for the recommendations contained herein.

In analyzing the data and developing recommendations and supporting text, the writing committee uses evidence-based methodologies developed by the Task Force. The Class of Recommendation (COR) is an estimate of the size of the treatment effect considering risks versus benefits in addition to evidence and/or agreement that a given treatment or procedure is or is not useful/effective or in some situations may cause harm. The Level of Evidence (LOE) is an estimate of the certainty or precision of the treatment effect. The writing committee reviews and ranks evidence supporting each recommendation with the weight of evidence ranked as LOE A, B, or C according to specific definitions that are included in Table 1. Studies are identified as observational, retrospective, prospective, or randomized where appropriate. For certain conditions for which inadequate data are available, recommendations are based on expert consensus and clinical experience and are ranked as LOE C. When recommendations at LOE C are supported by historical clinical data, appropriate references (including clinical reviews) are cited if available. For issues for which sparse data are available, a survey of current practice among the clinician members of the writing committee is the basis for LOE C recommendations and no references are cited. The schema for applying classification of recommendation and level of evidence is detailed in Table 1.
COR and LOE is summarized in Table 1, which also provides suggested phrases for writing recommendations within each COR.

A new addition to this methodology is separation of the Class III recommendations to delineate whether the recommendation is determined to be of “no benefit” or is associated with “harm” to the patient. In addition, in view of the increasing number of comparative effectiveness studies, comparator verbs and suggested phrases for writing recommendations for the comparative effectiveness of one treatment or strategy versus another are included for COR I and IIa, LOE A or B only.

In view of the advances in medical therapy across the spectrum of cardiovascular diseases, the Task Force has designated the term guideline-directed medical therapy (GDMT) to represent optimal medical therapy as defined by ACCF/AHA guideline-recommended therapies (primarily Class I). This new term, GDMT, will be used throughout subsequent guidelines.

Because the ACCF/AHA practice guidelines address patient populations (and healthcare providers) residing in North America, drugs that are not currently available in North America are discussed in the text without a specific COR. For studies performed in large numbers of subjects outside North America, each writing committee reviews the potential influence of different practice patterns and patient populations on the treatment effect and relevance to the ACCF/AHA target population to determine whether the findings should inform a specific recommendation.

The ACCF/AHA practice guidelines are intended to assist healthcare providers in clinical decision making by describing a range of generally acceptable approaches to the diagnosis, management, and prevention of specific diseases or conditions. The guidelines attempt to define practices that meet the needs of most patients in most circumstances. The ultimate judgment regarding care of a particular patient must be made by the healthcare provider and patient in light of all the circumstances presented by that patient. As a result, situations may arise for which deviations from these guidelines may be appropriate. Clinical decision making should involve consideration of the quality and availability of expertise in the area where care is provided. When these guidelines are used as the basis for regulatory or payer decisions, the goal should be improvement in quality of care. The Task Force recognizes that situations arise in which additional data are needed to inform patient care more effectively; these areas are identified within each respective guideline when appropriate.

Prescribed courses of treatment in accordance with these recommendations are effective only if followed. Because lack of patient understanding and adherence may adversely affect outcomes, physicians and other healthcare providers should make every effort to engage the patient’s active participation in prescribed medical regimens and lifestyles. In addition, patients should be informed of the risks, benefits, and alternatives to a particular treatment and should be involved in shared decision making whenever feasible, particularly for COR IIa and IIb, for which the benefit-to-risk ratio may be lower.

The Task Force makes every effort to avoid actual, potential, or perceived conflicts of interest that may arise as a result of relationships with industry and other entities (RWI) among the members of the writing committee. All writing committee members and peer reviewers of the guideline are required to disclose all current healthcare related relationships, including those existing 12 months before initiation of the writing effort. In December 2009, the ACCF and AHA implemented a new RWI policy that requires the writing committee chair plus a minimum of 50% of the writing committee to have no relevant RWI. (Appendix 1 includes the ACCF/AHA definition of relevance.) These statements are reviewed by the Task Force and all members during each conference call and/or meeting of the writing committee, and members provide updates as changes occur. All guideline recommendations require a confidential vote by the writing committee and must be approved by a consensus of the voting members. Members may not draft or vote on any text or recommendations pertaining to their RWI. Members who recused themselves from voting are indicated in the list of writing committee members, and specific section recusals are noted in Appendix 1. Authors’ and peer reviewers’ RWI pertinent to this guideline are disclosed in Appendixes 1 and 2, respectively. In addition, to ensure complete transparency, writing committee members’ comprehensive disclosure information—including RWI not pertinent to this document—is available as an online supplement. Comprehensive disclosure information for the Task Force is also available online at http://www.cardiosource.org/ACCF/About-ACC/Who-We-Are/Leadership/Guidelines-and-Documents-Task-Forces.aspx. The work of writing committees is supported exclusively by the ACCF and AHA without commercial support. Writing committee members volunteered their time for this activity.

In an effort to maintain relevance at the point of care for practicing physicians, the Task Force continues to oversee an ongoing process improvement initiative. As a result, in response to pilot projects, several changes to these guidelines will be apparent, including limited narrative text, a focus on summary and evidence tables (with references linked to abstracts in PubMed), and more liberal use of summary recommendation tables (with references that support LOE) to serve as a quick reference.

In April 2011, the Institute of Medicine released 2 reports: Finding What Works in Health Care: Standards for Systematic Reviews and Clinical Practice Guidelines We Can Trust.2,3 It is noteworthy that the IOM cited ACCF/AHA practice guidelines as being compliant with many of the proposed standards. A thorough review of these reports and of our current methodology is under way, with further enhancements anticipated.

The recommendations in this guideline are considered current until they are superseded by a focused update or the full-text guideline is revised. The reader is encouraged to consult the full-text guideline4 for additional guidance and details about the care of the patient with ST-elevation myocardial infarction (STEMI), because the Executive Summary contains only the recommendations. Guidelines are official policy of both the ACCF and AHA.

Jeffrey L. Anderson, MD, FACC, FAHA Chair, ACCF/AHA Task Force on Practice Guidelines
1. Introduction

1.1. Methodology and Evidence Review

The recommendations listed in this document are, whenever possible, evidence based. The current document constitutes a full revision and includes an extensive evidence review which was conducted through November 2010, with additional selected references added through August 2012. Searches were limited to studies conducted in human subjects and reviews and other evidence pertaining to human subjects; all were published in English. Key search words included but were not limited to: acute coronary syndromes, percutaneous coronary intervention, coronary artery bypass graft, myocardial infarction, ST-elevation myocardial infarction, coronary stent, revascularization, anticoagulant therapy, antiplatelet therapy, antithrombotic therapy, glycoprotein IIb/IIIa inhibitor therapy, pharmacotherapy, proton-pump inhibitor, implantable cardioverter-defibrillator therapy, cardiogenic shock, fibrinolytic therapy, thrombolytic therapy, nitrates, mechanical complications, arrhythmia, angina, chronic stable angina, diabetes, chronic kidney disease, mortality, morbidity, elderly, ethics, and contrast nephropathy. Additional searches cross-referenced these topics with the following subtopics: percutaneous coronary intervention, coronary artery bypass graft, cardiac rehabilitation, and secondary prevention. Additionally, the committee reviewed documents related to the subject matter previously published by the ACCF and AHA. References selected and published in this document are representative and not all inclusive.

The focus of this guideline is the management of patients with STEMI. Updates to the 2004 STEMI guideline were published in 2007 and 2009.5–7 Particular emphasis is placed on advances in reperfusion therapy, organization of regional systems of care, transfer algorithms, evidence-based antithrombotic and medical therapies, and secondary prevention strategies to optimize patient-centered care. By design, the document is narrower in scope than the 2004 STEMI Guideline, in an attempt to provide a more focused tool for practitioners. References related to management guidelines are provided whenever appropriate, including those pertaining to percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG), heart failure (HF), cardiac devices, and secondary prevention.

1.2. Organization of the Writing Committee

The writing committee was composed of experts representing cardiovascular medicine, interventional cardiology, electrophysiology, HF, cardiac surgery, emergency medicine, internal medicine, cardiac rehabilitation, nursing, and pharmacy. The American College of Physicians, American College of Emergency Physicians, and Society for Cardiovascular Angiography and Interventions assigned official representatives.

1.3. Document Review and Approval

This document was reviewed by 2 outside reviewers each nominated by the ACCF and the AHA, as well as 2 reviewers each from the American College of Emergency Physicians and Society for Cardiovascular Angiography and Interventions and 22 individual content reviewers (including members from the ACCF Interventional Scientific Council and ACCF Surgeons’ Scientific Council). All reviewer RWI information was distributed to the writing committee and is published in this document (Appendix 2).

This document was approved for publication by the governing bodies of the ACCF and the AHA and was endorsed by the American College of Emergency Physicians and Society for Cardiovascular Angiography and Interventions.

2. Onset of Myocardial Infarction: Recommendations

2.1. Regional Systems of STEMI Care, Reperfusion Therapy, and Time-to-Treatment Goals

See Figure 1.

Class I

1. All communities should create and maintain a regional system of STEMI care that includes assessment and continuous quality improvement of emergency medical services and hospital-based activities. Performance can be facilitated by participating in programs such as Mission: Lifeline and the Door-to-Balloon Alliance.8–11 (Level of Evidence: B)

2. Performance of a 12-lead electrocardiogram (ECG) by emergency medical services personnel at the site of first medical contact (FMC) is recommended in patients with symptoms consistent with STEMI.11–15 (Level of Evidence: B)

3. Reperfusion therapy should be administered to all eligible patients with STEMI with symptom onset within the prior 12 hours.16,17 (Level of Evidence: A)

4. Primary PCI is the recommended method of reperfusion when it can be performed in a timely fashion by experienced operators.17–19 (Level of Evidence: A)

5. Emergency medical services transport directly to a PCI-capable hospital for primary PCI is the recommended triage strategy for patients with STEMI, with an ideal FMC-to-device time system goal of 90 minutes or less.8–11,14,15 (Level of Evidence: B)

6. Immediate transfer to a PCI-capable hospital for primary PCI is the recommended triage strategy for patients with STEMI who initially arrive at or are transported to a non-PCI-capable hospital, with an FMC-to-device time system goal of 120 minutes or less.18–21 (Level of Evidence: B)

7. In the absence of contraindications, fibrinolytic therapy should be administered to patients with STEMI at non–PCI-capable hospitals when the anticipated FMC-to-device time at a PCI-capable hospital exceeds 120 minutes because of unavoidable delays.16,22,23 (Level of Evidence: B)

8. When fibrinolytic therapy is indicated or chosen as the primary reperfusion strategy, it should be administered within 30 minutes of hospital arrival.24–28 (Level of Evidence: B)

Class IIa

1. Reperfusion therapy is reasonable for patients with STEMI and symptom onset within the prior 12 to 24 hours who have clinical and/or ECG evidence of ongo-
ing ischemia. Primary PCI is the preferred strategy in this population.16,29,30 (Level of Evidence: B)

2.2. Evaluation and Management of Patients With STEMI and Out-of-Hospital Cardiac Arrest

Class I

1. Therapeutic hypothermia should be started as soon as possible in comatose patients with STEMI and out-of-hospital cardiac arrest caused by ventricular fibrillation or pulseless ventricular tachycardia, including patients who undergo primary PCI.31–33 (Level of Evidence: B)

2. Immediate angiography and PCI when indicated should be performed in resuscitated out-of-hospital cardiac arrest patients whose initial ECG shows STEMI.34–49 (Level of Evidence: B)

3. Reperfusion at a PCI-Capable Hospital: Recommendations

3.1. Primary PCI in STEMI

See Table 2 for a summary of recommendations from this section.

Class I

1. Primary PCI should be performed in patients with STEMI and ischemic symptoms of less than 12 hours’ duration.17,50,51 (Level of Evidence: A)

2. Primary PCI should be performed in patients with STEMI and ischemic symptoms of less than 12 hours’ duration who have contraindications to fibrinolytic therapy, irrespective of the time delay from MI onset.52,53 (Level of Evidence: B)

3. Primary PCI should be performed in patients with STEMI and cardiogenic shock or acute severe HF, irrespective of time delay from myocardial infarction (MI) onset (Section 8.1).54–57 (Level of Evidence: B)

Class IIa

1. Primary PCI is reasonable in patients with STEMI if there is clinical and/or ECG evidence of ongoing ischemia between 12 and 24 hours after symptom onset.29,30 (Level of Evidence: B)

Table 2. Primary PCI in STEMI

<table>
<thead>
<tr>
<th>Condition</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic symptoms <12 h</td>
<td>I</td>
<td>A</td>
<td>17, 50, 51</td>
</tr>
<tr>
<td>Ischemic symptoms <12 h and contraindications to fibrinolytic therapy</td>
<td></td>
<td></td>
<td>52, 53</td>
</tr>
<tr>
<td>irrespective of time delay from FMC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiogenic shock or acute severe HF</td>
<td>I</td>
<td>B</td>
<td>54–57</td>
</tr>
<tr>
<td>irrespective of time delay from MI onset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of ongoing ischemia 12 to 24 h after symptom onset</td>
<td>IIA</td>
<td>B</td>
<td>29, 30</td>
</tr>
<tr>
<td>PCI of a noninfarct artery at the time of primary PCI in patients without</td>
<td>III: Harm</td>
<td>B</td>
<td>58–60</td>
</tr>
<tr>
<td>hemodynamic compromise</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COR indicates Class of Recommendation; FMC, first medical contact; HF, heart failure; LOE, Level of Evidence; MI, myocardial infarction; PCI, percutaneous coronary intervention; and STEMI, ST-elevation myocardial infarction.
Class III: Harm

1. PCI should not be performed in a noninfarct artery at the time of primary PCI in patients with STEMI who are hemodynamically stable.\(^{58-60}\) (Level of Evidence: B)

3.2. Aspiration Thrombectomy

Class IIa

1. Manual aspiration thrombectomy is reasonable for patients undergoing primary PCI.\(^{61-64}\) (Level of Evidence: B)

3.3. Use of Stents in Patients With STEMI

Class I

1. Placement of a stent (bare-metal stent or drug-eluting stent) is useful in primary PCI for patients with STEMI.\(^{65,66}\) (Level of Evidence: A)

2. Bare-metal stents\(^{†}\) should be used in patients with high bleeding risk, inability to comply with 1 year of dual antiplatelet therapy (DAPT), or anticipated invasive or surgical procedures in the next year. (Level of Evidence: C)

Class III: Harm

1. Drug-eluting stents should not be used in primary PCI for patients with STEMI who are unable to tolerate or comply with a prolonged course of DAPT because of the increased risk of stent thrombosis with premature discontinuation of one or both agents.\(^{57-72}\) (Level of Evidence: B)

3.4. Antiplatelet Therapy to Support Primary PCI for STEMI

See Table 3 for a summary of recommendations from this section.

Class I

1. Aspirin 162 to 325 mg should be given before primary PCI.\(^{74-76}\) (Level of Evidence: B)

2. After PCI, aspirin should be continued indefinitely.\(^{77,78,80}\) (Level of Evidence: A)

3. A loading dose of a P2Y\(_{12}\) receptor inhibitor should be given as early as possible or at time of primary PCI to patients with STEMI. Options include
 a. Clopidogrel 600 mg\(^{76,91,92}\) (Level of Evidence: B); or
 b. Prasugrel 60 mg\(^{83}\) (Level of Evidence: B); or
 c. Ticagrelor 180 mg.\(^{84}\) (Level of Evidence: B)

4. P2Y\(_{12}\) inhibitor therapy should be given for 1 year to patients with STEMI who receive a stent (bare-metal or drug-eluting) during primary PCI using the following maintenance doses:
 a. Clopidogrel 75 mg daily\(^{83,85}\) (Level of Evidence: B); or
 b. Prasugrel 10 mg daily\(^{85}\) (Level of Evidence: B); or
 c. Ticagrelor 90 mg twice a day.\(^{84}\) (Level of Evidence: B)

Class IIa

1. It is reasonable to use 81 mg of aspirin per day in preference to higher maintenance doses after primary PCI.\(^{76,77,86,87}\) (Level of Evidence: B)

2. It is reasonable to start treatment with an intravenous glycoprotein (GP) IIb/IIIa receptor antagonist such as abciximab\(^{88-90}\) (Level of Evidence: A), high-dose tirofiban\(^{91,92}\) (Level of Evidence: B), or double-bolus eptifibatide\(^{93}\) (Level of Evidence: B) at the time of primary PCI (with or without stenting or clopidogrel pretreatment) in selected patients with STEMI who are receiving unfractionated heparin (UFH).

Class IIb

1. It may be reasonable to administer intravenous GP IIb/IIIa receptor antagonist in the precatheaterization laboratory setting (eg, ambulance, emergency department) to patients with STEMI for whom primary PCI is intended.\(^{91,94-101}\) (Level of Evidence: B)

2. It may be reasonable to administer intracoronary abciximab to patients with STEMI undergoing primary PCI.\(^{64,102-108}\) (Level of Evidence: B)

3. Continuation of a P2Y\(_{12}\) inhibitor beyond 1 year may be considered in patients undergoing drug-eluting stent placement. (Level of Evidence: C)

Class III: Harm

1. Prasugrel should not be administered to patients with a history of prior stroke or transient ischemic attack.\(^{83}\) (Level of Evidence: B)

3.5. Anticoagulant Therapy to Support Primary PCI

Class I

1. For patients with STEMI undergoing primary PCI, the following supportive anticoagulant regimens are recommended:
 a. UFH, with additional boluses administered as needed to maintain therapeutic activated clotting time levels, taking into account whether a GP IIb/IIIa receptor antagonist has been administered (Level of Evidence: C); or
 b. Bivalirudin with or without prior treatment with UFH.\(^{109}\) (Level of Evidence: B)

Class IIa

1. In patients with STEMI undergoing PCI who are at high risk of bleeding, it is reasonable to use bivalirudin monotherapy in preference to the combination of UFH and a GP IIb/IIIa receptor antagonist.\(^{109}\) (Level of Evidence: B)

Class III: Harm

1. Fondaparinux should not be used as the sole anticoagulant to support primary PCI because of the risk of catheter thrombosis.\(^{110}\) (Level of Evidence: B)
Table 3. Adjunctive Antithrombotic Therapy to Support Reperfusion With Primary PCI

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antiplatelet therapy

Aspirin
- 162- to 325-mg load before procedure
- 81- to 325-mg daily maintenance dose (indefinite)*
- 81 mg daily is the preferred maintenance dose*

P2Y₁₂ inhibitors

Loading doses
- Clopidogrel: 600 mg as early as possible or at time of PCI I B 76, 81, 82
- Prasugrel: 60 mg as early as possible or at time of PCI I B 83
- Ticagrelor: 180 mg as early as possible or at time of PCI I B 84

Maintenance doses and duration of therapy

DES placed: Continue therapy for 1 y with:
- Clopidogrel: 75 mg daily I B 83, 85
- Prasugrel: 10 mg daily I B 85
- Ticagrelor: 90 mg twice a day* I B 84

BMS† placed: Continue therapy for 1 y with:
- Clopidogrel: 75 mg daily I B 83, 85
- Prasugrel: 10 mg daily I B 85
- Ticagrelor: 90 mg twice a day* I B 84

DES placed:
- Clopidogrel, prasugrel, or ticagrelor* continued beyond 1 y IIb C N/A
- Patients with STEMI with prior stroke or TIA: prasugrel III: Harm B 83

IV GP Ibb/Illa receptor antagonists in conjunction with UFH or bivalirudin in selected patients
- Abciximab: 0.25-mg/kg IV bolus, then 0.125 mcg/kg/min (maximum 10 mcg/min) IIa A 88–90
- Tiropiban: (high-bolus dose): 25-mcg/kg IV bolus, then 0.15 mcg/kg/min IIa A 91
- Epifibatide: (double bolus): 180-mcg/kg IV bolus, then 2 mcg/kg/min; a second 180-mcg/kg bolus is administered 10 min after the first bolus IIa A 93
 - In patients with CrCl <30 mL/min, reduce infusion by 50%
 - Avoid in patients on hemodialysis
- Pre–catheterization laboratory administration of intravenous GP Ibb/Illa receptor antagonist IIb B 91, 94–101
- Intracoronary abciximab 0.25-mg/kg bolus IIb B 64, 102–108

Anticoagulant therapy

UFH:
- With GP Ibb/Illa receptor antagonist planned: 50- to 70-U/kg IV bolus to achieve therapeutic ACT†
- With no GP Ibb/Illa receptor antagonist planned: 70- to 100-U/kg bolus to achieve therapeutic ACT§ I B 109
 - Reduce infusion to 1 mg/kg/h with estimated CrCl <30 mL/min
 - Preferred over UFH with GP Ibb/Illa receptor antagonist in patients at high risk of bleeding IIa A 109
- Fondaparinux: Not recommended as sole anticoagulant for primary PCI III: Harm B 110

*The recommended maintenance dose of aspirin to be used with ticagrelor is 81 mg daily.
†Balloon angioplasty without stent placement may be used in selected patients. It might be reasonable to provide P2Y₁₂ inhibitor therapy to patients with STEMI undergoing balloon angioplasty alone according to the recommendations listed for BMS. (LOE: C)
‡The recommended ACT with planned GP Ibb/Illa receptor antagonist treatment is 200 to 250 s.
§The recommended ACT with no planned GP Ibb/Illa receptor antagonist treatment is 250 to 300 s (HemoTec device) or 300 to 350 s (Hemochron device).
ACT indicates activated clotting time; BMS, bare-metal stent; CrCl, creatinine clearance; COR, Class of Recommendation; DES, drug-eluting stent; GP, glycoprotein; IV, intravenous; LOE, Level of Evidence; N/A, not available; PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction; TIA, transient ischemic attack; and UFH, unfractionated heparin.
4. Reperfusion at a Non–PCI-Capable Hospital: Recommendations

4.1. Fibrinolytic Therapy When There Is an Anticipated Delay to Performing Primary PCI Within 120 Minutes of FMC

See Table 4 for a summary of recommendations from this section.

Class I

1. In the absence of contraindications, fibrinolytic therapy should be given to patients with STEMI and onset of ischemic symptoms within the previous 12 hours when it is anticipated that primary PCI cannot be performed within 120 minutes of FMC.16,111–116 (Level of Evidence: A)

Class IIa

1. In the absence of contraindications and when PCI is not available, fibrinolytic therapy is reasonable for patients with STEMI if there is clinical and/or electrocardiographic evidence of ongoing ischemia within 12 to 24 hours of symptom onset and a large area of myocardium at risk or hemodynamic instability. (Level of Evidence: C)

Class III: Harm

1. Fibrinolytic therapy should not be administered to patients with ST depression except when a true posterior (inferobasal) MI is suspected or when associated with ST-elevation in lead aVR.16,117–120 (Level of Evidence: B)

4.2. Adjunctive Antithrombotic Therapy With Fibrinolysis

See Table 5 for a summary of recommendations from this section.

4.2.1. Adjunctive Antiplatelet Therapy With Fibrinolysis

Class I

1. Aspirin (162- to 325-mg loading dose) and clopidogrel (300-mg loading dose for patients ≤75 years of age, 75-mg dose for patients >75 years of age) should be administered to patients with STEMI who receive fibrinolytic therapy.113,121,122 (Level of Evidence: A)

2. Aspirin should be continued indefinitely113,121,122 (Level of Evidence: A) and clopidogrel (75 mg daily) should be continued for at least 14 days121,122 (Level of Evidence: A) and up to 1 year (Level of Evidence: C) in patients with STEMI who receive fibrinolytic therapy.

Class IIa

1. It is reasonable to use aspirin 81 mg per day in preference to higher maintenance doses after fibrinolytic therapy.77,80,86,87 (Level of Evidence: B)

4.2.2. Adjunctive Anticoagulant Therapy With Fibrinolysis

Class I

1. Patients with STEMI undergoing reperfusion with fibrinolytic therapy should receive anticoagulant therapy for a minimum of 48 hours, and preferably for the duration of the index hospitalization, up to 8 days or until revascularization if performed.123,124 (Level of Evidence: A) Recommended regimens include
 a. UFH administered as a weight-adjusted intravenous bolus and infusion to obtain an activated partial thromboplastin time of 1.5 to 2.0 times control, for 48 hours or until revascularization;123,124 (Level of Evidence: C)
 b. Enoxaparin administered according to age, weight, and creatinine clearance, given as an intravenous bolus, followed in 15 minutes by subcutaneous injection for the duration of the index hospitalization, up to 8 days or until revascularization;124–127 (Level of Evidence: A); or
 c. Fondaparinux administered with initial intravenous dose, followed in 24 hours by daily subcutaneous injections if the estimated creatinine clearance is greater than 30 mL/min, for the duration of the index hospitalization, up to 8 days or until revascularization.110 (Level of Evidence: B)

4.3. Transfer to a PCI-Capable Hospital After Fibrinolytic Therapy

4.3.1. Transfer of Patients With STEMI to a PCI-Capable Hospital for Coronary Angiography After Fibrinolytic Therapy

See Table 6 for a summary of recommendations from this section; Online Data Supplement 4 for additional data on early catheterization and rescue PCI for fibrinolytic failure in the stent era; and Online Data Supplement 5 for additional data on early catheterization and PCI after fibrinolysis in the stent era.

Class I

1. Immediate transfer to a PCI-capable hospital for coronary angiography is recommended for suitable patients with STEMI who develop cardio-
genic shock or acute severe HF, irrespective of the time delay from MI onset.128 (Level of Evidence: B)

Class IIa

1. Urgent transfer to a PCI-capable hospital for coronary angiography is reasonable for patients with STEMI who demonstrate evidence of failed reperfusion or reocclusion after fibrinolytic therapy.129–132 (Level of Evidence: B)

2. Transfer to a PCI-capable hospital for coronary angiography is reasonable for patients with STEMI who have received fibrinolytic therapy even when hemodynamically stable§ and with clinical evidence of successful reperfusion. Angiography can be performed as soon as logistically feasible at the receiving hospital, and ideally within 24 hours, but should not be performed within the first 2 to 3 hours after administration of fibrinolytic therapy.133–138 (Level of Evidence: B)

§Although individual circumstances will vary, clinical stability is defined by the absence of low output, hypotension, persistent tachycardia, apparent shock, high-grade ventricular or symptomatic supraventricular tachyarrhythmias, and spontaneous recurrent ischemia.

Table 5. Adjunctive Antithrombotic Therapy to Support Reperfusion With Fibrinolytic Therapy

<table>
<thead>
<tr>
<th>Antiplatelet Therapy</th>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>● 162- to 325-mg loading dose</td>
<td>I</td>
<td>A</td>
<td>113, 121, 122</td>
</tr>
<tr>
<td>● 81- to 325-mg daily maintenance dose (indefinite)</td>
<td>I</td>
<td>A</td>
<td>113, 121, 122</td>
</tr>
<tr>
<td>● 81 mg daily is the preferred maintenance dose</td>
<td>IIa</td>
<td>B</td>
<td>77, 80, 86, 87</td>
</tr>
</tbody>
</table>

P2Y12 receptor inhibitors			
● Clopidogrel:			
● Age ≤75 y: 300-mg loading dose	I	A	121, 122
● Followed by 75 mg daily for at least 14 d and up to 1 y in absence of bleeding	I	A(14 d)	121, 122
● Age >75 y: no loading dose, give 75 mg	I	C(up to 1 y)	N/A
● Followed by 75 mg daily for at least 14 d and up to 1 y in absence of bleeding	I	A(14 d)	121, 122
		C(up to 1 y)	N/A

Anticoagulant Therapy			
● UFH:			
● Weight-based IV bolus and infusion adjusted to obtain aPTT of 1.5 to 2.0 times control for 48 h or until revascularization. IV bolus of 60 U/kg (maximum 4000 U) followed by an infusion of 12 U/kg/h (maximum 1000 U) initially, adjusted to maintain aPTT at 1.5 to 2.0 times control (approximately 50 to 70 s) for 48 h or until revascularization.	I	C	N/A
● Enoxaparin:			
● If age ≤75 y: 30-mg IV bolus, followed in 15 min by 1 mg/kg subcutaneously every 12 h (maximum 100 mg for the first 2 doses)	I	A	124–127
● If age >75 y: no bolus, 0.75 mg/kg subcutaneously every 12 h (maximum 75 mg for the first 2 doses)	I	A	121, 122
● Regardless of age, if CrCl <30 mL/min: 1 mg/kg subcutaneously every 24 h	I	A	121, 122
● Duration: For the index hospitalization, up to 8 d or until revascularization	I	A	121, 122
● Fondaparinux:			
● Initial dose 2.5 mg IV, then 2.5 mg subcutaneously daily starting the following day, for the index hospitalization up to 8 d or until revascularization	I	B	110
● Contraindicated if CrCl ≤30 mL/min			

aPTT indicates activated partial thromboplastin time; COR, Class of Recommendation; CrCl, creatinine clearance; IV, intravenous; LOE, Level of Evidence; N/A, not available; and UFH, unfractionated heparin.

5. Delayed Invasive Management: Recommendations

5.1. Coronary Angiography in Patients Who Initially Were Managed With Fibrinolytic Therapy or Who Did Not Receive Reperfusion

See Table 7 for a summary of recommendations from this section.

Class I

1. Cardiac catheterization and coronary angiography with intent to perform revascularization should be performed after STEMI in patients with any of the following:
 a. Cardiogenic shock or acute severe HF that develops after initial presentation57,128,139,140 (Level of Evidence: B)
 b. Intermediate- or high-risk findings on predischarge noninvasive ischemia testing141,142 (Level of Evidence: B); or
 c. Myocardial ischemia that is spontaneous or provoked by minimal exertion during hospitalization. (Level of Evidence: C)
Table 6. Indications for Transfer for Angiography After Fibrinolytic Therapy

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate transfer for cardiogenic shock or severe acute HF irrespective of time delay from MI onset</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Urgent transfer for failed reperfusion or reocclusion</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>As part of an invasive strategy in stable* patients with PCI between 3 and 24 h after successful fibrinolysis</td>
<td>IIa</td>
<td>B</td>
</tr>
</tbody>
</table>

*Although individual circumstances will vary, clinical stability is defined by the absence of low output, hypotension, persistent tachycardia, apparent shock, high-grade ventricular or symptomatic supraventricular tachyarrhythmias, and spontaneous recurrent ischemia.

COR indicates Class of Recommendation; HF, heart failure; LOE, Level of Evidence; MI, myocardial infarction; N/A, not available; and PCI, percutaneous coronary intervention.

Class IIa

1. Coronary angiography with intent to perform revascularization is reasonable for patients with evidence of failed reperfusion or reocclusion after fibrinolytic therapy. Angiography can be performed as soon as logistically feasible (Level of Evidence: B)

2. Coronary angiography is reasonable before hospital discharge in stable* patients with STEMI after successful fibrinolysis. Angiography can be performed as soon as logistically feasible, and ideally within 24 hours, but should not be performed within the first 2 to 3 hours after administration of fibrinolytic therapy. (Level of Evidence: B)

5.2. PCI of an Infarct Artery in Patients Who Initially Were Managed With Fibrinolysis or Who Did Not Receive Reperfusion Therapy

See Table 8 for a summary of recommendations from this section.

Table 7. Indications for Coronary Angiography in Patients Who Were Managed With Fibrinolytic Therapy or Who Did Not Receive Reperfusion Therapy

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiogenic shock or acute severe HF that develops after initial presentation</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Intermediate- or high-risk findings on predischARGE noninvasive ischemia testing</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Spontaneous or easily provoked myocardial ischemia</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Failed reperfusion or reocclusion after fibrinolytic therapy</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Stable* patients after successful fibrinolysis, before discharge and ideally between 3 and 24 h</td>
<td>IIa</td>
<td>B</td>
</tr>
</tbody>
</table>

*Although individual circumstances will vary, clinical stability is defined by the absence of low output, hypotension, persistent tachycardia, apparent shock, high-grade ventricular or symptomatic supraventricular tachyarrhythmias, and spontaneous recurrent ischemia.

COR indicates Class of Recommendation; HF, heart failure; LOE, Level of Evidence; MI, myocardial infarction; N/A, not available.

O’Gara et al 2013 ACCF/AHA STEMI Guideline Executive Summary

Table 8. Indications for PCI of an Infarct Artery in Patients Who Were Managed With Fibrinolytic Therapy or Who Did Not Receive Reperfusion Therapy

<table>
<thead>
<tr>
<th>COR</th>
<th>LOE</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiogenic shock or acute severe HF</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Intermediate- or high-risk findings on predischARGE noninvasive ischemia testing</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Spontaneous or easily provoked myocardial ischemia</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Patients with evidence of failed reperfusion or reocclusion after fibrinolytic therapy (as soon as possible)</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Stable* patients after successful fibrinolysis, ideally between 3 and 24 h</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>Stable* patients >24 h after successful fibrinolysis</td>
<td>IIb</td>
<td>B</td>
</tr>
<tr>
<td>Delayed PCI of a totally occluded infarct artery >24 h after STEMI in stable patients</td>
<td>IIIB: No Benefit</td>
<td>B</td>
</tr>
</tbody>
</table>

*Although individual circumstances will vary, clinical stability is defined by the absence of low output, hypotension, persistent tachycardia, apparent shock, high-grade ventricular or symptomatic supraventricular tachyarrhythmias, and spontaneous recurrent ischemia.

COR indicates Class of Recommendation; HF, heart failure; LOE, Level of Evidence; MI, myocardial infarction; N/A, not available; PCI, percutaneous coronary intervention; and STEMI, ST-elevation myocardial infarction.

Class IIa

1. PCI of an anatomically significant stenosis in the infarct artery should be performed in patients with suitable anatomy and any of the following:

a. Cardiogenic shock or acute severe HF (Level of Evidence: B)

b. Intermediate- or high-risk findings on predischARGE noninvasive ischemia testing (Level of Evidence: C); or

c. Myocardial ischemia that is spontaneous or provoked by minimal exertion during hospitalization (Level of Evidence: C)

Class IIb

1. Delayed PCI is reasonable in patients with STEMI and evidence of failed reperfusion or reocclusion after fibrinolytic therapy. PCI can be performed as soon as logistically feasible at the receiving hospital (Level of Evidence: B)

2. Delayed PCI of a significant stenosis in a patent infarct artery is reasonable in stable* patients with STEMI after fibrinolytic therapy. PCI can be performed as soon as logistically feasible at the receiving hospital, and ideally within 24 hours, but should not be performed within the first 2 to 3 hours after administration of fibrinolytic therapy. (Level of Evidence: B)

Class IIIb

1. Delayed PCI of a significant stenosis in a patent infarct artery greater than 24 hours after STEMI
may be considered as part of an invasive strategy in stable patients.55,141–148 (Level of Evidence: B)

Class III: No Benefit

1. Delayed PCI of a totally occluded infarct artery greater than 24 hours after STEMI should not be performed in asymptomatic patients with 1- or 2-vessel disease if they are hemodynamically and electrically stable and do not have evidence of severe ischemia.55,146 (Level of Evidence: B)

5.3. PCI of a Noninfarct Artery Before Hospital Discharge

Class I

1. PCI is indicated in a noninfarct artery at a time separate from primary PCI in patients who have spontaneous symptoms of myocardial ischemia. (Level of Evidence: C)

Class IIa

1. PCI is reasonable in a noninfarct artery at a time separate from primary PCI in patients with intermediate- or high-risk findings on noninvasive testing.58,141,142 (Level of Evidence: B)

5.4. Adjunctive Antithrombotic Therapy to Support Delayed PCI After Fibrinolytic Therapy

See Table 9 for a summary of recommendations from this section.

5.4.1. Antiplatelet Therapy to Support PCI After Fibrinolytic Therapy

Class I

1. After PCI, aspirin should be continued indefinitely.76,77,80,82,121,122 (Level of Evidence: A)

2. Clopidogrel should be provided as follows:
 a. A 300-mg loading dose should be given before or at the time of PCI to patients who did not receive a previous loading dose and who are undergoing PCI within 24 hours of receiving fibrinolytic therapy (Level of Evidence: C);
 b. A 600-mg loading dose should be given before or at the time of PCI to patients who did not receive a previous loading dose and who are undergoing PCI more than 24 hours after receiving fibrinolytic therapy (Level of Evidence: C); and
 c. A dose of 75 mg daily should be given after PCI.83,85,121,122 (Level of Evidence: C)

Class IIa

1. After PCI, it is reasonable to use 81 mg of aspirin per day in preference to higher maintenance doses.76,82,86,87 (Level of Evidence: B)

2. Prasugrel, in a 60-mg loading dose, is reasonable once the coronary anatomy is known in patients who did not receive a previous loading dose of clopidogrel at the time of administration of a fibrinolytic agent, but prasugrel should not be given sooner than 24 hours after administration of a fibrin-specific agent or 48 hours after administration of a non–fibrin-specific agent.83,85 (Level of Evidence: B)

3. Prasugrel, in a 10-mg daily maintenance dose, is reasonable after PCI.83,85 (Level of Evidence: B)

Class III: Harm

1. Prasugrel should not be administered to patients with a history of prior stroke or transient ischemic attack.83 (Level of Evidence: B)

5.4.2. Anticoagulant Therapy to Support PCI After Fibrinolytic Therapy

Class I

1. For patients with STEMI undergoing PCI after receiving fibrinolytic therapy with intravenous UFH, additional boluses of intravenous UFH should be administered as needed to support the procedure, taking into account whether GP IIb/IIIa receptor antagonists have been administered. (Level of Evidence: C)

2. For patients with STEMI undergoing PCI after receiving fibrinolytic therapy with enoxaparin, if the last subcutaneous dose was administered within the prior 8 hours, no additional enoxaparin should be given; if the last subcutaneous dose was administered between 8 and 12 hours earlier, enoxaparin 0.3 mg/kg IV should be given.127,149 (Level of Evidence: B)

Class III: Harm

1. Fondaparinux should not be used as the sole anticoagulant to support PCI. An additional anticoagulant with anti-IIa activity should be administered because of the risk of catheter thrombosis.110 (Level of Evidence: C)

6. Coronary Artery Bypass Graft Surgery: Recommendations

6.1. CABG in Patients With STEMI

Class I

1. Urgent CABG is indicated in patients with STEMI and coronary anatomy not amenable to PCI who have ongoing or recurrent ischemia, cardiogenic shock, severe HF, or other high-risk features.150–152 (Level of Evidence: B)

2. CABG is recommended in patients with STEMI at time of operative repair of mechanical defects.153–157 (Level of Evidence: B)

Class IIa

1. The use of mechanical circulatory support is reasonable in patients with STEMI who are hemodynamically unstable and require urgent CABG. (Level of Evidence: C)

Class IIb

1. Emergency CABG within 6 hours of symptom onset may be considered in patients with STEMI who do not
have cardiogenic shock and are not candidates for PCI or fibrinolytic therapy. (Level of Evidence: C)

6.2. Timing of Urgent CABG in Patients With STEMI in Relation to Use of Antiplatelet Agents

Class I

1. Aspirin should not be withheld before urgent CABG.158 (Level of Evidence: C)
2. Clopidogrel or ticagrelor should be discontinued at least 24 hours before urgent on-pump CABG, if possible.159,160,161 (Level of Evidence: B)
3. Short-acting intravenous GP IIb/IIIa receptor antagonists (eptifibatide, tirofiban) should be discontinued at least 2 to 4 hours before urgent CABG.164,165 (Level of Evidence: B)
4. Abciximab should be discontinued at least 12 hours before urgent CABG.137 (Level of Evidence: B)

Class IIb

1. Urgent off-pump CABG within 24 hours of clopidogrel or ticagrelor administration might be considered, especially if the benefits of prompt revascularization outweigh the risks of bleeding.160,166–168 (Level of Evidence: B)
2. Urgent CABG within 5 days of clopidogrel or ticagrelor administration or within 7 days of prasugrel administration might be considered, especially if the benefits of prompt revascularization outweigh the risks of bleeding. (Level of Evidence: C)
7. Routine Medical Therapies: Recommendations

7.1. Beta Blockers

Class I

1. Oral beta blockers should be initiated in the first 24 hours in patients with STEMI who do not have any of the following: signs of HF, evidence of a low-output state, increased risk for cardiogenic shock, or other contraindications to use of oral beta blockers (PR interval more than 0.24 seconds, second- or third-degree heart block, active asthma, or reactive airways disease). (Level of Evidence: B)

2. Beta blockers should be continued during and after hospitalization for all patients with STEMI and with no contraindications to their use. (Level of Evidence: B)

3. Patients with initial contraindications to the use of beta blockers in the first 24 hours after STEMI should be reevaluated to determine their subsequent eligibility. (Level of Evidence: C)

Class IIa

1. It is reasonable to administer intravenous beta blockers at the time of presentation to patients with STEMI and no contraindications to their use who are hypertensive or have ongoing ischemia. (Level of Evidence: B)

7.2. Renin-Angiotensin-Aldosterone System Inhibitors

Class I

1. An angiotensin-converting enzyme inhibitor should be administered within the first 24 hours to all patients with STEMI with anterior location, HF, or ejection fraction less than or equal to 0.40, unless contraindicated. (Level of Evidence: A)

2. An angiotensin receptor blocker should be given to patients with STEMI who have indications for but are intolerant of angiotensin-converting enzyme inhibitors. (Level of Evidence: A)

3. An aldosterone antagonist should be given to patients with STEMI and no contraindications who have a serum creatinine level of 1.5 mg/dl, a left ventricular ejection fraction of less than 0.40, and either symptomatic HF or diabetes mellitus. (Level of Evidence: B)

Class IIa

1. Angiotensin-converting enzyme inhibitors are reasonable for all patients with STEMI and no contraindications to their use. (Level of Evidence: A)

7.3. Lipid Management

Class I

1. High-intensity statin therapy should be initiated or continued in all patients with STEMI and no contraindications to its use. (Level of Evidence: B)

Class IIa

1. It is reasonable to obtain a fasting lipid profile in patients with STEMI, preferably within 24 hours of presentation. (Level of Evidence: C)

8. Complications After STEMI: Recommendations

8.1. Treatment of Cardiogenic Shock

Class I

1. Emergency revascularization with either PCI or CABG is recommended in suitable patients with cardiogenic shock due to pump failure after STEMI irrespective of the time delay from MI onset. (Level of Evidence: B)

2. In the absence of contraindications, fibrinolytic therapy should be administered to patients with STEMI and cardiogenic shock who are unsuitable candidates for either PCI or CABG. (Level of Evidence: B)

Class IIa

1. The use of intra-aortic balloon pump counterpulsation can be useful for patients with cardiogenic shock after STEMI who do not quickly stabilize with pharmacological therapy. (Level of Evidence: B)

Class IIb

1. Alternative left ventricular (LV) assist devices for circulatory support may be considered in patients with refractory cardiogenic shock. (Level of Evidence: C)

8.2. Implantable Cardioverter-Defibrillator Therapy Before Discharge

Class I

1. Implantable cardioverter-defibrillator therapy is indicated before discharge in patients who develop sustained ventricular tachycardia/ventricular fibrillation more than 48 hours after STEMI, provided the arrhythmia is not due to transient or reversible ischemia, reinfarction, or metabolic abnormalities. (Level of Evidence: B)

8.3. Pacing in STEMI

Class I

1. Temporary pacing is indicated for symptomatic bradyarrhythmias unresponsive to medical treatment. (Level of Evidence: C)
8.4. Management of Pericarditis After STEMI

Class I

1. Aspirin is recommended for treatment of pericarditis after STEMI.\(^{201}\) (Level of Evidence: B)

Class IIb

1. Administration of acetaminophen, colchicine, or narcotic analgesics may be reasonable if aspirin, even in higher doses, is not effective. (Level of Evidence: C)

Class III: Harm

1. Glucocorticoids and nonsteroidal antiinflammatory drugs are potentially harmful for treatment of pericarditis after STEMI.\(^{202,203}\) (Level of Evidence: B)

8.5. Anticoagulation¶

Class I

1. Anticoagulant therapy with a vitamin K antagonist should be provided to patients with STEMI and atrial fibrillation with CHADS2# score greater than or equal to 2, mechanical heart valves, venous thromboembolism, or hypercoagulable disorder. (Level of Evidence: C)

2. The duration of triple-antithrombotic therapy with a vitamin K antagonist, aspirin, and a P2Y\(_{12}\) receptor inhibitor should be minimized to the extent possible to limit the risk of bleeding.\(^{6,8}\) (Level of Evidence: C)

Class IIa

1. Anticoagulant therapy with a vitamin K antagonist is reasonable for patients with STEMI and asymptomatic LV mural thrombi. (Level of Evidence: C)

Class IIb

1. Anticoagulant therapy may be considered for patients with STEMI and anterior apical akinesis or dyskinesis. (Level of Evidence: C)

2. Targeting vitamin K antagonist therapy to a lower international normalized ratio (eg, 2.0 to 2.5) might be considered in patients with STEMI who are receiving DAPT. (Level of Evidence: C)

9. Risk Assessment After STEMI: Recommendations

9.1. Use of Noninvasive Testing for Ischemia Before Discharge

Class I

1. Noninvasive testing for ischemia should be performed before discharge to assess the presence and extent of inducible ischemia in patients with STEMI who have not had coronary angiography and do not have high-risk clinical features for which coronary angiography would be warranted.\(^{209–211}\) (Level of Evidence: B)

Class IIb

1. Noninvasive testing for ischemia might be considered before discharge to evaluate the functional significance of a noninfarct artery stenosis previously identified at angiography. (Level of Evidence: C)

2. Noninvasive testing for ischemia might be considered before discharge to guide the postdischarge exercise prescription. (Level of Evidence: C)

9.2. Assessment of LV Function

Class I

1. LV ejection fraction should be measured in all patients with STEMI. (Level of Evidence: C)

9.3. Assessment of Risk for Sudden Cardiac Death

Class I

1. Patients with an initially reduced LV ejection fraction who are possible candidates for implantable cardioverter-defibrillator therapy should undergo reevaluation of LV ejection fraction 40 or more days after discharge.\(^{212–215}\) (Level of Evidence: B)

10. Posthospitalization Plan of Care: Recommendations

Class I

1. Posthospital systems of care designed to prevent hospital readmissions should be used to facilitate the transition to effective, coordinated outpatient care for all patients with STEMI.\(^{216–220}\) (Level of Evidence: B)

2. Exercise-based cardiac rehabilitation/secondary prevention programs are recommended for patients with STEMI.\(^{221–224}\) (Level of Evidence: B)

3. A clear, detailed, and evidence-based plan of care that promotes medication adherence, timely follow-up with the healthcare team, appropriate dietary and physical activities, and compliance with interventions for secondary prevention should be provided to patients with STEMI. (Level of Evidence: C)

4. Encouragement and advice to stop smoking and to avoid secondhand smoke should be provided to patients with STEMI.\(^{225–228}\) (Level of Evidence: A)
References

O’Gara et al 2013 ACCF/AHA STEMI Guideline Executive Summary

106. Kakkar AK, Moustapha A, Hanley HG, et al. Comparison of intra-
coronary versus intravenous administration of abciximab in coronary
107. Wähle J, Grebe OC, Nusser T, et al. Reduction of major adverse cardiac
events with intracoronary compared with intravenous bolus application
of abciximab in patients with acute myocardial infarction or unstable
to intravenous abciximab and high-dose bolus compared to standard dose
in patients with ST-segment elevation myocardial infarction undergoing
transradial primary percutaneous coronary intervention: a two-by-two
factorial placebo-controlled randomized study. Am J Cardiol. 2010;105:
1520–7.
primary PCI in acute myocardial infarction. N Engl J Med. 2008;358:
2218–30.
on mortality and reinfarction in patients with acute ST-segment elevation
myocardial infarction: the OASIS-6 randomized trial. JAMA. 2006;295:
1519–30.
111. AIMS Trial Study Group. Effect of intravenous APSAC on mortality
after acute myocardial infarction: preliminary report of a placebo-
112. EMERAS (Estudio Multicéntrico Estreptocinasa Repúblicas de
América del Sur) Collaborative Group. Randomised trial of late
thrombolysis in patients with suspected acute myocardial infarction.
113. ISIS-2 (Second International Study of Infarct Survival) Collaborative
Group. Randomised trial of intravenous streptokinase, oral aspirin, both,
or neither among 17,187 cases of suspected acute myocardial infarction:
114. Late Assessment of Thrombolytic Efficacy (LATE) study with alteplase
6–24 hours after onset of acute myocardial infarction. Lancet. 1993;
342:759–66.
115. Rossi P, Bolognese L. Comparison of intravenous urokinase plus
heparin adjunctive to recombinant tissue plasminogen activator
thrombolysis and aspirin: second trial of Heparin and Aspirin Reper-
adjunctive antithrombin therapy for ST-elevation myocardial infarction:
results of the ENTIRE-Thrombolysis in Myocardial Infarction (TIMI)
105:2799.
117. Hochman JS, Sleeper LA, White HD, et al. One-year survival following
after failed thrombolytic therapy for acute myocardial infarction. N Engl
rescue angioplasty versus a conservative approach for failed fibrinolysis
in ST-segment elevation myocardial infarction: the Middlesbrough
Early Revascularisation to Limit Infarction (MERLIN) trial. J Am Coll
120. Gibson CM, Murphy SA, Rizzo MJ, et al. Thrombolysis In Myocardial
Infarction (TIMI) Study Group. Relationship between TIMI frame count
and clinical outcomes after thrombolytic administration. Circulation.
angioplasty or repeat fibrinolysis after failed fibrinolytic therapy for
ST-segment myocardial infarction: a meta-analysis of randomized trials.
intervention after fibrinolysis: a multiple meta-analyses approach
immediate angioplasty versus ischemia-guided management after
thrombolysis in acute myocardial infarction in areas with very long
transfer distances results of the NORDSTEMI (NORwegian study on
District treatment of ST-elevation myocardial infarction). J Am Coll
coronary intervention after fibrinolysis vs standard therapy in
ST-segment elevation myocardial infarction: a meta-analysis. Eur
Heart J. 2010;31:2156–69.
after fibrinolysis for acute myocardial infarction, N Engl J Med.
2009;360:2705–18.
standard therapy with aspirin after thrombolysis in the Combined
Abciximab REteplase Stent Study in Acute Myocardial Infarction
(CARESS-in-AMI): an open, prospective, randomised, mul-
strategy within 24 hours of thrombolysis versus ischaemia-guided con-
servative approach for acute myocardial infarction with ST-segment
elevation (GRACIA-1): a randomised controlled trial. Lancet. 2004;364:
1045–53.
128. White HD. Systems of care: need for hub-and-spoke systems for both
primary and systematic percutaneous coronary intervention after fibrin-
cularization on survival in patients with non-ST-elevation acute
coronary syndrome and congestive heart failure. Circulation. 2008;118:
1163–71.
130a. Gibson CM, Murphy SA, Rizzo MJ, et al.; Thrombolysis In Myocardial
Infarction (TIMI) Study Group. Relationship between TIMI frame count
and clinical outcomes after thrombolytic administration. Circulation.
130b. Gibson CM, Cannon CP, Murphy SA, et al. Relationship of the TIMI
myocardial perfusion grades, flow grades, frame count, and percu-
taneous coronary intervention to long-term outcomes after thrombolytic
administration in acute myocardial infarction. Circulation. 2002;105:
130c. Sutton AG, Campbell PG, Price DJ, et al. Failure of thrombolysis by
streptokinase: detection with a simple electrocardiographic method.
130d. Sutton AG, Campbell PG, Price DJ, et al. Failure of thrombolysis by
streptokinase: detection with a simple electrocardiographic method.
in patients with a first non-ST-segment elevation acute myocardial
132. Jong G-P, Ma T, Chou P, et al. Reciprocal changes in 12-lead electro-
cardiography can predict left main coronary artery lesion in patients with
133. Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin
in 45,852 patients with acute myocardial infarction: randomised
134. Sabatine MS, Cannon CP, Gibson CM, et al. Addition of clopidogrel
to aspirin and fibrinolytic therapy for myocardial infarction with
135. The GUSTO Investigators. An international randomized trial comparing
four thrombolytic strategies for acute myocardial infarction. N Engl
136. Antman EM, Morrow DA, McCabe CH, et al. Enoxaparin versus unfra-
tionated heparin with fibrinolysis for ST-elevation myocardial infarction.
137. Efficacy and safety of tenecteplase in combination with enoxaparin,
abciximab, or unfractionated heparin: the ASSENT-3 randomised trial in
138. Ross AM, Molhoek P, Lundergan C, et al. Randomized comparison of
enoxaparin, a low-molecular-weight heparin, with unfractionated heparin
adjunctive to recombinant tissue plasminogen activator

185. Deleted in press.

186. Deleted in press.

Key Words: AHA Scientific Statements antiplatelets fibrinolysis percutaneous coronary intervention reperfusion ST-elevation myocardial infarction
Appendix 1. Author Relationships With Industry and Other Entities (Relevant)—2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker's Bureau</th>
<th>Ownership/Partnership/Principal Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick T. O’Gara, Chair</td>
<td>Harvard Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Frederick G. Kushner, Vice Chair</td>
<td>Tulane University School of Medicine—Clinical Professor of Medicine; Heart Clinic of Louisiana—Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Deborah D. Ascheim</td>
<td>Mount Sinai School of Medicine—Associate Professor; InCHOR—Clinical Director of Research</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donald E. Casey, Jr</td>
<td>Atlantic Health—Chief Medical Officer and Vice President of Quality</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mina K. Chung</td>
<td>Cleveland Clinic Foundation—Associate Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James A. de Lemos</td>
<td>UT Southwestern Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Steven M. Ettinger</td>
<td>Penn State Heart & Vascular Institute—Professor of Medicine and Radiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James C. Fang</td>
<td>University Hospitals Case Medical Center—Director, Heart Transplantation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Francis M. Fesmire</td>
<td>Heart Stroke Center—Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barry A. Franklin</td>
<td>William Beaumont Hospital—Director, Cardiac Rehabilitation and Exercise Laboratories</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher B. Granger</td>
<td>Duke Clinical Research Institute—Director, Cardiac Care Unit; Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment/Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harlan M. Krumholz</td>
<td>Yale University School of Medicine—Professor of Medicine</td>
<td>United HealthCare (Science Advisory Group)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jane A. Linderbaum</td>
<td>Mayo Clinic—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David A. Morrow</td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Beckman-Coulter, Boehringer Ingelheim, Daiichi-Sankyo, Eli Lilly, Genentech, Merck, Novartis, OrthoClinical Diagnostics/Johnson & Johnson, Roche Diagnostics, Sanofi-aventis, Schering-Plough, Siemens Medical Solutions</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>L. Kristin Newby</td>
<td>Duke University Medical Center, Division of Cardiology—Professor of Medicine</td>
<td>Amgen, AstraZeneca, BioVascular, Johnson & Johnson, Novartis</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joseph P. Ornato</td>
<td>Department of Emergency Medicine Virginia Commonwealth University—Professor and Chairman</td>
<td>European Resuscitation Council‡, ZOLL Circulation</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Narith Du</td>
<td>Mayo Clinic—Pharmacology Coordinator, Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Martha J. Radford</td>
<td>NYU Langone Medical Center—Chief Quality Officer, NYU School of Medicine—Professor of Medicine (Cardiology)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jacqueline E. Tamis-Holland</td>
<td>St Luke's-Roosevelt Hospital Center—Director, Interventional Cardiology Fellowship Program; Columbia University, College of Physicians and Surgeons—Assistant Professor of Clinical Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Appendix 1. Continued

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
<th>Voting Recusals by Section*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl L. Tommaso</td>
<td>Skokie Hospital—Director of Catheterization Laboratory; North Shore University Health Systems</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cynthia M. Tracy</td>
<td>George Washington University Medical Center—Associate Director, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Y. Joseph Woo</td>
<td>Hospital of the University of Pennsylvania—Associate Professor of Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David X. Zhao</td>
<td>Vanderbilt University Medical Center—Director, Cardiac Catheterization and Interventional Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Abbot Vascular</td>
<td>None</td>
<td>None</td>
<td>4.3.1</td>
</tr>
</tbody>
</table>

This table represents the relationships of committee members with industry and other entities that were determined to be relevant to this document. These relationships were reviewed and updated in conjunction with all meetings and/or conference calls of the writing committee during the document development process. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of ≥5% of the voting stock or share of the business entity, or ownership of ≥$10,000 of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

According to the ACCF/AHA, a person has a relevant relationship IF: a) The relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) The company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document, or makes a competing drug or device addressed in the document; or c) The person or a member of the person’s household has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the document.

*Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry and other entities could apply. Section numbers apply to the full-text guideline.
†No financial benefit.
‡Significant relationship.
§Dr. Ettinger’s relationship with Medtronic was added just before balloting of the recommendations, so it was not relevant during the writing stage; however, the addition of this relationship makes the writing committee out of compliance with the minimum 50% no relevant RWI requirement.
ACS indicates acute coronary syndromes; DSMB, data safety monitoring board; NHLBI, National Heart, Lung, and Blood Institute; NIH, National Institutes of Health; and PI, principal investigator.
Appendix 2. Reviewer Relationships With Industry and Other Entities (Relevant)—2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational, or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliott M. Antman</td>
<td>Official Reviewer—ACCF</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Accumetrics
● AstraZeneca
● Beckman Coulter
● Bristol-Myers Squibb Pharmaceutical Research Institute
● Daiichi-Sankyo*
● Eli Lilly*
● GlaxoSmithKline
● Merck
● Millennium Pharmaceuticals
● Novartis Pharmaceuticals
● Ortho-Clinical Diagnostics
● Sanofi-Synthelabo Recherche
● Schering-Plough Research Institute</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gary J. Balady</td>
<td>Official Reviewer—AHA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Novartis*
● AstraZeneca*
● Bristol-Myers Squibb†
● GlaxoSmithKline
● Merck*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher P. Cannon</td>
<td>Official Reviewer—AHA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Accumetrics*
● AstraZeneca*
● Bristol-Myers Squibb†
● GlaxoSmithKline
● Merck<sup>†</sup></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Judith S. Hochman</td>
<td>Official Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>● BMS/Sanofi
● Eli Lilly
● GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td>● Johnson & Johnson Pharmaceutical Research & Development (DSMB)
● Merck/Schering-Plough (DSMB)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Austin H. Kutscher</td>
<td>Official Reviewer—ACCF</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Edwards Lifesciences<sup>†</sup></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Charles J. Davidson</td>
<td>Organizational Reviewer—SCAI</td>
<td>● Abbott*
● Abbott Vascular</td>
<td>None</td>
<td>None</td>
<td>● Beckman Coulter†
● Nanosphere†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Deborah B. Diercks</td>
<td>Organizational Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>● Abbott Cardiovascular
● Daiichi-Sankyo*</td>
<td>None</td>
<td>None</td>
<td>● AstraZeneca<sup>†</sup></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jonathan M. Tobis</td>
<td>Organizational Reviewer—SCAI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● AGA Medical†
● Boston Scientific</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jeffrey L. Anderson</td>
<td>Content Reviewer—ACCF/AHA Task Force on Practice Guidelines</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Toshiiba†
● AstraZeneca (DSMB)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James C. Blankenship</td>
<td>Content Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● AstraZeneca†
● Boston Scientific†
● Novartis†
● Schering-Plough†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jeffrey J. Cavendish</td>
<td>Content Reviewer—ACCF Prevention of Cardiovascular Disease Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Abbott†
● Medtronic†
● The Medicines Company†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Harold L. Dauerman</td>
<td>Content Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Abbott†
● Medtronic†
● The Medicines Company†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John S. Douglas, Jr.</td>
<td>Content Reviewer</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>● Abbott†
● Medtronic†
● The Medicines Company†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen G. Ellis</td>
<td>Content Reviewer</td>
<td>● Abbott Vascular
● Boston Scientific†</td>
<td>None</td>
<td>None</td>
<td>● AstraZeneca†
● Boston Scientific†
● Novartis†
● Schering-Plough†</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Joseph Fredi</td>
<td>Content Reviewer—ACCF Surgeons’ Scientific Council</td>
<td>● AGA Medical†</td>
<td>None</td>
<td>None</td>
<td>● AstraZeneca†
● Boston Scientific†
● Novartis†
● Schering-Plough†</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
This table represents the relationships of reviewers with industry and other entities that were disclosed at the time of peer review and determined to be relevant. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of \(\geq 5\% \) of the voting stock or share of the business entity, or ownership of \(\geq \$10,000 \) of the fair market value of the business entity; or if funds received by the person from the business entity exceed \(\geq 5\% \) of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

According to the ACCF/AHA, a person has a relevant relationship if: a) The relationship or interest relates to the same or similar subject matter, intellectual property or asset, topic, or issue addressed in the document; or b) The company/entity (with whom the relationship exists) makes a drug, drug class, or device addressed in the document; or makes a competing drug or device addressed in the document; or c) The person or a member of the person’s household has a reasonable potential for financial, professional, or other personal gain or loss as a result of the issues/content addressed in the document.

*Significant relationship.
†No financial benefit.

ACCF indicates American College of Cardiology Foundation; ACEP, American College of Emergency Physicians; AHA, American Heart Association; DES, drug-eluting stent; DSMB, data safety monitoring board; and SCAI, Society for Cardiovascular Angiography and Interventions.

Circulation. published online December 17, 2012; Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2012/12/17/CIR.0b013e3182742c84.citation

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/12/17/CIR.0b013e3182742c84.DC1
http://circ.ahajournals.org/content/suppl/2012/12/17/CIR.0b013e3182742c84.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Data Supplement 1. ECG Criteria for Diagnosis of STEMI in the Setting of LBBB

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Odds Ratio (95% CI)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-elevation ≥1 mm and concordant with QRS complex</td>
<td>25.2 (11.6 - 54.7)</td>
<td>5</td>
</tr>
<tr>
<td>ST-segment depression ≥1 mm in lead V1, V2, or V3</td>
<td>6.0 (1.9 - 19.3)</td>
<td>3</td>
</tr>
<tr>
<td>ST-elevation ≥5 mm and discordant with QRS complex</td>
<td>4.3 (1.8 - 10.6)</td>
<td>2</td>
</tr>
</tbody>
</table>

CI indicates confidence interval.

Reprinted from Sgarbossa et al. (2). 8559200

In the NRMI-2 registry, 6.7% of MI patients had left bundle branch block (LBBB) and 6.2% had right bundle branch block (RBBB) on initial ECG (1). ECG diagnosis of STEMI in the setting of RBBB and left anterior and posterior fascicular blocks does not require special diagnostic criteria. However, interpreting the ST-segments is more difficult in patients with LBBB. Criteria for the ECG diagnosis of STEMI in the setting of LBBB have been developed and may help identify patients presenting with chest pain and LBBB who are more likely to be experiencing an MI. Sgarbossa identified 3 criteria used in a 10-point scale that improved the specificity of the diagnosis of STEMI in patients with LBBB: ST-elevation of at least 1 mm that was concordant with the QRS complex (5 points), ST-segment depression of at least 1 mm in lead V1, V2, or V3 (3 points), and ST-elevation of at least 5 mm that was discordant with the QRS complex (2 points) (2). A meta-analysis of studies exploring the utility of the Sgarbossa criteria demonstrated that a score of ≥3 had a specificity of 98% for acute myocardial infarction, but a score of 0 did not rule out STEMI (3) 18342992.
2013 STEMI Guideline Data Supplements

Data Supplement 2. PCI for Cardiac Arrest Evidence

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Aim of study</th>
<th>Study Type</th>
<th>Study Size</th>
<th>Patient Population/ Inclusion & Exclusion Criteria</th>
<th>Endpoint</th>
<th>Statistical Analysis Reported</th>
<th>P-Values & 95% CI</th>
<th>OR: RR:</th>
<th>Study Summary</th>
<th>Study Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary coronary angioplasty for AMI complicated by OOH-CA. Kahn et al., 1995 (4)</td>
<td>First report of PPCI in OOH-CA pts</td>
<td>Case series</td>
<td>11</td>
<td>Clinical judgment of cardiologist. No prespecified criteria used.</td>
<td>Survival to hospital discharge</td>
<td>Neurological outcome</td>
<td>None</td>
<td></td>
<td>11 pt OOH-CA pts brought to PPCI. 6/11 survived, 4/11 with full neurologic recovery.</td>
<td>Single institution, Selection bias</td>
</tr>
<tr>
<td>Immediate coronary angiography in survivors of OOH-CA. Spaulding et al., 1997 (5) 9171964</td>
<td>Determine impact of PPCI on OOH-CA survivors</td>
<td>Consecutive case series</td>
<td>84</td>
<td>OOH-CA, 30-75 y, <6 h onset of symptoms in pts previously leading a normal life, no obvious noncardiac etiology.</td>
<td>Survival to hospital discharge</td>
<td>Prevalence of CAD on angiography</td>
<td>Multivariate logistic regression showed successful PPCI was an independent predictor of survival.</td>
<td>p=0.04; 95% CI: 1.1-24.5</td>
<td>OR: 5.2</td>
<td>84 pt OOH-CA consecutive pts brought to cath/PPCI. 48% had acute coronary occlusion. Presence of chest pain, ECG ST-elevation poor predictors. Successful PCI independent predictor of survival.</td>
</tr>
<tr>
<td>Early direct coronary angioplasty in survivors of OOH-CA. Keelan et al., (6) 12804734</td>
<td>Determine impact of PPCI on OOH-CA VF survivors</td>
<td>Case series</td>
<td>15</td>
<td>Initial rhythm not VF</td>
<td>Survival to hospital discharge</td>
<td>None</td>
<td></td>
<td></td>
<td>15 pts with OOH-CA due to VF treated with PPCI, 11/14 survived.</td>
<td>Selection bias</td>
</tr>
<tr>
<td>Impact of PCI or CABG on outcome after nonfatal CA outside the hospital. Borger van der Burg et al., 2003 (7) 12667561</td>
<td>Determine impact of revascularization on outcome from OOH-CA</td>
<td>Case series</td>
<td>142</td>
<td>VF/pVT in the setting of an AMI</td>
<td>Survival to hospital discharge</td>
<td>Kaplan-Meier</td>
<td>p<0.001</td>
<td></td>
<td>142 non-AMI, OOH-CA pts. Revascularized pts had a better recurrence-free survival.</td>
<td>Nonrandomized case series, selection bias</td>
</tr>
</tbody>
</table>
2013 STEMI Guideline Data Supplements

<table>
<thead>
<tr>
<th>Study Title</th>
<th>Authors</th>
<th>Year</th>
<th>Study Design</th>
<th>NV</th>
<th>OOH-CA, STEMI</th>
<th>Interval from CA onset to start of CPR >10 min</th>
<th>Survival to hospital discharge</th>
<th>Follow-up</th>
<th>Kaplan-Meier comparison of 36 mo survival in OOH-CA STEMI pts receiving PPCI (n=40) vs nonarrest STEMI pts receiving PPCI (n=325)</th>
<th>p=NS between groups after discharge from hospital</th>
<th>Found no significant difference in 36 mo survival in OOH-CA STEMI pts receiving PPCI (n=40) vs nonarrest STEMI pts receiving PPCI (n=325)</th>
<th>Nonrandomized case series, selection bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term prognosis after OOH-CA and PPCI</td>
<td>Bendz et al., 2004 (8)</td>
<td>15451586</td>
<td>Case series</td>
<td>40</td>
<td>OOH-CA, STEMI</td>
<td>Interval from CA onset to start of CPR >10 min</td>
<td>Survival to hospital discharge</td>
<td>Kaplan-Meier comparison of 36 mo survival in OOH-CA STEMI pts receiving PPCI (n=40) vs nonarrest STEMI pts receiving PPCI (n=325)</td>
<td>p=NS between groups after discharge from hospital</td>
<td>Found no significant difference in 36 mo survival in OOH-CA STEMI pts receiving PPCI (n=40) vs nonarrest STEMI pts receiving PPCI (n=325).</td>
<td>Nonrandomized case series, selection bias</td>
<td></td>
</tr>
<tr>
<td>Treatment and outcome in post-resuscitation care after OOH-CA when a modern therapeutic approach was introduced.</td>
<td>Werling et al., 2007 (9)</td>
<td>17241730</td>
<td>Case series</td>
<td>85</td>
<td>OOH-CA</td>
<td>Survival to hospital discharge</td>
<td>Factors associated with survival: initial VF p=0.002; coronary angiography p=0.0001; PCI p=0.003; CABG p=0.03; PCI or CABG p=0.0001</td>
<td>Factors associated with survival OR: 1. Initial VF OR: 5.7; 95% CI: 2.0-16.5</td>
<td>Found no significant difference in 36 mo survival in OOH-CA STEMI pts receiving PPCI (n=40) vs nonarrest STEMI pts receiving PPCI (n=325).</td>
<td>Nonrandomized case series, selection bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Six-month outcome of emergency PCI in resuscitated pts after CA complicating STEMI.</td>
<td>Garot et al., 2007 (10)</td>
<td>17351730</td>
<td>Case series</td>
<td>186</td>
<td>OOH-CA, STEMI, referred for PCI</td>
<td>Survival to 6 mo after hospital discharge</td>
<td>Factors associated with 6 mo survival in pts receiving PPCI: absence of shock 12.7%; 95% CI: 3.4-47.6; absence of diabetes 7.3%; 95% CI: 1.6-29.4; absence of prior PCI 11.0%; 95% CI: 1.7-71.4</td>
<td>Factors associated with 6 mo survival in pts receiving PPCI: absence of shock 12.7%; 95% CI: 3.4-47.6; absence of diabetes 7.3%; 95% CI: 1.6-29.4; absence of prior PCI 11.0%; 95% CI: 1.7-71.4</td>
<td>Factors associated with increased survival: initial VF; coronary angiography; PCI; CABG, PCI or CABG.</td>
<td>Selection bias</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2013 STEMI Guideline Data Supplements

PPCI after OOH-CA: pts and outcomes. Markusohn et al., 2007 (11) 17491217

<table>
<thead>
<tr>
<th>Case series</th>
<th>STEMI pts undergoing primary PCI after OOH-CA</th>
<th>1 y survival</th>
<th>1 y survival without severe disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>OOH-CA, STEMI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- To define the demographic, clinical and angiographic characteristics, and the prognosis of STEMI pts undergoing primary PCI after OOH-CA

Acute STEMI after successful CPR.

Gorjup et al., 2007 (12) 17161902

<table>
<thead>
<tr>
<th>Case series</th>
<th>STEMI pts receiving PPCI.</th>
<th>1 y survival</th>
<th>1 y survival without severe disability</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>OOH-CA, STEMI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- To define the demographic, clinical and angiographic characteristics, and the prognosis of STEMI pts undergoing primary PCI after OOH-CA

135 pts with STEMI, CA; predictors of survival included smoking, inhospital CA, shockable rhythm, neurological status on admission, PPCI

<table>
<thead>
<tr>
<th>Ordinal logistic regression</th>
<th>Smoking p<0.001; inhospital arrest p=0.002; shockable rhythm p=0.005; motor response to pain p=0.007; corneal reflexes p=0.001; pupil light response p<0.001; breathing p=0.001; seizures p=0.02; PPCI p=0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predictors of hospital survival with CPC 1 or 2 smoking OR: 0.57; 95% CI: 0.36-0.89; inhospital arrest OR: 0.31; 95% CI: 0.18-0.54; shockable rhythm OR: 0.66; 95% CI: 0.53-0.81; motor response to pain OR: 0.32; 95% CI: 0.19-0.57; corneal reflexes OR: 0.10; 95% CI: 0.01-0.64; pupil light response OR: 0.06; 95% CI: 0.01-0.64; breathing OR: 0.29; 95% CI: 0.16-0.52; seizures OR: 1.39; 95% CI: 1.08-1.77; PPCI OR: 0.69; 95% CI: 0.56-0.84</td>
<td></td>
</tr>
</tbody>
</table>

Selection bias
<table>
<thead>
<tr>
<th>Study</th>
<th>Methodology</th>
<th>Case series</th>
<th>ICD-10 Code</th>
<th>Organisation</th>
<th>Phase</th>
<th>Type</th>
<th>Setting</th>
<th>Sample Size</th>
<th>Comparator</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richling et al., 2007 (13)</td>
<td>Case series</td>
<td>147</td>
<td>Thrombolysis, n=101; PPCI, n=46</td>
<td>STEMI, VF, OOH-CA</td>
<td>6 mo mortality</td>
<td>CPC 1 or 2 at 6 mo comparing thrombolysis with PPCI</td>
<td>p=0.58; survival at 6 mo p=0.17</td>
<td>147 pt nonrandomized case series found no difference in 6 mo neurologically intact survival in OOH-CA, VF, STEMI pts treated with thrombolysis vs PPCI</td>
<td>Selection bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hosmane et al., 2009 (14)</td>
<td>Case series</td>
<td>98</td>
<td>OOH-CA, STEMI</td>
<td>CA STEMI</td>
<td>Survival to hospital discharge, neurological outcome</td>
<td>Multivariable logistic regression</td>
<td>Inhospital mortality lower in revascularized compared to nonrevascularized pts 25% vs 76%; p<0.0001</td>
<td>98 STEMI, OOH-CA pt case series showing inhospital mortality lower in revascularized compared to nonrevascularized pts.</td>
<td>Selection bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynolds et al., 2009 (15)</td>
<td>Case series</td>
<td>241</td>
<td>CA</td>
<td>Propensity-adjusted analysis to assess importance of coronary angiography in predicting outcome from OOH-CA</td>
<td>Propensity-adjusted logistic regression</td>
<td>Demonstrated an association between cath and good outcome OR: 2.16; 95% CI: 1.12-4.19</td>
<td>Propensity-adjusted analysis showed that cath vs no cath associated with a good outcome independently 54.2% vs 24.8%; p<0.0001; Association between cath and good outcome p<0.02</td>
<td>241 pt case series using propensity-adjusted analysis showing that cath vs no cath associated with a good outcome independently.</td>
<td>Not randomized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute coronary angiographic findings in survivors of OOH-CA</td>
<td>Anyfantakis et al., 2009 (16)</td>
<td>72</td>
<td>OOH-CA</td>
<td>Coronary angiographic findings</td>
<td>Survival to hospital discharge</td>
<td>Multivariable analysis</td>
<td>Independent predictors of hospital death: prolonged interval from CA onset to ROSC OR: 14.6; 95% CI: 3.3-63.5; need for inotropic support during angiography OR: 11.2; 95% CI: 2.7-46.9</td>
<td>72 pt case series showing that 64% had angiographic CAD, 38% had an acute lesion; PCI attempted in 33%</td>
<td>Selection bias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess the prevalence of coronary lesions in OOH-CA survivors</td>
<td></td>
<td>Case series</td>
<td>72</td>
<td>OOH-CA</td>
<td>64% had angiographic CAD, 38% had an acute lesion; PCI attempted in 33% ROSC p=0.0004; need for inotropic support during angiography p=0.0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent predictors of hospital death: prolonged interval from CA onset to ROSC OR: 14.6; 95% CI: 3.3-63.5; need for inotropic support during angiography OR: 11.2; 95% CI: 2.7-46.9</td>
<td>72 pt case series showing that 64% had angiographic CAD, 38% had an acute lesion; PCI attempted in 33%</td>
<td></td>
</tr>
<tr>
<td>Acute coronary angiographic findings in survivors of OOH-CA</td>
<td>Kern et al., 2010 (17)</td>
<td>5</td>
<td>OOH-CA</td>
<td>Coronary angiographic and ECG findings</td>
<td>Combining these therapies resulted in long-term survival rates of 70% with >80% of all such survivors neurologically functional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assess the value of early angiography/PCI and hypothermia in OOH-CA</td>
<td></td>
<td>Case series</td>
<td>5</td>
<td>OOH-CA</td>
<td>5 OOH-CA cases showing little correlation between ST-elevation on ECG and presence of an acute coronary lesion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergent PCI for resuscitated victims of OOH-CA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Selection bias</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AMI indicates acute myocardial infarction; CA, cardiac arrest; CABG, coronary artery bypass graft surgery; CAD, coronary artery disease; cath, catheterization; CI, confidence interval; CPC, circulating progenitor cell; CPR, cardio pulmonary resuscitation; CPT, current procedural terminology; ECG, electrocardiogram; EP, electrophysiology; GCS, Glasgow coma scale; n, number; NS, nonsignificant; OOH-CA, out-of-hospital cardiac arrest; PCI percutaneous coronary intervention; PPCI, primary percutaneous coronary intervention; pt, patient; pVT, paroxysmal ventricular tachycardia; ROSC, return of spontaneous circulation; STEMI, ST-elevation myocardial infarction; VF, ventricular fibrillation; and VT, ventricular tachycardia.</td>
<td></td>
</tr>
</tbody>
</table>
Data Supplement 3. Antithrombotic Therapy for Primary PCI

<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Study Type</th>
<th>N</th>
<th>n [% of pts who had STEMI (%=n/N)]</th>
<th>Study Population (experimental and comparator/control)</th>
<th>Primary Efficacy Endpoint</th>
<th>Primary Safety Endpoint</th>
<th>Selected Prespecified Subgroups</th>
<th>Subgroup/Other Analyses</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURRENT- OASIS 7 (18) 20817281</td>
<td>RCT</td>
<td>25,087 pts with ACS</td>
<td>7327 (29%)</td>
<td>2 X 2 factorial design. Pts with ACS randomized to either double dose clopidogrel (600 mg LD, followed by 150 mg bid for 6 d, then 75 mg/d) or standard dose clopidogrel (300 mg LD followed by 75 mg/d) and to either higher dose ASA (300-325 mg/d) or lower dose ASA (75-100 mg/d)</td>
<td>Cardiovascular death, MI, and stroke at 30 d: double-dose clopidogrel 4.2% vs standard-dose clopidogrel 4.4%, HR: 0.94; 95% CI: 0.83-1.06; p=0.30; higher-dose ASA 4.2% vs lower-dose ASA 4.4%, HR 0.97; 95% CI: 0.86-1.09, p=0.61. Major bleeding: double-dose clopidogrel 2.5% vs standard-dose clopidogrel 2.0%, HR: 1.24; 95% CI: 1.05-1.46; p=0.01; higher-dose ASA 2.3% vs lower dose ASA 2.3%, HR: 0.99; 95% CI 0.84-1.17; p=0.90. Prespecified subgroup analyses (both clopidogrel and ASA dose comparisons included) qualifying condition (STEMI vs non-STEMI, age >65 or >75 y, body weight <60 kg, prior stroke/TIA) Additional prespecified subgroup analyses for the clopidogrel dose comparison included: ACS (STEMI) subjects undergoing PCI vs those not undergoing PCI</td>
<td>In the subgroup of pts who underwent PCI after randomization (69%, n=17263), double-dose clopidogrel was associated with a significant reduction in the rate of the prespecified secondary outcome of stent thrombosis (1.6% vs 2.3%; HR: 0.68; 95% CI: 0.55-0.85; p<0.001 and 0.7% vs 1.3% for definite stent thrombosis, HR: 0.54; 95% CI: 0.39-0.74; p=0.0001). There was also reduction of the prespecified outcome of probable or definite (by ARC criteria) stent thrombosis consistent across DES and non-DES subtypes. In addition, double-dose clopidogrel reduced the rate of the primary composite outcome in this subgroup (3.9% vs 4.5%, HR: 0.86; 95% CI: 0.74-0.99; p=0.039). Higher and lower dose ASA did not differ with respect to the primary composite outcome. Major bleeding occurred more frequently with double-dose clopidogrel (1.6% vs 1.1%, HR: 1.41; 95% CI: 1.09-1.83; p=0.009.)</td>
<td>Subgroup analyses of the pts who underwent PCI after randomization are hypothesis generating. In pts with ACS including STEMI referred for an invasive strategy, there was no significant difference between a 7 d double-dose clopidogrel regimen and the standard dose regimen, or between higher dose ASA and lower dose ASA, with respect to the primary outcome of cardiovascular death, MI or stroke.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRITON-TIMI 38 trial (19)</td>
<td>RCT</td>
<td>13,608 pts with moderate to high risk ACS</td>
<td>3834 (26%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>--</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Pts with moderate to high risk ACS undergoing planned invasive strategy randomized to prasugrel (60 mg LD and a 10 mg daily maintenance dose) or clopidogrel (300 mg LD and a 75 mg daily maintenance dose), for 6 to 15 mo.**

Cardiovascular death, nonfatal MI, or nonfatal stroke at 15 mo: prasugrel 9.9% vs clopidogrel 12.1%; HR: 0.81; 95% CI 0.73-0.90; p<0.001. The HR for prasugrel, as compared with clopidogrel, for the primary efficacy endpoint at 30 d was HR: 0.77; 95% CI 0.67-0.88; P<0.001 and at 90 d HR: 0.80; 95% CI 0.71-0.90; p<0.001. The difference between the treatment groups with regard to the rate of the primary endpoint was largely related to a significant reduction in MI in the prasugrel group (9.7% in the clopidogrel group vs 7.4% in the prasugrel group; HR: 0.76; 95% CI 0.67-0.85; p<0.001).

Major bleeding was observed in 2.4% of pts receiving prasugrel and in 1.8% of pts receiving clopidogrel (HR: 1.32; 95% CI 1.03-1.68; p=0.03). Also greater in the prasugrel group was the rate of life-threatening bleeding (1.4% vs 0.9%; p=0.01), including nonfatal bleeding (1.1% vs 0.9%; HR: 1.25; p=0.23) and fatal bleeding (0.4% vs 0.1%; p=0.002) and CABG related TIMI major bleeding (13.4% vs 3.2%; HR: 4.73; 95% CI 1.9 - 11.2; p<0.001).

UA or non-STEMI, STEMI, sex, age, diabetes mellitus, stent placement during index procedure, GP IIb/IIa, A significant benefit of prasugrel was observed in the STEMI cohort alone (HR: 0.79; 95% CI, 0.65 - 0.97; P = 0.02). The benefit with prasugrel tended to be greater among the 3146 pts with diabetes (17.0% of whom had the primary end point in the clopidogrel group, vs 12.2% in the prasugrel group; HR: 0.70; 95% CI 0.58-0.85; p=0.001) than among 10,462 pts without diabetes (10.6% of whom had the primary endpoint in the clopidogrel group, vs 9.2% in the prasugrel group; HR: 0.86; 95% CI: 0.76-0.98; p= 0.02). The rate of definite or probable stent thrombosis, as defined by the Academic Research Consortium, was significantly reduced in the prasugrel group as compared with the clopidogrel group, with 68 pts (1.1%) and 142 pts (2.4%), respectively, having at least 1 occurrence (HR: 0.48; 95% CI 0.36 - 0.64; p<0.001). Pts who had a previous stroke or TIA had net harm from prasugrel (HR:1.54; 95% CI: 1.02-2.32; p=0.04), pts age ≥75 y had no net benefit from prasugrel (HR: 0.99; 95% CI: 0.81-1.21; P = 0.92), and pts weighing <60 kg had no net benefit from prasugrel (HR: 1.03; 95% CI: 0.69 -1.53; p=0.89).

In subgroup analyses those with prior stroke/TIA fared worse with prasugrel and no advantage was seen in those ≥75 y or <60 kg. Pts who presented with STEMI for primary PCI were allowed to receive prasugrel or clopidogrel before angiography or PCI. Pts who presented with STEMI after 12 h to 14 d were randomized to study drug only after the coronary anatomy was defined.
PLATO (20)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Participants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCT</td>
<td>18,624 ACS pts</td>
<td>Pts with ACS with or without ST-elevation randomized to ticagrelor (180-mg LD, 90 mg twice daily thereafter) vs clopidogrel (300- or 600-mg LD, 75 mg daily thereafter)</td>
</tr>
</tbody>
</table>

Primary composite endpoint: death from vascular causes, MI, or stroke at 12 mo: 9.8% ticagrelor group vs 11.7% clopidogrel group, HR: 0.84; 95% CI: 0.77-0.92; p<0.001.

Age, sex, weight, final diagnosis, time from index event to treatment, troponin I, diabetes mellitus, previous MI, previous CABG, ASA during first hospital admission, GP IIb/IIIa during first hospital admission, geographical region, OL clopidogrel before randomization, total clopidogrel (OL+IP) before randomization to 24 h after first dose IP

Primary PCI subgroup. Definite Stent thrombosis HR: 0.66; p=0.03; MI HR: 0.80; p=0.03

The rate of death from any cause was also reduced with ticagrelor (4.5%, vs 5.9% with clopidogrel; p<0.001). In the ticagrelor group, there was a higher rate of non–CABG-related major bleeding (4.5% vs 3.8%; p=0.03). Episodes of intracranial bleeding (26 [0.3%] vs 14 [0.2%; p=0.06), including fatal intracranial bleeding were more frequent with ticagrelor (11 [0.1%] vs 1 [0.01%]; p=0.02). There were fewer episodes of other types of fatal bleeding in the ticagrelor group (9 [0.1%], vs 21 [0.3%]; p=0.03).

An interaction between the treatment effect and geographic region (North America) raises the possibility that higher doses of ASA used in that region beyond 100 mg daily may have an adverse effect. This observation, however, may be due to the play of chance.

ARMYDA-6 MI (21)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Participants</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCT</td>
<td>201 (100%)</td>
<td>Pts undergoing primary PCI for STEMI randomized to a 600 mg (n=103) or 300 mg (n=98) clopidogrel LD before the procedure</td>
</tr>
</tbody>
</table>

Primary Endpoint: Infarct size determined as the AUC of cardiac biomarkers: 600 mg LD median CK-MB 2,070 ng/mL (IQR: 815 to 2,847 ng/mL) vs 300 mg LD 3,049 ng/mL (IQR: 1,050 to 7,031 ng/mL) in the 300-mg group, p=0.0001; 600 mg LD troponin-I 225 ng/mL (IQR: 130 to 461 ng/mL) vs 300 mg LD 380 ng/mL (IQR: 134 to 1,406 ng/mL), p<0.0001.

30 d bleeding and entry site complications.

Major bleeding: 1.9% in 600 mg group vs 2.0% in 300 mg group. Entry site complications 2.9% vs 2.1%.

TIMI flow grade <3 after PCI 600 mg LD 5.8% vs 300 mg LD 16.3%, p=0.031; LVEF at discharge 600 mg LD 52.1 + 9.5% vs 300 mg LD 48.9 + 11.3%, p=0.026; 30-d MACE 600 mg LD 5.8% vs 300 mg LD 15%, p=0.049. No difference in bleeding or access site complications.

Surrogate endpoint trial underpowered for clinical events. Measurement of AUC less accurate than cardiac MRI for assessment of infarct size.
Data Supplement 4. Early Catheterization and Rescue PCI for Fibrinolytic Failure in the Stent Era

<table>
<thead>
<tr>
<th>Study Name</th>
<th>Study Type</th>
<th>Study Size</th>
<th>Inclusion Criteria</th>
<th>Endpoints</th>
<th>Findings</th>
<th>Limitations</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERLIN, 2004 (22) 15261920</td>
<td>Randomized multicenter study of rescue angioplasty compared with continued medical therapy for pts with acute STEMI and failed thrombolysis.</td>
<td>307</td>
<td>STEMI ≤10 h of onset of symptoms. CP >30 min ST-elevation ≥2 mm in ≥2 chest leads or 1 mm in ≥2 limb leads. Failure to respond to FT at 60 min.</td>
<td>All-cause mortality at 30 d. Secondary EP: Composite of death, re-MI, CVA, CHF and clinically driven subsequent revascularization within 30 d RWMI</td>
<td>Death: Conservative vs rescue = 11% vs 9.8%; p=0.7 RD: 1.2; 95% CI: -5.6-8.3 Composite Secondary EP: 50% vs 37.3%; p=0.02; RD: 12.7%; 95% CI: 1.6-23.5 Strokes: 4.6% vs 0.6%; p=0.03 RWMI was not different.</td>
<td>Rescue PCI had no significant effect on total mortality, although the secondary composite clinical endpoint was lower with rescue PCI compared with conservative care. Stroke rates were significantly higher in the rescue PCI group.</td>
<td></td>
</tr>
<tr>
<td>REACT, 2005 (23) 16382062</td>
<td>Randomized multicenter study to determine the best treatment for failed fibrinolysis by comparing rescue PCI to repeat fibrinolysis to conservative therapy.</td>
<td>427</td>
<td>Age 21 to 85 y, with evidence of failure of fibrinolysis; Rescue PCI could be performed within 12 h of onset of CP.</td>
<td>Composite of death, re-MI, CVA or severe CHF at 6 mo.</td>
<td>Rescue PCI vs repeat FT vs Conservative: 15.3% vs 31% vs 29.8%; p=0.003 PCI vs conservative: HR: 0.47; 95% CI: 0.28-0.79; p=0.004 PCI vs Re-FT: HR: 0.43; 95% CI: 0.26-0.72; p=0.001 Re-FT vs conservative therapy: HR: 1.09; 95% CI: 0.71-1.67; p=0.69 Minor bleeding more frequent with PCI No significant difference in major bleeding</td>
<td>Rescue PCI demonstrated a benefit when compared with conservative care or repeat fibrinolysis, although minor bleeding was significantly higher. Repeat FT did not offer any clinical benefit to conservative care.</td>
<td></td>
</tr>
<tr>
<td>Collet et al., 2006 (24, 25)</td>
<td>Meta-analysis of clinical trials of cath following fibrinolysis in various settings. This included Rescue PCI, Immediate PCI (within 24 h) and Facilitated PCI. Focus of this table is on data from rescue PCI.</td>
<td>920</td>
<td>Trials of pts with failed fibrinolysis randomized to rescue PCI or conservative care.</td>
<td>Mortality and Re-MI</td>
<td>Short term mortality: OR: 0.63; 95% CI: 0.39-0.99; p=0.055 Long term mortality: OR: 0.69; 95% CI: 0.41-1.57; p=0.16 Short term mortality or Re-MI: OR: 0.60; 95% CI: 0.41-0.89; p=0.012 Long term mortality or Re-MI: OR: 0.60; 95% CI: 0.39-0.92; p=0.019 Differences in study protocol, study endpoints and duration of follow-up.</td>
<td>Meta-analysis supported a strategy of rescue PCI for pts with clinical evidence of failure to reperfuse following fibrinolysis.</td>
<td></td>
</tr>
</tbody>
</table>

© American College of Cardiology Foundation and the American Heart Association, Inc.
2013 STEMI Guideline Data Supplements

<table>
<thead>
<tr>
<th>Wijeysundera et al., 2007 (24) 17258087</th>
<th>Meta-analysis of the benefits of rescue PCI compared with either repeat fibrinolysis or conservative care.</th>
<th>Trials of pts with clinical or angiographic evidence of failed fibrinolysis randomized to rescue PCI, repeat fibrinolysis or conservative care.</th>
<th>Mortality and Re-MI, CHF, CVA, and bleeding</th>
<th>Higher rate of major bleeding with rescue PCI</th>
<th>Differences in study protocol, study endpoints and duration of follow-up.</th>
<th>Meta-analysis supported rescue PCI compared with conservative care in pts with clinical or angiographic evidence of failure of FT at the expense of a higher incidence of CVA and bleeding complications.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,177</td>
<td>Rescue PCI vs Conservative: Mortality: RR: 0.69; 95% CI: 0.46-1.05; p=0.09 CHF: RR:0.73; 95% CI: 0.54-1.0; p=0.05 Re-MI: RR:0.58; 95% CI: 0.35-0.97; p=0.04 Composite of Death: re-MI and CHF RR: 0.72; 95% CI: 0.59-0.88; p=0.001 CVA: RR: 4.98, 95% CI: 1.1- 22.5; p=0.04 Minor bleeding: RR: 4.58; 95% CI: 2.46-8.55; p=0.001 Rescue PCI vs repeat FT: Mortality RR: 0.68; 95% CI: 0.41-1.14; p=0.14 Re-MI: RR:1.79; 95% CI: 0.92-3.48; p=0.09 Minor bleeding: RR: 1.84; 95% CI: 1.06-3.18; p=0.03 Major bleeding: RR: 1.54; 95% CI: 0.54-4.4; p=0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cath indicates catheterization; CHF, congestive heart failure; CI, confidence interval; CP, chest pain; CVA, cerebrovascular accident; FT, fibrinolytic therapy; MI, myocardial infarction; PCI, percutaneous coronary intervention; pts, patients; RD, risk difference; RWMI, regional wall-motion index; and STEMI, ST-elevation myocardial infarction.
Data Supplement 5. Early Catheterization and PCI Following Fibrinolysis in the Stent Era

Study Name
- **SIAM III, 2003 (26) 12932593**
- **GRACIA, 2004 (27) 15380963**
- **Leipzig Prehospital Fibrinolysis Study, 2005 (28) 16061501**
- **CAPITAL AMI, 2005 (29) 16053952**
- **Di Pasquale et al., 2006 (30) 16622610**

Study Type
- Randomized multicenter trial
- Randomized multicenter study of routine early cardiac cath (6 to 24 h) following fibrinolysis
- Randomized multicenter study of prehospital fibrinolysis with PCI vs prehospital fibrinolysis alone and standard care
- Randomized multicenter study of fibrinolysis with immediate transfer for cath vs fibrinolysis alone and transfer for unstable symptoms
- Randomized single-center study of immediate cath <2 h and PCI vs delayed PCI 12 to 24 h after fibrinolysis

Study Size
- 195
- 500
- 164
- 170
- 451

Inclusion Criteria
- Age ≥18 y, symptoms of AMI <12 h, ST-elevation of >1 mm in ≥2 limb leads and ST-elevation ≥2 mm in precordial leads, or new LBBB; no contraindication to lytics.
- Ps ≥18 y with ST-elevation ≥1 mm in ≥2 contiguous leads, or a nondiagnostic ECG due to LBBB or paced rhythm; symptoms ≥30 min and ≤12 h unresponsive to NTG treated with a fibrin specific agent and consented 6 h after FT.
- Symptoms for at least 30 min and <6 h, and ST-elevation >0.1 mV in ≥2 limb leads or >0.2 mV in ≥2 precordial leads.
- Symptoms ≤6 h and ≥30 min; ST-elevation ≥1 mm in ≥2 leads or LBBB and 1 of the following: AAMI; Extensive nonanterior MI; Killip class 3, SBP (22) <100 mmHg
- First STEMI ≤12 h from symptom onset, with ST-elevation >1 mm in peripheral leads, and or 2 mm in peripheral leads.

Endpoints
- Composite of death, re-MI, ischemic events and TLR at 6 mo.
- Composite of death, re-MI and ischemia induced revascularization at 1 y.
- Final infarct size by MRI.
- Composite of death, re-MI, re-UA or CVA at 6 mo.
- Ischemic events (MI, abnormal stress test, restenosis, and death) at 6 mo.

Findings
- Early stent vs delayed stent MACE: 25.6% vs 50.6%; p=0.001
- Early Cath vs Ischemia Guided
 - RR: 0.44; 95% CI: 0.28-0.70; p=0.0008
- Early cath and PCI following fibrinolysis vs delayed PCI 12 to 24 h after FT.
- Early Cath vs Standard Care
 - Final infarct size on MRI: 5.2% (IQR: 1.3 to 11.2) vs 10.4% (3.4 to 16.3) p=0.001
- Early vs Ischemia Guided Approach
 - MACE: 11.6% vs 24.4%; p=0.04
 - RR: 0.48; 95% CI: 0.24-0.96
 - Minor bleeding higher in the early cath group.
 - No differences in major bleeding.
- Ischemic events 18.2% vs 9.7%; p=0.005
- More minor bleeding in immediate PCI

Limitations
- Analysis limited to only those pts who had stents
- Pts randomized 6 h after FT
- Small study and surrogate endpoints
- Small study, with mix of transfer pts or pts at centers with PCI capabilities.
- "Standard" care group was managed very conservatively.
- Pts only included following successful reperfusion.

Comments
- Study demonstrated a benefit of immediate stenting performed within 6 h of FT as compared with a strategy of delayed stenting. This was primarily driven by reduction in ischemic events (by definition, a pt. in delayed stent arm who required cath before 2 wk was considered to have reached an ischemic endpoint.)
- Study demonstrated a benefit of early routine cath compared with an ischemia driven approach. This was largely seen by a 70% reduction in ischemia driven revascularization in the invasive group compared with conservative group at 1 y.
- Demonstrated a benefit to immediate cath compared with standard care (which was stress test at 30 d). This was primarily driven by less recurrent MI or UA in the PCI group within the 1st wk of care.
- Study failed to show a benefit to immediate cath and PCI within 2 h, compared with early cath and PCI at 12 to 72 h among pts who have demonstrated evidence of successful restenosis.

© American College of Cardiology Foundation and the American Heart Association, Inc.
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Patients</th>
<th>Methods</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEST, 2006 [31]</td>
<td>Randomized multicenter feasibility study of PCI vs fibrinolysis with early cath (within 24 h) vs fibrinolysis with standard care.</td>
<td>304</td>
<td>Nonpregnant, ≥18 y, symptoms at least 20 min and ECG with high-risk MI (ST-elevation ≥2 mm in 2 precordial leads or 2 limb leads, or ≥1 mm ST-elevation in limb leads with ≥1 mm ST depression in precordial leads, or presumed new LBBB.</td>
<td>Efficacy: 30 d composite of death, re-MI, reischemia, CHF, shock or major ventricular arrhythmias. Safety endpoints: ICH, CVA, major bleeding. No difference in the primary efficacy or safety endpoints in the 3 groups. Very small study Feasibility study failed to show a difference in efficacy or safety endpoints for the 3 approaches. A subsequent analysis compared a strategy of primary PCI with fibrinolysis (with or without early cath) and showed a lower rate of 30-d death and MI in the primary PCI group (HR: 0.29; 90% CI: 0.11-0.74; P-log rank=0.021).</td>
</tr>
<tr>
<td>Collet et al., 2006 [25]</td>
<td>Meta-analysis of clinical trial of cath following fibrinolysis in various settings. This included rescue PCI, immediate PCI (within 24 h) and facilitated PCI. Focus in this table on results from immediate cath.</td>
<td>1,508</td>
<td>Clinical trials of STEMI pts receiving fibrinolysis and randomized to immediate or early cath compared with ischemia driven cath (excluded trials that looked at early vs delayed cath).</td>
<td>Mortality and Death/MI Early Cath vs Ischemia Driven Cath Death: All studies: OR: 0.83; 95% CI: 0.52-1.35; p=0.47 Stent era: OR: 0.56; 95% CI: 0.29-1.05; p=0.07 POBA: OR: 1.44; 95% CI: 0.69-3.06; p=0.33) Death and MI All studies: OR: 0.85; 95% CI: 0.47-1.55; p=0.42 Stent era: OR: 0.53; 95% CI: 0.33-0.83; p=0.0067 POBA: OR: 1.76; 95% CI: 0.97-3.21; p=0.064 Different regimens of medications and timing to cath and different time periods in which trials were performed. Investigators reviewed overall results of all studies, and then examined the results from studies performed in the stent era. Study showed a benefit to systematic early cath compared with an ischemia driven approach from studies performed in the “stent era” but not for studies performed in the “balloon angioplasty era”</td>
</tr>
<tr>
<td>Wijeysundera, 2008 [24]</td>
<td>A meta-analysis of trials examining fibrinolysis with immediate transfer for cath with</td>
<td>1,235</td>
<td>Clinical trials of STEMI pts receiving fibrinolysis and randomized to routine early</td>
<td>All-cause mortality, Recurrent MI Immediate Cath vs Ischemia Driven Cath Mortality: OR: 0.55; 95% CI: 0.34-0.90; p=0.02. There was a variable definition of early cath for Study showed a benefit to a routine invasive strategy of cath following fibrinolysis compared with an ischemia driven approach in the “stent era”</td>
</tr>
<tr>
<td>2013 STEMI Guideline Data Supplements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibrinolysis and an ischemia-guided approach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>invasive management compared with ischemia-driven cath in the “stent era.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>each trial, and different durations of follow-up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>era”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARESS-AMI, 2008 (32) 19280326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized multicenter trial of immediate transfer for PCI following FT in high risk patient compared with standard care and rescue PCI.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEMI with symptoms ≤12 h, and ≥1 high-risk features: Cumulative ST-elevation of >15 mm, new onset LBBB, prior MI, Killip class ≥2, or LVEF ≤35%.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite of all-cause death, re-MI and refractory ischemia at 30 d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Cath vs Standard Care MACE: HR: 0.4, 95% CI: 0.21-0.76; log-rank p=0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No difference in stroke or major bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-MI: OR: 0.53; 95% CI: 0.33-0.86; p=0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No different in stroke or major bleeding each trial, and different durations of follow-up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfer AMI, 2009 (33) 19553646</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized multicenter trial of FT followed by immediate transfer for cath compared with fibrinolysis and standard care (rescue cath for cath 24 h to 2 wk).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,059</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms ≤12 h and ST-elevation ≥2 mm in anterior leads, or ST ≥1 mm in the inferior leads with: SBP <100, Killip class 2 or 3, ST-depression of ≥2 mm in the anterior leads, or ST-elevation of ≥1 mm in the right-sided leads.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined incidence of death, re-MI, recurrent ischemia, new or worsening CHF or shock at 30 d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Cath vs Delayed Cath MACE: 11.0% vs 17.2%; RR: 0.64; 0.47-0.87; p=0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor or minimal bleeding was higher in the immediate cath group.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There was a 47.8% higher major bleeding in immediate cath group (not statistically significant).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study demonstrated a benefit to immediate transfer of high-risk pts with STEMI following fibrinolysis compared with transfer for rescue PCI or standard care. The primary endpoint was driven largely by recurrent ischemia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORDSTEMI, 2010 (34) 19747792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multicenter randomized study of FT and immediate transfer for PCI compared with FT and standard care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 18 to 75 y, symptoms <6 h; ST-elevation of ≥2 mm ST in 2 precordial leads, or ≥1 in 2 inferior leads or new LBBB; expected time delay for PCI over 90 min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, Re-MI, CVA or new ischemia at 12 mo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Cath vs Routine Care Primary Endpoint: 21% vs 27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR: 0.72; 95% CI: 0.44-1.18; p=0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, CVA or re-MI: 6% vs 16%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR: 0.36; 95% CI: 0.16-0.81; p=0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No differences in bleeding complications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study failed to demonstrate a benefit of immediate cath following fibrinolytic therapy in achieving the primary endpoint of death, re-MI, CVA or ischemia at 12 mo. However, immediate cath resulted in a significant reduction in the 2nd endpoint when compared with standard care (rescue PCI ischemia guided PCI or routine cath done 2 to 4 wk) following fibrinolysis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borgia et al., 2010 (35) 20601393</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A meta-analysis of trials examining fibrinolysis with immediate transfer for cath with fibrinolysis alone and standard care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,561</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Included all trials of STEMI pts treated with fibrin-specific agents and randomized to immediate PCI or standard care.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death, re-MI or combined endpoint of death, re-MI and re-ischemia and revascularization at 30 d or longer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Cath vs Delayed Cath or ischemia Driven Cath 30 d Death 3.3% vs 3.6%; OR: 0.87; 95% CI: 0.59-1.30; p=0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different endpoint definitions which the investigators attempted to resolve by re-evaluating some of the endpoints of the individual trials.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A meta-regression analysis looking at baseline risk of the pts for each study demonstrated a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American College of Cardiology Foundation and the American Heart Association, Inc.
2013 STEMI Guideline Data Supplements

<table>
<thead>
<tr>
<th>Stroke</th>
<th>p=0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 d Death/Re-MI</td>
<td>5.6 vs 8.3%; OR: 0.65; 95% CI: 0.49-0.88; p=0.004</td>
</tr>
<tr>
<td>30 d Recurrent ischemia</td>
<td>1.9 vs 7.1%; OR: 0.25; 95% CI: 0.13-0.49; p<0.001</td>
</tr>
<tr>
<td>6 to 12 Mo Death</td>
<td>4.8 vs 5.4%; OR: 0.88; 95% CI: 0.62-1.25; p=0.48</td>
</tr>
<tr>
<td>6 to 12 Mo Re-MI</td>
<td>3.9 vs 6%; OR: 0.64; 95% CI: 0.40-0.98; p=0.01</td>
</tr>
<tr>
<td>6 to 12 Mo Death/Re-MI</td>
<td>8.6 vs 11.2%; OR: 0.71; 95% CI: 0.52-0.97; p=0.03</td>
</tr>
<tr>
<td>No difference in Major bleeding. No difference in stroke.</td>
<td></td>
</tr>
</tbody>
</table>

| Time from FT to PCI varied from 84 min to 16.7 h. | greater benefit to this approach among the higher risk group of pts. |

AMI indicates acute myocardial infarction; AWMI, anterior wall myocardial infarction; cath, catheterization; CHF, congestive heart failure; CI, confidence interval; CPK, creatine phosphokinase; CVA, cerebrovascular accident; EP, electrophysiology; FT, fibrinolytic therapy; GPI, glycoprotein inhibitor; GUSTO, Global Utilization of Streptokinase and T-PA for Occluded Coronary Arteries; ICH, intracranial hemorrhage; LBBB, left bundle-branch block; LVEF, left ventricular ejection fraction; MACE, major adverse cardiac events; MI, myocardial infarction; PCI, percutaneous coronary intervention; POBA, plain old balloon angioplasty; pts, patients; RD, risk difference; RPA, reteplase; RWMI, regional wall motion index; SBP, systolic blood pressure; STEMI, ST-elevation myocardial infarction; TLR, transmyocardial laser revascularization; TRP, thrombosis risk panel; and UA, unstable angina.
References

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Employment</th>
<th>Consultant</th>
<th>Speaker’s Bureau</th>
<th>Ownership/Partnership/Principal</th>
<th>Personal Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick T. O’Gara, Chair</td>
<td>Harvard Medical School—Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Lantheus Medical Imaging (DSMB) • NIH (DSMB)*</td>
<td>• American Heart Association</td>
<td>None</td>
</tr>
<tr>
<td>Frederick G. Kushner, Vice Chair</td>
<td>Tulane University School of Medicine—Clinical Professor of Medicine; Heart Clinic of Louisiana—Medical Director</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>• Novartis†</td>
<td>None</td>
</tr>
<tr>
<td>Deborah D. Ascheim</td>
<td>Mount Sinai School of Medicine—Associate Professor; InCHOIR—Clinical Director of Research</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Donald E. Casey, Jr.</td>
<td>Atlantic Health—Chief Medical Officer and Vice President of Quality</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Mina K. Chung</td>
<td>Cleveland Clinic Foundation—Associate Professor of Medicine</td>
<td>• Biotronik† • Boston Scientific† • Nexcurα† • PGx† • Sanofi-aventis† • St. Jude</td>
<td>None</td>
<td>None</td>
<td>• Biosense Webster† • Biotronik† • Boston Scientific† • CardioDx† • CardioInsight† • GlaxoSmithKline† • Medtronic†</td>
<td>• Boston Scientific† • Medtronic† • St. Jude Medical†</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution/Position</td>
<td>Medical†</td>
<td>Siemens Medical Solutions†</td>
<td>St. Jude Medical†</td>
<td>Zin Medical†</td>
<td>ZOLL†</td>
<td>Johnson & Johnson</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>James A. de Lemos</td>
<td>UT Southwestern Medical School—Professor of Medicine</td>
<td>Medical†</td>
<td>Siemens Medical Solutions†</td>
<td>St. Jude Medical†</td>
<td>Zin Medical†</td>
<td>ZOLL†</td>
<td>None</td>
</tr>
<tr>
<td>Steven M. Ettinger</td>
<td>Penn State Heart and Vascular Institute—Professor of Medicine and Radiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James C. Fang</td>
<td>University Hospitals Case Medical Center—Director, Heart Transplantation</td>
<td>Thoratec</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Francis B. Fesmire</td>
<td>Heart Stroke Center—Director</td>
<td>Abbott</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barry A. Franklin</td>
<td>William Beaumont Hospital—Director, Cardiac Rehabilitation and Exercise Laboratories</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Christopher B. Granger</td>
<td>Duke Clinical Research Institute—Director, Cardiac Care Unit; Assistant Professor of</td>
<td>AstraZeneca</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boehringer Ingelheim*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bristol-Myers Squibb</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hoffman La</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Title</td>
<td>Suppliers/Advisory Groups</td>
<td>Other Affiliations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harlan M. Krumholz</td>
<td>Yale University School of Medicine—Professor of Epidemiology and Public Health</td>
<td>Centegen/Life Tech</td>
<td>American College of Cardiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yale University School of Medicine—Professor of Epidemiology and Public Health</td>
<td>United HealthCare</td>
<td>Massachussets Medical Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yale University School of Medicine—Professor of Epidemiology and Public Health</td>
<td>(Science Advisory Group)</td>
<td>UnitedHealth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yale University School of Medicine—Professor of Epidemiology and Public Health</td>
<td></td>
<td>VHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jane A. Linderbaum</td>
<td>Mayo Clinic—Assistant Professor of Medicine</td>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David A. Morrow</td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Beckman-Coulter</td>
<td>American College of Cardiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Boehringer</td>
<td>AstraZeneca†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Ingelheim</td>
<td>Beckman-Coulter†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>CardioKinetix</td>
<td>CV Therapeutics†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>CV Therapeutics/</td>
<td>Daiichi-Sankyo†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Gilead Pharmaceuticals</td>
<td>Eli Lilly†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Critical Diagnostics</td>
<td>GlaxoSmithKline†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Daiichi-Sankyo</td>
<td>Merck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Genentech</td>
<td>Novartis†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Ikaria</td>
<td>Roche Diagnostics†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Menarini</td>
<td>Sanofi-aventis†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Novartis</td>
<td>Schering-Plough Research Institute†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>OrthoClinical Diagnostics</td>
<td>Siemens Medical Solutions†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Roche Diagnostics</td>
<td>Singulex†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Sanofi-aventis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Schering-Plough Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Institute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td>Siemens Medical Solutions†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvard Medical School—Associate Professor of Medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Designation</td>
<td>Solutions</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>L. Kristin Newby</td>
<td>Duke University Medical Center, Division of Cardiology—Professor of Medicine</td>
<td>• Amgen*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AstraZeneca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BioVascular</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Shionogi Pharma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joseph P. Ornato</td>
<td>Department of Emergency Medicine Virginia Commonwealth University—Professor and Chairman</td>
<td>• NIH Resuscitation Outcomes Consortium</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ZOLL Circulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narith Ou</td>
<td>Mayo Clinic—Pharmacotherapy Coordinator, Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Martha J. Radford</td>
<td>NYU Langone Medical Center—Chief Quality Officer; NYU School of Medicine—Professor of Medicine (Cardiology)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jacqueline E. Tamis-Holland</td>
<td>St Luke's-Roosevelt Hospital Center—</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td>Positions</td>
<td>Companies</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Carl L. Tommaso</td>
<td>Skokie Hospital—Director of Catheterization Laboratory; NorthShore University HealthSystems—Partner</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cynthia M. Tracy</td>
<td>George Washington University Medical Center—Associate Director, Division of Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Y. Joseph Woo</td>
<td>Hospital of the University of Pennsylvania—Associate Professor of Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>David X. Zhao</td>
<td>Vanderbilt University Medical Center—Director, Cardiac</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
This table represents all relationships of committee members with industry and other entities that were reported by authors, including those not deemed to be relevant to this document, at the time this document was under development. The table does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of $\geq 5\%$ of the voting stock or share of the business entity, or ownership of $\geq 10,000$ of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. Relationships that exist with no financial benefit are also included for the purpose of transparency. Relationships in this table are modest unless otherwise noted.

*Indicates significant ($\geq 10,000$) relationship.
†Indicates no financial benefit.

ACS indicates acute coronary syndromes; DSMB, data safety monitoring board; NHLBI, National Heart, Lung, and Blood Institute; NIH, National Institutes of Health; and PI, principal investigator.