A Glucagon-Like Peptide-1 Analogue Reverses the Molecular Pathology and Cardiac Dysfunction of a Mouse Model of Obesity

Running title: Noyan-Ashraf et al.; Cardioprotective effects of liraglutide in obesity

Mohammad Hossein Noyan-Ashraf, PhD1; Eric Akihiko Shikatani, MSc1; Irmgard Schuiki, PhD1; Ilya Mukovozov, MSc2; Jun Wu, MD, MSc3; Ren-Ke Li, MD, PhD3,6; Allen Volchuk, PhD1; Lisa Annette Robinson, MD2; Filio Billia, MD PhD1; Daniel J. Drucker, MD4,5;

Mansoor Husain, MD1,5,6*

*Senior authors have contributed equally to this study

1Toronto General Research Institute; 2Hospital for Sick Children; 3Department of Surgery; 4Department of Medicine; 6Heart & Stroke Richard Lewar Centre of Excellence, University of Toronto; 4Samuel Lunenfeld Research Institute, Toronto, Canada

Address for Correspondence:
Mansoor Husain, MD
Heart & Stroke Richard Lewar Centre of Excellence
University of Toronto
Toronto General Research Institute
200 Elizabeth St., TMDT3-909
Toronto, Ontario, Canada M6C-3J9
Tel: 416-340-3188
Fax: 416-340-4021
E-mail: mansoor.husain@utoronto.ca

Abstract:

Background—Cardiac consequences of obesity include inflammation, hypertrophy, and compromised energy metabolism. Glucagon-like peptide-1 (GLP-1) is an incretin hormone capable of cytoprotective actions that reduces inflammation and endoplasmic reticulum (ER) stress in other tissues. Here we examine the cardiac effects of the GLP-1 analogue liraglutide in a model of obesity, independent of changes in body weight.

Methods and Results—C57BL/6 mice were placed on 45% high fat (HFD) or regular chow diet (RD). Mice on HFD developed 46±2% and 60±2% greater body weight relative to RD-fed mice at 16 and 32 weeks respectively (both p<0.0001), manifesting impaired glucose tolerance, insulin resistance and cardiac ceramide accumulation by 16 weeks. One week treatment with liraglutide (30 μg/kg twice daily) did not reduce body weight, but reversed insulin resistance, cardiac TNF-α expression, NFκB translocation, obesity-induced perturbations in cardiac eNOS, connexin-43 and markers of hypertrophy and fibrosis, as compared to placebo-treated HFD controls.

Liraglutide improved the cardiac ER-stress response, and also improved cardiac function in animals on HFD by an AMPK (AMP-activated protein kinase)-dependent mechanism. Supporting a direct mechanism of action, liraglutide (100 nM) prevented palmitate-induced lipotoxicity in isolated mouse cardiomyocytes and primary human coronary smooth muscle cells, and prevented adhesion of human monocytes to TNF-α-activated human endothelial cells in vitro.

Conclusions—Weight-neutral treatment with a GLP-1 analogue activates several cardioprotective pathways, prevents HFD-induced insulin-resistance and inflammation, reduces monocyte vascular adhesion and improves cardiac function in vivo by activating AMPK. These data support a role for GLP-1 analogues in limiting the cardiovascular risks of obesity.

Key words: AMP-activated protein kinase signal transduction; cardiomyopathy; inflammation; obesity; glucagon-like peptide
Introduction

Obesity is an emerging pandemic linked to type-2 diabetes, hypertension and cardiovascular disease. Putative mechanisms underlying these associations include insulin resistance, cardiac hypertrophy, and compromised myocardial contractile function and energy metabolism both in rodents and humans. Besides shifting energy balance, which alters metabolic regulation, models of obesity have also been associated with low-grade inflammation and endoplasmic reticulum (ER)-stress in several organs including heart. Importantly, the ER-stress-induced unfolded protein response (UPR) intersects with inflammatory signals to contribute to insulin resistance in liver, fat and skeletal muscle.

Mice on a high-fat diet (HFD) have been used to replicate these and other features of human obesity. HFD-induced obesity in mouse is associated with several adverse cardiac effects including inflammation, hypertrophy, fibrosis, apoptosis, and contractile dysfunction, depending on the dietary lipid composition, duration and percentage of caloric intake. In addition, diet-induced obesity may result in insulin resistance and reduced cardiac glucose uptake. Furthermore, obesity-induced inflammation also contributes to the pathogenesis of diabetes and obesity-associated heart disease. For example, neutralizing the inflammatory mediator TNF-α in rats can ameliorate insulin resistance, and mice with genetic absence of TNF-α or TNF-α receptor-1 (Tnfr1) are protected from insulin resistance induced by diet or a genetic model of obesity. Finally, clinical studies suggest that the inflammation associated with obesity is an independent predictor of heart failure. More recently, the diet-independent ob/ob mouse model of obesity was shown to manifest myocardial ER-stress in concert with contractile dysfunction. Together, these and other epidemiological data linking inflammatory and ER-stress signalling with cardiac dysfunction, provide a rationale for therapeutic targeting of these
pathways in obesity-induced heart disease.

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose metabolism and may attenuate insulin resistance. This peptide and its analogues also exert cytoprotective actions12, with GLP-1 receptor (GLP-1R) activation resulting in reduced inflammation in atherosclerotic lesions13, brain14 and pancreatic beta cells15. Of particular interest, GLP-1R agonists also induce moderate weight loss through multiple mechanisms, including appetite suppression, delayed gastric emptying, and increased energy expenditure16. For example, liraglutide, an approved treatment for type 2 diabetes that shares considerable amino acid homology with human GLP-1, is being tested for its ability to reduce body weight in obese adults17. Nevertheless, few data exist on the effects of liraglutide in pre-clinical models of obesity18. In a recent study examining hepatic steatosis after only 8 weeks of a HFD, Mells \textit{et al} showed that 4 weeks of treatment with a weight loss-inducing dose of liraglutide (200 μg/kg daily) reversed obesity-induced increases in blood pressure and cardiac hypertrophy, without describing cardiac histology, cardiac function or any underlying mechanisms18. While the ability of drugs targeting the GLP-1/GLP-1R axis to effect ER stress, UPR and autophagy in the liver have also recently been described19, the role, if any, of these molecular mechanisms in the pathophysiology of obesity-associated heart disease has not been examined.

Considerable evidence demonstrates that GLP-1 and related peptides protect the isolated mouse heart against ischemia-reperfusion injury20 and protect cardiomyocytes and endothelial cells from oxidative stress and hypoxia-reoxygenation21. Moreover, pre-treatment with liraglutide reduces cardiac rupture and adverse ventricular remodeling following myocardial infarction (MI) in mice22. Accordingly we hypothesized that sustained GLP-1R activation may also prove beneficial in a mouse model of obesity-induced heart disease. Here we show that
mice at both early (16 week) and late (32 week) stages of HFD-induced obesity and heart disease maintain cardiac levels of GLP-1R expression, and that treatment for only 7 days with a weight-neutral dose of liraglutide affects cardiac markers of ER homeostasis and reduces markers of inflammation, with an AMPK-dependent improvement of cardiac function in vivo. These findings were accompanied by rescue of HFD-induced loss of AMPK, ERK1/2 and GSK-3β signaling, and correction of obesity-induced decreases in eNOS, and the cardiac gap junction protein, connexin-43. Liraglutide also reversed HFD-induced increases in cardiac levels of TNFα, nuclear translocation of NFκB, expression of procollagen 1A1 and perivascular fibrosis. To examine if these effects are due to direct cardiac actions of the GLP-1R agonist, we also show that liraglutide protected isolated mouse neonatal cardiomyocytes and human coronary smooth muscle cells from palmitate-induced lipotoxicity, and prevents TNF-α-induced endothelial cell-macrophage interactions in human cell lines. Together, these data support the notion that GLP-1R activation may produce salutary effects in obesity-induced heart disease.

Materials & Methods

Animals

Protocols were approved by our institution in accordance with guidelines of the Canadian Council for Animal Care. Male 10- to 12-week-old C57BL/6 mice were obtained from Jackson Labs and housed for ≥2 weeks before experimentation.

Diet & drug treatment

12-14 week old mice were fed HFD (45% calories from fat, diet D12451; Research Diets Inc) or RD (regular chow) for 16, 20 or 32 weeks with only the final week of each duration including a 7 day treatment with a weight-neutral dose of liraglutide (30 μg/kg bid(bi-twice-daily) sc) or placebo (PBS 100 μl bid sc). To seek evidence for ER-stress, a small number of mice were...
maintained on HFD and RD for 56 weeks. Body weights were recorded before and after each treatment. Experimental schema is shown in Fig. 1.

The Online Supplement provides details regarding blood biochemistry, including fasting blood glucose, triglyceride and cholesterol levels. Histology and morphometry are also described. Supplemental Table 1 lists all antibodies used. Detailed methods for in vivo assessments of cardiac structure, hypertrophy and function, including echocardiography and invasive hemodynamics are provided. Assays for cell adhesion, lipotoxicity, XBP1 splicing, apoptosis and metabolic testing, including intraperitoneal glucose tolerance test (IPGTT) and in vivo insulin sensitivity are also described.

Statistical analyses

Data are expressed as mean±SE using GraphPad Prism version 5.04 for Windows (GraphPad Software, San Diego). Significance was defined as 2-sided P<0.05. For analysis of Western blot densitometry, pressure volume loops, echocardiography, blood biochemistry, real-time PCR data, adhesion and XTT assays, a 1-way ANOVA with Tukey’s post hoc test used to evaluate differences between groups. Changes in blood glucose concentrations over time during IPGTT were analyzed between each treatment group by 2-way repeated-measures ANOVA with Bonferroni-Dunn post hoc test. For other comparisons between two groups, we employed paired or unpaired two-tailed Student’s t-tests as appropriate. The non-parametric Wilcoxon rank sum test was used for comparison of two groups with smaller sample size (i.e. N=3-4 /group).

Results

A weight-neutral dose of liraglutide lowered fasting blood glucose levels

Mice fed a HFD became markedly obese, with 46±2%, 53±1%, 60±2% and 114±3% increases in
body weight (BW) at the 16, 20, 32 and 56 week time points respectively (p<0.001 for each comparison; see Supplemental Table 2 for absolute values). Treatment with liraglutide (30 μg/kg sc bid) for 1 week did not induce weight loss in RD- or HFD-fed mice at these same time points (Supplemental Table 2). While chosen to be weight neutral, the dose of liraglutide administered did demonstrate biological activity, with reductions in fasting blood glucose observed in lean and obese groups (Supplemental Table 2).

Obese mice manifest impaired glucose handling, insulin resistance, hypercholesterolemia and cardiac lipid accumulation

IPGTT demonstrated glucose intolerance in HFD-fed mice at 16 weeks, which was corrected by liraglutide (Fig. 2A). At this stage, insulin-induced phosphorylation of Akt (same as protein kinase B (PKB)) in both liver and heart were reduced in obese animals (Fig. 2B), suggesting insulin resistance. Treatment with liraglutide for 1 week improved all insulin-activated signals examined in the hearts and livers of mice on HFD as compared to placebo-treated HFD-fed controls, including IRS1, Akt, GSK3β, and ERK1/2 (Fig. 2C). Obesity also caused reduced total cardiac levels of the glucose transporter GLUT4, and impaired insulin-induced membrane translocation of GLUT4 (Fig. 2D). Liraglutide normalized both of these abnormalities (Fig. 2D). Our model also generated significantly increased plasma total cholesterol concentrations, which were partially alleviated by 1 week treatment with liraglutide (Fig. 2E). Although no elevations in plasma triglyceride levels were observed at this stage (Fig. 2E), qualitative and quantitative immunohistochemistry demonstrated cardiac accumulation of the sphingolipid ceramide (Fig. 3E-H), as well as neutral lipids, as determined by oil-red-O staining (Fig. 3I-J).

HFD for 16 weeks did not affect cardiac structure

Despite the above metabolic perturbations and significant increases in body weight (RD:
25.7±0.6 vs. HFD: 44.4±1.3, g, p<0.0001, N=18/group), heart weight (HW) at 16 weeks did not
differ between RD- vs. HFD-fed mice (122.6±3.1 vs. 122.2±6.7, mg, P=NS), with the fall in the
HW/BW ratio (RD: 4.1±0.1 vs. HFD: 2.6±0.1; p<0.0001) in obese mice driven exclusively by
their gain in BW. Confirming the absence of cardiac hypertrophy at this time point, no
differences in morphometry-defined cardiomyocyte size, or histology-defined peri-vascular and
inter-myofibrillar fibrosis were observed between RD- and HFD-fed animals (Supplemental Fig.
1A-B).

Liraglutide corrected HFD-induced abnormalities in cardiac signaling

Levels of the metabolic sensing/modulator protein phosphorylated AMPK were reduced in the
hearts of mice on a HFD for 16- and 32-weeks. This abnormality was more than reversed by 1
week of treatment with liraglutide (Fig. 4A). Curiously, liraglutide did not increase
phosphorylation of the survival kinase Akt in the hearts of mice on HFD for 32 weeks (Fig. 4B),
as it did in the hearts of mice on HFD for 16 weeks (Fig. 2C), lean mice (Supplemental Fig.
2A), or in previous studies of mice undergoing MI22. However, liraglutide effectively
normalized and/or increased phosphorylation of other important signaling molecules such as
GSK-3β and ERK1/2 in the hearts of obese mice at this later stage (Fig. 4C-D). Suggesting
selective pathogenesis, neither obesity nor liraglutide had any effect on phosphorylation of the
cardiac signaling molecules p38 mitogen-activated protein kinase (MAPK) (Fig. 4E) or
mammalian target of rapamycin (mTOR) (Fig. 4F).

HFD and liraglutide influenced cardiac ER homeostasis

To seek definitive evidence of ER-stress in the heart, we first examined cardiac mRNA for the
presence of spliced XBP1. Consistent with a report showing that HFD did not increase spliced
XBP1 levels in islets23, we failed to detect spliced XBP1 in the hearts of mice on HFD for 32
weeks (Supplemental Fig 2). In a small group of mice maintained on HFD for 56 weeks (N=3/group), and found to have severe hepatic steatosis (Supplemental Fig. 2), we still did not find evidence of XBP1 splicing in heart or liver (Fig. 5A). However, protein levels of several ER-stress markers including the ER chaperones glucose-regulated protein (GRP), disulfide isomerase (PDI) and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) were increased in cardiac extracts of obese mice fed HFD for 32 weeks (Fig. 5B), suggesting HFD-induced accumulation of misfolded proteins in the ER. Unexpectedly, liraglutide enhanced expression levels of these ER markers in obese hearts at both the 16- (Supplemental Fig. 2) and 32-week time points (Fig. 5B).

Liraglutide reversed obesity-induced abnormalities in cardiac gene expression and fibrosis. To explore the molecular and structural basis of our model, we employed gene expression and immunohistochemistry (IHC) analyses. Both cardiac fibrosis and adverse remodeling of gap junction proteins are known to participate in the pathogenesis of cardiac dysfunction, including models of inflammation, obesity and diabetes24, 25. Indeed, gap junction remodeling precedes contractile dysfunction in an inducible transgene model of inflammatory cardiomyopathy26. Here we identify these mechanisms as targets amenable to GLP-1R activation. Liraglutide treatment of obese mice for 1 week restored diminished and disorganized expression of cardiac connexin-43 (Cx-43) (Fig. 6A-D), reversed the down-regulated levels of cardiac eNOS (Fig. 5E), and reduced up-regulated levels of procollagen 1A1 and perivascular fibrosis, as determined by Western blot and polarized microscopy (Fig. 6F-G).

Neither HFD nor liraglutide altered expression levels of mitochondrial markers in the heart

Obesity is associated with reduced mitochondrial biogenesis and decreased expression of
mitochondrial proteins in fat and skeletal muscle of obese rodents27. As such, we analyzed protein abundance of selected markers of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha, PGC-1\(\alpha\)) and cell respiration (cytochrome c, cyt c; and cyt c oxidase IV, COX IV) in the hearts of our various experimental groups. Levels of PGC-1\(\alpha\), cyt c, and COX IV did not change in any group (Supplemental Fig. 2).

Liraglutide reduced inflammation in the hearts of HFD-fed mice

In contrast to the absence of altered mitochondrial markers, the hearts of HFD-fed mice manifested increased expression of the inflammatory cytokine TNF-\(\alpha\) and increased activation (as defined by nuclear translocation) of its downstream signaling mediator NF\(\kappa\)B. These abnormalities were reduced by treatment with liraglutide (Fig. 7A-B). As activation of apoptosis has been demonstrated in the hearts of severely obese Zucker rats28, we examined whether this mechanism may account for the cardiac dysfunction observed in mice fed a HFD for 32 weeks. Despite appreciable increases in intramyocardial lipids, neither TUNEL nor Western blot analyses for activated caspase-3 detected any increase in apoptosis in hearts from 16- or 32-week mice fed HFD vs. RD (Fig. 7C-G). Of potential interest, levels of the microtubule-associated protein-1 light chain-3 beta (LCA3B), a marker of autophagy29, were also up-regulated following treatment with liraglutide (Supplemental Fig. 2).

Liraglutide corrected obesity-induced cardiac dysfunction through an AMPK-dependent mechanism

Unlike the relatively silent cardiac phenotype after 16 weeks of HFD, HW was significantly increased in mice on HFD for 32 weeks (150\(\pm\)5 vs. RD: 136\(\pm\)4, mg, p<0.05, N=10/group), as was morphometry-defined cardiomyocyte size (12\(\pm\)0.8\% greater surface area vs. RD, p<0.01) with the observed fall in HW/BW ratio (3.2\(\pm\)0.1 vs. 4.2\(\pm\)0.1; mg/g, p<0.0001) attributable to increased
BW. While baseline heart rates did not differ between HFD and RD groups (HFD: 612±34 vs. RD: 548±16, beats/min, p=NS, N=10/group), and nor did they differ or change after 1 week of liraglutide (post-L: HFD: 573±18, N=10 vs. RD: 542±8, N=6, beats/min, p=NS for all comparisons), the load-dependent echocardiographic measure of fractional shortening was reduced in obese mice vs. lean controls (30.3±0.7 vs. 41.4±1.2 %; p<0.05, N=10/group), with subsequent treatment with liraglutide for 1 week correcting this abnormality (pre-L: 30.3±0.7; post-L: 42.1±1.5 %, p<0.05). Additional echocardiography data from the 32 week time point are provided in Supplemental Table 3.

As analysis of cardiac signaling pathways in obese mice had shown liraglutide-reversible inactivation (i.e. dephosphorylation) of the energy sensor AMPK (Fig. 4A), we next tested the role of AMPK in mediating the beneficial effects of liraglutide on cardiac function. Left ventricular performance was assessed in mice fed HFD or RD for 20 weeks, with obese animals receiving liraglutide or placebo for 1 week in the presence or absence of the AMPK-inhibitor, compound C (CC). Steady-state pressure-volume loops revealed that obesity-induced increases in peak systolic pressure were reduced by liraglutide, and that several measures of ventricular performance, including the load-independent isovolumic relaxation constant (Tau) were also improved by treatment with liraglutide (Fig. 8A-G). Importantly, these beneficial effects of the GLP-1 agonist were completely lost in the presence of compound C (Fig. 8A-G). These data show that hearts of obese mice are functionally responsive to exogenous incretin therapy in an AMPK-dependent manner.

Liraglutide normalized markers of cardiac hypertrophy

Quantitative real-time PCR of left ventricular RNA (see Supplemental Table 4 for primer sequences) showed that expression levels of established markers of cardiac hypertrophy, such as
ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and β-MHC as well as the β/α-MHC ratio (RD: 0.4±0.1; HFD-P: 2.1±0.2; HFD-L: 0.5±0.1) were increased in mice fed HFD for 20 weeks as compared to age-matched RD-fed controls (Fig. 8H). Importantly, treatment of obese mice with liraglutide returned these markers (and the β/α-MHC ratio) to normal levels (Fig. 8H; N=5/group, p<0.05).

Evidence for direct anti-inflammatory and cytoprotective effects of GLP-1R activation

As treatment with liraglutide *in vivo* may exert cardiac effects via regulation of insulin, glucagon, or other physiological processes in other organ systems, we assessed the direct actions of liraglutide *ex vivo*. Both GLP-1 and liraglutide decreased the number of monocytes adhering to TNF-α-activated HUVEC cultures. Importantly, this effect could be blocked by the GLP-1R antagonist exendin(9-39) (Supplemental Fig. 3).

Obesity is also associated with elevated plasma free fatty acids (FFA) which participate in the pathogenesis of insulin resistance30. As one of the most abundant saturated fatty acids in plasma, palmitate is markedly elevated following HFD31, and chronic exposure of rat neonatal cardiomyocytes to bovine serum albumin (BSA) bound palmitic acid (PA) produces a model of fatty acid-induced lipotoxicity *in vitro*32. Indeed, PA has also been used to induce cytopathology and myofibrillar degeneration in adult rat cardiomyocytes33. We investigated whether GLP-1R activation might prevent lipotoxicity in cardiomyocytes. This experiment revealed that the cell swelling and cytoskeletal disintegration caused by PA could be prevented by co-incubation with liraglutide, the latter working through a GLP-1R-dependent mechanism (Supplemental Fig. 4A). Moreover, under these harsh *in vitro* conditions, immunoblotting for activated caspase-3 revealed PA-induced apoptosis was also prevented by liraglutide (Supplemental Fig. 4B).

As obesity-associated increases in plasma FFAs also target other cardiovascular cell
types including vascular cells34, we conducted similar experiments in human coronary smooth muscle cells (HCSMC). Once again, liraglutide prevented PA-induced cell swelling and loss of cell viability (Supplemental Fig. 4C-D).

\textbf{Discussion}

Obesity is a serious health problem. Excess caloric intake from fat can trigger obesity, and contribute to dyslipidemia, insulin resistance, and type-2 diabetes, all of which are known risk factors for cardiovascular disease35. As observed in our study, HFD can directly affect the heart even prior to the onset of overt diabetes, although impaired glucose tolerance and insulin resistance are features of our model. The mechanisms involved include the induction of inflammation, hypertrophy, fibrosis and contractile dysfunction2. As such, studies identifying therapies that prevent and/or reverse HFD-induced cardiac pathophysiology are of interest, as their translation to clinic may impact both the incidence and severity of cardiovascular disease.

As regulators of glucose and lipid homeostasis12, potentiating endogenous GLP-1 by inhibitors of dipeptidyl peptidase-4 (Dpp4), or exogenous GLP-1 analogues show promise for the treatment of type-2 diabetes. Furthermore, direct benefits on the cardiovascular system may be a particular advantage of incretin-targeted therapies over other classes of anti-diabetic drugs36. Underlying these effects are distinct and complementary mechanisms that include weight loss, improved glycemic control, enhanced insulin signalling, and direct effects on cardiovascular pathophysiology, including protection from ischemia-reperfusion injury and adverse cardiac remodelling following MI20, 22, 37.

Here we show that even brief (i.e. 1 week) treatment with a weight-neutral dose of the GLP-1R agonist liraglutide can \(a\) ameliorate HFD-induced disturbances in glucose handling and insulin sensitivity, \(b\) reverse the expression of inflammatory markers, \(c\) enhance ER
stress-related adaptive protein levels, (d) normalize key cardiac signaling pathways disrupted by HFD, (e) restore diminished levels of eNOS and Cx-43, and increased levels of procollagen 1A1, (f) normalize expression levels of hypertrophy markers, with (g) morphological evidence of reduced peri-vascular fibrosis, and (h) functional evidence of improved cardiac performance through an AMPK-dependent mechanism. To our knowledge, this study represents the first demonstration of perturbed cardiac Cx-43 expression in any model of obesity. Also novel, are the results showing that liraglutide can correct this abnormality in gap junction protein expression and other obesity-associated decreases in eNOS and cardiac function in vivo without changes in body-weight. New data supporting direct GLP-1R-dependent effects on endothelial and cardiomyocyte biology include the ability of liraglutide to (i) inhibit adhesion of monocytes to TNFα-activated endothelial cells, and (j) prevent lipotoxicity in cardiomyocytes and HCSMC in vitro. By comparing the cardiac consequences of 16 vs. 32 weeks of diet-induced obesity in the mouse, our study reveals that HFD-induced markers of inflammation (TNF-α, NFκB) and disturbed ER homeostasis (GRP78, GRP94, PDI, phospho-eIF2α) (at 16 weeks of HFD) are present before the onset of cardiac fibrosis, hypertrophy and dysfunction (observed at 32 weeks of HFD). While Ozcan et al also showed increased expression of GRP and phospho-eIF2α in livers of ob/ob mice and mice fed a HFD for 16 weeks, and also demonstrated increased insulin resistance in mice lacking the ER-stress transcription factor XBP1, no evidence for HFD-induced increases in XBP1 splicing was presented. In our study we find no evidence for XBP1 splicing in the heart (or liver) after prolonged HFD, suggesting that HFD causes only mild ER-stress, which induces an adaptive response i.e. increased chaperone capacity. We posit that liraglutide’s remarkable ability to augment this response may enhance the capacity of the ER to protect the heart (and HCSMC) against lipotoxicity, as demonstrated in models of heptocyte.
and beta-cell lipotoxicity \textit{in vitro}.

AMPK, Akt, GSK-3\(\beta\), ERK1/2 and p38 MAPK are signaling molecules involved in the pathophysiology of a variety of cardiac diseases and models. Our studies reveal that HFD-induced obesity resulted in the dephosphorylation of some \textit{(i.e.} AMPK, GSK-3\(\beta\), and ERK1/2)\textit{,} but not all \textit{(i.e.} p38 MAPK\textit{)} of these molecular mediators in the mouse heart. Treatment with liraglutide effectively reversed abnormalities in each of the pathways affected by HFD-induced obesity. The effect of liraglutide on increased phosphorylation of the energy sensor AMPK is similar to that of the anti-diabetic drug metformin, which also induced activation of this molecule in the hearts of obese mice40. Although our invasive hemodynamic studies suggested a key role for AMPK in the cardiovascular actions of liraglutide, further studies are needed to establish if more of the many pleiotropic benefits of liraglutide observed also depend on its ability to activate AMPK. Several lines of evidence support a central role for AMPK in obesity-induced heart disease. AMPK\(\alpha1\)-knockout mice are more susceptible to HFD-induced obesity, inflammation and insulin resistance41, and experience worse HFD-induced cardiac hypertrophy and contractile dysfunction42. In addition, up-regulation of AMPK signaling improves myocardial perfusion in diabetic mice43 and, activators of AMPK (e.g. dexamethasone and metformin) promote survival in cardiomyocytes exposed to TNF-\(\alpha\), an effect abolished by an AMPK inhibitor44. Ko \textit{et al}. showed that a HFD (55\% fat by calories) for only 6 weeks reduced AMPK phosphorylation in cardiac tissue of C57BL/6 mice, a finding they associated with macrophage infiltration and cardiac inflammation4. These authors suggested that cytokines IL-6 and TNF-\(\alpha\) were involved in decreased AMPK activity and pathologic modulation of cardiac glucose metabolism4.

With regards to the serine/threonine kinase GSK-3\(\beta\), we demonstrate that it is
dephosphorylated (i.e. hyper-activated) in the hearts of obese mice. As increased activity of total GSK-3 (i.e. GSK-3α and β isoforms) in skeletal muscle, liver, and adipose tissues has been associated with reduced insulin action in those tissues, it is tempting to speculate that HFD-induced activation of GSK-3β may also play a role in obesity-induced heart disease. Again, short-term treatment with liraglutide resulted in an Akt-independent increase in phosphorylation (i.e. inactivation) of GSK-3β, approaching levels seen in lean-controls. Supporting the importance of this normalizing effect of liraglutide on GSK-3β, are data suggesting that inactivating GSK-3β by the anti-oxidant metallothionein prevented the pathogenetic mechanisms of streptozotocin-induced diabetes in mice.

Obesity is associated with a low-grade chronic inflammation characterized by infiltration of monocyte/macrophages in skeletal, cardiac and adipose tissues, and by abnormal production of pro-inflammatory cytokines including TNF-α. Our results clearly indicate that treatment with a GLP-1 analogue can reduce (a) expression of TNF-α and NFκB in the hearts of obese mice, and (b) adhesion of monocytes to TNFα-activated endothelial cells in a GLP-1R-dependent manner. Importantly, the latter in vitro data were obtained in human cell lines, enhancing the potential translational significance of our findings.

In addition, reduced cardiac eNOS level in obese mice may be an indicator of coronary dysfunction, as eNOS-derived nitric oxide plays an important role in the regulation of coronary blood flow. Therefore, restored cardiac eNOS in response to 1 week treatment with liraglutide may have had a significant impact on cardiac function. With regards to Cx-43, it has been shown that cardiac inflammation can down-regulate Cx-43 levels in the rat heart in a TNFα-dependent manner. Levels of Cx-43 are also reduced in the diabetic rat. As cardiac Cx-43 is required for coordinated electrical activity, and is involved in the pathogenesis of cardiac
arrhythmias50, repair of Cx-43 deficiency in the hearts of obese mice in our study may be another mechanism involved in the beneficial effects of the GLP-1 analogue employed.

Finally, exposure of mouse neonatal cardiomyocytes to palmitic acid resulted in cytopathologic changes including cellular swelling and cytoskeletal disintegration which were blocked by co-treatment with liraglutide. That this effect could be abolished by a GLP-1R antagonist clearly supports a direct cardioprotective action of the agent.

In conclusion, the present study has shown, for the first time, how a short course of treatment with a weight-neutral dose of a GLP-1 analogue can reverse the complex molecular pathophysiology of obesity-induced heart disease in mice through a variety of putative mechanisms, with a central role for AMPK (Supplemental Fig. 5). These data support further clinical exploration of a potential therapeutic role for GLP-1R agonists in obesity-induced cardiac disease.

Funding Sources: This study was funded by operating grants to MH and DJD from the Heart and Stroke Foundation of Ontario (HSFO; T6757 and NA6997) and by a grant to DJD from Novo Nordisk Inc. MH is recipient of a Career Investigator Award of the HSFO (#CI6824). DJD receives support from a Canada Research Chair in Regulatory Peptides and a Banting and Best Diabetes Centre-Novio Nordisk Chair in Incretin Biology. FB is recipient of a Phase I Clinician-Scientist Award from the Canadian Institutes of Health Research (CIHR). AV is supported by an Operating Grant from the CIHR (MOP-114922) and a Canada Research Chair in Diabetes Research.

Conflict of Interest Disclosures: MH and DJD have served as consultants for NovoNordisk, Merck & Co, and Hoffman La Roche with regards to their incretin-targeted therapeutics. MH and DJD are recipients of investigator-initiated industry funding for distinct research projects from NovoNordisk and Merck & Co.
References:

38. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C,

Figure Legends:

Figure 1. Schematic of animal experimentation in vivo. The four experimental periods (16, 20, 32, 56 weeks) of high fat diet (HFD) vs. regular diet (RD) are shown. Each involved only 1 week of treatment with liraglutide (L: 30 μg/kg sc bid) or placebo (P: equal volume of 100 μl of PBS sc bid).

Figure 2. Characterization of high fat diet-induced obesity model. (A) HFD impaired glucose tolerance. Following 6 h fast, serial tail blood glucose measurements were made before and after glucose administration (arrow: 1g/kg i.p). Obese (16HFD-P) mice showed elevated blood glucose levels vs. lean controls (16RD), and vs. obese mice treated with liraglutide (HFD-L) by 2-way repeated measures ANOVA with Bonferroni-Dunn post hoc test: *p<0.0001 for HFD-P vs. RD; #p<0.001 for HFD-P vs. HFD-L, n=4/group. (B) Insulin sensitivity in vivo was assessed by measuring insulin-induced phosphorylation of Akt (P-Akt) in cardiac tissues following an overnight fast. Heart (H) and liver (Li) extracts from PBS-treated mice served as negative controls revealing background levels of P-Akt. Insulin resulted in diminished P-Akt levels in HFD- vs. RD-fed mice, *p<0.05 by non-parametric Wilcoxon rank sum test (n=3/group). (C) Insulin sensitivity in cardiac and hepatic protein extracts. Liraglutide corrected the impaired insulin-induced phosphorylation of down-stream targets IRS1, Akt, GSK3β and ERK1/2 in HFD-fed mice. (D) HFD resulted in reduced cardiac GLUT4 levels, 1-way ANOVA: *p<0.05
by Tukey multiple comparison post-hoc test, n=3 group). Confocal microscopy revealed improved insulin-induced membrane translocation of GLUT4 in cardiomyocytes of obese (16HFD) mice treated with liraglutide. (E) Obese (16HFD) mice have increased plasma total cholesterol (TC), but not triglyceride (TG) concentrations. TC: 1 way ANOVA: *p<0.0001 vs. RD, #p<0.05 vs. HFD-P by Tukey multiple comparison post-hoc test; TG: p=NS; n=4-5/group.

Figure 3. HFD-induced obesity causes increased cardiac lipid accumulation. Tissue levels of the sphingolipid ceramide were quantified in liver and heart by immunohistochemical staining, confocal microscopy, and digital image analysis. Sections of liver (A) and heart (B) in which the 1^o anti-ceramide Ab was omitted served as negative controls for non-specific background staining by the 2^oAb (red). Ab against cardiac troponin-I (TnI_c) and Hoechst were used to label cardiac myocytes (green) and nuclei (blue), respectively. Quantitative analysis of signal intensity revealed increased hepatic (C, D) and cardiac ceramide levels after 16 (E, F) and 32 (G, H) weeks of HFD. Oil-red-O staining also revealed increased cardiac accumulation of neutral lipids after 32 weeks of HFD (I, J); *p<0.05, †p<0.01 by non-parametric Wilcoxon rank sum test, n=4 mice/group.

Figure 4. Treatment with a weight neutral dose of a GLP-1 analogue corrected the abnormalities in cardiac signaling caused by 32 weeks of HFD. Representative Western blots of left ventricular extracts from lean mice fed a regular diet (RD) and obese mice fed a HFD for 32 weeks are shown. Corresponding densitometric quantifications of the fold changes in phosphorylated/total protein relative to placebo-treated RD-fed animals are shown. Liraglutide treatment (L) for 1 week (30 µg/kg bid sc) increased phosphorylation of AMPK (A) but not Akt.
(B), and normalized phosphorylation of GSK3β (C) and ERK1/2 (D) in obese mice (HFD-L) as compared to placebo-treated HFD-fed mice (HFD-P). Phosphorylation of p38-MAPK (E) and mTOR (F) did not change in response to HFD or drug treatment. Data shown are mean±SE; n=5 animals/group; 1 way ANOVA: *p<0.05 vs. RD-P, # p<0.05 vs. HFD-P, by Tukey multiple comparison post-hoc test.

Figure 5. Treatment with a GLP-1 analogue enhanced the increased cardiac expression of ER-related proteins caused by 32 weeks of HFD. (A) Total RNA was isolated from ventricular tissue of mice fed either RD or HFD for 56 weeks and analyzed by RT-PCR and ethidium bromide-stained gel electrophoresis to detect unspliced (uXBP1) and spliced (sXBP1) forms of the ER-stress marker XBP1. Mouse islets treated with thapsigargin (Tg) served as a positive control. (B) Representative Western blots and corresponding densitometric quantification of fold changes in GAPDH-normalized expression of ER-related markers, GRP, PDI and peIF2α are shown for mice on RD or HFD for 32 weeks. Despite enhanced signal for ER-related proteins in hearts of HFD-P and HFD-L groups at 32 weeks, no splicing of XBP1 was observed in hearts or livers of mice following even 56 weeks of HFD. Treatment with liraglutide enhanced cardiac expression levels of these ER-stress proteins in obese mice (HFD-L) as compared to placebo (P). Data shown are mean±SE; n=5 animals/group; 1 way ANOVA: *p<0.05 vs. RD-P, # p<0.05 vs. HFD-P by Tukey multiple comparison post-hoc test.

Figure 6. A GLP-1 analogue corrected the abnormal cardiac expression levels of connexin 43, eNOS and collagen caused by 32 weeks of HFD. In obese mice fed HFD for 32 weeks, confocal immunolabeling for the cardiac gap junction protein Cx-43 (pink) in sections co-stained for
nuclei (DAPI, blue) and α-sarcomeric actinin (green) revealed reduced abundance of Cx-43 (B) as compared to RD-fed controls (A). This abnormality was normalized by treating HFD-fed mice with liraglutide (L) for only 1 week (C). Western blot for total ventricular Cx-43 revealed the same result (D). HFD-induced obesity was also associated with decreased levels of cardiac eNOS (E), which was corrected by the GLP-1 analogue. Picrosirius red-stained heart sections were imaged with brightfield and polarized light microscopy (F). Perivascular collagen under brightfield appears red. Thick collagen fibers under polarized light have yellow-orange birefringence, while thin collagen fibrils have green birefringence. HFD increased perivascular thick collagen deposition. Lean (RD-fed) mice retain predominantly fibrillar peri-vascular collagen. Treatment of HFD-fed mice with liraglutide reduced perivascular collagen staining, with reduced thick collagen fiber deposition. These histological findings were mirrored by Western blot for procollagen 1A1 (G). Representative Western blots and corresponding densitometric quantification of fold changes in GAPDH-normalized expression of these proteins are shown. Data are mean±SE; n=5-6 animals/group; 1-way ANOVA: *p<0.05 vs. RD-P, #p<0.05 vs. HFD-P, by Tukey multiple comparison post-hoc test.

Figure 7. A GLP-1 analogue reversed the expression of inflammatory markers in hearts of obese mice, which showed no evidence of apoptosis. Protein levels of activated NFκB-p65 (demonstrated by nuclear translocation) (A) and TNF-α (B) were increased in hearts of placebo (P)-treated mice fed HFD for 32 weeks (HFD-P) vs. lean RD-fed controls (RD-P). Liraglutide treatment decreased inflammatory markers in HFD-fed mice (HFD-L). Data shown are mean±SE; n=4-6 animals/group; 1-way ANOVA: *p<0.05 vs. RD-P, #p<0.05 vs. HFD-P, by Tukey multiple comparison post-hoc test. Paraffin sections (6 μm) were stained for TUNEL to
identify apoptotic nuclei (red). Negative (C, without terminal transferase) and positive (D, DNase I-treated) controls were included. Almost no TUNEL-positive nuclei are detectable in hearts from 32RD or 32HFD mice (E, F). Absence of apoptosis in these groups was confirmed by Western blot for cleaved caspase 3 (G), with thapsigargin-induced apoptosis in islet cells serving as a positive control (+ctrl).

Figure 8. Liraglutide improved measures of cardiac performance through an AMPK-dependent mechanism. Invasive hemodynamic measurements were obtained in mice fed RD or HFD for 20 weeks. In the final week, some animals were treated with liraglutide (L) or placebo (P), in presence of either the AMPK inhibitor compound C (CC) or its vehicle control. (A) Representative steady-state PV loops from all groups are shown. (B) Maximum LV systolic pressure from all groups. (C–G) Results of PV loop analyses showing measures of systolic (EF, ESV, dP/dt\text{max}) and diastolic (dP/dt\text{min}) function, including the load-independent isovolumic relaxation constant (Tau). 1-way ANOVA: *p<0.05 vs. RD-P by Tukey multiple comparison post-hoc test. (H) Treatment with liraglutide also normalized the increased expression levels of ANP, BNP, and β-MHC observed in HFD-fed mice as determined by qRT-PCR. n=5-6/group; 1-way ANOVA: *p<0.05 vs. RD-P by Tukey multiple comparison post-hoc test.
A Glucagon-Like Peptide-1 Analogue Reverses the Molecular Pathology and Cardiac Dysfunction of a Mouse Model of Obesity

Circulation. published online November 27, 2012;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2012/11/26/CIRCULATIONAHA.112.091215

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/11/26/CIRCULATIONAHA.112.091215.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

Noyan-Ashraf et al.

A glucagon-like peptide-1 analogue reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity

MS ID# CIRCULATIONAHA/2012/091215
SUPPLEMENTAL METHODS

Morphometry and immunohistochemistry: Paraffin-embedded hearts (N=6/group) were sectioned (6 μm) and stained with Masson’s trichrome. Cardiomyocyte cross-sectional areas and fibrosis were quantified by Image-J (NIH) and Imagescope (Aperio) software. Collagen accumulation was assessed by picrosirius red-staining of sections from the mid-ventricle of each heart (N=4 per group, 4 sections per animal) imaged under brightfield and polarized light. Paraffin sections (5 μm) were also processed for heat-induced antigen retrieval in citrate buffer (pH=6), and co-immunolabelled overnight with rabbit polyclonal anti-connexin 43 and goat polyclonal anti-cardiac troponin I antibodies (Abs). For neutral lipid staining, 4% paraformaldehyde-fixed hearts (N=3/group) were cryoembedded and frozen sections (6 μm) were stained with oil-red-O and counterstained with hematoxylin. For assessment of intracellular ceramide, sections were stained with an anti-ceramide Ab. Liver from HFD-fed mice with significant steatosis served as positive control. Insulin-induced GLUT4 membrane translocation was visualized with confocal microscopy of frozen sections (4 μm) from 4% paraformaldehyde-fixed hearts (N=3/group) harvested 15 min after i.p. injection of insulin (2 IU/kg) or PBS-control (as detailed for insulin sensitivity test below) and stained with a goat polyclonal anti-GLUT4 antibody. Sections were incubated with fluorescent-tagged secondary Abs and Hoechst nuclear staining before mounting and imaging on a FluoView 1000 Laser Scanning Confocal Microscope (Olympus). For quantification of cardiac ceramide, z-stacks (0.1 μm steps) were acquired from ceramide signals and integrated density was measured by defining regions of interest (ROIs) in four high magnification areas per section. Four mid-ventricular cross-sections for each heart at 100 μm intervals were analyzed using Fluoview software version 3.1. Data were expressed as number of pixels per μm² (integrated density/area). See **Supplemental Table 1** for all Ab details.

Western blot: For assessment of signaling pathways, GLUT4, eNOS, connexin 43, atrial natriuretic peptide (ANP), ER-stress, and selected mitochondrial, inflammation, apoptosis and autophagy markers, protein extracts from the left ventricle of 16- and 32-week HFD- and RD-fed mice were run on denaturing gels, blotted and hybridized with 1° Abs overnight. For NFκB, nuclear and cytosolic extracts were prepared as previously described1. HRP-conjugated 2° Abs were visualized with chemiluminescence. See **Supplemental Table 1** for antibody details.

TUNEL assay: Cardiomyocyte apoptosis was quantified with the In Situ Cell Death Detection Kit (TMR red, Roche, Cat# 12 156 792 910) was used as per the manufacturer’s instructions.

Cell adhesion: The human monocyte cell line THP1 was cultured in RPMI-1640 (Sigma) with 5% FBS. Primary human umbilical vein endothelial cells (HUVEC) were cultured in EBM-2 medium with Clonetics® EGM-2 SingleQuots® (Lonza). Only cells below passage 10 were used. HUVECs were seeded (~1x10⁴/well) into clear bottom 96-well plates, grown to confluence and serum starved for 18-24 h. The wells were aspirated and replenished with EBM-2 medium alone or with TNF-α (20 ng/mL) for 4 h. HUVECs were then incubated with PBS in the presence or absence of the GLP-1R antagonist exendin(9-39) (10 μM) for 20 mins, then washed and incubated with PBS in the presence of GLP-1 (10-100 nM) or liragutide (100 nM) for 1 h. THP-1 cells were labelled with calcein-AM for 30 min, washed once in PBS, pelleted (1,500 rpm x 5 min) and resuspended in serum-free RPMI-1640 (1x10⁶ cells/mL). THP-1 cells were then
allowed to settle on the HUVEC monolayer (1x10^5 cells/well) for 30 min. Plates were centrifuged (100g x 1 min) upside down to remove non-adherent cells. A plate reader was used to measure the fluorescence intensity of each well (494-517nm for calcein-AM). Fluorescence intensities were normalized to the un-stimulated condition (i.e. absent TNFα). Data shown represent means ± SEM from at least 3 independent experiments.

Lipotoxicity: Serum-deprived neonatal cardiomyocytes from C57BL/6 mice^2^ were exposed to vehicle, palmitic acid (250 µM)^3^, or the latter plus liraglutide (100 nM), or liraglutide and exendin(9-39) for 18 h in triplicates before harvest and confocal microscopy. Primary human coronary artery smooth muscle cells (HCSMC) were purchased from Cascade Biologicals (Gibco, C-017-5C) and maintained in M321 media (Gibco, M-231) supplemented with smooth muscle growth supplement and 1% penicillin/streptomycin (Gibco, 15140). HCSMC were grown to 70% confluence. Prior to treatment, growth media was changed to supplement-free media for 24 h. Cells were treated with vehicle or palmitic acid (250 µM) with and without liraglutide (100 nM) liraglutide for 24 h. Whole cell lysates were collected for assessment of cell viability^4^as per the manufacturer’s protocol (XTT assay, Roche). Each condition was done in triplicate, and the experiment performed three times. Phase contrast micrographs were also taken from HCSMC at the end of the incubation period for morphological assessment.

Metabolic testing: Intraperitoneal glucose tolerance test (IPGTT) and in vivo insulin sensitivity assessments were performed following a 6 h fast in placebo and liraglutide-treated 16HFD and age-matched 16RD controls (N=4/group). For IPGTT, D-glucose (Sigma, G5767-700G, 1 g/kg) was injected i.p. at time 0, and tail vein blood glucose levels were measured at -30, 0, 30, 60, 90 and 120 min from i.p. glucose administration with a Bayer Contour glucometer. In different animals, insulin sensitivity was examined at 10 min following an i.p. injection of insulin (2 IU/kg of Novolin GE, Novo Nordisk) or an equal volume of PBS (control). After cervical dislocation liver and heart tissue samples were isolated, and snap-frozen in liquid N2. Protein extracts were immunoblotted for well-known downstream signals of insulin action, such as phosphorylated IRS1, and phosphorylated and total Akt, GSK3β and ERK1/2. GAPDH was used as a loading control for IRS1.

Blood glucose: Blood glucose level was measured through a tail nick using a handheld glucometer and One-Touch strips (LifeScan) following overnight fast.

Plasma cholesterol and triglyceride levels: Blood collected by saphenous vein puncture of 16HFD and 16RD animals (N = 14/group) was centrifuged for 10 min at 10,000 g to obtain plasma. Cholesterol and triglyceride levels were determined by standardized assays performed at the core biochemistry laboratory of the Toronto Center for Phenogenomics (TCP).

XBP1 splicing assay: Total RNA extracted from heart and liver of mice on HFD for 32- and 56-weeks were examined for expression levels of spliced and unspliced XBP-1 by RT-PCR (Qiagen OneStep) using primers flanking the intron excised by IRE1 exonuclease activity. Primer sequences used were 5’-GAA-CCA-GGA-GTT-AAG-AAC-ACG-3’ and 5’-AGG-CAACAG-TGT-CAG-AGT-CC-3’. PCR conditions were: 50 °C (30 min); 95 °C (15 min); 30 cycles of 94 °C (1 min), 55 °C (1 min), 72 °C (1 min); 72 °C (10 min). RT-PCR products were resolved on a
3% agarose gel and visualized using ethidium bromide. Total RNA isolated from mouse islets treated with thapsigargin (Tg, 1 μM, 1h) served as positive control for XBP-1 splicing.

Cardiac hypertrophy: Heart-to-body weight ratios were calculated for each animal at the time of sacrifice. To complement measurements of cardiomyocyte cross-sectional area (see above), quantitative real time-PCR for hypertrophy markers (α-MHC, β-MHC, ANP and BNP) and the housekeeping gene GAPDH was performed on total RNA isolated from LV of placebo-and liraglutide-treated mice fed HFD for 20 weeks or RD-fed controls. See Supplemental Table 4 for primer sequences.

Cardiac hemodynamics: To investigate hemodynamic effects of liraglutide, and its potential dependence on AMPK signaling, LV pressure-volume loops were obtained on mice fed HFD for 20 weeks and treated for 1 week with liraglutide, the AMPK inhibitor Compound C (P-5449, Sigma Aldrich; 10 mg/kg i.p, every other day) or vehicle. Under 1% isoflurane, a 1.4F micro manometer and conductance catheter (SPR-839) was introduced into the LV through the apex. LV pressures and volumes, ejection fraction, dP/dt, and the isovolumic relaxation time constant (Tau), a load-independent index of diastolic function, were computed using the PVAN software (Millar Instruments). Volume calibration of the system was performed to convert relative volume units to actual volumes.

Echocardiography: Mice on HFD for 32 weeks and age-matched lean RD-fed controls (N=6/group) underwent M-mode echocardiography before and after 7 days of liraglutide or placebo by an expert operator blinded to treatment assignment as previously described. In this manner, each animal served as its own control.

REFERENCES FOR SUPPLEMENTAL METHODS

Supplemental Table 1: Primary & secondary antibodies employed.

<table>
<thead>
<tr>
<th>Primary antibodies (Cat #)</th>
<th>Source</th>
<th>Supplier</th>
<th>Dilution</th>
<th>Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-Actinin (Cat #)</td>
<td>Mo MC</td>
<td>Sigma</td>
<td>1:500</td>
<td>IF</td>
</tr>
<tr>
<td>Akt (9272)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-Akt (9271) (Ser473)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>AMPK (2603)</td>
<td>Rab MC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-AMPKα (2535) (Thr172)</td>
<td>Rab MC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>ANP (sc-18811)</td>
<td>Goat PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:500</td>
<td>WB</td>
</tr>
<tr>
<td>Ceramide (MID 15B4)</td>
<td>Mo MC</td>
<td>Enzo Life Sciences</td>
<td>1:400</td>
<td>IF</td>
</tr>
<tr>
<td>Cx43 (3512)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:100 & 1:1000</td>
<td>IF & WB</td>
</tr>
<tr>
<td>Pro-Col.1A1 (sc-30136)</td>
<td>Rab PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:500</td>
<td>WB</td>
</tr>
<tr>
<td>Cleaved Caspase 3 (Asp175) (9661)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:500</td>
<td>WB</td>
</tr>
<tr>
<td>COX IV (4844)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:5000</td>
<td>WB</td>
</tr>
<tr>
<td>Cytochrome C (sc-7159)</td>
<td>Rab PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:200 & 1:2000</td>
<td>IF & WB</td>
</tr>
<tr>
<td>eNOS (9672)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-eIF2α (9721) (Ser 51)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:500</td>
<td>WB</td>
</tr>
<tr>
<td>ERK ½ (4695)</td>
<td>Rab MC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-ERK ½ (9101) (Thr 202/Tyr 204)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>GAPDH (sc-25778)</td>
<td>Rab PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:10000</td>
<td>WB</td>
</tr>
<tr>
<td>Glut4 (sc-1608)</td>
<td>Goat PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:100, 1:500</td>
<td>IF, WB</td>
</tr>
<tr>
<td>GSK3β (9315)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-GSK3β (9336) (Ser 9)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-IRS1 (07-247) (Ser307)</td>
<td>Rab PC</td>
<td>Upstate</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>KDEL (GRP78/94) (SPA-827)</td>
<td>Mo MC</td>
<td>Stressgen</td>
<td>1:2000</td>
<td>WB</td>
</tr>
<tr>
<td>Lamin A (H-102) (sc-20680)-</td>
<td>Rab PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>LC3A/B (4108)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:4000</td>
<td>WB</td>
</tr>
<tr>
<td>P-mTOR (2971)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>NFkBp65 (sc-372)</td>
<td>Rab PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:2000</td>
<td>WB</td>
</tr>
<tr>
<td>PDI (SPA-890)</td>
<td>Rab PC</td>
<td>Stressgen</td>
<td>1:2000</td>
<td>WB</td>
</tr>
<tr>
<td>PGC-1α (sc-13067)</td>
<td>Rab PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:2000</td>
<td>WB</td>
</tr>
<tr>
<td>TNFa (sc-1351)</td>
<td>Goat PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:500</td>
<td>WB</td>
</tr>
<tr>
<td>Troponin I-C (sc-31655)</td>
<td>Goat PC</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:200</td>
<td>IF</td>
</tr>
<tr>
<td>Troponin T, Cardiac isoform (MS-295-P0)</td>
<td>Mo MC</td>
<td>Thermo Scientific</td>
<td>1:400</td>
<td>IF</td>
</tr>
<tr>
<td>p38MAPK (9212)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
<tr>
<td>P-p38MAPK (9211) (Thr 180/Tyr 182)</td>
<td>Rab PC</td>
<td>Cell Signaling Technol.</td>
<td>1:1000</td>
<td>WB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary antibodies (Cat #)</th>
<th>Source</th>
<th>Supplier</th>
<th>Dilution</th>
<th>Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Mouse IgG-HRP conjugate (170-6516)</td>
<td>Goat</td>
<td>BioRad</td>
<td>1:10000</td>
<td>WB</td>
</tr>
<tr>
<td>Anti-Goat IgG-HRP conjugate (sc-2384)</td>
<td>Bovine</td>
<td>Santa Cruz Biotechnol.</td>
<td>1:5000</td>
<td>WB</td>
</tr>
<tr>
<td>Anti-Rab IgG-HRP conjugate (170-6515)</td>
<td>Goat</td>
<td>BioRad</td>
<td>1:10000</td>
<td>WB</td>
</tr>
<tr>
<td>Anti-Mouse AlexaFluor 647 (A10042)</td>
<td>Donkey</td>
<td>Invitrogen</td>
<td>1:400</td>
<td>IF</td>
</tr>
<tr>
<td>Anti-Goat AlexaFluor 488 (A-11055)</td>
<td>Donkey</td>
<td>Invitrogen</td>
<td>1:400</td>
<td>IF</td>
</tr>
<tr>
<td>Anti-Rabbit AlexaFluor 568 (A-10042)</td>
<td>Donkey</td>
<td>Invitrogen</td>
<td>1:400</td>
<td>IF</td>
</tr>
</tbody>
</table>

The name, supplier and dilutions of all Abs used for Western blot (WB) and immunofluorescence (IF) microscopy are provided. MC, monoclonal; PC, polyclonal; Mo, mouse; Rab, rabbit.
Supplemental Table 2: Body weights and fasting blood glucose determinations.

<table>
<thead>
<tr>
<th>Group</th>
<th>Initial BW (g)</th>
<th>BW pre-treatment (g)</th>
<th>BW post-treatment (g)</th>
<th>FBG pre-treatment (mmol/L)</th>
<th>FBG post-treatment (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 RD-P (N=10)</td>
<td>24.78 ± 0.44</td>
<td>31.80 ± 1.33*</td>
<td>30.87 ± 1.01</td>
<td>7.88 ± 0.38</td>
<td>7.55 ± 0.41</td>
</tr>
<tr>
<td>16 RD-L (N=10)</td>
<td>24.38 ± 0.38</td>
<td>29.5 ± 0.69*</td>
<td>28.92 ± 0.73</td>
<td>7.57 ± 0.27</td>
<td>7.00 ± 0.25**</td>
</tr>
<tr>
<td>16 HFD-P (N=10)</td>
<td>24.73 ± 0.94</td>
<td>44.18 ± 1.87*</td>
<td>43.62 ± 1.57</td>
<td>8.95 ± 0.38</td>
<td>8.86 ± 0.48</td>
</tr>
<tr>
<td>16 HFD-L (N=10)</td>
<td>25.68 ± 0.58</td>
<td>45.7 ± 1.27*</td>
<td>44.05 ± 0.54</td>
<td>8.31 ± 0.26</td>
<td>6.73 ± 0.26**</td>
</tr>
<tr>
<td>20RD (N=6)</td>
<td>22.8 ± 0.7</td>
<td>30.85 ± 0.4*</td>
<td>30.9 ± 0.7</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>20HFD-P (N=6)</td>
<td>21.7 ± 0.4</td>
<td>49.8 ± 0.6*</td>
<td>48.4 ± 0.9</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>20HFD-L (N=6)</td>
<td>20.6 ± 0.7</td>
<td>47.3 ± 1.0*</td>
<td>45.8 ± 1.1</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>32 RD-P (N=10)</td>
<td>23.6 ± 0.27</td>
<td>33.46 ± 1.5*</td>
<td>32.25 ± 1.56</td>
<td>8.88 ± 0.38</td>
<td>7.55 ± 0.41</td>
</tr>
<tr>
<td>32 RD-L (N=10)</td>
<td>24.35 ± 0.7</td>
<td>33.77 ± 0.64*</td>
<td>32.71 ± 0.45</td>
<td>9.64 ± 0.49</td>
<td>7.57 ± 0.27**</td>
</tr>
<tr>
<td>32 HFD-P (N=10)</td>
<td>25.3 ± 0.7</td>
<td>54.25 ± 0.62*</td>
<td>52.25 ± 0.1</td>
<td>8.4 ± 0.29</td>
<td>11.35 ± 0.38**</td>
</tr>
<tr>
<td>32 HFD-L (N=10)</td>
<td>26.82 ± 1.32</td>
<td>51.78 ± 1.16*</td>
<td>49.36 ± 0.48</td>
<td>9.02 ± 0.5</td>
<td>6.72 ± 0.27**</td>
</tr>
<tr>
<td>56 RD-P (N=3)</td>
<td>24.43 ± 0.63</td>
<td>36.22 ± 1.9*</td>
<td>35.68 ± 1.8</td>
<td>8.93 ± 0.13</td>
<td>9.1 ± 0.32</td>
</tr>
<tr>
<td>56 RD-L (N=3)</td>
<td>23.83 ± 1.37</td>
<td>35.26 ± 0.78*</td>
<td>34.16 ± 0.95</td>
<td>8.13 ± 1.03</td>
<td>7.96 ± 0.54</td>
</tr>
<tr>
<td>56 HFD-P (N=3)</td>
<td>24.1 ± 0.5</td>
<td>50.69 ± 0.8*</td>
<td>49.93 ± 0.1</td>
<td>9.93 ± 0.5</td>
<td>10.56 ± 0.28</td>
</tr>
<tr>
<td>56 HFD-L (N=3)</td>
<td>24.96 ± 0.78</td>
<td>54.56 ± 1.58*</td>
<td>52.52 ± 0.72</td>
<td>9.56 ± 0.53</td>
<td>7.26 ± 0.24 **</td>
</tr>
</tbody>
</table>

P: placebo; L: liraglutide; RD: regular diet; HFD: high-fat diet; 16, 32, 56: weeks of diet; BW: body weight; FBG: fasting blood glucose; *p<0.001 (BW before treatment vs. initial BW); ** P<0.05 (FBG pre vs. post treatment); ND: Not determined.
Supplemental Table 3: Echocardiography

<table>
<thead>
<tr>
<th>Groups</th>
<th>HR (bpm)</th>
<th>EF (%)</th>
<th>FS (%)</th>
<th>LVIDd (mm)</th>
<th>LVIDs (mm)</th>
<th>IVS (mm)</th>
<th>LVPW (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32RD</td>
<td>548±16</td>
<td>78.4±1.2</td>
<td>41.4±1.2</td>
<td>4.38±0.12</td>
<td>2.57±0.08</td>
<td>0.70±0.02</td>
<td>0.76±0.02</td>
</tr>
<tr>
<td>32HFD Pre-L</td>
<td>612±34</td>
<td>62.6±1.4*</td>
<td>30.3±0.7*</td>
<td>4.07±0.1</td>
<td>2.90±0.08</td>
<td>0.72±0.03</td>
<td>0.83±0.04</td>
</tr>
<tr>
<td>32HFD Post-L</td>
<td>573±18</td>
<td>78.2±3.7#</td>
<td>42.1±1.5#</td>
<td>4.60±0.16</td>
<td>2.67±0.16</td>
<td>0.7±0.02</td>
<td>0.81±0.05</td>
</tr>
</tbody>
</table>

32RD, 32 weeks of regular diet; 32HFD, 32 weeks of high fat diet; L, liraglutide; HR, heart rate; EF, ejection fraction; FS, fractional shortening; LVIDd, left ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in systole; IVS, interventricular septum (thickness); LVPW, left ventricular posterior wall (thickness); 1-way ANOVA: *p<0.05 compared to RD; #p<0.05 vs. HFD post-L by Tukey multiple comparison post-hoc test.

Supplemental Table 4: Primer Sequences used for qRT-PCR:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-MHC</td>
<td>Forward GCCAACCTGGAGAAAGTGTCC</td>
</tr>
<tr>
<td>β-MHC</td>
<td>Forward GAGACGGAGAAGTGACA</td>
</tr>
<tr>
<td>ANP</td>
<td>Forward CCGATAGATCTGCCCTCTTG</td>
</tr>
<tr>
<td>BNP</td>
<td>Forward GGTGCTGTCCCAGATGATT</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Forward AACCTGGTAGTGAGAAGG</td>
</tr>
</tbody>
</table>
SUPPLEMENTAL FIGURE LEGENDS:

Supplemental Figure 1. Cardiac structure was not altered by 16 weeks of HFD; Cardiac GLP-1R levels are not affected by 16 or 32 weeks of HFD or liraglutide; Cardiac ANP levels are increased at 32 weeks of HFD. (A) Heart sections (6 μm) from mice fed RD or HFD for 16 weeks were stained with Masson’s trichrome (collagen is green) to assess levels of fibrosis and cardiomyocyte size. Representative transverse and longitudinal sections are shown. (B) Cardiomyocyte size was calculated by measuring the average cross-sectional surface area of 100 cardiomyocytes per section in 6 sections per animal with 5 animals per treatment group, expressing the result as a percentage of the average cross sectional area of the RD-fed controls (P=NS). (C) Western blot for ANP was performed using left ventricular protein extracts from RD- and HFD-fed mice at 16 and 32 week time points. Western blot for GAPDH was used as a loading control. L: liraglutide; P: placebo. While no different at 16 weeks of HFD (p=NS), cardiac ANP levels were elevated in mice fed HFD for 32 weeks; *p<0.05, N=3/group, unpaired Student’s t-test.

Supplemental Figure 2: Liraglutide increased Akt phosphorylation in lean mice, and increased expression of ER-stress response proteins; Neither obesity nor liraglutide affected XBP1 splicing or mitochondrial proteins; Liraglutide increased expression of an autophagy marker. Treatment with liraglutide (L: 30 μg/kg/bid sc x 1 week) enhanced expression of phosphorylated Akt in hearts of RD-fed mice (A). H&E-stained liver sections from mice fed RD or HFD for 32 weeks revealed significant steatosis (lipid droplets, magnification 200X) (B). No evidence of XBP1 splicing was detected in the liver of these same HFD-fed mice, with no effect of liraglutide. Positive control for XBP1 splicing is mouse islets treated with thapsigargin (Tg) for 1 h (C). Liraglutide enhanced expression of ER associated markers, GRP78/94 and PDI in the hearts of mice on HFD for 16 weeks (D). Neither 32 weeks of HFD nor liraglutide affect the cardiac abundance of mitochondrial related proteins PGC-1alpha, COX-IV and cyto C. Representative Western blots are shown (N=3 animals per group) (E). Treatment with liraglutide (L) increased cardiac expression levels of the autophagy marker LC3B-II in 32HFD-fed obese mice vs. 32RD and placebo (P)-treated 32HFD controls (F); Data are mean±SE; N=3 animals/group; 1-way ANOVA: * p<0.05 vs. RD-P, # p<0.05 vs. HFD-P, by Tukey multiple comparison post-hoc test.

Supplemental Figure 3: A GLP-1 analogue modified human endothelial and monocyte cell interactions. Treatment of TNFα-activated monolayers of HUVEC with GLP-1(7-36) (100 nM) reduced the number of human monocytes that subsequently attach to the endothelial monolayer. The GLP-1R antagonist Ex(9-39) abolished this anti-inflammatory action of GLP-1. Liraglutide (100 nM) also inhibited adhesion of THP-1 cells to TNFα-activated HUVEC. 1-way ANOVA: *p<0.05 vs. TNF-α-treated cells by Tukey multiple comparison post-hoc test.

Supplemental Figure 4: Effects of GLP-1R activation on lipotoxicity models in cardiomyocytes and smooth muscle cells. Mouse neonatal cardiomyocytes were treated with palmitic acid (PA, 250 nM) for 18 h. PA induced cellular swelling and cytoskeletal disintegration (green). Treatment with liraglutide (L, 100 nM) prevented these changes, an effect abolished by the GLP-1R antagonist Ex(9-39) (A). Assessment of apoptosis by Western blot for the active form of caspase-3 confirmed morphologic findings (B). Liraglutide (L, 100 nM) was
also cytoprotective for human coronary SMC exposed to the same dose of PA for 24 h, as demonstrated by morphologic analysis (C) and the XTT cell viability assay (D). 1-way ANOVA: *p<0.001 by Tukey multiple comparison post-hoc test.

Supplemental Figure 5: Putative mechanisms underlying the effects of a GLP-1R agonist in obesity-induced heart disease. Abbreviations: AMPK, AMP-activated protein kinase; Cx-43, connexin-43; eIF2α, eukaryotic translation initiation factor 2α; eNOS, endothelial nitric oxide synthase; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; GLP-1, glucagon-like peptide-1; GRP, Glucose-regulated protein; GSK-3β, glycogen synthase kinase-3beta; LC3-IIb, microtubule-associated protein-1 light chain-3 beta; NFκB p65, p65 subunit of the nuclear-factor kappa B; PDI, disulfide isomerase; pro-Col 1A1, collagen α1-type 1; TNF-α, tumor necrosis factor alpha.
Supplemental Figure 1
Supplemental Figure 2
Supplemental Figure 3
Supplemental Figure 4
Supplemental Figure 5

Treatment with GLP-1 analogue

AMPK

Fibrosis
pro-Col1A1

Inflammation
TNF-α
NFkB p65

Normalized signaling
eNOS
Cx-43
ERK
GSK-3β

Autophagy?
LC3-IIb

Improved ER homeostasis
GRP
PDI
pElF2α

Improved glucose & lipid homeostasis

Cardioprotection