Prevalence and Prognostic Significance of T-Wave Inversions in Right Precordial Leads of a 12-Lead Electrocardiogram in the Middle-Aged Subjects

Running title: Aro et al.; T-wave inversions in general population

Aapo L. Aro, MD1; Olli Anttonen, MD2; Jani T. Tikkanen, BM3; M. Juhani Junntila, MD3; Tuomas Kerola, MD2; Harri A. Rissanen, MSc4; Antti Reunanen, MD4; Heikki V. Huikuri, MD3

1Division of Cardiology, Dept of Med, Helsinki University Central Hospital, Helsinki; 2Dept of Internal Med, Päijät-Häme Central Hospital, Lahti; 3Institute of Clinical Med, Dept of Internal Med, University of Oulu, Oulu; 4National Institute for Health & Welfare, Helsinki, Finland

Correspondence:
Aapo L. Aro, MD
Division of Cardiology, Department of Medicine
Helsinki University Central Hospital
Haartmaninkatu 4, PL 340
00029 HUS, Helsinki, Finland
Tel: 358 9 4711
Fax: 358 9 47174574
E-mail: aapo.aro@helsinki.fi

Abstract:

Background - T-wave inversion in right precordial leads V1-V3 is a relatively common finding in a 12-lead electrocardiogram (ECG) of children and adolescents and is infrequently found also in healthy adults. However, this ECG pattern can also be the first presentation of arrhythmogenic right ventricular cardiomyopathy (ARVC). The prevalence and prognostic significance of T-wave inversions in the middle-aged general population are not well known.

Methods and Results - We evaluated 12-lead ECGs of 10899 Finnish middle-aged subjects (52% males, mean age 44±8.5 years) recorded between 1966 and 1972 for the presence of inverted T-waves and followed the subjects for 30±11 years. Primary endpoints were all-cause mortality, cardiac mortality, and arrhythmic death. T-wave inversions in right precordial leads V1-V3 were present in 54 (0.5%) of the subjects. In addition, 76 (0.7%) of the subjects had inverted T-waves present only in leads other than V1-V3. Right precordial T-wave inversions did not predict increased mortality (NS for all endpoints). However, inverted T-waves in leads other than V1-V3 were associated with an increased risk of cardiac and arrhythmic death (p<0.001 for both).

Conclusions - T-wave inversions in right precordial leads are relatively rare in the general population, and are not associated with adverse outcome. Increased mortality risk associated with inverted T-waves in other leads may reflect the presence of an underlying structural heart disease.

Key words: cardiomyopathy, electrocardiography, epidemiology, mortality, T-wave inversion
T-wave inversion in right precordial leads V1-V3 of a 12-lead electrocardiogram (ECG) is a common finding in children and adolescents, but this electrocardiographic pattern is also present in 0.1% to 3% of apparently healthy adults. However, inverted T-waves may mimic abnormalities in ventricular repolarization observed in patients with structural heart disease such as arrhythmogenic right ventricular cardiomyopathy (ARVC), which can be responsible of ventricular arrhythmias and even sudden cardiac death. In ARVC, right precordial T-wave inversions are present in 16% to 85% of patients. The use of electrocardiographic depolarization and repolarization criteria plays a large role in establishing the diagnosis of ARVC, and in the recent guidelines for the clinical diagnosis of the disease, T-wave inversion in the right precordial leads (V1, V2, and V3) or beyond was upgraded to a major criterion.

There have been several studies on the prevalence and clinical significance of T-wave inversions in young athletes, but the frequency and long-term clinical significance of inverted T-waves in the general population is unknown. Therefore, in the present study, we evaluated the prevalence and characteristics of right precordial T-wave inversions and other repolarization abnormalities in a large middle-aged general population, and assessed the clinical outcome associated with these changes.

Methods

Study population

The study population comprises of a total of 10957 men and women aged 30 – 59 years, who participated in the Finnish Social Insurance Institution’s Coronary Heart Disease Study (CHD Study) between 1966 and 1972. We excluded 58 subjects with unreadable or missing electrocardiograms, thus our final study group consisted of 10899 subjects (52% of whom were
men, mean age 44.0 ± 8.5 years) from the original cohort. The CHD Study was a part of the larger prospective Mobile Clinic Health Survey that was carried out in 35 populations from different geographical areas in Finland with varying mortality rates representing the middle-aged Finnish population. The population groups consisted of either the whole population or a random sample of the population of a geographical area, and the overall participation rate of the invited population was 89.6%. A detailed account of the study rational and procedures performed at the baseline examination has been described previously 14. Briefly, a standard 12-lead electrocardiogram (ECG) was recorded and blood pressure, body-mass index and serum cholesterol were measured. Before the examination, the subjects completed a questionnaire regarding their history of previous diseases, drug therapy and smoking habits, which was then checked and completed, if necessary, by a specially trained nurse at the examination. All symptoms of cardiovascular disease were documented during the examination.

Follow-up

From the baseline examination between 1966 and 1972, the subjects were followed for a mean of 30 ± 11 years until the end of 2007. After a median follow-up time of six years, a re-examination of most of the subjects was carried out between 1973 and 1976. Less than 2% of the subjects were lost to follow-up as a result of moving abroad, but for the vast majority of even this group the survival status could be determined. The mortality data was obtained from the Causes of Death Register maintained by Statistics Finland, and the death certificates were obtained for each deceased. Death from cardiac causes was determined based on the relevant International Classification of Diseases (ICD) codes. To identify cases of sudden death from arrhythmia, all deaths from cardiac causes were reviewed using hospital records and necropsy reports, if available, based on the definitions presented in the Cardiac Arrhythmic Pilot Study 15,
as described by our group previously. All episodes of congestive heart failure, ventricular arrhythmias and coronary artery disease serious enough requiring hospitalization were obtained from the Finnish Hospital Discharge Register, which includes nationwide data on all inpatient episodes in Finland at an individual level.

Electrocardiographic measurement

A standard 12-lead ECG was recorded with the subject at rest in a supine position at paper speed of 50mm per second and calibration of 1 mV per 10 mm. The presence or absence of bundle branch block and left ventricular hypertrophy (LVH) according to the Sokolow-Lyon criteria was assessed and QT-interval (corrected for heart rate according to Bazett’s formula) was measured at the time of baseline examinations. Later, all baseline ECGs were independently re-evaluated by five physicians for the presence of inverted T-waves (T-wave negative by 0.1 mV or more in leads other than aVR, aVL, III and V1). In addition, QRS duration, ST-segment elevation in leads V1 - V3 and terminal activation duration (TAD; longest value in leads V1 through V3 from the nadir of the S wave to the end of all depolarization) were measured. All ECGs with inverted T-waves in leads V1 through V3 were double-checked, and the presence of T-wave inversions and epsilon waves was established by consensus. Epsilon wave was defined as a distinct deflection after the end of the QRS complex. For the majority of subjects, an additional ECG was taken after a median of six years from the baseline examination, and the persistence of precordial T-wave inversions was assessed.

Statistical analysis

All continuous data are presented as means ± SD. The general linear model was used to compare the age- and sex-adjusted mean values for continuous variables and the prevalence of categorical variables between the groups. Primary endpoints were all-cause mortality, cardiac mortality and
arrhythmic death, and secondary endpoints were hospitalization due to congestive heart failure, ventricular arrhythmias or coronary artery disease. The hazard ratios and 95% confidence intervals for death and hospitalization were calculated using Cox proportional hazards model, with adjustments for age and sex, subjects without T-wave inversions serving as the reference group. Kaplan-Meier survival curves were plotted for T-wave inversions in leads V₁ - V₃ and other leads, and were compared by means of the log-rank test. The statistical analyses were performed with SAS software, version 9.1.3 (SAS Institute) and with the Statistical Package for Social Studies, version 14.0 (SPSS). P value of less than 0.05 was considered to indicate statistical significance.

Results

Electrocardiographic characteristics
Inverted T-waves in right precordial leads V₁-V₃ were observed in 54 (0.5%) of the subjects. In 14 (26%) of these individuals only minor (<0.2 mV) right precordial T-wave inversions were present, and in 36 (67%) individuals T-wave amplitude was between -0.2 mV and -0.4mV. Only two subjects had deep negative T-waves between -0.5mV and -0.9mV, and giant negative T-waves with amplitude of -1.0 mV or less were present in two subjects. ST-segment was elevated at least 1mm at QRS-ST junction (J-point) in right precordial leads in 9 (17%) of the subjects with T-wave inversion in these leads. In 32 (59%) individuals with right precordial T-wave inversion, inverted T-waves were present also in lead V₄ or beyond. Examples of ECGs with inverted T-waves in V₁-V₃ only, and with T-wave inversions in leads other than V₁-3 are presented in Figures 1 and 2, respectively. More examples of T-wave inversions are presented as Supplement Data (Supplemental Figures 1-4).
Only one subject with T-wave inversions in leads V₁-V₃ had prolonged TAD ≥ 55ms, and he was the only one having a duration of QRS complex over 110ms in the right precordial leads. The same subject was also the only one with an epsilon wave (Supplemental Figure 5), and thus fulfilled two major criteria of ARVC according to the new modification of the Task Force Criteria (repolarization abnormality demonstrated by inverted precordial T-waves and depolarization abnormality exhibited by epsilon wave and prolonged TAD), which is sufficient for the diagnosis of the disease ¹¹.

The baseline characteristics of the subjects with inverted T-waves in leads V₁ – V₃ are shown in Table 1. Inverted right precordial T-waves were present in 47 women (0.9% of all women) and 7 men (0.1% of all men) in the study population. These subjects had lower heart rate, but no difference in age, smoking, blood pressure, medication, LVH or cardiovascular disease was observed between the two groups. A second electrocardiographic measurement a median of six years after the baseline visit was available for 52 (96%) of the 54 subjects with right precordial T-wave inversions in the initial ECG. Inverted T-waves were still present in 41 (79%) of the ECGs. Four of these subjects had T-wave inversions only in V₁ - V₂ and 23 had inverted T-waves also in V₄ or beyond.

Overall, 130 subjects (1.2%) had inverted T-waves present in either frontal or precordial ECG leads. 76 of these individuals had T-wave inversions only in leads other than V₁ – V₃. These subjects were older, had a higher blood pressure and were more likely to have a suspected cardiovascular disease such as hypertension, valve disease or heart insufficiency, or to be on medication than the rest of the population. They also had a longer duration of QRS complex, but no differences in cholesterol levels, BMI, smoking or history of coronary artery disease were present (Table 1).
Complete right bundle branch block (RBBB) was present in 33 (0.3%) of the subjects, and in three subjects with RBBB T-wave inversions continued also beyond V3. Although this represents a minor criterion for the diagnosis of ARVC, all the subjects with bundle branch block or pre-excitation were excluded from further analysis.

Risk of death and hospitalization

During the follow-up (mean follow-up 30 ± 11 years) 6133 subjects (56.5%) died. Death from cardiac causes occurred in 1969 individuals (32.1% of all deaths), and 795 (40.4%) of these were classified as sudden arrhythmic deaths. No additional mortality was associated with right precordial T-wave inversions in V1-V3. In this group, 25 subjects (46%) died during the follow-up. Nine of these deaths were due to cardiac causes and two were classified as sudden arrhythmic deaths. The age and sex adjusted relative risk (RR) of death was 0.95 (95% confidence interval [CI] 0.64-1.41; P=0.81), RR for cardiac mortality 1.18 (95% CI 0.61-2.27; P=0.63), and RR for sudden arrhythmic death 0.76 (95% CI 0.19-3.06; P=0.69) in these subjects when compared with the subjects without T-wave inversions. When the subjects with inverted T-waves also in V4 or beyond (N=32) were considered separately, no difference in cardiac or overall mortality was associated with more widespread precordial inverted T-waves either. Kaplan-Meier curves for all-cause mortality and cardiac mortality in subjects with T-wave inversions are shown in **Figure 3**.

When all subjects with T-wave inversions only in leads other than V1-V3 (N=76) were analysed separately, an increase in mortality was observed. In this group, 59 subjects (78%) died during the follow-up. 31 of these deaths were due to cardiac causes and 14 were classified as sudden arrhythmic deaths. RR for all-cause mortality was 1.65 (95% CI 1.28-2.14; P<0.001), RR for cardiac mortality 2.65 (95% CI 1.86-3.78; P<0.001), and RR for sudden arrhythmic death
3.16 (CI 1.86-5.36; P<0.001) in these subjects. RBBB was not associated with an increased mortality.

During the long follow-up, no excess of episodes of hospitalization due to congestive heart failure, ventricular arrhythmias, or coronary artery disease was observed in subjects with inverted T-waves in V₁-V₃. However, the subjects with inverted T-waves in leads other than V₁-V₃ had an increased risk of hospitalization as a consequence of congestive heart failure (RR 2.19; 95% CI 1.44-3.33; P=0.001) and coronary artery disease (RR 1.70; 95% CI 1.19-2.42; P=0.007).

Discussion

Inverted T-waves in precordial leads beyond V₁ are common in children, but usually these T-waves become upright after pubertal development ¹⁹. However, in some healthy individuals, similar juvenile inverted T-waves persist into adulthood ⁴. Therefore, incidentally observed T-wave change in an asymptomatic subject poses a clinical problem, since T-wave inversions can also be the expression of an underlying cardiac disease capable of causing sudden cardiac death ⁵, ²⁰. The present study is the first to directly address the characteristics and prognosis of T-wave inversions at the population level. Inverted T-waves in right precordial leads V₁ – V₃ were present in 0.5% of the middle-aged population, but additional features suggestive of ARVC such as epsilon wave or prolonged duration of terminal QRS activation in the right precordial leads were extremely rare. The prognosis associated with right precordial T-wave inversion was good and did not differ from the rest of the population. However, inverted T-waves in other leads than V₁-V₃ predicted adverse outcome.

In previous studies, the prevalence of inverted T-waves in precordial leads V₁ – V₃ has varied depending on the subjects studied and the criteria used to define T-wave inversion. This
electrocardiographic pattern is more common in women especially in younger age groups, and appears to be present in 1% to 3% of young adults4,21. However, in an old cohort of 67,375 presumably healthy men, any type of T-wave changes were present in only 0.86% of these individuals, and precordial T-wave inversions represented only a small minority of these changes3. In another study that assessed the prevalence of T-wave inversions in adolescent athletes, T-wave inversions beyond V2 were present in only 0.1% of the subjects over 16 years of age2. In trained athletes, a broad range of abnormal patterns may be present in the 12-lead ECG and mimic electrocardiographic changes seen in structural heart diseases22. However, in a recent study, distinctly abnormal repolarization patterns were found only in 1% of a large population of young athletes, and over third of these subjects had evidence of structural heart disease or developed a cardiomyopathy during follow-up12. In another study of asymptomatic children with T-wave inversion at preparticipation screening, diagnosis of cardiomyopathy was made in only 2.5% of the subjects with abnormal ECG23.

In the present study, the overall prevalence of inverted right precordial T-waves was 0.5% in this 30- to 59-year-old population. This is somewhat lower than what is reported in some previous studies, probably due to exclusion of the youngest age groups, in which juvenile inverted T-waves are more prevalent. In most of the cases, T-waves were only mildly inverted (1 to 3mm), and deeply inverted T-waves (5mm or more) in V\textsubscript{1} – V\textsubscript{3} were present in only 0.03% of the subjects. Only in about 20% of the subjects having T-wave inversions on the initial ECG, inverted T waves were normalized in the control ECG taken a median of six years later. Therefore it seems that this repolarization abnormality is in most cases a constant finding, and not due to e.g. hyperventilation, or transient emotional or other stimuli causing increased sympathetic activity24-26. Especially in trained athletes, inverted T-waves in right precordial
leads are often associated with early repolarization, which is traditionally regarded as a benign electrocardiographic phenomenon. However, only less than 20% of the subjects in our study population with T-wave inversions in V1 – V3 had early repolarization pattern in these leads. An interesting novel finding was also the gender difference in the prevalence of inverted T-waves (0.9% in women and 0.1% in men). The reason for this phenomenon is unclear, but it may be related to different levels of sympathetic activation or female hormones.

Although T-wave inversions in right precordial leads are occasionally found in asymptomatic individuals, they may also imply the presence of a heart disease such as hypertrophic cardiomyopathy, myocardial ischemia, or ARVC. The estimated prevalence of right precordial T-wave inversions in patients with ARVC has been reported to be up to 85% in advanced forms of the disease, the extent of inverted T-waves reflecting the degree of right ventricular involvement. However, in a recent study of newly diagnosed patients with suspected ARVC, inverted T-waves limited to V1 – V3 were present in only 16% of the subjects and 32% of the subjects had right precordial T-wave inversions extending beyond V3.

Abnormalities in repolarization and depolarization observed in a standard 12-lead ECG play a pivotal role in the diagnosis of ARVC. The repolarization abnormalities are early and sensitive markers of the disease, and inverted right precordial T-waves seem to demonstrate the most optimal sensitivity and specificity for identifying these patients. Therefore, in the recently proposed modification of the Task Force Criteria for the clinical diagnosis of ARVC, T-wave inversion in leads V1 – V3 was upgraded as major criteria and T-wave inversion in V1 - V2 or V4 - V6 as minor criteria in the repolarization category. Furthermore, in the presence of complete RBBB, according to these new guidelines, inverted T-waves beyond V3 represent a minor criterion in the repolarization category. In the present population these extensive T-wave
inversions were rare, and were observed only in less than 10% of the subjects with RBBB.

In the category of depolarization abnormalities for diagnosing ARVC, epsilon wave in the right precordial leads is considered a major and prolonged TAD ≥ 55 ms a minor criterion. The prevalence of an epsilon wave ranges between 8% and 33% in ARVC patients. In contrast, an epsilon wave is a rare finding in the general population. In young Korean men, epsilon wave was present in 0.05%. In our study, only one subject had an epsilon wave, and the same subject had also T-waves inverted in right precordial leads thus fulfilling the ECG criteria for the diagnosis of ARVC. The estimated prevalence of ARVC in the general population has been ranging from 1 in 1000 to 1 in 5000. Nevertheless, mutations that may predispose to ARVC are more prevalent in the population, and it has estimated that up to one out of 200 Finns carries such a mutation, suggesting a low penetrance of this mutation. Based on the results of the present study, however, no exact estimations of the prevalence of ARVC phenotype in the Finnish population can be made, because no further diagnostic procedures besides the 12-lead ECG were performed to diagnose the disease. In addition to lack of increased mortality of subjects with T-wave inversions in V1-V3, the hospitalization due to congestive heart failure or ventricular arrhythmias was not more common among these subjects, suggesting that this ECG pattern observed here in middle-aged subjects is probably not an early sign of ARVC.

Although T-wave inversions in V1 – V3 was a benign finding in the present middle-aged population, inverted T-waves in other leads carried over twofold risk of cardiac and sudden arrhythmic death, and predicted hospitalization due to congestive heart failure or coronary artery disease. It is well recognized that T-wave changes can be present in a variety of different circumstances affecting the heart and homeostasis of the body. These conditions include
ischemia, ventricular hypertrophy, cardiomyopathies, myocarditis, certain drugs, electrolyte abnormalities, hyperventilation and sympathetic simulation. Presence of coronary artery disease was rare in the present population, but the diagnosis was based only on past medical history and clinical examination. Besides, echocardiography was not generally available at the time of baseline examination and therefore some of the subjects with inverted T-waves might have had a structural cardiac disease not evident during the clinical examination, but yet caused repolarization abnormalities in their 12-lead ECGs. Another limitation of the present study is the relatively small number of subjects with right precordial T-wave inversions, which precludes definitive conclusions on the prognostic significance of this ECG pattern.

In summary, right precordial T-wave inversion in leads V₁ – V₃ is a relatively rare finding in the middle-aged general population, especially in men. Although this electrocardiographic pattern can raise a suspicion of a cardiomyopathy, in the absence of deeply inverted T-waves or other features suggestive of heart disease, right precordial T-wave inversions appear to carry normal prognosis in the general population. In contrast, inverted T-waves in other than right precordial leads may imply an underlying cardiac pathology, and are associated with increased cardiac mortality.

Funding Sources: The study was supported by a special federal grant for Päijät-Häme Central Hospital, and by scholarships from Onni and Hilja Tuovinen Foundation, from the Finnish Medical Foundation, and from Sigrid Juselius Foundation (HVH), Helsinki, Finland.

Conflict of Interest Disclosures: None

References:

Table 1. Baseline characteristics of subjects

<table>
<thead>
<tr>
<th></th>
<th>No TWI N=10734</th>
<th>TWI V1-3 N=54</th>
<th>TWI other N=76</th>
<th>P-value TWI V1-3</th>
<th>P-value TWI other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males (%)</td>
<td>52.4</td>
<td>12.9</td>
<td>60.4</td>
<td><0.001</td>
<td>0.17</td>
</tr>
<tr>
<td>Age (years)</td>
<td>44.0 ± 8.5</td>
<td>43.6 ± 8.4</td>
<td>49.3 ± 7.6</td>
<td>0.77</td>
<td><0.001</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>34.0</td>
<td>34.1</td>
<td>39.2</td>
<td>0.98</td>
<td>0.30</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>6.50 ± 1.31</td>
<td>6.56 ± 1.78</td>
<td>6.64 ± 1.77</td>
<td>0.72</td>
<td>0.36</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.9 ± 3.8</td>
<td>26.0 ± 4.4</td>
<td>26.7 ± 4.7</td>
<td>0.94</td>
<td>0.08</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>76 ± 15</td>
<td>69 ± 13</td>
<td>76 ± 17</td>
<td><0.001</td>
<td>0.95</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>138 ± 21</td>
<td>135 ± 22</td>
<td>148 ± 26</td>
<td>0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure</td>
<td>82 ± 12</td>
<td>80 ± 9</td>
<td>87 ± 16</td>
<td>0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Chronotropic medication (%)</td>
<td>4.2</td>
<td>2.3</td>
<td>19.3</td>
<td>0.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Cardiovascular disease (%)</td>
<td>7.9</td>
<td>14.1</td>
<td>30.0</td>
<td>0.08</td>
<td><0.001</td>
</tr>
<tr>
<td>Electrocardiographic LVH (%)</td>
<td>31.4</td>
<td>23.7</td>
<td>39.2</td>
<td>0.22</td>
<td>0.13</td>
</tr>
<tr>
<td>QTc duration (ms)</td>
<td>408 ± 27</td>
<td>408 ± 31</td>
<td>408 ± 35</td>
<td>0.93</td>
<td>0.98</td>
</tr>
<tr>
<td>QRS duration (ms)</td>
<td>87 ± 8</td>
<td>87 ± 6</td>
<td>90 ± 11</td>
<td>0.86</td>
<td><0.001</td>
</tr>
<tr>
<td>History of prior myocardial infarction (%)</td>
<td>1.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.63</td>
<td>0.19</td>
</tr>
<tr>
<td>History of angina pectoris (%)</td>
<td>2.3</td>
<td>0.0</td>
<td>0.6</td>
<td>0.17</td>
<td>0.34</td>
</tr>
</tbody>
</table>

TWI indicates T-wave inversion, and LVH electrocardiographic left ventricular hypertrophy according to the Sokolow-Lyon criteria. QTc denotes QT corrected for heart rate. Subjects with no TWI serve as the comparison group for P-values. To convert the values of cholesterol to milligrams per decilitre, divide by 0.02586.

Plus-minus values are means ± SD.

*Adjusted for age, † Adjusted for sex, ‡ Adjusted for age and sex
Figure Legends:

Figure 1. Electrocardiogram of a 31-year-old female presenting typical mildly inverted T-waves in right precordial leads V1 to V3. She was still alive 40 years later at the end of the survey. Paper speed is 50mm per second.

Figure 2. Electrocardiogram of a 49-year-old male presenting mild T-wave inversions in leads V4-6 only. He died from myocardial infarction during the follow-up. Paper speed is 50mm per second.

Figure 3. Kaplan-Meier survival plots for overall mortality (A) and cardiac mortality (B) in subjects with T-wave inversion in right precordial leads V1 to V3 (TWI V1-V3) and T-wave inversion in leads other than V1 to V3 (TWI other). These subjects are compared by log-rank analysis to those without inverted T-waves (No TWI).
Prevalence and Prognostic Significance of T-Wave Inversions in Right Precordial Leads of a 12-Lead Electrocardiogram in the Middle-Aged Subjects
Aapo L. Aro, Olli Anttonen, Jani T. Tikkanen, M. Juhani Junntila, Tuomas Kerola, Harri A. Rissanen, Antti Reunanen and Heikki V. Huikuri

Circulation. published online May 10, 2012;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2012/04/23/CIRCULATIONAHA.112.098681

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/04/23/CIRCULATIONAHA.112.098681.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Electrocardiogram of a 46-year-old female with mild right precordial T-wave inversions in V1-3 extending into leads V4 to V6. She died of non-cardiac causes at the age of 77.
Figure 2 (Supplement Data).

Electrocardiogram of a 51-year-old male with inverted T-waves in right precordial leads V1 to V3 associated with ST-segment elevation and electrocardiographic left ventricular hypertrophy. He died of non-cardiac causes at the age of 75.
Figure 3 (Supplement Data).

Electrocardiogram of a 44-year-old female with giant inverted T-waves in all precordial leads, electrocardiographic LVH and deep q-waves in inferior leads. She died of myocardial infarction 17 years later.
Electrocardiogram of a 45-year-old male with T-wave inversions in other than right precordial leads V1-3 associated with electrocardiographic LVH and strain. He died of myocardial infarction nine years later.
Figure 5 (Supplement Data).

12-lead ECG of a male subject with inverted T-waves and epsilon wave (arrow) in leads V₁-V₃ thus fulfilling two major criteria of ARVC diagnosis. He also had prolonged TAD ≥ 55ms, and duration of QRS complex over 110ms in the right precordial leads. The subject died of cardiac causes at the age of 67 years.