Enhanced Sarcoplasmic Reticulum Ca\(^{2+}\)-leak and Increased Na\(^{+}\)-Ca\(^{2+}\)-Exchanger Function Underlie Delayed Afterdepolarizations in Patients with Chronic Atrial Fibrillation

Running title: Voigt et al.; Arrhythmogenic Ca\(^{2+}\) signaling in AF patients

Niels Voigt, MD\(^1\); Na Li, PhD\(^1\); Qiongling Wang, PhD\(^4\); Wei Wang, PhD\(^4\); Andrew W. Trafford, PhD\(^5\); Issam Abu-Taha, BSc\(^1\); Qiang Sun, PhD\(^1\); Thomas Wieland, PhD\(^2\); Ursula Ravens, MD\(^3\); Stanley Nattel, MD\(^6\); Xander H.T. Wehrens, MD PhD\(^4\); Dobromir Dobrev, MD\(^1,3\)

\(^1\)Division of Experimental Cardiology, \(^2\)Dept of Experimental & Clinical Pharmacology, Medical Faculty Mannheim, University of Heidelberg, Mannheim; \(^3\)Dept of Pharmacology & Toxicology, Dresden University of Technology, Dresden, Germany; \(^4\)Dept of Molecular Physiology & Biophysics, Dept of Medicine, Baylor College of Medicine, Houston, TX; \(^5\)Unit of Cardiac Physiology, Manchester Academic Health Sciences Centre, Manchester, United Kingdom; \(^6\)Dept of Medicine, Montreal Heart Institute & Université de Montréal, Montreal, Canada

Correspondence:
Dobromir Dobrev, MD
Division of Experimental Cardiology
University of Heidelberg
Theodor-Kutzer-Ufer 1-3
68167 Mannheim, Germany
Tel:+496213834024
Fax:+496213831989;
E-mail:dobromir.dobrev@medma.uni-heidelberg.de

Journal Subject Codes: [132] Arrhythmias-basic studies; [152] Ion channels/membrane transport
Abstract:

Background - Delayed afterdepolarizations (DADs) carried by Na\(^+\)-Ca\(^{2+}\)-exchange current (I\(_{\text{NCX}}\)) in response to sarcoplasmic reticulum (SR) Ca\(^{2+}\)-leak can promote atrial fibrillation (AF). The mechanisms leading to DADs in AF-patients have not been defined.

Methods and Results - Protein levels (Western-blot), membrane-currents and action-potentials (patch-clamp), and [Ca\(^{2+}\)]\(_i\) (Fluo-3) were measured in right-atrial samples from 77 sinus-rhythm (Ctl) and 69 chronic-AF (cAF) patients. Diastolic [Ca\(^{2+}\)]\(_i\) and SR-Ca\(^{2+}\)-content (integrated I\(_{\text{NCX}}\) during caffeine-induced-Ca\(^{2+}\)-transient [cCaT]) were unchanged, whereas diastolic SR Ca\(^{2+}\)-leak, estimated by blocking RyR2 with tetracaine, was ~50% higher in cAF vs. Ctl. Single-channel recordings from atrial RyR2 reconstituted into lipid-bilayers revealed enhanced open-probability in cAF-samples, providing a molecular basis for increased SR Ca\(^{2+}\)-leak. Calmodulin-expression (+60%), CaMKII-autophosphorylation at Thr287 (+40%) and RyR2-phosphorylation at Ser2808 (PKA/CaMKII-site, +236%) and Ser2814 (CaMKII-site, +77%) were increased in cAF. The selective CaMKII-blocker KN-93 decreased SR Ca\(^{2+}\)-leak, the frequency of spontaneous Ca\(^{2+}\)-release events and RyR2 open-probability in cAF, whereas PKA-inhibition with H-89 was ineffective. Knock-in mice with constitutively-phosphorylated RyR2 at Ser2814 showed a higher incidence of Ca\(^{2+}\)-sparks and increased susceptibility to pacing-induced AF vs. controls. The relationship between [Ca\(^{2+}\)]\(_i\), and I\(_{\text{NCX}}\)-density revealed I\(_{\text{NCX}}\)-upregulation in cAF. Spontaneous Ca\(^{2+}\)-release events accompanied by inward I\(_{\text{NCX}}\)-currents and DADs/triggered-activity occurred more often and the sensitivity of resting membrane voltage to elevated [Ca\(^{2+}\)]\(_i\), (diastolic [Ca\(^{2+}\)]\(_i\)–voltage coupling gain) was higher in cAF vs. Ctl.

Conclusions - Enhanced SR Ca\(^{2+}\)-leak through CaMKII-hyperphosphorylated RyR2, in combination with larger I\(_{\text{NCX}}\) for a given SR Ca\(^{2+}\)-release and increased diastolic [Ca\(^{2+}\)]\(_i\)–voltage coupling gain, cause AF-promoting atrial DADs/triggered-activity in cAF patients.

Key words: atrial fibrillation; Na\(^+\)-Ca\(^{2+}\)-exchanger; delayed afterdepolarizations; ryanodine receptor; sarcoplasmic reticulum Ca2+ leak
Atrial fibrillation (AF) induces self-promoting remodeling.1,2 Altered intracellular Ca2+-signaling is a key contributor to the AF-maintaining substrate.3,4 In normal hearts, Ca2+ enters cells through L-type Ca2+-channels (I_{Ca,L}) with each action potential (AP), triggering Ca2+-release from sarcoplasmic reticulum (SR) through type-2 ryanodine-receptor channels (RyR2). During diastole, cytosolic Ca2+ is removed via reuptake through the SR Ca2+-ATPase (Serca; cardiac-form=Serca2a) and transmembrane extrusion through the Na+-Ca2+-exchanger (NCX1).5

Reduced I_{Ca,L} contributes to AF-related AP duration (APD)-shortening, which promotes reentry.1,6-8 Recent evidence points to RyR2 dysfunction and increased SR Ca2+-leak,9,10 providing another arrhythmogenic mechanism.11,12 Hyperphosphorylation increases RyR2-sensitivity to cytosolic Ca2+, making RyR2 more “leaky”.13 RyR2 is hyperphosphorylated at Ser2808/2809 (species-dependent; protein-kinase-A [PKA]- and Ca2+/calmodulin-dependent protein kinase-II [CaMKII]-site)11,14 and Ser2814/2815 (species-dependent; exclusive CaMKII-site)15 in canine and human chronic-AF (cAF) paradigms.10,13,16 CaMKII\(\delta\)-activity is enhanced in clinical13,16 and experimental AF.17,18 CaMKII\(\delta\)-inhibition reduces Ca2+-spark frequency in AF.10

Although it is widely believed that altered Ca2+-signaling predisposes to delayed afterdepolarizations (DADs) and triggered activity in AF-patients, this has not been directly tested, nor have underlying mechanisms, been established in humans. The present study evaluated cardiomyocytes and tissues from right-atrial (RA) samples of sinus-rhythm versus cAF-patients, to establish the mechanisms underlying Ca2+-related DADs with the use of complementary biochemical and biophysical techniques, and to relate Ca2+-handling abnormalities directly to cellular arrhythmogenesis.
Methods
(For details, see Online Data Supplement)

Human Tissue Samples
RA-appendages were dissected from 77 sinus-rhythm (Ctl) patients and 69 cAF-patients (Supplemental Tables 1-2). Experimental protocols were approved by the ethics committees of Dresden University of Technology (EK790799) and Medical Faculty Mannheim, University of Heidelberg (#2011-216N-MA). Each patient gave written informed consent. After excision, atrial appendages were used for either myocyte isolation (41 Ctl, 31 cAF-patients) or snap-frozen in liquid-nitrogen for biochemical/biophysical studies (35 Ctl, 41 cAF-patients).

Human-myocyte Isolation
RA-myocytes isolated using a standard protocol19,20 were suspended in EGTA-free storage solution.

Human-myocyte Intracellular-[Ca2+] Measurement
Intracellular [Ca2+] ([Ca2+]i) was quantified using Fluo-3-acetoxymethyl ester (Fluo-3 AM). In addition, Fluo-3 was included into the electrode solution. Fluorescence was excited at 488 nm and emitted light (<520 nm) converted to [Ca2+]i, assuming

\[[Ca^{2+}]_i = k_d \left(\frac{F}{F_{\text{max}} - F} \right) \]

where \(k_d = \) dissociation constant of Fluo-3 (864-nmol/L), \(F = \) Fluo-3 fluorescence; \(F_{\text{max}} = \) Ca2+-saturated fluorescence obtained at the end of each experiment.21

Patch-clamp
Membrane currents and potentials were measured at 37°C in whole-cell ruptured-patch configuration using voltage-clamp and current-clamp techniques, with simultaneous [Ca2+]i measurement. Membrane capacitances did not differ between groups (cAF: 133.4±10.3 pF,
L-type Ca\(^{2+}\)-current (I\(_{\text{Ca,L}}\))-triggered \([\text{Ca}\(^{2+}\)]\)-transients (CaTs) were recorded simultaneously (Figure 1A). Drugs were applied via a rapid-solution exchange system.

Quantification of Diastolic SR Ca\(^{2+}\)-leak

SR Ca\(^{2+}\)-leak in intact myocytes was measured according to Shannon et al.\(^{22}\)

RyR2 Single-channel Recordings

Single-channel recordings of Ctl and cAF RyR2 were obtained under voltage-clamp conditions as previously described.\(^{23}\)

Intracardiac Electrophysiology and Ca\(^{2+}\)-spark Measurements in S2814D Knock-in Mice

RyR\(^{S2814D}\) knock-in mice (S2814D) were generated as described.\(^{12}\) *In vivo* electrophysiology was performed on S2814D and wildtype (WT) littermates 3-4 months-of-age in presence and absence of KN-93 (10-\(\mu\)mol/kg, i.p.).\(^{24}\) More than 1-second of AF or atrial flutter was considered an atrial arrhythmia episode.\(^{16,25}\) Atrial arrhythmia inducibility was considered positive if at least 2 of 3 pacing trials induced AF or atrial flutter. Ca\(^{2+}\)-sparks were recorded in Fluo-4-AM-loaded mouse atrial myocytes with LSM510 confocal microscope.

Biochemistry

Protein-expression of Ca\(^{2+}\)-handling proteins was quantified by immunoblot.\(^{26}\) The mRNA levels of NCX1 and CaMKII\(\delta\)-isoforms were measured by real-time PCR.

Statistical Analysis

Differences between group means for continuous data were compared by unpaired Student’s *t*-test. Categorical data were analyzed with Fisher’s exact test. Data are mean±SEM. *P*<0.05 was considered statistically significant.
Results

I\textsubscript{Ca,L}-triggered [Ca^{2+}]\textsubscript{i}-transients in RA-myocytes from cAF-Patients

Figure 1A shows simultaneously depolarization-induced I\textsubscript{Ca,L} and CaTs in Fluo-3-loaded myocytes. The peak-I\textsubscript{Ca,L} amplitude was 42% lower in cAF, and the time integral of I\textsubscript{Ca,L} was 22% smaller in cAF vs. Ctl (Figure 1B). Systolic CaT-amplitude was 50% lower and the CaT-decay was 28% slower in cAF vs Ctl, whereas diastolic [Ca^{2+}]\textsubscript{i} tended to be increased (Figure 1C,D). No differences in the coupling-efficiency between Ca2+-influx and Ca2+-release were noted between Ctl and cAF (Figure 1E).

SR Ca2+-Content and NCX-Current

Atrial myocytes were preconditioned for 1-minute by the I\textsubscript{Ca,L}-activation protocol in all subsequent voltage-clamp experiments. Caffeine (10-mmol/L) caused a rapid increase of [Ca^{2+}]\textsubscript{i} as a result of SR Ca2+-release. The subsequent decay of [Ca^{2+}]\textsubscript{i} results from sarcolemmal Ca2+-extrusion, mainly through NCX. This generates a transient-inward current (INCX): INCX amplitude and time course were monitored simultaneously with the CaT (Figure 2A).

The amplitude of caffeine-induced CaT was comparable in Ctl and cAF, suggesting unchanged SR Ca2+-content (Figure 2B). As described previously,27 the time-integral of caffeine-induced I\textsubscript{NCX} is a measure of Ca2+ extruded by NCX and an indicator of SR Ca2+-content. The mean integral (charge-transfer) of I\textsubscript{NCX} was unchanged in cAF-myocytes (Figure 2B), confirming comparable SR Ca2+-contents between groups.

The caffeine-induced CaT decay-rate was accelerated in cAF, suggesting enhanced Ca2+-extrusion via NCX (Figure 2C). In addition, I\textsubscript{NCX}-amplitude was larger in cAF (Figure 2C) and inward I\textsubscript{NCX} for any given [Ca^{2+}]\textsubscript{i} was greater (Figure 2D), indicating enhanced I\textsubscript{NCX}. NCX1-expression was higher in cAF-atria vs. Ctl (Figure 2E), indicating that functional enhancement
may be due to protein up-regulation.

Expression and Phosphorylation of RyR2

Since Ca\(^{2+}\)-content was unchanged, we studied expression and phosphorylation of RyR2 and RyR2-regulatory proteins as a potential source of DAD-generation ([Supplemental Figure 1](#)). Total RyR2 was unchanged, whereas fractional phosphorylation of RyR2 at Ser2814 (CaMKII-site) and Ser2808 (PKA/CaMKII-site) was increased, by 77% and 236%, respectively, in cAF ([Supplemental Figure 1A](#)). Protein-expression of calsequestrin, junctin and triadin, major regulators of RyR2 function, was unchanged ([Supplemental Figure 1B](#)).

Consistent with RyR2-hyperphosphorylation, expression of cytosolic CaMKII\(_C\) increased by 92% in cAF ([Supplemental Figure 2A](#)) and stimulatory autophosphorylation at Thr287 increased by 87%. Fractional autophosphorylation of CaMKII\(_C\) at its inhibitory Thr306/307 site was reduced by 46%. The mRNA levels of the cytosolic (CaMKII\(_C\)) and nuclear (CaMKII\(_B\)) isoforms and the protein levels of CaMKII\(_B\) were unchanged in cAF, suggesting posttranscriptional upregulation of CaMKII\(_C\) ([Supplemental Figure 2A,B](#)). Calmodulin-expression was also increased, by 60% ([Supplemental Figure 2C](#)). In contrast, protein-levels of PKA\(_C\)- and PKA\(_{IIa}\)-subunits were similar ([Supplemental Figure 2D](#)). Overall, these data point to enhanced CaMKII-activity underlying RyR2-hyperphosphorylation and previously-reported increases in Ca\(^{2+}\)-spark incidence.\(^9,10,16\)

Diastolic SR Ca\(^{2+}\)-leak

Increased Ca\(^{2+}\)-spark frequency has been reported in cAF patients,\(^9,10\) but SR Ca\(^{2+}\)-leak estimation with Ca\(^{2+}\)-spark recordings is semi-quantitative because of substantial non-spark SR Ca\(^{2+}\)-release.\(^28,29\) To directly quantify total SR Ca\(^{2+}\)-leak we employed the tetracaine method of Shannon et al.,\(^22\) as illustrated in Figure 3A. Rapid application of tetracaine to voltage-clamped
myocytes perfused with Na\(^+\)- and Ca\(^{2+}\)-free bath solution (to prevent transmembrane fluxes) reflects the magnitude of total SR Ca\(^{2+}\)-leak.\(^{22}\)

The tetracaine-induced Ca\(^{2+}\)-shift was significantly enhanced in cAF-myocytes (Figure 3B). The contributions of CaMKII and PKA to enhanced SR Ca\(^{2+}\)-leak in cAF were assessed in myocytes pretreated for 30 minutes with KN-93 to inhibit CaMKII or H-89 to inhibit PKA. Pretreatment with KN-93, its inactive analogue KN-92 or H-89 did not significantly affect diastolic [Ca\(^{2+}\)]\(_i\), whereas the cAF-related increase in SR Ca\(^{2+}\)-leak was abolished by KN-93, but not by KN-92 or H-89 (Figure 3B). Similar results were obtained when diastolic SR Ca\(^{2+}\)-leak was related to SR Ca\(^{2+}\) content, estimated by caffeine-induced CaT in each myocyte (Figure 3A,C). Moreover, the “leak-load” relationship was leftward-shifted in cAF; this was reversed by KN-93 but not KN-92 (Figure 3D,E), indicating increased CaMKII-mediated SR Ca\(^{2+}\)-leak at any given SR Ca\(^{2+}\)-content.

During decay of I\(_{\text{Ca,L}}\)-induced CaT, cytosolic Ca\(^{2+}\) is extruded by Ca\(^{2+}\)-reuptake into the SR via Serca and into extracellular space via NCX and plasmalemmal Ca\(^{2+}\)-ATPase (PMCA). We estimated the Ca\(^{2+}\) transport-rate of Serca, NCX and PMCA by the rate-constants of exponential curves fitted to I\(_{\text{Ca,L}}\)- and caffeine-evoked CaT decays, as previously described (Supplemental Figure 3).\(^{30}\) Ca\(^{2+}\)-removal mechanisms switched from a predominance of Serca over NCX in Ctl to an equal contribution of Serca and NCX in cAF (Supplemental Figure 3D).

Enhanced Open-Probability (\(P_o\)) of RyR2 in cAF

To compare directly the Ca\(^{2+}\)-sensitivities of RyR2-channels in Ctl vs. cAF, single-RyR2 currents were recorded from RyR2-channels obtained from cAF (42 channel-recordings/10 patients) and Ctl patients (38 channel-recordings/11 patients; Figure 4A,B). Under conditions that mimic diastole (i.e., 150-nmol/L cytosolic [Ca\(^{2+}\)]\(_i\)), cAF-patients exhibited enhanced
opening-frequencies and open-probabilities (Figure 4A,B), and shorter closed-times (Tc: cAF, 827±266 ms vs. Ctl, 3687±930 ms; P<0.05). Open-times were unchanged (To: cAF, 5.82±1.07 ms vs. Ctl, 6.32±0.83 ms). cAF RyR2-channels had left-shifted Ca2+-dependence such that they were activated at resting cytosolic-Ca2+ levels (Figure 4C). The enhanced RyR2 \(P_o \) in cAF provides a molecular correlate for increased SR Ca2+-leak in intact myocytes (Figure 3).

Next, we tested whether CaMKII- and PKA-phosphorylation inhibition reduces RyR2 \(P_o \) in cAF. KN-93 (at 350-nmol/L cytosolic [Ca2+]) did not alter RyR2 \(P_o \) for Ctl-myocytes, but significantly decreased RyR2 \(P_o \) in cAF, whereas KN-92 and the PKA-inhibitors H-89 and PKI were ineffective (Figure 4C-E, Supplemental Figure 4B). These results suggest that the increased SR Ca2+-leak in cAF results from a CaMKII-mediated increase in \(P_o \) of RyR2.

Atrial Myocytes from cAF Patients Display Enhanced Frequency of Spontaneous Ca2+-release Events (SCaEs)

To establish the relationship between NCX and arrhythmogenic SCaEs, we quantified SCaEs and corresponding I\textsubscript{NCX} in the same cells, in which we measured the susceptibility to SCaEs by increasing bath [Ca2+] to 5-mmol/L (Figure 5A). SCaEs were defined as unstimulated [Ca2+]\textsubscript{i} increases following a 1-minute period of I\textsubscript{Ca,L}-triggered CaTs at 0.5-Hz. cAF-myocytes were more susceptible to SCaEs than Ctls (Figure 5B). In myocytes showing SCaEs, SCaE amplitude was ~3-fold higher and the coupling interval between the first SCaE and the last regular I\textsubscript{Ca,L}-triggered CaT was significantly shorter in cAF (Figure 5C). The SCaEs in cAF-myocytes were completely suppressed by 10-μmol/L ryanodine (n=3; not shown), supporting the critical role of dysfunctional RyR2. SCaEs were accompanied by I\textsubscript{NCX} currents, the amplitude of which was ~2.5-fold greater in cAF vs. Ctl (Figure 5C). The [Ca2+]\textsubscript{i}-I\textsubscript{NCX} relationship was comparable in both groups (not shown).
Membrane-voltage Response to SCaEs and DAD-susceptibility

In normal cardiomyocytes, safety factors limit the ability of SCaEs to cause DADs. In cAF, however, besides increased incidence of SCaEs, the same Δ[Ca2+]i generates a larger depolarizing \(I_{\text{NCX}} \) (Figure 2D), pointing to an increase in intracellular \([\text{Ca}^2+]\)–membrane voltage \((V_m) \) coupling gain, enhancing the risk of DADs/triggered activity.

Figure 6A shows representative AP-triggered CaTs in a Ctl- and a cAF-myocyte, respectively. Resting-membrane potential and AP-amplitude did not differ between Ctl and cAF, whereas AP-duration was significantly shorter in cAF (Figure 6B). Diastolic \([\text{Ca}^2+]\)i was nonsignificantly increased, whereas amplitude of the systolic CaT was 48% smaller in cAF vs. Ctl, consistent with the results of \(I_{\text{Ca,L}} \)-triggered CaTs. Figure 7A shows simultaneous \(V_m \) and CaT recordings in current-clamped myocytes immediately after 1-minute period of AP-triggered CaTs at 0.5-Hz. DADs were defined as a SCaE-induced \(V_m \)-change greater than 20-mV, because only DADs of such magnitude cause arrhythmogenic triggered activity in whole hearts. Susceptibility to SCaEs and SCaE-induced DADs were significantly increased in cAF (Figure 7B). Triggered activity in cAF was accompanied by prominent diastolic \(V_m \)-oscillations that appeared as DADs (6/13 myocytes) or triggered APs (2/13 myocytes). In the one Ctl-myocyte showing DADs, triggered APs were also observed. The \(V_m \)-oscillations were likely due to \(I_{\text{NCX}} \)-upregulation, because the NCX-blocker Ni2+ (10-mmol/L) prevented DADs/triggered activity without changing SCaE incidence (n=3, data not shown).

Consistent with Figure 5C, the intrinsic frequency of SCaEs tended to be higher, whereas the coupling interval to the first SCaE tended to be shorter in cAF (Figure 7C). The amplitude of SCaEs was non-significantly larger, whereas the SCaE-induced \(V_m \) change was significantly higher in cAF vs. Ctl (Figure 7D). Diastolic \([\text{Ca}^2+]\)i–\(V_m \) coupling gain, defined as the ratio of
SCaE-induced \(V_m \)-change magnitude to SCaE-amplitude, was 5-fold greater in cAF than in Ctl, indicating that changes in diastolic \([Ca^{2+}]_i \) produce stronger \(V_m \)-depolarizations in cAF vs. Ctl.

Because of possible changes in cytosolic-constituents with tight-seal patch-clamp, we repeated selected experiments with perforated-patch methods. Qualitatively-similar results were obtained for basic AP-properties and CaTs in perforated-patch clamped myocytes (Supplemental Figure 5) compared to tight-seal results (Figure 6). Perforated-patch clamped myocytes also showed similar cAF-related promotion of SCaEs/DADs (Supplemental Figures 6A-C) to tight-seal patched cells (Figure 7A-C), and their Ctl-cAF SCaE/DAD frequency-differential persisted despite PKA-inhibition with H-89, whereas subsequent CaMKII-inhibition with KN-93 normalized the frequency of SCaEs/DADs in cAF to Ctl-levels (Supplemental Figure 6C). Similar trends were observed for SCaE-associated \(V_m \)-change (Supplemental Figure 6D).

S2814D Knock-in Mice Display Enhanced SR Ca\(^{2+}\)-leak and Susceptibility to AF

To determine whether CaMKII-phosphorylation of RyR2 alone can cause SCaEs and AF, we studied a knock-in mouse model in which a constitutive phosphorylation of RyR2 at S2814 is mimicked (S2814D-mice). The Ca\(^{2+}\)-spark frequency (CaSF) was significantly higher in myocytes from homozygous S2814D vs. wildtype (WT) mice (Figure 8A,B). Full-width-half-maximum (FWHM) and full-duration-half-maximum (FDHM) of Ca\(^{2+}\) sparks were increased in S2814D vs. WT, and there was a trend towards increased Ca\(^{2+}\)-spark amplitude (Supplemental Figure 7). SR Ca\(^{2+}\)-content was \(\sim \)25\% lower in S2814D vs. WT (Supplemental Figure 7). KN-93 decreased Ca\(^{2+}\)-spark frequency, but Ca\(^{2+}\)-spark frequency remained significantly higher than in WT, unmasking the specific contribution of S2814 (Figure 8A,B).

S2814D-mice did not develop spontaneous AF. However, following RA-pacing using a catheter inserted via the jugular vein, S2814D-mice were more susceptible to atrial-arrhythmia.
induction, which occurred in 71% of S2814D vs. 17% of WT-mice ($P<0.05$) (**Figure 8C,D**), indicating that SR Ca$^{2+}$-leak via constitutively CaMKII-phosphorylated RyR2 predisposes to AF-induction. To define the specific contribution of the S2814-phosphorylation to AF-inducibility in a separate cohort we injected S2814D-mice with KN-93 (**Figure 8E**). The susceptibility to pacing-induced AF decreased from 70% before to 40% after KN-93, but remained significantly higher than in WT (17%), suggesting the presence of an arrhythmogenic substrate specifically related to the phosphomimetic (S2814D) RyR2-channel (**Figure 8E**).

Discussion

Here, we detailed the Ca$^{2+}$-signaling mechanisms leading to cellular ectopic activity in cAF. cAF-myocytes showed greater SR Ca$^{2+}$-leak for any given SR Ca$^{2+}$-content as a consequence of CaMKII-mediated increase in Po of RyR2. Inhibition of CaMKII normalized RyR2 Po and SR Ca$^{2+}$-leak, suggesting a direct link between defective RyR2 function and enhanced SR Ca$^{2+}$-leak. SCaEs and potentially-arrhythmogenic DADs occurrence was increased in cAF. A given [Ca$^{2+}$], generated greater depolarizing I_{NCX} and a stronger V_m-depolarization in cAF, suggesting increased diastolic [Ca$^{2+}$],-V_m coupling gain as a mechanism of increased ectopic activity in cAF. CaMKII-inhibition reduced the AF-related increase in SCaE-occurrence. Phosphomimetic S2814D-mice showed enhanced SR Ca$^{2+}$-leak and increased susceptibility to pacing-induced AF, validating the direct mechanistic link between CaMKII-phophorylated RyR2 and atrial arrhythmogenesis in clinical AF.

Comparison to Previous Studies

In previous work atrial tissue and myocytes from cAF patients showed abnormal SR Ca$^{2+}$-handling9,10,13,16,26 and increased incidence of Ca$^{2+}$-sparks,9,10 pointing to enhanced SR Ca$^{2+}$-leak,
a well-established contributor to cardiac arrhythmogenesis.11,12 Since SR Ca2+-content was not increased9,10 and RyR2 was hyperphosphorylated at Ser2808 (PKA- and CaMKII-site) and Ser2814 (CaMKII-site),10,13,16 it was assumed that the higher Ca2+-spark frequency results from altered RyR2 function. Consistent with this hypothesis, inhibition of CaMKII, which is enhanced in cAF (see below),16 reduced Ca2+-spark frequency in cAF-myocytes,10 suggesting RyR2-hyperphosphorylation as a major mechanism of increased Ca2+-sparks frequency in cAF. However, the direct contribution of RyR2 to SR Ca2+-leak and the mechanistic link between CaMKII, RyR2 dysfunction and SR Ca2+-leak underlying AF pathogenesis were not addressed.

RyR2-hyperphosphorylation sensitizes RyR2-channels to Ca2+, and here we found increased Ca2+-sensitivity along with enhanced Po of RyR2 in cAF. Increased Po was due to increased frequency of openings, with no change in open time. These data, the first direct demonstration of RyR2 dysfunction in human atrium, suggest RyR2-mediated SR Ca2+-leak in cAF. Indeed, using tetracaine,22 we found a higher total SR Ca2+-leak for any given SR Ca2+-content in cAF. Interestingly, CaMKII-inhibition normalized both the higher Po of RyR2 and the larger SR Ca2+-leak, whereas PKA-inhibition was ineffective. These results further validate the culprit role of CaMKII in RyR2-mediated SR Ca2+-leak.

Continuous SR Ca2+-leak and discontinuous SCaEs are arrhythmogenic because cytosolic Ca2+ activates forward-mode I_{NCX} that may produce DADs.5 Expression of NCX1 is increased in sheep and patients with cAF10,26,34,35 and [Ca2+]$_{\text{I}}$-I_{NCX} coupling gain is increased in cAF sheep,32 although SR Ca2+-leak was not studied in this model. Here we show an increase in [Ca2+]$_{\text{I}}$-I_{NCX} coupling gain in cAF-myocytes, which along with the higher SR Ca2+-leak should increase the propensity for arrhythmogenic DADs/triggered activity.

Although the increased incidence of Ca2+-sparks in cAF-patients was postulated to predispose to
DADs/triggered activity by producing larger depolarizing I_{NCX},9,10 we are not aware of any study demonstrating higher susceptibility to DADs in clinical AF. In this study, we conducted for the first time simultaneous recordings of Ca^{2+} and membrane current or potentials, respectively, in human atrial myocytes. We observed 42% lower $I_{\text{Ca,L}}$ and 23% shorter APD$_{90}$, two hallmarks of atrial remodeling in cAF patients.6,7,36 In addition, we detected 50% and 48% lower amplitudes of $I_{\text{Ca,L}}$- and AP-triggered CaT, respectively, and a tendency of diastolic [Ca$^{2+}$]$_i$ to be higher in cAF than in Ctl, which was consistent with previous results.10 Most important, we found that myocytes from cAF patients have increased SCaE frequency and amplitude, accompanied by greater I_{NCX} currents than Ctls. The magnitude of membrane depolarization due to SCaE-induced I_{NCX} depends not only on the amplitude of SCaEs but also on the latency of the SCaE from the last regular CaT.31 Consistent with the greater leakiness of RyR2 in cAF, the coupling interval to the first SCaE was significantly shorter in cAF vs. Ctl myocytes, suggesting that the intrinsic ability of the Ca$^{2+}$-release mechanism to become refractory after release is impaired in cAF. These findings shed light on the factors that govern the rate of cytosolic SR Ca$^{2+}$-release during SCaEs.

In normal hearts, plasmalemmal safety factors constrain the ability of SCaEs to promote DADs,5 protecting the heart against arrhythmias.31 We demonstrated more frequent burst emergence of SCaEs in cAF, accompanied by V_m-oscillations in the form of DADs and triggered APs. The V_m-oscillations disappeared after NCX-inhibition with Ni$^{2+}$, whereas SCaEs remained unaffected, indicating a cause-effect relationships among SCaEs, NCX and DADs. The size of a DAD depends on at least 2-factors: the latency and amplitude of SCaE and the sensitivity of resting V_m to [Ca$^{2+}$]$_i$; and here we detected a 5-fold increase in [Ca$^{2+}$]$_i$–V_m coupling gain in cAF compared to Ctl. The [Ca$^{2+}$]$_i$–V_m coupling gain is determined by the amplitude of depolarizing
INCX and membrane resistance, set by background conductances like the inward-rectifier potassium current I_{K1}, with enhanced I_{NCX} and/or reduced I_{K1} both promoting DADs. Expression of NCX1, and $[Ca^{2+}]_i$-corrected I_{NCX} amplitude are greater in cAF than Ctl; however, I_{K1} is upregulated in cAF-patients, suggesting that augmented SCaEs and increased I_{NCX}, rather than reduced I_{K1}, accounts for the stronger $[Ca^{2+}]_i$–V_m coupling gain in cAF. In addition, the relative contribution of Serca to Ca^{2+} removal from the cytosol was decreased, whereas the relative contribution of NCX was increased in cAF, suggesting that a larger part of the SR Ca^{2+}-leak and SCaEs is removed by NCX, which might contribute to the increased NCX function in cAF. Further extensive experimentation is needed to dissect the molecular determinants of increased diastolic $[Ca^{2+}]_i$–V_m coupling gain in cAF.

Novel Findings and Potential Significance

Atrial remodeling is a key element of the AF-maintaining substrate and emerging evidence suggests a critical involvement of abnormal subcellular Ca^{2+} signaling. Our study shows existence of RyR2-mediated SR Ca^{2+}-leak and up-regulated NCX in cAF, which predispose to diastolic SCaEs, enhancing the susceptibility to cellular DADs/triggered activity in cAF. Defective RyR2 and up-regulated I_{NCX} likely contribute to atrial arrhythmogenesis *in vivo* by creating an arrhythmogenic substrate and acting as triggers for AF. We suggest that the CaMKII-mediated increase in SR Ca^{2+}-leak in cAF creates an arrhythmogenic substrate by increasing the susceptibility to SCaEs, whereas due to the increase in diastolic $[Ca^{2+}]_i$–V_m coupling gain SCaEs generate a larger I_{NCX} and a given I_{NCX} greater DADs in cAF, providing a trigger for AF.

Here we noted reduced inhibitory Thr306-phosphorylation of CaMKIIδ_C and increased calmodulin expression in cAF vs. Ctl. The mRNA levels of CaMKIIδ_C were unchanged,
suggesting a posttranscriptional mechanism. The increased atrial expression and Thr287-phosphorylation of CaMKIIδC are typical for dogs with atrial tachycardia remodeling and goats with sustained AF, suggesting that the greater CaMKII activity might be a consequence of the high-atrial rate during AF. Atrial dilatation in goats and ventricular tachypacing-induced heart failure in dogs, two frequent causes of cAF, are also associated with increased expression and Thr287 phosphorylation of CaMKIIδC. Thus, it is possible, but not proven, that an increase in CaMKII activity may also be a risk factor for AF, suggesting that CaMKII-activation may be both a cause and consequence of AF. This finding adds to our appreciation of the phenomenon of “AF begets AF”, indicating that in addition to the well-established tendency of AF to promote its own reentrant substrate, it can also enhance spontaneous ectopic activity that induces reentry.

Abnormal Ca²⁺ handling can contribute to atrial arrhythmogenesis through multiple mechanisms. For instance, changes in Ca²⁺-homeostasis modify the function of ion channels and the shape and the dynamics of the AP, creating tissue properties (vulnerable substrate) that may initiate and maintain reentry. SCaEs may cause subcellular Ca²⁺ alternans and abrupt repolarization changes that may increase the dispersion of atrial refractoriness, facilitating reentry. Thus, the Ca²⁺-handling abnormalities we observed may promote AF by mechanisms additional to triggered activity, a notion that merits assessment in future studies.

Potential Limitations

We focused on the role of abnormal subcellular Ca²⁺-signaling for atrial arrhythmogenesis, but these alterations may critically contribute to AF-related atrial hypocontractility and myofilament dysfunction. SCaEs can impair contractile function by causing dyssynchrony of myocyte contraction. The potential link of altered subcellular Ca²⁺-signaling to impaired myocyte-contraction should be a subject of future investigations.
For myocytes isolation, we used only right-atrial tissue collected from only one region (right-atrial appendages). Thus, our findings may not apply fully to other atrial regions. In statistical comparisons, patients may contribute more than one observation to each sub-analysis suggesting that observations are not necessarily independent. Since due to the low sample size within-patient correlations were not taken into account in statistical comparisons, our results should be interpreted with caution.

We used 5-mmol/L extracellular Ca\(^{2+}\) to provoke SCaEs and these conditions test SCaE vulnerability rather than occurrence under normal physiological conditions. However, many AF-patients do not immediately show atrial ectopy or AF-recurrence immediately post-cardioversion, indicating that they likely have a latent predisposition to develop arrhythmia, perhaps related to changes in autonomic tone or other factors. Our results provide, for the first time, insights into the magnitude and dynamics of SCaEs and underlying factors in man, essential information to understand why an increase in SR Ca\(^{2+}\)-leak and SCaE occurrence are potentially arrhythmogenic in cAF-patients.

In the sub-analysis including SCaEs-positive myocytes only, Ca\(^{2+}\)-sensitivity of I\(_{\text{NCX}}\) appeared comparable between Ctl and cAF. However, since Ca\(^{2+}\) is a strong modulator of NCX-function\(^{46}\) and these experiments were primarily carried out at 5-mmol/L extracellular Ca\(^{2+}\) to test SCaE vulnerability, the complex patterns of Ca\(^{2+}\) modulation of NCX under these conditions might have masked the differences in Ca\(^{2+}\)-sensitivity of NCX between Ctl and cAF that we detected using caffeine in unselected atrial myocytes and at physiological extracellular Ca\(^{2+}\). Since our results with caffeine showing increased Ca\(^{2+}\)-sensitivity of I\(_{\text{NCX}}\) were consistent with recent work in sheep with persistent AF,\(^{34}\) increased Ca\(^{2+}\)-sensitivity of I\(_{\text{NCX}}\) might be a typical finding in myocytes during persistent AF.
Previous results from perforated-patch clamped human atrial myocytes showed that Ca2+-waves disappear 10 minutes after patch-break47 and that H-89 reduces the frequency of I\textsubscript{Iti}-currents48, suggesting a role for baseline cAMP-formation and PKA-activation.49,50 Here, we did not detect a contribution of PKA to the increased SR Ca2+-leak in cAF. One reason could be that cAMP was washed out of the myocyte in the ruptured-patch whole-cell configuration. However, we detected a 2-fold increase in cAMP levels in cAF (Supplemental Figure 8E) and found that application of isoprenaline and inhibition of phosphodiesterases with IBMX both increased I\textsubscript{Ca,L} and CaT amplitudes in Ctl and cAF-myocytes, without significant differences in magnitude between the rhythm groups (Supplemental Figures 8-9). Since cAMP/PKA are essential for both signals, washout of cAMP is an unlikely explanation for the lack of any effect of PKA-inhibition in Figures 3-4. In addition, we tested directly the specific contributions of CaMKII and PKA to the enhanced susceptibility to SCaEs and the generation of DADs in perforated-patch clamped myocytes with preserved cAMP levels. We found that enhanced SCaEs/DADs persisted in cAF-myocytes in the presence of PKA-inhibition with H-89, and that subsequent CaMKII-inhibition with KN-93 reduced the frequency of SCaEs/DADs. Perhaps because of the limited number of cells available for these experiments, while these studies all provided results consistent with the more extensive experiments shown elsewhere in the paper, some differences between groups did not achieve formal statistical significance (Supplemental Figures 5-6), which needs to be considered in their interpretation.

Our approach of preincubating the myocytes with H-89 did not allow us to establish baseline SCaE-incidence, preventing an evaluation of the acute effects of PKA inhibition on SCaEs. However, since SCaEs were seen in about 83\% of cAF-myocytes incubated in H-89 (Supplemental Figure 6), PKA-activity is clearly not essential to SCaE expression. A more
systematic approach and much larger number of cells would be needed to determine precisely the role of PKA in SCaE-occurrence under physiological conditions in human atrial myocytes. While interesting and relevant, the required work is beyond the scope of the present study. Furthermore, notwithstanding our finding of a primary role for CaMKII in the RyR2 abnormalities and in the specific AF-related DAD-substrate, cAMP and PKA contribute importantly to determining atrial myocyte Ca\(^{2+}\)-entry and SR Ca\(^{2+}\)-load. Thus, although PKA-phosphorylation may not importantly control intrinsic RyR2 abnormalities, it could certainly contribute to DAD-generation and arrhythmias in AF-patients by enhancing SR Ca\(^{2+}\)-loading and unmasking their vulnerability to DADs/triggered activity.

Finally, transgenic mouse models are useful research tools but they do not phenocopy all important aspects of clinical AF. Nevertheless, they are quite useful because it is difficult to assess directly the specific mechanisms controlling CaMKII and PKA phosphorylation of RyR2 and their consequences in AF patients. Further extensive work in large-animal AF models is required to define the specific contributions of CaMKII and PKA to AF-pathophysiology under conditions similar to those causing AF in man.

Conclusions

Increased diastolic RyR2-mediated SR Ca\(^{2+}\)-leak, together with up-regulated NCX and enhanced diastolic [Ca\(^{2+}\)]\(_{i}\)–V\(_{m}\) coupling gain, predispose to cellular DADs/triggered activity, contributing to pathogenesis of human AF. Recent\(^{16,25}\) and present work validated the mechanistic link between dysfunctional RyR2, along with underlying CaMKII-hyperphosphorylation, and susceptibility to AF, highlighting the importance of molecular RyR2 defects for AF pathobiology. Although the contribution of these cellular Ca\(^{2+}\)-mediated proarrhythmic events to
atrial foci in AF patients in vivo has to be established, development of new drugs specifically targeting diastolic SR Ca2+-leak might open novel therapeutic avenues to prevent atrial arrhythmogenesis by normalizing SR Ca2+-cycling.

Acknowledgments: The authors thank Trautlinde Thurm, Annett Opitz and Claudia Liebetrau for excellent technical assistance and the cardiosurgeons of Dresden and Heidelberg Heart Centers for providing human atrial tissue.

Funding Sources: These studies were supported by the European-North American Atrial Fibrillation Research Alliance (ENAFRA, 07CVD03) and the Alliance for Calmodulin Kinase Signaling in Heart Disease (08CVD01) grants of Fondation Leducq, the European Network for Translational Research in Atrial Fibrillation (EUTRAF, 261057), the German Federal Ministry of Education and Research through the Atrial Fibrillation Competence Network (01Gi0204) and the German Center for Cardiovascular Research, the Canadian Institutes of Health Research (MOP 44365), and NIH grants R01-HL089598 and R01-HL091947. Dr. Wehrens is a W.M. Keck Foundation Distinguished Young Scholar in Medical Research. Dr. Li is the recipient of the Michel Mirowski International Fellowship in Cardiac Pacing and Electrophysiology from the Heart Rhythm Society (2009-2010) and the American Heart Association South Central Fellowship (2010-2012).

Conflict of Interest Disclosures: None

References:

29. Zima AV, Bovo E, Bers DM, Blatter LA. Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. *J Physiol.* 2010;588:4743-4757.

31. Fujiwara K, Tanaka H, Mani H, Nakagami T, Takamatsu T. Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+-Ca2+ exchanger: simultaneous confocal recording of membrane potential and intracellular Ca2+ in the heart. *Circ Res.* 2008;103:509-518.

Figure Legends:

Figure 1. ICa,L-triggered Ca²⁺-transients (CaT) in sinus rhythm (Ctl) and cAF. A, Top: Voltage-clamp protocol (0.5 Hz). Below: Simultaneous recording of ICa,L (middle) and triggered CaT (Fluo-3, bottom) in Ctl (left) and cAF (right) myocytes. B, Mean±SEM Peak-ICa,L (left) and integrated ICa,L (right). C, Mean±SEM diastolic and systolic [Ca²⁺]i (left) and resulting CaT-amplitude (right). D, Mean±SEM time-constant (τ) of decay of ICa,L-triggered CaT. E, Mean±SEM “coupling efficiency” of Ca²⁺-influx and SR Ca²⁺-release. **P<0.01 and ***P<0.001, respectively vs. corresponding means in Ctl. Numbers indicate myocytes/patients.

Figure 2. Caffeine-induced Ca²⁺-transients (cCaT) to assess SR Ca²⁺ content and the corresponding transient inward currents (INCX) in atrial myocytes from Ctl and cAF patients. A, Voltage-clamp protocol to quantify SR Ca²⁺ content (Fluo-3) and corresponding INCX (top), cCaT (middle) and inward NCX current during caffeine (10-mmol/L) application (bottom) following steady-state stimulation for 1-minute at 0.5 Hz in a Ctl (left) and in a cAF (right) myocyte. B, Mean±SEM cCaT-amplitude (left) and integrated inward NCX (right). C, Mean±SEM time constant (τ) of decay of cCaT (left) and Peak-INCX during caffeine (10-mmol/L) application (right). D, INCX as a function of [Ca²⁺], obtained during CaT together with the mean±SEM slope-fit from linear regression obtained from decay phase. E, mRNA and protein levels of NCX1 in Ctl (sinus rhythm) and cAF atria. *P<0.05 vs. corresponding means in Ctl. Numbers indicate myocytes/patients (B, C, D) and tissue samples (E), respectively.
Figure 3. Quantification of diastolic SR Ca\(^{2+}\)-leak with tetracaine in voltage-clamped atrial myocytes from sinus rhythm (Ctl) and cAF patients. A, Experimental protocol for determination of SR Ca\(^{2+}\)-leak (Fluo-3). After steady-state stimulation for 1-minute at 0.5 Hz, the bath solution is rapidly switched to sodium- and calcium-free (0Na\(^{+}\), 0Ca\(^{2+}\)) solution. Tetracaine (1-mmol/L) blocks RyR2, and the shift downward in resting [Ca\(^{2+}\)]\(_i\) is proportional to SR Ca\(^{2+}\)-leak. After at least 30-seconds and tetracaine washout, SR Ca\(^{2+}\)-content is measured with 10-mmol/L caffeine.

B,C, Mean±SEM tetracaine-dependent decrease in resting [Ca\(^{2+}\)]\(_i\) (SR Ca\(^{2+}\)-leak; B) and for SR Ca\(^{2+}\)-leak normalized to SR Ca\(^{2+}\)-content (C) in control myocytes and myocytes pretreated (30-minutes) with the CaMKII-inhibitor KN-93 (1-\(\mu\)mol/L), its inactive analogue KN-92 (1-\(\mu\)mol/L) and the PKA-inhibitor H-89 (1-\(\mu\)mol/L), respectively. *P<0.05 and **P<0.01 vs. corresponding means in Ctl. Numbers within columns indicate myocytes/patients. D,E, SR Ca\(^{2+}\)-leak plotted vs. SR Ca\(^{2+}\)-load. Curves are from exponential regression. *P<0.05 and ***P<0.001, respectively vs. corresponding rate constant in Ctl (F-test).

Figure 4. RyR2 single-channel recordings of sinus rhythm (Ctl) and cAF patients. A, Single-channel tracings were obtained using planar lipid-bilayer recordings of RyR2 channels from sinus rhythm (left) and cAF (right) patients, respectively. Channel openings (o) are shown as upward deflections from the closed (c) level. The measurements were performed at indicated cytosolic (cis) [Ca\(^{2+}\)] levels. The open probability (Po), mean open time (To), and mean closed time (Tc) are shown below each respective tracing. B, Mean±SEM RyR2 Po in Ctl and cAF at increasing cis [Ca\(^{2+}\)]. C-E, Mean±SEM RyR2 Po before and after the CaMKII-inhibitor KN-93 (10-\(\mu\)mol/L, C), its inactive analog KN-92 (10-\(\mu\)mol/L, D) and the PKA-inhibitor H-89 (10-
µmol/L, E) in Ctl and cAF, respectively. *P<0.05, **P<0.01 and ***P<0.001, respectively vs. corresponding control values in cAF. Numbers indicate channels/patients.

Figure 5. Spontaneous SR Ca\(^{2+}\)-release events (SCaEs) with corresponding inward I\(_{\text{NCX}}\) in myocytes from Ctl and cAF patients. A, Voltage-clamp protocol (top) and representative recordings of SCaEs (Fluo-3, middle) and corresponding I\(_{\text{NCX}}\) (bottom) from a Ctl (left) and cAF (right) myocyte, respectively, following steady-state stimulation for 1-minute at 0.5 Hz. B, Susceptibility to SCaEs in Ctl and cAF. *P<0.05 vs. Ctl (Fisher’s exact test). C, Mean±SEM frequency (left), latency (middle), and amplitude (right) of SCaEs in Ctl and cAF. D, Mean±SEM amplitude of SCaE-generated I\(_{\text{NCX}}\). C,D, *P<0.05 and **P<0.01 vs. corresponding means in Ctl. Numbers indicate myocytes/patients.

Figure 6. Simultaneous recordings of membrane voltage (V\(_m\)) and [Ca\(^{2+}\)]\(_i\) in atrial myocytes from Ctl and cAF patients. A, Current-clamp protocol (0.5 Hz, top) together with simultaneous recordings of triggered AP (middle) and CaT (Fluo-3, bottom) in a Ctl (left) and in a cAF (right) myocyte. B, Mean±SEM resting membrane potential, AP amplitude, APD\(_{50}\) and APD\(_{90}\), respectively. C, Mean±SEM diastolic and systolic [Ca\(^{2+}\)]\(_i\) levels (left) and resulting CaT-amplitude (right). *P<0.05 vs. corresponding means in Ctl. Numbers indicate myocytes/patients.

Figure 7. Incidence of SCaEs and corresponding DADs in current-clamped atrial myocytes from Ctl and cAF patients. A, Representative recording of [Ca\(^{2+}\)]\(_i\) (Fluo-3) and corresponding membrane-voltage (V\(_m\)) oscillations (DADs/triggered APs) in a Ctl and a cAF-myocyte, respectively, following steady-state stimulation for 1-minute at 0.5 Hz. B, Enhanced
susceptibility to spontaneous Ca\(^{2+}\)-release events (SCaEs) and SCaE-induced DADs in cAF vs. Ctl. *P<0.05 vs. Ctl (Fisher’s exact test). C, Mean±SEM for frequency (left) and latency (right) of SCaEs. D, Mean±SEM amplitude of SCaEs (top left), magnitude of corresponding V\(_m\)-change (top right), and the calculated [Ca\(^{2+}\)]-membrane voltage coupling gain (bottom). *P<0.05 vs. corresponding means in Ctl. Numbers indicate myocytes/patients.

Figure 8. Increased AF susceptibility and SR Ca\(^{2+}\)-leak in S2814D knock-in mice. A, Representative traces of Ca\(^{2+}\)-spark (Fluo-4) recordings in WT and S2814D myocytes in absence and presence of KN-93 (10-\(\mu\)mol/L). B, Mean±SEM Ca\(^{2+}\)-spark frequency (CaSF). Numbers indicate myocytes from at least 3 mice in each group. *P<0.05 and **P<0.01 vs. WT. C, Surface L1-ECG and intracardiac atrial electrogram showing P-wave absence and irregular RR-intervals in S2814D mice following atrial-burst pacing (right), suggestive of AF. WT-mice typically reverted to sinus rhythm immediately following atrial pacing (left). D,E Bar graphs summarizing the incidence of reproducible AF in WT, S2814D-control mice and S2814D-mice treated with KN-93 (10-\(\mu\)mol/kg, i.p.). Numbers indicate mice.
A

1 min (0.5 Hz, NT) 1 min follow-up (0 Na⁺, 0 Ca²⁺)

<table>
<thead>
<tr>
<th></th>
<th>Sinus Rhythm</th>
<th>Atrial Fibrillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>9/5</td>
<td>10/4</td>
</tr>
<tr>
<td>KN-92 (1 μmol/L)</td>
<td>8/6</td>
<td>9/5</td>
</tr>
<tr>
<td>KN-93 (1 μmol/L)</td>
<td>8/3</td>
<td>11/4</td>
</tr>
<tr>
<td>H-89 (1 μmol/L)</td>
<td>12/5</td>
<td>8/4</td>
</tr>
</tbody>
</table>

SR Ca²⁺ leak (nmol/L)

B

SR Ca²⁺ content dependence of SR Ca²⁺ leak

C

SR Ca²⁺ leak/load (%)

D

SR Ca²⁺ leak (nmol/L) vs. SR Ca²⁺ load (μmol/L)

E

SR Ca²⁺ leak (nmol/L) vs. SR Ca²⁺ load (μmol/L)
Sinus Rhythm

Cis-[Ca²⁺] = 150 nmol/L

\[P_o = 0.006, \ t_o = 2.9 \text{ ms}, \ t_c = 248.8 \text{ ms} \]

Cis-[Ca²⁺] = 350 nmol/L

\[P_o = 0.029, \ t_o = 4.9 \text{ ms}, \ t_c = 121.3 \text{ ms} \]

Cis-[Ca²⁺] = 700 nmol/L

\[P_o = 0.066, \ t_o = 6.6 \text{ ms}, \ t_c = 77.8 \text{ ms} \]

Cis-[Ca²⁺] = 1000 nmol/L

\[P_o = 0.240, \ t_o = 13.4 \text{ ms}, \ t_c = 37.9 \text{ ms} \]

Atrial Fibrillation

Cis-[Ca²⁺] = 150 nmol/L

\[P_o = 0.098, \ t_o = 7.2 \text{ ms}, \ t_c = 64.4 \text{ ms} \]

Cis-[Ca²⁺] = 350 nmol/L

\[P_o = 0.178, \ t_o = 10.3 \text{ ms}, \ t_c = 50.6 \text{ ms} \]

Cis-[Ca²⁺] = 700 nmol/L

\[P_o = 0.351, \ t_o = 21.9 \text{ ms}, \ t_c = 38.1 \text{ ms} \]

Cis-[Ca²⁺] = 1000 nmol/L

\[P_o = 0.743, \ t_o = 30.6 \text{ ms}, \ t_c = 11.8 \text{ ms} \]
A

Sinus Rhythm (Ctl)

- Time: 1 min (0.5 Hz)
- 30 s follow-up

Atrial Fibrillation (cAF)

- Time: 1 min (0.5 Hz)
- 30 s follow-up

B

SCaEs

- No SCaEs
- SCaEs

<table>
<thead>
<tr>
<th>Susceptibility (%) Cells</th>
<th>Ctl (15/5)</th>
<th>cAF (10/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5/3</td>
<td>8/3</td>
</tr>
<tr>
<td>80</td>
<td>10/5</td>
<td>2/2</td>
</tr>
<tr>
<td>60</td>
<td>8/3</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>5/3</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

- Frequency of SCaE (Hz)
 - Ctrl: 5/3
 - cAF: 8/3

- Latency to 1st SCaE (s)
 - Ctrl: 5/3
 - cAF: 8/3

- Δ[Ca²⁺]ᵢ of SCaE (nmol/L)
 - Ctrl: 5/3
 - cAF: 8/3

D

- SCaE induced I_NCX (pA/pF)
 - Ctrl: 5/3
 - cAF: 8/3
A

Sinus Rhythm (Ctl)

Atrial Fibrillation (cAF)

B

SCaEs

DADs

C

Frequency of SCaEs (Hz)

Latency to 1st SCaE (s)

D

$[\text{Ca}^{2+}]_i$-voltage coupling gain

Susceptibility (% cells)

$\Delta[V_M]$ SCaE induced

$\Delta [\text{Ca}^{2+}]_i$ (nmol/L)
Enhanced Sarcoplasmic Reticulum Ca\(^{2+}\)-leak and Increased Na\(^{+}\)-Ca\(^{2+}\)-Exchanger Function Underlie Delayed Afterdepolarizations in Patients with Chronic Atrial Fibrillation

Niels Voigt, Na Li, Qiongling Wang, Wei Wang, Andrew W. Trafford, Issam Abu-Taha, Qiang Sun, Thomas Wieland, Ursula Ravens, Stanley Nattel, Xander H.T. Wehrens and Dobromir Dobrev

Circulation. published online March 28, 2012;

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2012/03/28/CIRCULATIONAHA.111.067306

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2012/03/28/CIRCULATIONAHA.111.067306.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at: http://circ.ahajournals.org/subscriptions/
Voigt-Arrhythmogenic Ca\(^{2+}\) signaling in AF patients

Enhanced Sarcoplasmic Reticulum Ca\(^{2+}\)-Leak and Increased Na\(^{+}\)-Ca\(^{2+}\)-Exchanger Function Underlie Delayed Afterdepolarizations in Patients with Chronic Atrial Fibrillation

Niels Voigt, MD; Na Li, PhD; Qiongling Wang, PhD; Wei Wang, PhD; Andrew W. Trafford, PhD; Issam Abu-Taha, BSc; Qiang Sun, PhD; Thomas Wieland, PhD; Ursula Ravens, MD; Stanley Nattel, MD; Xander HT. Wehrens, MD PhD; Dobromir Dobrev, MD

SUPPLEMENTAL MATERIAL

Methods

Measurement of Intracellular [Ca\(^{2+}\)] and Patch-clamp Experiments

Membrane currents and potentials were measured at 37°C in whole-cell ruptured-patch configuration using voltage-clamp and current-clamp techniques with simultaneous intracellular [Ca\(^{2+}\)] measurement. pClamp-Software (V10.2, Molecular Devices, Sunnyvale, CA) was used for data acquisition and analysis.

Intracellular [Ca\(^{2+}\)] was quantified using Fluo-3-acetoxymethyl ester (Fluo-3 AM; Invitrogen, Carlsbad, CA; 10 µmol/L, 10 min loading and 30 min de-esterification).\(^1\) In addition Fluo-3 was included into the electrode solution containing (in mmol/L): EGTA 0.02, Fluo-3 0.1 (Invitrogen), GTP-Tris 0.1, HEPES 10, K-aspartate 92, KCl 48, Mg-ATP 1, Na\(_2\)-ATP 4; pH=7.2.

Borosilicate glass microelectrodes had tip resistances of 2-5 MΩ when filled with pipette solution. Seal-resistances were 4-8 GΩ. For voltage-clamp experiments series resistance and cell capacitance were compensated.
During experiments myocytes were superfused at 37°C with a bath solution containing (in mmol/L): CaCl₂ 2, glucose 10, HEPES 10, KCl 4, MgCl₂ 1, NaCl 140, probenecid 2; pH=7.4. For voltage-clamp experiments, K⁺ currents were blocked by adding 4-aminopyridine (5 mmol/L) and BaCl₂ (0.1 mmol/L) to the bath solution.

L-type Ca²⁺-current (I_{Ca,L}) and corresponding triggered [Ca²⁺]-transients (CaTs) were recorded simultaneously, using a holding potential of -80 mV and a 100-ms ramp-pulse to -40 mV to inactivate the fast Na⁺-current followed by a 100-ms test-pulse to +10 mV at 0.5 Hz. Action potentials were stimulated at 0.5 Hz using 1 ms current pulses of 1.2x threshold strength. Caffeine (10 mmol/L) was used for quantification of SR Ca²⁺-content.² Isoprenaline (1 µmol/L) and the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine (IBMX, 10 µmol/L) were used to increase cAMP-formation.

Current-Clamp Recordings in Perforated-patch Configuration

In Online-Figures VI and VII the amphotericin-perforated-patch technique was used to avoid dialysis of cytosolic components and concomitant changes in Ca²⁺ handling properties. The composition of the pipette solution was (mmol/L): EGTA 0.02, GTP-Tris 0.1, HEPES 10, K-aspartate 92, KCl 48, Mg-ATP 1, Na₂-ATP 4; pH=7.2. On experiment days amphotericin (Sigma-Aldrich, St. Louis, MO) was added to the pipette solution at a final concentration of 240 µg/mL from a 60 mg/mL DMSO stock solution. Intracellular [Ca²⁺] was quantified using Fluo-3-acetoxymethyl ester (Fluo-3 AM; 10 µmol/L, 10 min loading and 30 min de-esterification).¹ During experiments myocytes were superfused at 37°C with a bath solution containing (in mmol/L): CaCl₂ 2, glucose 10, HEPES 10, KCl 4, MgCl₂ 1, NaCl 140, probenecid 2; pH=7.4. Action potentials were stimulated in current-clamp configuration at 0.5 Hz using 1 ms current pulses of 1.2x threshold strength. No series resistance compensation was employed.
Quantification of Diastolic SR Ca2+ Leak with Tetracaine

SR Ca2+-leak in intact myocytes was measured according to Shannon et al.3 using Na+- and Ca2+-free bath solution (in mmol/L: 4-aminopyridine 5, BaCl\textsubscript{2} 0.1, EGTA 10, glucose 10, HEPES 10, KCl 4, LiCl\textsubscript{2} 140, Mg\textsubscript{2}Cl 1, probenecid 2) and tetracaine (1 mmol/L). KN-93 (1 µmol/L; EMD Chemicals, Gibbstown, NJ) and H-89 (1 µmol/L EMD Chemicals) were used as blockers of CaMKII and PKA, respectively. The inactive KN-93 analogue KN-92 (1 µmol/L; EMD Chemicals) was used as negative control.

RyR2 Single-channel Recordings

Single-channel recordings were obtained under voltage-clamp conditions at 0 mV, as previously described.4 Atrial SR membrane-preparations were incorporated into lipid-bilayer membranes comprised of a mixture of phosphatidylethanolamine and phosphatidylderine at a ratio of 3:1 (Avanti Polar Lipids, Alabaster, AL) dissolved in n-decane (25 mg/ml). Bilayers were formed across a 150 µm aperture of a polystyrene cuvette. The cis and trans chambers correspond to the cytosolic and the luminal sides of the SR, respectively. The trans chamber contained (in mmol/L) HEPES 250, KCl 50 and Ca(OH)\textsubscript{2} 53. The cis chamber contained (in mmol/L) HEPES 250, Tris-base 125, KCl 50, EGTA 1, CaCl\textsubscript{2} 0.5, pH=7.35. Ca2+-activation curves were generated by varying [Ca2+] in the cis compartment. Ryanodine (5 µmol/L) was applied to the cis chamber to confirm identity of RyR2 channels at the end of each experiment. KN-93 (10 µmol/L, EMD Chemicals), KN-92 (10 µmol/L, EMD Chemicals), H-89 (10 µmol/L, Sigma-Aldrich), and PKI (10 µmol/L, EMD Chemicals) were applied to the cis chamber and mixed with the buffer for 5 min before channel tracings were recorded. Data were collected using Digidata 1322A (Molecular Devices, Sunnyvale, CA) and Warner Bilayer Clamp Amplifier BC-535 (Warner Instruments, Hamden, CT) under voltage-clamp conditions. Cytosolic free [Ca2+] was calculated with WinMax32. Data were analyzed
from digitized current recordings using pCLAMP-9.2 software (Molecular Devices). Clampfit-9.2 was used to create amplitude histograms from one representative single-channel trace (10 kHz sampling rate, 0.2 pA bin-width) from a Ctl and a cAF patient, respectively.

Ca²⁺-spark Measurements in Atrial Myocytes From S2814D Knock-in Mice

Animal studies were performed according to protocols approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine. Mouse atrial myocytes were isolated as previously described.⁵ The heart was removed and blood rinsed out with 0-Ca²⁺ Tyrode solution (in mmol/L: NaCl 137, KCl 5.4, MgCl₂ 1, HEPES 5, glucose 10, NaOH 3, pH=7.4). Hearts were cannulated through the aorta and perfused on a Langendorff apparatus with 0-Ca²⁺ Tyrode for 3-5 minutes at 37°C, followed by 0-Ca²⁺ Tyrode solution containing 20 μg/mL Liberase (Roche, Indianapolis, IN) for 10-15 minutes at 37°C. After digestion, hearts were perfused with 5 mL KB solution (in mmol/L: KCl 90, K₂HPO₄ 30, MgSO₄ 5, pyruvic acid 5, β-hydroxybutyric acid 5, creatine 5, taurine, glucose 10, EGTA 0.5, HEPES 5, pH=7.2). Both left and right atrium were minced in KB solution and gently agitated, then filtered through a 210 µm polyethylene mesh. Atrial myocytes were stored in KB solution at room temperature before use.

Only rod-shaped myocytes showing clear striations were studied. Atrial myocytes were loaded with 2 μmol/L Fluo-4-AM (Invitrogen, Carlsbad, CA) in normal Tyrode solution containing 1.8 mmol/L Ca²⁺ for 30 minutes at room temperature. Cells were then washed with dye-free Tyrode solution for 15 minutes for de-esterification and transferred to a chamber equipped with a pair of parallel platinum electrodes. The chamber was placed on a LSM510 confocal microscope (Carl Zeiss, Thornwood, NY). Fluorescence images were recorded in line-scan mode with 1024 pixels per line at 500 Hz. Once steady-state Ca²⁺-transients during 1 Hz-pacing (20 V) were observed, pacing
was stopped for 45 seconds and Ca²⁺ sparks were counted. KN-93 (10 µmol/L, EMD Chemicals) was applied to inhibit CaMKII. Steady-state SR Ca²⁺-content was assessed by rapid application of 10 mmol/L caffeine.

Immunoblot Analysis

The protein levels of calmodulin (1:1000; abcam, Cambridge, UK), total CaMKIIδ (1:200; Santa Cruz Biotechnology, Santa Cruz, CA), Thr287 and Thr306/Thr307 phosphorylated CaMKIIδ (1:5000; Promega, Madison, WI and 1:2500; biomol, Hamburg, Germany, respectively), calsequestrin (CSQ, 1:2500; Dianova, Hamburg, Germany), GAPDH (1:100000; HyTest, Turku, Finland), junctin and triadin (JNC, 1:100; TRD, 1:1000; kind gifts from Dr. Uwe Kirchhefer, Münster, Germany), NCX1 (1:500; Fitzgerald, Concord, MA); catalytic PKA-subunit (PKAc, 1:1000; BD Biosciences, Franklin Lakes, NJ); regulatory PKAII-α-subunit (PKAII-α, 1:500, Santa Cruz Biotechnology), total RyR2 (1:3000, Affinity BioReagents, Golden, CO), Ser2808 and Ser2814 phosphorylated RyR2 (1:3000 and 1:1000, respectively) were quantified by Western blotting as described. The RyR2-Ser2808 and RyR2-Ser2814 phosphoepitope-specific antibodies were custom generated using the peptide C-RTRRI-(pS)-QTSQV corresponding to the PKA phosphorylation site region at Ser2808 on RyR2 and peptide CSQTSQV-(pS)-VD corresponding to CaMKII phosphorylated RyR2 at Ser2814. Appropriate peroxidase-conjugated goat anti-rabbit (Sigma-Aldrich), goat anti-mouse (Sigma-Aldrich) and donkey anti-goat (Santa-Cruz) were used as secondary antibodies and visualized by chemifluorescence (GE Healthcare, Chalfont St. Giles, UK). Quantity One Software (Bio-Rad, Hercules, CA) was used for quantification. Protein expression was normalized to CSQ and GAPDH, respectively, which were unchanged in cAF compared to SR samples.
Reverse Transcription and Quantitative Real-time PCR

Total RNA was isolated from human heart tissue samples using a RNeasy Mini kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. cDNA was synthesized with RevertAid First-Strand cDNA synthesis kit (Fermentas, St. Leon-Rot, Germany). The reaction mix consisted of 10 U/μL of reverse transcriptase, 1 U/μL of RNase inhibitor, 1 mmol/L dNTP, 5 μmol/L random primers, and 0.2 μg RNA in 20 μL total volume. The reaction mixture was incubated at 25°C for 10 min and then at 42°C for 60 min. Finally, the mixture was heated at 70°C for 5 min. Real-time PCR was performed by using 2X Taqman Universal PCR mix (Applied Biosystems, Foster City, CA) with commercial primers (NCX1: Hs01062258_m1; CaMKIIδB: Hs00945363_m1; CaMKIIδC: Hs00949946_m1; HPRT1: Hs01003267_m1; Applied Biosystems, Foster City, CA) on an ABI7500 Fast real-time PCR system for 20 sec at 95°C, followed by 40 cycles for 3 sec at 95°C and 30 sec at 60°C. Relative amount of target gene in each sample was calculated by the PCR system using a series 1:2 dilution of sample pool as standard curve. Mean value of relative amount for each gene was calculated from duplicate measure of each sample and normalization is performed to get ratio of mean value of the target gene to that of housekeeping gene in corresponding sample.

cAMP Assay

The cAMP content of frozen atria was determined as described before.10 In brief, after homogenization of the tissue in the presence of 5% trichloroacetic acid (TCA) and 1 mmol/L 3-isobutyl-1-methylxanthine (IBMX), the insoluble debris pellets were removed by centrifugation at 1,500 x g for 10 min. Thereafter, the remaining TCA was extracted from the supernatant by using water-saturated ether. Twenty-five μl of the supernatant were then used for the competitive cAMP enzyme immunoassay (Cayman Chemical Company, Ann Arbor, MI) according to the manufacturer's recommendations. Protein
concentrations were determined by the bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL) after neutralization of the protein containing debris pellets with 0.1 mol/L NaOH.

Ca²⁺ Transport via SERCA, NCX and Plasmalemmal Ca²⁺ ATPase (PMCA)

During decay of I_{Ca,L}-induced Ca²⁺-transient (CaT) the Ca²⁺ is extruded from the cytosol by Ca²⁺ reuptake into the SR mediated via SR Ca²⁺-ATPase (SERCA) and by Ca²⁺ extrusion into extracellular space via forward-mode Na⁺/Ca²⁺ exchanger (NCX) and plasmalemmal Ca²⁺ ATPase (PMCA). We estimated the relative contribution of these three mechanisms from the rate constants (k) of single exponential curves fitted to decaying parts of the I_{Ca,L} and caffeine-evoked CaTs, as described by Choi and Eisner.¹¹

The decay of I_{Ca,L}-induced CaT (**Online-Figure IIIA and B**) was fitted by an exponential curve:

\[
[Ca^{2+}]_i(t) = ([Ca^{2+}]_{Amplitude} \cdot e^{-k_{syst} \cdot t}) + [Ca^{2+}]_{diast}
\] \tag{1}

where \([Ca^{2+}]_i(t)\), \([Ca^{2+}]_{Amplitude}\) and \([Ca^{2+}]_{diast}\) represent the Ca²⁺ concentration at the timepoint \(t\), the CaT amplitude and the diastolic Ca²⁺ level, respectively. The rate constant of decay \(k_{syst}\) is the reciprocal value of the time-constant of decay (\(\tau, k_{syst} = \frac{1}{\tau}\)) and reflects the rate of combined Ca²⁺ transport by SERCA, NCX and PMCA. Therefore \(k_{syst}\) may be also expressed as the sum of the three separate rate constants:

\[
k_{syst} = k_{SERCA} + k_{NCX} + k_{PMCA}
\] \tag{2}

Application of caffeine leads to rapid depletion of SR Ca²⁺, which is reflected by the caffeine-induced CaT (cCaT, **Online-Figure IIIA and B**):

\[
[Ca^{2+}]_i(t) = ([Ca^{2+}]_{cCaT-Ampl} \cdot e^{-k_{caff} \cdot t}) + [Ca^{2+}]_{diast}
\] \tag{3}

with \(\lbrack Ca^{2+}\rbrack_{cCaT-Ampl}\) representing the amplitude of cCaT and \(k_{caff}\) the rate constant of
decay of cCaT. Since caffeine prevents SR Ca\(^{2+}\) reaccumulation via SERCA (Ca\(^{2+}\) transport by SERCA under caffeine = 0, Ref.), the decay of cCaT depends largely on Ca\(^{2+}\) extrusion via NCX and PMCA:

\[k_{caff} = k_{NCX} + k_{PMCA} \]

(4)

Using this approach the contribution of SERCA to the decay of I\(_{Ca,L}\)-induced CaT can be estimated by subtracting the rate constant of cCaT (4) from the rate constant of I\(_{Ca,L}\)-induced CaT (Formula 2, Online-Figure IIIc):

\[k_{SERCA} = k_{sys} - k_{caff} \]

(5)

For further evaluation of NCX and PMCA transport rates, contribution of NCX was additionally blocked by perfusion with Na\(^{+}\) and Ca\(^{2+}\) free bath solution. Under these conditions the rate constant of cCaTs “\(k_{Na0Ca}\)” reflects the rate of Ca\(^{2+}\) transport by PMCA only (Online-Figure IIIa and B):

\[k_{Na0Ca} = k_{PMCA} \]

(6)

The rate constant of NCX can now be estimated by subtracting \(k_{Na0Ca}\) (6) from \(k_{caff}\) (Online-Figure IIIc):

\[k_{NCX} = k_{caff} - k_{Na0Ca} \]

(7)

Relative contributions (Online-Figure IIIId) were calculated by dividing the rate constant of the respective Ca\(^{2+}\) removal mechanism (\(k_{SERCA}, k_{NCX}, k_{PMCA}\)) by the rate constant of the I\(_{Ca,L}\)-induced CaT (\(k_{sys}\)).
Tables

Online-Table I: Characteristics of patients used for functional studies

<table>
<thead>
<tr>
<th></th>
<th>Ctl</th>
<th>cAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>Gender, m/f</td>
<td>33/8</td>
<td>22/9</td>
</tr>
<tr>
<td>Age, y</td>
<td>69.6±1.5</td>
<td>69.7±1.4</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>27.8±0.6</td>
<td>27.4±0.8</td>
</tr>
<tr>
<td>CAD, n</td>
<td>28</td>
<td>9**</td>
</tr>
<tr>
<td>MVD/AVD, n</td>
<td>7</td>
<td>13*</td>
</tr>
<tr>
<td>CAD+MVD/AVD, n</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Hypertension, n</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>Diabetes, n</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Hyperlipidemia, n</td>
<td>26</td>
<td>15</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>49.3±2.6</td>
<td>48.3±2.5</td>
</tr>
<tr>
<td>Digitalis, n</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>ACE inhibitors, n</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>AT1 blockers, n</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>β-Blockers, n</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>Dihydropyridines, n</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Diuretics, n</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Nitrate, n</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Lipid-lowering drugs, n</td>
<td>25</td>
<td>13</td>
</tr>
</tbody>
</table>

CAD, coronary artery disease; MVD/AVD, mitral/aortic valve disease; LVEF, left ventricular ejection fraction; ACE, angiotensin-converting enzyme; AT, angiotensin receptor.

*P<0.05 and **P<0.01 vs. SR from Fisher’s exact test for categorical variables.
Online-Table II: Characteristics of patients used for biochemistry

<table>
<thead>
<tr>
<th></th>
<th>Ctl</th>
<th>cAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>Gender, m/f</td>
<td>24/11</td>
<td>24/17</td>
</tr>
<tr>
<td>Age, y</td>
<td>66.5±1.7</td>
<td>68.9±1.3</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>29.5±1.0</td>
<td>28.5±0.7</td>
</tr>
<tr>
<td>CAD, n</td>
<td>18</td>
<td>7**</td>
</tr>
<tr>
<td>MVD/AVD, n</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>CAD+MVD/AVD, n</td>
<td>6</td>
<td>17*</td>
</tr>
<tr>
<td>Hypertension, n</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>Diabetes, n</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Hyperlipidemia, n</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>52.3±1.9</td>
<td>47.3±2.5</td>
</tr>
<tr>
<td>Digitalis, n</td>
<td>3</td>
<td>12*</td>
</tr>
<tr>
<td>ACE inhibitors, n</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>AT1 blockers, n</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>β-Blockers, n</td>
<td>21</td>
<td>34*</td>
</tr>
<tr>
<td>Dihydropyridines, n</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Diuretics, n</td>
<td>13</td>
<td>26*</td>
</tr>
<tr>
<td>Nitrates, n</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Lipid-lowering drugs, n</td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

CAD, coronary artery disease; MVD/AVD, mitral/aortic valve disease; LVEF, left ventricular ejection fraction; ACE, angiotensin-converting enzyme; AT, angiotensin receptor.

*P<0.05 and **P<0.01 vs. SR from Fisher’s exact test for categorical variables.
Online-Figures and Figure Legends

A

Protein levels of total, Ser2814 and Ser2808 phosphorylated ryanodine receptor channels (RyR2) and Ser2814/Total.

B

Protein levels of calsequestrin, junctin, and triadin in atria of cAF vs. Ctl patients. *P<0.05 vs. corresponding Ctl.

Online-Figure I. A, Protein levels of total, Ser2814 and Ser2808 phosphorylated ryanodine receptor channels (RyR2) and **B,** Protein levels of calsequestrin, junctin, and triadin in atria of cAF vs. Ctl patients. *P<0.05 vs. corresponding Ctl.*
Online-Figure II. Protein levels and autophosphorylation status of Ca2+/calmodulin-dependent protein-kinase II (CaMKII) at stimulatory (Thr287) and inhibitory (Thr306/Thr307) phosphorylation sites, and of calmodulin, and catalytic and regulatory protein-kinase A isoforms (PKAc and PKAlk, respectively) in atria of cAF vs. Ctl patients. *P<0.05 and **P<0.01 vs. corresponding Ctl.
Voigt-Arrhythmogenic Ca\(^{2+}\) signaling in AF patients

A

\[\frac{[\text{Ca}^{2+}]}{(\mu M)} = k_{\text{syst}} - k_{\text{caff}} \]

B

\[k_{\text{caff}} = k_{\text{NCX}} + k_{\text{PMCA}} \]

\[k_{0\text{Na0Ca}} = k_{\text{PMCA}} \]

C

\[k_{\text{SERCA}} = k_{\text{syst}} - k_{\text{caff}} \]

\[k_{\text{NCX}} = k_{\text{caff}} - k_{0\text{Na0Ca}} \]

D

\[\text{SERCA (p<0.05)} \]

\[\text{NCX (p<0.05)} \]

\[\text{PMCA} \]
Online-Figure III: Estimation of Ca\(^{2+}\) transport rates of SERCA, NCX and PMCA. A, Representative recording to illustrate the experimental protocol used to estimate Ca\(^{2+}\) transport by SERCA, NCX and PMCA. Caffeine (10 mmol/L) application following steady-state stimulation (*) with \(I_{\text{Ca,L}}\) activation at 0.5 Hz (1 minute) resulted in SR Ca\(^{2+}\) depletion reflected by caffeine induced Ca\(^{2+}\) transient (cCaT). After washout the same myocyte was stimulated again at 0.5 Hz with \(I_{\text{Ca,L}}\) activation to regain SR Ca\(^{2+}\) load. Finally, caffeine (10 mmol/L) was applied again while perfusion with Na\(^{+}\)- and Ca\(^{2+}\)- free bath solution to quantify SERCA and NCX independent Ca\(^{2+}\) removal mechanisms, which are suggested to be largely mediated by PMCA. B, Mean±SEM of rate constants of monoexponential curves fitted to the decay of electrically stimulated CaT (\(k_{\text{syst}}\), left panel), caffeine evoked CaT (\(k_{\text{caff}}\), middle panel) and caffeine evoked CaT in absence of Na\(^{+}\) and Ca\(^{2+}\) in the bath solution (\(k_{\text{ONaOCa}}\), right panel). C, Mean±SEM of calculated rate constants of SERCA (\(k_{\text{SERCA}}\)) and NCX (\(k_{\text{NCX}}\)). D, Relative contributions of SERCA, NCX and PMCA to diastolic Ca\(^{2+}\) removal. *P<0.05 vs. corresponding values in Ctl myocytes. Numbers indicate myocytes/patients. For further details see Supplemental methods section.
Online-Figure IV. A, Representative current amplitude histograms of RyR2 single-channel recordings from a Ctl and a cAF patient. B, Mean±SEM for open probability (P_o) of RyR2 before and during perfusion with the PKA-inhibitory peptide PKI (10 µmol/L). Numbers indicate channels/patients.
Online-Figure V. Simultaneous recordings of membrane voltage (V_m) and $\left[\text{Ca}^{2+}\right]_i$ in atrial myocytes from Ctl and cAF patients in perforated-patch configuration after incubation with the PKA-inhibitor H-89 (1 µmol/L; 30 mins).

A, Current-clamp protocol (0.5 Hz, top) together with simultaneous recordings of triggered AP (middle) and CaT (Fluo-3, bottom) in a Ctl (left) and in a cAF (right) myocyte.

B, Mean±SEM resting membrane potential, AP amplitude, APD_{50} and APD_{90}, respectively.

C, Mean±SEM diastolic and systolic $\left[\text{Ca}^{2+}\right]_i$ levels (left) and resulting CaT-amplitude (right). Numbers indicate myocytes/patients.
Online-Figure VI. Incidence of SCaEs and corresponding DADs in atrial myocytes from Ctl and cAF patients in perforated-patch configuration after incubation with the selective PKA-inhibitor H-89 (1 µmol/L, 30 mins). A, Representative recordings of $[\text{Ca}^{2+}]_i$ (Fluo-3) and corresponding membrane-voltage (V_m) oscillations (DADs/triggered APs) in a Ctl and a cAF-myocyte, respectively, following steady-state stimulation for 1-minute at 0.5 Hz. After 1-minute follow-up period the selective CaMKII-inhibitor KN-93 (10 µmol/L) was applied to cAF myocytes. B, Enhanced susceptibility to spontaneous Ca^{2+}-release events (SCaEs) and SCaE-induced DADs in cAF vs. Ctl. C, Mean±SEM for frequency (left) and latency (right) of SCaEs. D, Mean±SEM amplitude of SCaEs (top left), magnitude of corresponding V_m-change (top right), and the calculated $[\text{Ca}^{2+}]_i$-membrane voltage coupling gain (bottom). *P<0.05 vs. corresponding mean in Ctl. Numbers indicate myocytes/patients.
Online-Figure VII. Characteristics of Ca2+ sparks in atrial myocytes from WT and S2814D knock-in mice. Mean±SEM of SR Ca2+ content (F/F0) measured by rapid application of caffeine (10 mmol/L), spark amplitude (F/F0), full-width half-maximum (FWHM) and full-duration half-maximum (FDHM) of Ca2+ sparks in WT myocytes, S2814D myocytes and S2814D myocytes treated with KN-93 (10 μmol/L). Numbers indicate numbers of myocytes.
Online-Figure VIII. Effect of 3-isobutyl-1-methylxanthine (IBMX, 10 μmol/L) on \(I_{Ca,L} \) -triggered \(Ca^{2+} \) transients (CaT) in sinus rhythm (Ctl) and atrial fibrillation (AF). A, Voltage-clamp protocol (0.5 Hz, top) together with simultaneous recordings of \(I_{Ca,L} \) (middle) and triggered CaT (bottom) in atrial myocytes from Ctl (left) and cAF (right) patients before (baseline) and after application of IBMX (1μmol/L). A-D, Corresponding mean±SEM for Peak-\(I_{Ca,L} \) (B, left) and integrated \(I_{Ca,L} \) (B, right), diastolic and systolic \([Ca^{2+}]_i\) levels (C, left), CaT amplitude (C, right) and the time-constant (\(\tau \)) of decay of \(I_{Ca,L} \)-triggered CaT (D). E, Mean±SEM of cAMP levels in right atrial biopsies from sinus rhythm and cAF patients. *P<0.05 and **P<0.01 vs. corresponding mean baseline values and Ctl myocytes, respectively. Numbers indicate myocytes/patients.
Online-Figure IX. Effect of isoprenaline (1 µmol/L) on $I_{\text{Ca,L}}$-triggered Ca$^{2+}$ transients (CaT) in sinus rhythm (Ctl) and atrial fibrillation (AF). A, Voltage-clamp protocol (0.5 Hz, top) together with simultaneous recording of $I_{\text{Ca,L}}$ (middle) and triggered CaT (bottom) in atrial myocytes from Ctl (left) and cAF (right) patients before (baseline) and after application of isoprenaline. A-D, Corresponding mean±SEM for Peak-$I_{\text{Ca,L}}$ (B, left) and integrated $I_{\text{Ca,L}}$ (B, right), diastolic and systolic [Ca$^{2+}$i] levels (C, left), CaT amplitude (C, right) and the time-constant (τ) of decay of $I_{\text{Ca,L}}$-triggered CaT (D). *P<0.05, **P<0.01, ***P<0.001, #P<0.05 and ##P<0.01 vs. corresponding mean baseline values and Ctl myocytes, respectively. Numbers indicate myocytes/patients.
Voigt-Arrhythmogenic Ca2+ signaling in AF patients

References

