Genetics

Meta-Analysis of Genome-Wide Association Studies in >80 000 Subjects Identifies Multiple Loci for C-Reactive Protein Levels

Abbas Dehghan, MD, PhD*; Josée Dupuis, PhD*; Maja Barbalic, PhD*; Joshua C. Bis, PhD*; Gudny Eiriksdottir, MSc*; Chen Lu, MA; Niina Pellikka, BEng; Henri Wallaschofski, MD; Johannes Kettunen, MSc; Peter Henneman, MSc; Jens Baumert, PhD; David P. Strachan, MD; Christian Fuchsberger, PhD; Veronique Vitart, PhD; James F. Wilson, BS, DPhil; Guillaume Paré, MD, MSc; Silvia Naitza, PhD; Megan E. Rudock, PhD; Ida Surakka, BSc; Eco J.C. de Geus, PhD; Behrooz Z. Alizadeh, PhD; Jack Guralnik, MD, PhD; Alan Shuldiner, MD; Yoshi Tanaka, PhD; Robert Y.L. Zee, PhD; Renate B. Schnabel, MD, MSc; Vijay Nambi, MD; Maryam Kavousi, MD, MSc; Samuli Ripatti, PhD; Matthias Nauck, MD; Nicholas L. Smith, PhD; Albert V. Smith, PhD; Jouko Sundvall, PhD; Paul Scheet, PhD; Yongmei Liu, MD, PhD; Julie E. Buring, DSc; Jennifer F. Yamamoto, MA; Aaron R. Folsom, MD, MPH; Eric J.G. Sijbrands, MD, PhD; James Pankow, PhD; Paul Elliott, MBBS, PhD, FMedSci; John F. KeeNEY, MD; Wei Sun, MD, PhD; Antti-Pekka Sarin, BSc; João D. Fontes, MD; Sunita Badola, MSc; Brad C. Astor, PhD, MPH; Albert Hofman, MD, PhD; Anneli Pouta, MD, PhD; Karl Verdan, MD; Karin H. Greiser, MD; Oliver Kuss, PhD; Henriette E. Meyer zu Schwabedissen, MD; Joachim Thiery, MD; Yalda Jamshidi, PhD; Ilja M. Nolte, PhD; Nicole Soranzo, PhD; Timothy D. Spector, MD, MSc, FRCP; Henry Völzke, MD; Alexander N. Parker, PhD; Thor Aspelund, PhD; David Bates, MD, MSc; Lauren Young; Kim Tsui; David S. Siscovick, MD, MPH; Xiuling Guo, PhD; Jerome I. Rotter, MD; Manuela Uda, PhD; David Schlessinger, PhD; Igor Rudan, MD; Andrew A. Hicks, PhD; Brenda W. Penninx, PhD; Barbara Thorand, PhD, MPH; Christian Gieger, PhD, MS; Joe Coresh, MD, PhD; Gonneke Willemse, PhD; Tamara B. Harris, MD, MSc; Andre G. Uitterlinden, PhD; Marjo-Riitta Järvelin, MD, MSc, PhD; Kenneth Rice, PhD; Dörte Radke; Veikko Salomaa, MD, PhD; Ko Willem van Dijk, PhD; Eric Boerwinkle, PhD; Ramachandran S. Vasan, MD; Luigi Ferrucci, MD, PhD; Quince D. Gibson, MBA; Stefania Bandinelli, MD; Harold Snieder, PhD; Dorret I. Boomsma, PhD; Xiangjun Xiao; Harry Campbell, MBChB, MD; Caroline Hayward, PhD; Peter P. Pramstaller, MD; Cornelia M. van Duijn, PhD; Leena Peltonen, MD, PhD†; Bruce M. Psaty, MD, PhD; Vilmundur Gudnason, MD, PhD; Paul M. Ridker, MD, MPH; George Homuth, PhD*; Wolfgang Koening, MD, PhD*; Christie M. Ballantyne, MD*; Jacqueline C.M. Witteman, PhD*; Emelia J. Benjamin, MD, ScM*; Markus Perola, MD, PhD*; Daniel I. Chasman, PhD*

Background—C-reactive protein (CRP) is a heritable marker of chronic inflammation that is strongly associated with cardiovascular disease. We sought to identify genetic variants that are associated with CRP levels.

Methods and Results—We performed a genome-wide association analysis of CRP in 66 185 participants from 15 population-based studies. We sought replication for the genome-wide significant and suggestive loci in a replication

Received February 24, 2010; accepted November 23, 2010.
A list of the institutions and affiliations for the authors of this report may be found in the Acknowledgments at the end of this article.
†Dr Peltonen passed away in March 2010.
*These authors contributed equally to this work.
Guest Editor for this article was Kari E. North, PhD.
The online-only Data Supplement is available with this article at http://circ.ahajournals.org/cgi/content/full/CIRCULATIONAHA.110.948570/DC1.
Correspondence to Jacqueline C.M. Witteman, PhD, Erasmus Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, Netherlands (E-mail j.witteman@erasmusmc.nl) or Daniel I. Chasman, PhD, Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215 (E-mail dchasman@rics.bwh.harvard.edu).
© 2011 American Heart Association, Inc.
Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.110.948570
731
reaktive protein (CRP) is a general marker of systemic inflammation. High CRP levels are associated with increased risks of mortality and major diseases including diabetes mellitus, hypertension, coronary heart disease (CHD), and stroke. The heritability of CRP levels is estimated to be 25% to 40%, suggesting that genetic variation is a major determinant of CRP levels. A genome-wide association (GWA) study in 6345 women found 7 loci associated with CRP levels. These loci were in or close to genes encoding CRP (CRP), leptin receptor (LEPR), interleukin-6 receptor (IL6R), glucokinase regulator (GCKR), hepatic nuclear factor 1-α (HNF1A), apolipoprotein E (APOE), and achaete-scute complex homolog 1 (ASCL1). Findings from other GWA studies did not extend the number of loci related to CRP.

Clinical Perspective on p 738

In this study, we sought to discover additional genes related to CRP levels using GWA scans in 66 185 participants from 15 population-based cohort studies and replicate our findings in 16 540 participants from 10 independent studies. To investigate whether the genetic variants identified interact with nongenetic determinants of CRP such as age, sex, smoking, and body mass index (BMI), we examined gene-environment interactions. Finally, the extent to which the genes associated with circulating CRP levels, individually or jointly, affect the risk of cardiovascular diseases is still unknown. To address this question, we examined the association of genetic variants with myocardial infarction (MI) and CHD.

Methods

Subjects and Measurements

Participants were of European ancestry. All studies had protocols approved by local institutional review boards. Participants provided written informed consent and gave permission to use their DNA for research purposes. Baseline characteristics for all participating studies are presented in Table I in the online-only Data Supplement. Baseline measures of clinical and demographic characteristics were obtained at the time of cohort entry except for British 1958 Birth Cohort (BSBC), the Framingham Heart Study (FHS), Northern Finland Birth Cohort 66 (NFBC66), and the Atherosclerosis Risk in Communities (ARIC) study, in which measures were obtained at the time of phenotype measurement.

GWA Analysis

Genome-wide scans were performed independently in each cohort with the use of various genotyping technologies (Table VII in the online-only Data Supplement). Investigators in each study performed association analysis using the genotype-phenotype data within their cohort. Each study imputed single-nucleotide polymorphisms (SNPs) with reference to HapMap release 22 CEU and provided results for a common set of SNPs for meta-analysis. Except for the FHS, all studies conducted a linear regression analysis adjusted for age (except for NFBC66 and BSBC), sex (except for the Women’s Genome Health Study [WGHS]), and site of recruitment (if necessary) for all SNPs based on an additive genetic model. In the Erasmus Rucphen Family (ERF) study, adjustments for participant ancestry and family-related bias were applied. In the FHS, a linear mixed effects model was employed with the use of the Imlink function of the kinship package in R with a fixed additive effect for the SNP genotype, fixed covariate effects, and random family-specific additive residual polygenic effects. In each study, we estimated the genomic inflation rate, stated as lambda (λ), by comparing each study’s median X2 value to 0.4549, the median X2 for the null distribution (Table I in the online-only Data Supplement). P values for each cohort were adjusted for underlying population structure with the genomic inflation coefficient.

Discovery Panel and Replication Panel

The 15-study discovery panel included 5 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, 4 studies from the European Special Population Network (EUROSPAN), and 6 additional independent studies comprising 66 185 participants. The replication studies included 10 independent studies and 16 540 participants.

Meta-Analysis

To calculate the combined P values and β coefficients, we used an inverse-variance weighted fixed-effects meta-analysis. We used METAL, a software package designed to perform meta-analysis on GWA data sets. We applied an a priori threshold 5.0×10−8 for genome-wide significance. When 1 genome-wide significant SNP clustered at a locus, we took the SNP with the smallest P value as the lead SNP. To investigate the validity of our findings, we sought replication of the lead SNP in genome-wide significant (P<5×10−8) loci and sought additional evidence for suggestive loci (5×10−8<P<10−5) in our replication panel. We ran a fixed-effect meta-analysis to combine the results of the discovery and replication panels. The first GWA study on serum CRP published by Ridker et al was based on part of the WGHS population. To confirm that our findings were not entirely influenced by these previously published results, we performed a meta-analysis excluding the WGHS population.

Examination of Heterogeneity

We examined between-study heterogeneity with Cochran’s Q test. On the basis of Bonferroni adjustment for 18 tests, heterogeneity was
considered significant at a P value $<2.8\times10^{-3}$. We explored the source of heterogeneity for significant SNPs by fitting a covariate (age, gender, BMI, or smoking) in a meta-regression model.

Gene-Environment Interaction

For all genome-wide significant SNPs, we examined gene-by-age, gene-by-sex, gene-by-BMI, and gene-by-smoking interactions in each study by introducing an interaction term into a linear model with age, sex, and the covariate of interest as the independent variables and natural log–transformed CRP as the outcome. A meta-analysis was performed to combine the reported interaction β and P values across studies for each of the top SNPs. On the basis of Bonferroni adjustment for 72 tests (18 SNPs for 4 environmental factors), we used a significance threshold at 6.9×10^{-4}.

Table 1. Association of 17 Genome-Wide Significant Loci With CRP Levels in the Discovery Panel

<table>
<thead>
<tr>
<th>SNP</th>
<th>Band</th>
<th>Significant SNPs</th>
<th>Coded Allele</th>
<th>Allele Frequency</th>
<th>$\beta^* (SE)$</th>
<th>P</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2794520</td>
<td>1q23.2</td>
<td>121</td>
<td>C</td>
<td>0.66</td>
<td>0.193 (0.007)</td>
<td>9.5\times10^{-10}</td>
<td>CRP</td>
</tr>
<tr>
<td>rs4420638</td>
<td>19q13.32</td>
<td>16</td>
<td>A</td>
<td>0.80</td>
<td>0.240 (0.010)</td>
<td>2.1\times10^{-12}</td>
<td>APOC1</td>
</tr>
<tr>
<td>rs1183910</td>
<td>12q24.31</td>
<td>186</td>
<td>G</td>
<td>0.67</td>
<td>0.152 (0.007)</td>
<td>3.3\times10^{-13}</td>
<td>HNF1A</td>
</tr>
<tr>
<td>rs4420065</td>
<td>1p31.3</td>
<td>291</td>
<td>C</td>
<td>0.61</td>
<td>0.111 (0.007)</td>
<td>3.2\times10^{-6}</td>
<td>LEPR</td>
</tr>
<tr>
<td>rs4129267</td>
<td>1q21.3</td>
<td>90</td>
<td>C</td>
<td>0.60</td>
<td>0.094 (0.007)</td>
<td>1.1\times10^{-7}</td>
<td>IL6R</td>
</tr>
<tr>
<td>rs1260326</td>
<td>2q13</td>
<td>54</td>
<td>T</td>
<td>0.41</td>
<td>0.089 (0.007)</td>
<td>5.4\times10^{-5}</td>
<td>GCKR</td>
</tr>
<tr>
<td>rs12239046</td>
<td>1q44</td>
<td>13</td>
<td>G</td>
<td>0.61</td>
<td>0.048 (0.007)</td>
<td>1.6\times10^{-13}</td>
<td>NLRP3</td>
</tr>
<tr>
<td>rs6734238</td>
<td>2p23.3</td>
<td>92</td>
<td>G</td>
<td>0.42</td>
<td>0.047 (0.007)</td>
<td>3.4\times10^{-13}</td>
<td>IFL10</td>
</tr>
<tr>
<td>rs9987289</td>
<td>8p23.1</td>
<td>15</td>
<td>G</td>
<td>0.90</td>
<td>0.079 (0.011)</td>
<td>2.3\times10^{-12}</td>
<td>PPP1R3B</td>
</tr>
<tr>
<td>rs10745954</td>
<td>1q23.2</td>
<td>22</td>
<td>A</td>
<td>0.50</td>
<td>0.043 (0.006)</td>
<td>1.6\times10^{-11}</td>
<td>ASCL1</td>
</tr>
<tr>
<td>rs1800961</td>
<td>19q13.12</td>
<td>1</td>
<td>C</td>
<td>0.95</td>
<td>0.120 (0.018)</td>
<td>2.3\times10^{-11}</td>
<td>HNF4A</td>
</tr>
<tr>
<td>rs340029</td>
<td>15q22.2</td>
<td>25</td>
<td>T</td>
<td>0.62</td>
<td>0.044 (0.007)</td>
<td>2.6\times10^{-11}</td>
<td>RORA</td>
</tr>
<tr>
<td>rs10521222</td>
<td>16q12.1</td>
<td>6</td>
<td>C</td>
<td>0.94</td>
<td>0.110 (0.017)</td>
<td>1.3\times10^{-10}</td>
<td>SALL1</td>
</tr>
<tr>
<td>rs12037222</td>
<td>1p32.4</td>
<td>11</td>
<td>A</td>
<td>0.24</td>
<td>0.047 (0.008)</td>
<td>4.5\times10^{-10}</td>
<td>PABPC4</td>
</tr>
<tr>
<td>rs13233571</td>
<td>7q11.23</td>
<td>7</td>
<td>C</td>
<td>0.86</td>
<td>0.054 (0.010)</td>
<td>2.8\times10^{-8}</td>
<td>BCL7B</td>
</tr>
<tr>
<td>rs2836878</td>
<td>21q22.2</td>
<td>2</td>
<td>G</td>
<td>0.72</td>
<td>0.040 (0.007)</td>
<td>4.0\times10^{-8}</td>
<td>PSMD1</td>
</tr>
<tr>
<td>rs4903031</td>
<td>1q24.2</td>
<td>1</td>
<td>G</td>
<td>0.21</td>
<td>0.046 (0.008)</td>
<td>4.6\times10^{-8}</td>
<td>RGS6</td>
</tr>
</tbody>
</table>

* β coefficient represents 1-unit change in the natural log–transformed CRP (mg/L) per copy increment in the coded allele.

† Median percentage of CRP variance explained by the SNP reported in all participating studies.
Table 3. Association of 3 Suggestive Loci With CRP Levels That Reached Genome-Wide Significance After Combining Discovery and Replication Panel

<table>
<thead>
<tr>
<th>SNP</th>
<th>Coded Allele</th>
<th>Discovery</th>
<th>Replication</th>
<th>Discovery + Replication</th>
<th>P for Heterogeneity</th>
<th>Closest Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>β^* (SE)</td>
<td>β^* (SE)</td>
<td>β^* (SE)</td>
<td>R^2†</td>
<td></td>
</tr>
<tr>
<td>rs2847281 A</td>
<td>0.034 (0.007)</td>
<td>1.7×10^-7</td>
<td>0.018 (0.016)</td>
<td>4.2×10^-2</td>
<td>0.031 (0.006)</td>
<td>2.2×10^-8</td>
</tr>
<tr>
<td>rs6901250 A</td>
<td>0.034 (0.007)</td>
<td>1.2×10^-6</td>
<td>0.038 (0.015)</td>
<td>1.2×10^-2</td>
<td>0.035 (0.006)</td>
<td>4.8×10^-8</td>
</tr>
<tr>
<td>rs4705952 G</td>
<td>0.038 (0.008)</td>
<td>4.1×10^-6</td>
<td>0.065 (0.018)</td>
<td>3.0×10^-4</td>
<td>0.042 (0.007)</td>
<td>1.3×10^-8</td>
</tr>
</tbody>
</table>

* β coefficient represents 1-unit change in the natural log–transformed CRP (mg/L) per copy increment in the coded allele.
† Median percentage of CRP variance explained by the SNP reported in all participating studies.

Genetic Risk Score
To model the cumulative effect of the identified loci, we created a genetic risk score comprising information from the genome-wide significant SNPs. The risk score was computed for each subject by multiplying the number of alleles associated with higher CRP by the β coefficient from the combined meta-analysis and taking the sum over the SNPs. To make the genetic risk score easier to interpret, we rescaled it to range from zero (low CRP level) to 100 (high CRP level).

Association With MI and CHD
The association of the genome-wide significant SNPs and the genetic risk score with clinical events was tested in the ARIC study, the Age, Gene/Environment Susceptibility–Reykjavik (AGES) study, the Cardiovascular Health Study (CHS), the FHS, the Rotterdam Study (RS), and the WGHS with the use of incident cases of MI and CHD (ie, occurring after CRP concentrations were measured). Incident MI included fatal and nonfatal MI. Incident CHD included incident fatal and nonfatal MI, fatal CHD, and sudden death. Each study examined the associations with the use of a Cox proportional hazards model adjusted for age and sex. We subsequently combined these results by performing a meta-analysis.

Results
The basic characteristics of the participating studies are shown in Table I in the online-only Data Supplement. Figure I in the online-only Data Supplement shows the QQ plot ($\lambda=1.09$), and Figure II in the online-only Data Supplement presents the P values for >2.5 million SNPs across 22 autosomal chromosomes. A total of 953 SNPs in 17 loci exceeded the genome-wide significance threshold ($P<5×10^{-8}$) (Table 1). Moreover, we found suggestive signals ($P<10^{-5}$) in 47 loci. Sixty-four lead SNPs including 17 SNPs from the genome-wide significant loci and 47 SNPs from the suggestive loci were chosen for the replication stage (Table II in the online-only Data Supplement). Six SNPs close to CRP, APOC1, HNF1A, LEPR, IL6R, and IL1F10 exceeded the Bonferroni significance level (0.05/64=7.8×10^-4) in the replication stage. In a fixed-effects meta-analysis of the discovery and replication panels, 18 loci showed a genome-wide significant association: 15 loci of the 17 genome-wide significant loci (Table 2) and 3 loci of the 47 suggestive loci (Table 3). In addition to confirming 7 previously reported associations, the genome-wide significant signals marked 11 novel associations within or close to the NLR family, pyrin domain containing 3 (NLRP3), interleukin-1 family, member 10 (IL1F10), protein phosphatase 1, regulatory (inhibitor) subunit 3B (PPPIRB3), hepatocyte nuclear factor 4-alpha (HNF4A), RAR-related orphan receptor A (RORA), Sal-like 1 (SALL1), poly(A) binding protein, cytoplasmic 4 (inducible form) (PABPC4), B-cell chronic lymphocytic leukemia/lymphoma 7B (BCL7B), proteasome assembly chaperone 1 (PSMG1), protein tyrosine phosphatase, nonreceptor type 2 (PTPN2), G protein–coupled receptor, family C, group 6, member A (GPRC6A), and interferon regulatory factor 1 (IRF1). Furthermore, our meta-analysis excluding the WGHS population (Table III in the online-only Data Supplement) confirmed the association of 7 previously known genes, CRP, APOE (APOC1), HNF1A, LEPR, IL6R, GCKR, and ASCL1, with CRP levels (Bonferroni significance level: 0.05/7=7.1×10^-3).

Figure 1 presents the average CRP levels across the genetic risk score in the whole population. Individuals in the highest gene score group had a mean CRP level (4.12 mg/L; 95% confidence interval, 3.98 to 4.26) that was more than double the level observed for individuals in the lowest gene score group (1.40 mg/L; 95% confidence interval, 1.31 to 1.49). The percentage of overall variance in CRP that was explained by the genetic risk score ranged from 1.2% to 10.3% across studies in the discovery and replication panels and was more than 5% in half of the studies.

After adjustment for number of tests, significant heterogeneity was found for rs2794520, rs4420065, rs4129267, rs1260326, and rs10745954 (Tables 2 and 3). Meta-regression was used to explore the source of heterogeneity. Sex was associated with heterogeneity for rs10745954 ($P<2.8×10^{-5}$) (Table VI in the online-only Data Supplement).

All 18 SNPs that showed genome-wide significant results in the combined meta-analyses were studied for interactions...
with age, sex, BMI, and smoking (Table IV in the online-only Data Supplement). After adjustment for the number of tests, we found a significant interaction between BMI and the LEPR SNP rs4420065 \((P<2.9\times10^{-6})\).

We examined the association of the SNPs related to CRP with risk of MI and CHD. These studies comprised 1845 cases of MI and 2947 cases of CHD. Neither the individual SNPs nor the combined genetic risk score showed consistent or genome-wide significant associations with risk of clinical events (Figure 2).

Discussion

Through a meta-analysis of GWA scans from 15 cohort studies comprising 66 185 subjects and a replication sample of 16 540 subjects, we identified 18 loci associated with circulating CRP levels and provided evidence of replication for 8 of them. Our results confirm 7 gene-annotated loci reported by Ridker et al.\(^9\) Furthermore, we introduce 11 novel loci associated with CRP levels, annotating NLRP3, IL1F10, PPP1R3B, HNF4A, RORA, SALL1, PAPBC4, BCL7B, PTPN2, GPRC6A, and IRF1.

A number of these genes including APOC1, HNF1A, LEPR, GCKR, HNF4A, and PTPN2 are directly or indirectly related to metabolic regulatory pathways involved in diabetes mellitus. Mutations in HNF1A are associated with impaired insulin secretion and maturity-onset diabetes mellitus of the young (MODY) type 3.\(^{19}\) HNF4A is part of a complex regulatory network in the liver and pancreas for glucose homeostasis.\(^{20}\) Mutations in the HNF4A gene cause MODY type 1.\(^{21}\) HNF4A is a transcription factor involved in the expression of several liver-specific genes including HNF1A.\(^{21}\) Defects in the expression of GCKR result in deficient insulin secretion.\(^{22}\) PTPN2, which modulates interferon gamma signal transduction at the β cell level,\(^{23}\) was recently identified as a novel susceptibility gene for type 1 diabetes mellitus.\(^{24}\) PTPN2 also is linked to the inflammatory pathway. The nuclear isoform of PTPN2 is a regulator of transcription factor STAT3 in the downstream of interleukin-6 signaling and may affect CRP expression in Hep3B cells.\(^{25}\)

CRP, IL6R, NLRP3, ILF10, and IRF1 are associated with CRP levels at least partly through pathways related to innate and adapted immune response. NLRP3 encodes a member of the NALP3 inflammasome complex.\(^{26}\) The NALP3 inflammasome triggers an innate immune response and can be activated by endogenous “danger signals,” as well as compounds associated with pathogens.\(^{27,28}\) Activated NALP3 inflammasome functions as an activator of nuclear factor-κB signaling. Nuclear factor-κB is a transcription factor that affects CRP expression in Hep3B cells.\(^{29}\)

Our genetic risk score explained \(\approx 5\%\) of the variation in CRP levels, showing that genetic factors are of importance in determining CRP levels. In comparison, BMI as the main nongenetic determinant of CRP was reported to explain 5% to 7% of the variation in CRP levels in AGES\(^{30}\) and up to 15% in FHS.\(^{31}\) Ridker et al reported that 7 SNPs discovered in their study explained 10.1% of the variation in CRP levels after adjustment for age, smoking, BMI, hormone therapy, and menopausal status.\(^{9}\) However, without adjustment for these covariates, \(< 5\%\) of the variation in CRP levels was explained (D. Chasman, PhD, personal written communication, May 2009).

Adipose tissue can induce chronic low-grade inflammation by producing proinflammatory cytokines such as interleukin-6.\(^{32}\) Therefore, we examined whether adiposity modifies the effect of any of the 18 genes on CRP. We found that BMI modifies the strength of the association between LEPR and CRP. This interaction was initially found in WGHS.\(^{33}\)

There is ample evidence that chronic inflammation is involved in atherosclerosis and cardiovascular disease. In this study, we found no association between genetically elevated CRP and risk of CHD. In agreement with our results, Elliott et al reported in a recent study that variations in the CRP gene are not associated with risk of MI and CHD, but they found associations of LEPR, IL6R, and APOCE-CI-CII with CHD. However, the lack of association with clinical events in our study could also be due to lack of power.

Our study has the benefit of a large and homogeneous sample size of 82 725 subjects of European ancestry. This enabled us to find novel genes with small effect on CRP level. Furthermore, this large sample size enabled us to study gene-environment interaction, which hitherto has been less

Figure 2. The forest plots show the meta-analysis of the association of the CRP genetic risk score with MI (A) and CHD (B). The horizontal axis indicates the hazard ratio for MI or CHD per unit increase in the rescaled genetic risk score. ARIC indicates Atherosclerosis Risk in Communities; RS, Rotterdam Study; FHS, Framingham Heart Study; WGHS, Women’s Genome Health Study; AGES, Age, Gene/Environment Susceptibility-Reykjavik; and CHS, Cardiovascular Health Study.
feasible. In contrast to most other studies, we used only incident cases of cardiovascular events from well-defined population-based studies to examine the relation between the identified SNPs and clinical disease. The study has several limitations. Although we identified 18 loci associated with CRP levels, other genetic loci associated with CRP concentrations may still be missed by our study. Six of the genome-wide significant loci from the discovery panel were significant after Bonferroni correction in the replication panel. The other identified loci need replication for confirmation in larger samples. We acknowledge that our genetic risk score is based on our own findings and may be less efficient when used in another population. Finally, we did not fine map the identified loci; we therefore acknowledge that the identified SNPs may be in linkage disequilibrium with non-HapMap variants causally related to CRP levels.

In conclusion, we identified 11 novel loci and confirmed 7 known loci to affect CRP levels. The results highlight immune response and metabolic regulatory pathways involved in the regulation of chronic inflammation, as well as several loci previously unknown to be related to inflammation. Furthermore, LEPR was found to affect CRP differently in the presence of low or high BMI, which may lead to new insights in the mechanisms underlying inflammation.

Acknowledgments

The following is a list of the author affiliations:

From the Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands (A.D., M.K., A.H., C.M.v.D., J.C.M.W.); Member of Netherlands Consortium for Healthy Aging sponsored by Netherlands Genomics Initiative, Leiden, Netherlands (A.D., M.K., A.H., A.G.U., C.M.v.D., J.C.M.W.); Department of Biostatistics, School of Public Health, Boston University, Boston, MA (J.D., C.L.); National Heart, Lung, and Blood Institute and Boston University’s Framingham Heart Study, Framingham, MA (J.D., M.G.L., J.F.Y., J.F.K., J.F.D., R.S.V., E.J.B.); Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center at Houston (M.B., E.B.); Department of Medicine, University of Washington, Seattle (J.C.B.); Icelandic Heart Association, Kópavogur, Iceland (G.E., A.V.S., T.A., V.G.); Unit of Public Health Genomics, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland (N.P., M.P.); Institute of Clinical Chemistry and Laboratory Medicine, University of Greifswald, Greifswald, Germany (H.W., M.N.); Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK (J.K., L.P.); Department of Human Genetics, Leiden University Medical Centre, Leiden, Netherlands (P.H.); Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany (J.B., B.T., C.G.); Division of Community Health Sciences, St. George’s University of London, London, UK (D.P.S.); Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated Institute of University of Lübeck, Lübeck, Germany) (C.F., A.A.H., P.P.P.); Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK (V.V., C.H.); Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK (J.F.W., I.R., H.C.); Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, MA (G.P., N.B.F.); Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy (S.N., M.U.); Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Wake Forest, NC (M.E.R., Y.L.); Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland (I.S., S.R., A. Surin); Department of Biological Psychology, VU University, Amsterdam, Netherlands (E.J.C.d.G., G.W., D.I.B.); Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands (B.Z.A., I.M.N., H.S.); Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD (J.G., L.J.I., T.B.H.); Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore (A. Shuldiner; Q.D.G.); Clinical Research Branch, National Institute on Aging, Baltimore, MD (T.T., L.F.); Medstar Research Institute, Baltimore, MD (T.T.); Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA (R.Y.L.Z., L.M.R., J.E.B., D.B., P.M.R., D.I.C.); Department of Medicine, Johannes Gutenberg University, Mainz, Germany (R.B.S.); Department of Medicine, Baylor College of Medicine and Center for Cardiovascular Prevention, Methodist DeBakey Heart and Vascular Center, Houston, TX (V.N., R.C.H., B.C.A., J.C., C.M.B.); Department of Epidemiology, University of Washington, Seattle (N.L.S.); Seattle Epidemiology Research and Information Center of the Department of Veterans Affairs Office of Research and Development, Seattle, WA (N.L.S.); Unit of Disease Risk, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland (J.S.); Department of Epidemiology, MD Anderson Cancer Center, University of Texas, Houston (P.S., X.X.); Department of Clinical Chemistry, University of Oulu, Oulu, Finland (A.R.); Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (A.T., G.H.); Departments of Pathology and Biochemistry, Cedars-Sinai Medical Center, Los Angeles, CA (B.T., C.G.); Department of Medicine III, Martin Luther University, Halle-Wittenberg, Germany (K.W.); Institute for Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University, Halle-Wittenberg, Germany (K.H.G., O.K.); Division of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany (K.H.G.); Department of Pharmacology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany (H.E.M.Z.S.); Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany (J.T.); Division of Clinical Developmental Sciences, St. George’s University of London, London, UK (Y.J.); Department of Twin Research and Genetic Epidemiology Unit, St Thomas’ Campus, King’s College London, London, UK (Y.J., Wellcome Trust Sanger Institute, Hinxton, UK (N.S.); Department of Twin Research and Genetic Epidemiology Unit, King’s College London, London, UK (T.D.S.); Institute for Community Medicine, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany (H.V., D.R.); University of Iceland, Reykjavik, Iceland (T.A., V.G.); Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle (D.S.S., B.M.P.); Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA (X.G., J.I.R.); Laboratory of Genetics, National Institute on Aging, Baltimore, MD (D.S.); Croatian Centre for Global Health, University of Split Medical School, Split, Croatia (I.R.); Department of Psychiatry/EMGO Institute/Neuroscience Campus, VU University Medical Centre, Amsterdam, Netherlands (B.W.P.); Institute of Health Sciences and Biocenter Oulu, Faculty of Medicine, University of Oulu, Oulu, Finland (M.R.J.); Department of Biostatistics, University of Washington, Seattle (K.R.); Unit of Chronic Disease Epidemiology and Prevention, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland (V.S.); Departments of Internal Medicine and Human
Genetics, Leiden University Medical Centre, Leiden, Netherlands (K.W.v.D.); Preventive Medicine and Cardiology Sections, Department of Medicine, Boston University School of Medicine, Boston, MA (R.S.V., E.J.B.); Geriatric Unit, Azienda Sanitaria Firenze, Florence, Italy (S.B.); Department of Neurology, General Central Hospital, Bolzano, Italy (F.P.P.); Department of Neurology, University of Lübeck, Lübeck, Germany (P.P.P.); Group Health Research Institute, Group Health Cooperative, Seattle, WA (B.M.P.); and Department of Internal Medicine II–Cardiology, University of Ulm Medical Center, Ulm, Germany (W.K.).

See the online-only Data Supplement.

Sources of Funding
See the online-only Data Supplement.

Disclosures
Dr Ridker has received research grant support from Roche, AstraZeneca, and Amgen and is listed as a coinventor on patents held by the Brigham and Women’s Hospital that relate to the use of inflammatory biomarkers in cardiovascular disease and diabetes mellitus.

References
C-reactive protein (CRP) is a heritable marker of chronic inflammation that is strongly associated with cardiovascular disease. Although environmental factors such as obesity, smoking, and hormone therapy influence levels of serum CRP, genes play an important role in determining serum CRP levels. The advent of genome-wide association studies has provided an opportunity to identify previously unsuspected genetic loci that influence complex traits. In this study, we collected data on >80,000 subjects from 25 studies and identified 18 genetic loci that are associated with serum CRP levels. These genetic loci provide valuable insights into the pathways that affect serum levels of CRP. Although further investigations are needed to understand the exact mechanisms, our findings highlight immune response and metabolic regulatory pathways involved in the regulation of chronic inflammation, as well as several loci previously unknown to be related to inflammation. However, these single-nucleotide polymorphisms were not associated with incident myocardial infarction or coronary heart disease, either individually or in combination. A better knowledge of the molecular mechanisms that control serum CRP levels may lead to a deeper understanding of the complex interactions underlying the inflammatory response in cardiovascular disease.
Meta-Analysis of Genome-Wide Association Studies in >80 000 Subjects Identifies Multiple Loci for C-Reactive Protein Levels

Circulation, published online February 7, 2011;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL
Meta-analysis of genome-wide association studies in over 80,000 subjects identifies 11 novel loci for C-reactive protein levels

Table of contents:

Study-specific method sections ... 3

Acknowledgement ... 31

Sources of Funding .. 33

Web Resources .. 49

Supplementary figures ... 50

Supplementary tables ... 62
Study-specific method sections

1. Method section for the discovery panel

The Age, Gene/Environment Susceptibility study (AGES)

The AGES-Reykjavik Study cohort originally comprised a random sample of 30,795 men and women born in 1907-1935 and living in Reykjavik in 1967\(^1\). A total of 19,381 people attended, resulting in a 71% recruitment rate. The study sample was divided into six groups by birth year and birth date within one month. One group was designated for longitudinal follow-up and was examined in all stages. One group was designated a control group and was not included in the examinations until 1991. Other groups were invited to participate in specific stages of the study. Between 2002 and 2006, the AGES-Reykjavik study re-examined 5,764 survivors of the original cohort who had participated before in the Reykjavik Study. Participants came in a fasting state to the clinic. The AGES Reykjavik Study GWAS was approved by the National Bioethics Committee (VSN: 00-063) and the Data Protection Authority.

Genotyping was performed using the Illumina 370CNV BeadChip array on 3,664 participants. Sample exclusion criteria included sample failure, genotype mismatch with reference panel, and sex mismatch, resulting in clean genotype data on 3,218 individuals with CRP level measured. Standard protocols for working with Illumina data were followed with clustering score greater than 0.4. From a total of 353,202 SNPS, 325,094 were used for imputation after exclusion of SNPs with call rate <97%, HWE deviation <1 \(\times 10^{-6} \), mishap (PLINK haplotype-based test for non-random missing genotype data\(^2\)) \(p < 1 \times 10^{-9} \), and mismatched positions between Illumina, dbSNP and/or HapMap.
High sensitivity CRP was measured in serum on a Hitachi 912, using reagents from Roche Diagnostics and following the manufacturer’s instructions. Both within- and between-assay quality control procedures were used and the coefficient of variation of the method was 1.3% to 3.4%, respectively, through the period of data collection. The assay could detect a minimal CRP concentration of 0.1 mg/L and values below this level were classified as undetectable. All participants in this study had detectable CRP levels.

The Atherosclerosis Risk in Communities (ARIC)

The ARIC study is a longitudinal cohort study of atherosclerosis and its clinical sequelae. It recruited a population-based sample of 15,792 men and women aged 45-64 years from four US communities in 1987-89. For this study, the analysis was restricted to subjects of European decent. Affymetrix 6.0 array genotypes were obtained in 8,861 self-identified whites: 734 individuals were excluded for the following reasons: 1) discordant with previous genotype data, 2) genotypic sex did not match phenotypic sex, 3) suspected first-degree relative of an included individual based on genome-wide genotype data, 4) genetic outlier (as assessed by average Identity by State (IBS) using PLINK and >8 standard deviations along any of first 10 principal components in EIGENSTRAT after 5 iterations. SNPs without chromosomal location, monomorphic SNPs, SNPs whose genotype frequencies between 2 freezes differed by p<10^-6, SNPs with HWE p<10^-6 or call rate <90% were excluded from analysis. Imputation of ~2.5 million autosomal SNPs in HapMap with reference to release 22 of the CEU sample was conducted using the algorithm implemented in MACH.
CRP was assessed using the immunoturbidimetric CRP-Latex (II) high-sensitivity assay from Denka Seiken (Tokyo, Japan). This assay, which has been validated against the Dade Behring method (Deerfield, Ill)4, was performed according to the manufacturer’s protocol and using a BN2 analyzer (Dade Behring (Deerfield, Il). To assess repeatability of measurements, 421 blinded replicates were measured on different dates. The reliability coefficient was 0.99.

British 1958 birth cohort (B58C)

The B58C is a national population sample followed periodically from birth. At age 44-45 years, 9,377 cohort members were examined by a research nurse in the home as described previously5 and non-fasting blood samples were collected with permission for DNA extraction and creation of immortalised cell cultures (http://www.b58cgene.sgul.ac.uk/collection.php). A total of 1,480 cell-line-derived DNA samples from unrelated subjects of white ethnicity, with nationwide geographic coverage, were used as controls by the Wellcome Trust Case Control Consortium (WTCCC)6.

Genotyping was performed using the Affymetrix 500K Mapping Array Set using the call algorithm CHIAMO as implemented by the WTCCC6. Genotypes at other loci were imputed by the program IMPUTE version 0.1.27, using 490,032 autosomal SNPs with CHIAMO calls and the linkage disequilibrium patterns in the HapMap CEU panel. Analysis of imputed genotypes used Marchini’s SNPTEST7 version 1.1.3 with the “-proper” option and supplementary regression modeling used STATA version 10.0.

Details of the blood collection, CRP measurement and covariate adjustment have been described elsewhere8. In brief, CRP antigen levels were measured by high-
sensitivity nephelometric assay using latex particles coated with monoclonal antibodies to human CRP in the BN Prospec protein analyzer (Dade Behring, Marburg, Germany). Fuller details of the laboratory protocols are provided on-line (http://www.b58cgene.sgul.ac.uk/crp1958sop.pdf). Levels were adjusted for sex, laboratory batch, time of day, month of examination, and postal delay. Adjustment for age was not required as all subjects were aged 44-45 years. Valid CRP measurements were available for 1,461 (98.7%) of the 1,480 subjects genotyped in the WTCCC.

Ethical approvals for the 2002-2004 fieldwork, including consent procedures, and for this within-cohort genotype-phenotype analysis were obtained from the Southeast England Multi-centre Research Ethics Committee.

Cardiovascular Health Study (CHS)

The CHS is a population-based cohort study of risk factors for CHD and stroke in adults ≥65 years conducted across four field centers. The original predominantly European ancestry cohort of 5,201 persons was recruited in 1989-1990 from random samples of the Medicare eligibility lists and an additional 687 African-Americans were enrolled subsequently for a total sample of 5,888. DNA was extracted from blood samples drawn on all participants at their baseline examination in 1989-90.

In 2007-2008, genotyping was performed at the General Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina 370CNV BeadChip system on 3,980 CHS participants who were free of cardiovascular disease (CVD) at baseline, consented to genetic testing, and had DNA available for genotyping. Because the other populations in this meta-analysis were primarily of European ancestry,
the self-described CHS African-Americans were excluded from this analysis to reduce
the possibility of confounding due to population stratification. Genotyping has been
attempted to date in 3,397 white participants, and was successful in 3,291 persons with a
sample call rate >95%. In CHS, the following exclusions were applied to identify a final
set of 306,655 autosomal SNPs: call rate <97%, HWE P <10^{-5}, >1 duplicate error or
Mendelian inconsistency (for reference CEPH trios), heterozygote frequency = 0, SNP
not found in HapMap’s CEPH panel. After limiting the sample to those with successful
genotypes and CRP measurements, the final dataset for this analysis comprised data on
306,655 SNPs in 3,265 CHS participants. Imputation was performed using BIMBAM
v0.99 (0.91 for QT) with reference to HapMap CEU using release 22, build 36 using one
round of imputations and the default expectation-maximization warm-ups and runs. SNPs
were excluded for variance on the allele dosage ≤0.01.

Blood was drawn in the morning after an overnight fast. Samples were promptly
centrifuged at 3000g for 10 minutes at 4°C. Aliquots of plasma were stored in a central
laboratory at –70°C. CRP was measured in all stored baseline plasma samples by a high-
sensitivity immunoassay, with an inter-assay coefficient of variation of 6.25%.

The Erasmus Rucphen Family study (ERF)

The ERF study is a young genetically isolated population from the southwest of
the Netherlands which was founded in the middle of 18th century. Minimal immigration
and/or marriages occurred between surrounding settlements due to social and religious
reasons. While the estimated number of founders is <400, the population experienced a
fast expansion and at the moment this region counts roughly 20,000 inhabitants. The ERF
population includes 3,000 individuals, who were not selected based on health information, but rather comprise of living descendants of 22 couples. These couples had at least 6 children baptized in the community church around 1850-1900. Details about the genealogy of the population have been described elsewhere11-13.

The Illumina HumanHap300 BeadChip array was used to conduct genotyping of the individuals. SNPs with call rate <95\% and HWE p<10\(^{-6}\) were excluded. Data on CRP plasma levels and SNP genotypes was available for 1,792 ERF participants. Imputation was conducted using the algorithm implemented in MACH. To get imputed data, more restrictive SNP filters including a minor allele frequency >0.01, SNP call rate >0.98, and HWE p-value >1\times 10^{-6} were applied and 491,875 passed the filters. In total 2,586,725 SNPs were imputed using phased haplotypes of HapMap CEU trios.

Fasting plasma samples were collected. Plasma CRP was measured in 2,256 individuals using the US CRP ELISA (cat.# DSL-10-42100) of Diagnostic Systems Laboratories, Inc.(expected range within the 90th percentile is 254-16104 ng/ml). The measurements were performed conform the manufactures protocol.

\textit{Framingham Heart Study (FHS)}

The FHS is a collection of three cohorts recruited to investigate cardiovascular disease and its risk factors14. Serum CRP measurements were available from the seventh exam (1998-2001) of the Framingham Offspring cohort (children of the original cohort and their spouses enrolled in 1971)15,16, and the Third Generation cohort (Offspring adult children)17 first examination, recruited from 2002-2005.
Genotyping was performed using Affymetrix 500K SNP arrays, supplemented with the MIPS 50K array. Genotypes of 8,481 individuals passed our QC criteria that included call rate $\geq 97\%$, no excess Mendelian errors (<1000) and average heterozygosity within 5 SD of mean (between 25.758% and 29.958%). SNPs analyzed had minor allele frequency $\geq 1\%$, call rate $\geq 95\%$ and HWE p $\geq 10^{-6}$. The analysis reported included data on 425,593 SNPs in 6,899 Framingham participants with measured CRP levels. The MACH software was used to perform imputation based on the haplotypes of the HapMap CEU trios, and 2,046,740 SNPs with good imputation quality, as measured by the ratio of observed to expected variance ≥ 0.3, were analyzed for association with CRP levels. The SNPs used for imputation passed more stringent filters including a minor allele frequency ≥ 0.01, SNP call rate ≥ 0.97, HWE p-value $\geq 1 \times 10^{-6}$, differential missingness p-value $\geq 1 \times 10^{-9}$ and <100 Mendelian errors; 378,163 SNPs passed these quality control criteria. CRP was measured in fasting serum samples using a high-sensitivity assay (Dade Behring BN100). The minimum detectable dose of this assay is 0.16 mg/L, with a standard curve range of 0.16-1000 mg/L. The intra-assay coefficient of variation was 3.2%, while the inter-assay coefficient of variation was 5.3%. The final population for this analysis included 6,899 individuals (Offspring n=3,852, Third Generation n=3,047).

The Health 2000 Study

Health 2000 is a large Finnish cross-sectional health examination survey carried out in 2000–2001. The overall study cohort was a two-stage stratified cluster sample (8,028 persons) representing the entire Finnish population aged 30 years and above. A subcohort of 2,080 participants was selected for a GWA study for metabolic syndrome. Cases were
selected according to the IDF Worldwide Definition of the Metabolic Syndrome
(http://www.idf.org/home/index.cfm?node=1429). Controls were selected for not
carrying the trait and were matched for age, sex and residence.

Genotyping for the Health 2000 Study was completed using Illumina's 610-Quad
BeadChips for 598,203 SNPs. We excluded 4,295 markers from the analysis because
HWE was not met at a level p <0.0001, and 5,842 because of low call rate (<95%),
leaving 588,066 SNPs for the association analysis. Imputation was conducted using the
algorithm implemented in MACH.

Venous blood samples were drawn from the antecubital vein after an overnight
fast. High sensitivity CRP (hs-CRP) concentrations were determined using a
chemiluminescent immunometric assay (Immulite, Diagnostic Products Corporation, Los
Angeles, CA, USA).

The MONICA/KORA Augsburg Study (KORA)
The presented data were derived from the third population-based Monitoring of Trends
and Determinants in Cardiovascular Disease (MONICA) / Cooperative Health Research
in the Region of Augsburg (KORA) survey S319. This cross-sectional survey covering the
city of Augsburg (Germany) and two adjacent counties was conducted in 1994/95 to
estimate the prevalence and distribution of cardiovascular risk factors among individuals
aged 25 to 74 years as part of the WHO MONICA study. The MONICA/KORA S3 study
comprises 4,856 subjects. Among them, 3,006 subjects participated in a follow-up
examination of S3 in 2004/05 (MONICA/KORA F3). All participants underwent
standardized examinations including blood withdrawals for plasma and DNA. For the
KORA genome-wide association study, 1,644 subjects, aged 45 to 69 years were selected from the KORA S3/F3 samples.

Genotyping for KORA F3 was performed using Affymetrix 500K Array Set consisting of two chips (Sty I and Nsp I). Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard recommendations. Genotypes were determined using BRLMM clustering algorithm (Affymetrix 500K Array Set). For quality control purposes, we applied a positive control and a negative control DNA every 48 samples. On chip level, only subjects with overall genotyping efficiencies of at least 93% were included. In addition, the called gender had to agree with the gender in the KORA study database. Imputation of genotypes was performed using maximum likelihood method with the software MACH v1.0.9. After exclusion of subjects with missing information of CRP concentrations, the final population available for this analysis included 1,587 individuals.

CRP was measured in EDTA plasma by a high sensitivity in-house immunoradiometric assay (IRMA) in MONICA/KORA S3, using a five-point calibration with WHO International Reference Standard 85/506. The assay range was 0.05-10 mg/L. Samples with concentrations >10 mg/L were remeasured at higher dilutions. CRP concentrations were determined in triplicate, and the mean was used for analysis. The inter-assay CV for CRP over all ranges was 12%20.

The MICROS Study

The GenNOVA study is an ongoing, comprehensive genetic and health care survey conducted in South Tyrol (Italy). It includes the MICROS study, from which the present
probands were sampled. They were volunteers from three Alpine, isolated, German-speaking villages located in Val Venosta, a region enclosed within the Austria and Switzerland borders21.

Genotyping was performed on 1,335 participants, using the Illumina HumanHap300v2 SNP Chip. We excluded from imputation SNPs with a call rate below 98\%, HWE $P < 10^{-6}$ and minor allele frequency < 0.01. The remaining 292,917 SNPs were used for MACH v1.0.16 imputation based on HapMap CEU release 22 build 36.

High sensitivity CRP was measured from fasting serum using the CRP-Dynamic AD-Assay (Invicon diagnostic concepts GmbH, Munich, Germany) on an ADVIA1800 Clinical Chemistry Analyzer (Siemens Healthcare Diagnostics GmbH, Eschborn, Germany). Concentrations from 0.01 to 32 mg/l, with a within-run precision $< 5.0\%$, and a total precision of $< 7.0\%$ can be measured with this system. A total of 1,215 individuals with genotypes and CRP measured were included in this study.

Northern Finland Birth Cohort 66 (NFBC-66)

The NFBC-66 is an on-going follow-up study of people whose expected date of birth was in 1966 in the two Northern provinces of Oulu and Lapland22. Primary clinical data collection on parents and the child occurred prenatally and at birth. Data collection on the child continued at several age points; here the samples were drawn at the 31-year examination.

Genotyping for the NFBC-66 was completed using Illumina Infinium for 339,629 SNPs. We excluded 3,345 SNPs from analysis because HWE was not met at a level $p < 0.0001$, 55 because of low call rate ($< 95\%$) and 7,681 because the MAF was $< 1\%$,
leaving 329,091 SNPs for the association analysis. Imputation was conducted using the algorithm implemented in MACH.

Blood samples were drawn after overnight fasting in the morning (between 08.00 and 11.00 h). Serum gel 10ml tubes were left to stand for 30 minutes after drawing the sample at room temperature. After that, within 90 minutes from sample drawing, samples were centrifuged at 1900 G for 10 minutes at +20 C. Serum hs-CRP concentrations were determined by immunoenzymometric assay (Medix Biochemica). A total of 5,125 NFBC-66 participants were included in the analyses.

Orkney Complex Disease Study (ORCADES)

The ORCADES is an ongoing family-based, cross-sectional study in the isolated Scottish archipelago of Orkney. Genetic diversity in this population is decreased compared to Mainland Scotland, consistent with the high levels of endogamy historically. Data for 715 participants aged 18-100 years, from a subgroup of ten islands, were used for this analysis.

We genotyped 318,237 SNPs for each individual using the Illumina HumanHap300 BeadChip. Alleles were called in BeadStudio using Illumina cluster files. Subjects were excluded if they fulfilled any of the following criteria: genotypic call rate <97%, mismatch between reported and genotypic sex, unexpectedly low genomic sharing with first degree relatives, excess autosomal heterozygosity, or outliers identified by IBS clustering analysis. We excluded SNPs on the basis of minor allele frequency (<0.01), HWE (P<10^{-5}), call rate (<97%). MACH v1.0.15 was used to impute over 2 million SNPs from HapMap build 36.
Fasting blood samples were collected and over 200 health-related phenotypes and environmental exposures were measured in each individual. Fasting plasma samples were collected and frozen at -70°C within 1 hr of collection. CRP was measured by ELISA. All participants gave informed consent and the study was approved by Research Ethics Committees in Orkney and Aberdeen.

Rotterdam Study (RS)

The RS is a prospective population-based cohort study to investigate the determinants of chronic diseases23-25. In brief, residents of Ommoord, a district of Rotterdam, in the Netherlands, 55 years of age or older, were asked to participate, of whom 7,983 participated. The baseline examination took place in 1990-1993.

The version 3 Illumina Infinium II HumanHap550 SNP chip array was used to conduct genotyping among self-reported Caucasians. Genotyping was successful in 6,240 individuals with a sample call rate >97.5%. SNPs with a call rate <95% and HWE p<10\(^{-6}\) were excluded. The final dataset for this analysis comprised data on 530,683 SNPs in 5,974 RS participants. Imputation was conducted using the algorithm implemented in MACH. To obtain imputed data, more restrictive SNP filters including a minor allele frequency >0.01, SNP call rate >0.98, and HWE p-value >1×10\(^{-6}\) were applied and 491,875 passed the filters. In total 2,586,725 SNPs were imputed using phased haplotypes of HapMap CEU trios.

Non-fasting serum samples were collected. The samples were immediately put on ice and were processed within 30 minutes, after which they were kept frozen at -20 °C until measurement of CRP in 2003-2004. High sensitivity CRP was measured by use of
Rate Near Infrared Particle Immunoassay (Immage® Immunochemistry System, Beckman Coulter, USA). This system measures concentrations from 0.2 to 1440 mg/l, with a within-run precision <5.0%, a total precision <7.5% and a reliability coefficient of 0.995. A total of 5,567 subjects with both DNA and CRP measurements available are included in the current study.

The Study of Health in Pomerania (SHIP)

The SHIP is a longitudinal population-based cohort study conducted in West Pomerania, the north-east area of Germany. For the baseline examinations, a sample of 6,267 eligible subjects aged 20 to 79 years was drawn from population registries. Only individuals with German citizenship and main residency in the study area were included. Selected persons received a maximum of three written invitations. In case of non-response, letters were followed by a phone call or by home visits if contact by phone was not possible. The SHIP population finally comprised 4,310 participants (response 68.8%), and 4,103 with CRP measured are included in our analyses. Baseline examinations were conducted between 1997 and 2001.

The SHIP samples were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard recommendations. The genetic data analysis workflow was created using the Software InforSense. Genetic data were stored using the database Caché (InterSystems). Genotypes were determined using the Birdseed2 clustering algorithm.

For quality control purposes, several control samples were added. On the chip level, only subjects with a genotyping rate on QC probe sets (QC call rate) of at least
86% were included. Genotyping was successful in 4,103 individuals. The overall genotyping efficiency of the GWA was 98.6%. All 869,224 SNPs located on autosomal chromosomes were used for imputation. Imputation of genotypes in SHIP was performed with the software IMPUTE v0.5.0 based on HapMap II.

Non-fasting blood samples were taken in the supine position. Serum levels of hs-CRP were measured on a BN II analyzer (Dade Behring, Marburg, Germany).

Vis Study

The Vis Study includes 1,031 unselected adult participants, aged 18–93 years, who were recruited in a population-based study during 2003 and 2004 in the villages of Vis and Komiza on the Dalmatian island of Vis. The study received appropriate ethical approval, and all participants gave informed consent. All subjects visited the clinical research center in the region where they were examined in person and where fasting blood was drawn. Biochemical and physiological measurements were performed, detailed genealogies reconstructed, questionnaire of lifestyle and environmental exposures collected, and blood samples stored for further analyses. The settlements on Vis island have complex population histories dating back from the Illyrian period and including periods of isolation and large-scale emigration. A subset of 774 participants were genotyped genome-wide and had CRP levels available.

We genotyped 317,503 SNPs for each individual using the Illumina HumanHap300 v1 BeadChip. Alleles were called in BeadStudio using Illumina cluster files. Subjects were excluded if they fulfilled any of the following criteria: genotypic call rate <97%, mismatch between reported and genotypic sex, unexpectedly low genomic
sharing with first degree relatives, excess autosomal heterozygosity, or outliers identified by IBS clustering analysis. We excluded SNPs on the basis of minor allele frequency (<0.01), HWE (P<10^{-5}), call rate (<97%). MACH v1.0.15 was used to impute over 2 million SNPs from HapMap build 36.

Fasting plasma samples were collected and frozen at -70C within 1 hr of collection. CRP was measured by ELISA.

Women’s Genome Health Study (WGHS)

The WGHS is a prospective cohort of female North American health care professionals representing participants in the Women’s Health Study who provided a blood sample at baseline and consent for blood-based analyses. Participants were 45 or older at enrollment and free of cardiovascular disease, cancer or other major chronic illness. The current data are derived from 22,054 WGHS participants for whom whole genome genotype information was available at the time of analysis and self-reported European ancestry could be confirmed by multidimensional scaling analysis of 1,443 ancestry informative markers in PLINK v. 1.06.14. The study protocol was approved by the institutional review board of the Brigham and Women’s Hospital (Boston, MA, USA).

DNA extracted from the baseline blood samples underwent SNP genotyping via the Illumina Infinium II assay for querying of a genome-wide set of SNPs from the Illumina HumanHap300 Duo “+” platform. This panel including the standard content of approximately 318,237 SNPs covering the entire genome from the HumanHap300 panel with an additional focused panel of 45,571 SNPs selected to enhance coverage of cardiovascular candidate genes and SNPs with suspected functional consequences. For
the current analysis, all samples had successful genotype information for >98% of the SNPs, while all SNPs had successful genotype information for >90% of the samples. SNPs with significance $p < 10^{-6}$ for deviations from Hardy-Weinberg equilibrium were excluded from analysis. Self-reported European ancestry was confirmed in 22,054 samples on the basis of a principal component analysis using PLINK2 among 1,443 ancestry informative SNPs selected for $F_{st} > 0.4$ in the HapMap28. In total, 339,875 genotyped SNPs passing the criteria for inclusion also had minor allele frequency at least 1 percent. On the basis of linkage disequilibrium relationships in the HapMap (release 21), genotypes for a total of 2,621,896 SNPs were imputed from the 22,054 samples passing the quality criteria using Mach v. 1.0.16. SNP positions were updated in a subsequent step to build 36.1 of the human genome sequence.

All baseline blood samples underwent measurement for hsCRP via a validated immunoturbidimetric method (Denka Seiken, Tokyo, Japan)29. A total of 21,953 participants with genotyped and CRP levels available were included in this study.

2. Method section for the replication panel

The Heredity and Phenotype Intervention (HAPI) Heart Study

The HAPI Heart Study is part of the NHLBI PROGENI Network and was designed to identify genes that interact with environmental exposures to modify risk factors for CVD. From 2003 to 2006, Old Order Amish subjects from Lancaster, PA, aged ≥ 20 years and considered to be relatively healthy were recruited. Details of the study are described elsewhere30.

Genotyping was performed with the Affymetrix GeneChip® Human Mapping 500K Array set, including a total of 500,568 SNPs. The GTYPE-generated chip files were re-analyzed using the BRLMM genotype calling algorithm; the mean genotype call rate in the Stage 1 sample was 98.3%. Uninformative SNPs (n=98,806) with minor allele frequencies (MAF) <2% in the overall sample were removed from further analyses. Finally, 369,241 informative SNPs that passed quality control and Hardy-Weinberg Equilibrium checks (at p<0.001) were retained for analysis. Imputation was performed using MACH. A total of 338,598 autosomal SNPs were used after filtering MAF < 1%, Hardy Weinberg (p<1×10^{-6}) and missingness >5%.

Of the 868 total participants in the HAPI Heart Study, 840 had fasting high sensitivity CRP levels (Cardio CRP; Quest Diagnostics, Horsham, PA; sensitivity 0.2 mg/L) and genome-wide SNP data available for analysis.

The Baltimore longitudinal study on Aging (BLSA) Study

The BLSA study is a population-based study aimed to evaluate contributors of healthy aging in the older population residing predominantly in the Baltimore-Washington DC area. Starting in 1958, participants are examined every one to four years depending on their age. Currently there are approximately 1,100 active participants enrolled in the study. Blood samples were collected for DNA extraction, and genome-wide genotyping was completed for 1,231 subjects using Illumina 550K. The BLSA has continuing approval from the Institutional Review Board of MedStar Research Institute.

The analysis was restricted to subjects of European ancestry and each analysis was further adjusted for the top two principal components derived from an
EIGENSTRAT analysis utilizing ~10,000 randomly selected SNPs from the 550K SNP panel32. Genotyping was completed for 481 participants of European ancestry using a call rate of >98.5% without sex discrepancy based on homozygosity rates and with CRP data. 501,704 autosomal SNPs passed quality control (completeness>99%, MAF >1%, HWE >10-4) were used to for imputation. HapMap CEU sample (Phase II, release 21a, build 35, January 2007) was used a reference to impute approximately 2.5 million SNPs using MACH. Imputed SNPs with r2 < 0.3 or minor allele frequency of <1% were excluded from the analysis.

Serum CRP was measured using the BNII nephelometer from Dade Behring utilizing a particle enhanced immunonephelometric assay. The assay range is 0.16–1100 ug/mL.

The CARLA Study

The CARLA study is an ongoing cohort study of a representative sample of the inhabitants of the city of Halle, eastern Germany, comprising 1,779 participants aged 45–83 years at baseline (812 women, 967 men)33. The baseline examination took place between December 2002 and January 2006. A multi-step recruitment strategy aimed to achieve a high response rate. The final response after subtracting exclusions (individuals who were deceased prior to the invitation, had moved away, or were unable to participate due to illness) was 64.1%. The study was approved by the Ethics Committee of Martin-Luther-University Halle-Wittenberg and conforms to the Declaration of Helsinki. A standardized, computer-assisted interview was performed to collect information on socio-demographic and socioeconomic variables, behavioral, biomedical and psychosocial
factors, medical history, and use of medication within the preceding seven days. The medical examination included the recording of sitting blood pressure, waist and hip circumference, weight and height, a venous blood sample, an echocardiogram, and a 20-minute 12-lead resting electrocardiogram.

The determination of CRP was undertaken by the Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics at the Leipzig University Clinics. The laboratory has been accredited according to the accreditation norms ISO 15180 and ISO 17025. Serum high sensitivity CRP levels were measured using a high-sensitivity immunoturbidimetric method (CRP [Latex] HS, Roche, Mannheim, Germany) on a Hitachi autoanalyzer (Roche Diagnostics Mannheim, Germany).

Genotyping of the single nucleotide polymorphisms rs12239046, rs9987289, rs10745954, rs180096, rs340029, rs12037222, rs13233571, rs2836878, rs4903031, rs2847281, and rs1030023 was performed using pre-developed, validated TaqMan®SNP Genotyping Assays (Applied Biosystems, Germany) following the manufacturers instructions. Polymerase chain reaction conditions were as follows: initial denaturation at 95°C for 10 min, followed by 45 cycles of denaturation (92°C for 15 sec) and annealing and extension in 1 step (60°C for 60 s). The post PCR generated fluorescence intensity was quantified using an ABI 7900 Sequence Detector System Software®version 2.3 (Applied Biosystems).

Health, Aging, and Body Composition (Health ABC) Study

The Health ABC study is a prospective cohort study investigating the associations between body composition, weight-related health conditions, and incident functional
limitation in older adults. Health ABC enrolled well-functioning, community-dwelling black (n=1,281) and white (n=1,794) men and women aged 70-79 years between April 1997 and June 1998. Participants were recruited from a random sample of white and all black Medicare eligible residents in the Pittsburgh, PA, and Memphis, TN, metropolitan areas. The current study sample consists of 1,658 white participants with both CRP and genotyping data.

Genotyping was performed by the Center for Inherited Disease Research (CIDR) using the Illumina Human1M-Duo BeadChip system. Genotyping was successful in 1658 Caucasians. Samples were excluded from the dataset for the reasons of sample failure, genotypic sex mismatch, and first-degree relative of an included individual based on genotype data. Analysis was restricted to SNPs with minor allele frequency ≥1%, call rate ≥97% and HWE p≥10-6. Genotypes were available on 914,263 high quality SNPs for imputation based on the HapMap CEU (release 22, build 36) using the MACH software (version 1.0.16). A total of 2,543,888 imputed SNPs were analyzed for association with CRP levels.

Fasting serum samples were collected at the baseline examination. Serum concentrations of CRP were determined by a commercially available high sensitivity sandwich enzyme immunoassay kit according to the manufacturer’s instructions (Biocheck, Burlingame, CA). The intra-assay variability for these assays in serum has been reported as 5.4-7.8% (CV), the inter-assay variability 6.1-9.7 %.
The InCHIANTI study is a population-based epidemiological study aimed at evaluating the factors that influence mobility in the older population living in the Chianti region in Tuscany, Italy. The details of the study have been previously reported (Ferrucci, 2000). Briefly, 1,616 residents were selected from the population registry of Greve in Chianti (a rural area: 11,709 residents with 19.3% of the population greater than 65 years of age), and Bagno a Ripoli (Antella village near Florence; 4,704 inhabitants, with 20.3% greater than 65 years of age). The participation rate was 90% (n=1,453), and the subjects ranged between 21-102 years of age. Overnight fasted blood samples were taken for genomic DNA extraction and measurement of CRP. Illumina Infinium HumanHap 550K SNP arrays were used for genotyping. The study protocol was approved by the Italian National Institute of Research and Care of Aging Institutional Review and MedStar Research Institute (Baltimore, MD).

The analysis was conducted on 1,202 subjects that passed quality control with a sample call rate >97%, heterozygosity rates >0.3, correct sex specification and with CRP data. 495,343 autosomal SNPs that passed quality control (MAF>1%, completeness >99%, HWE >10^-4) were used for imputation.

Serum CRP was measured using ELISA and colorimetric competitive immunoassay (Roche Diagnostics, GmbH, Mannheim, Germany). Intra-assay and inter-assay CV was 5%.

The Netherlands Study of Depression and Anxiety (NESDA)
The NESDA Study34 is a multi-centre study designed to examine the long-term course and consequences of depressive and anxiety disorders (http://www.nesda.nl). NESDA included both individuals with depressive and/or anxiety disorders and controls without psychiatric conditions. Inclusion criteria were age 18-65 years and self-reported western European ancestry, exclusion criteria were not being fluent in Dutch and having a primary diagnosis of another psychiatric condition (psychotic disorder, obsessive compulsive disorder, bipolar disorder, or severe substance use disorder).

For all participants DNA was isolated from the baseline blood sample. Through funding from the fNIH GAIN program (www.fnih.gov/gain), whole genome scan analysis was conducted for 1,859 NESDA (1,702 depressed cases and 157 controls) participants. Perlegen Sciences (Mountain View, CA, USA) performed all genotyping according to strict standard operating procedures. DNA samples were randomly assigned to plates, shipped to Perlegen and identified only by barcode. High-density oligonucleotide arrays (Perlegen 600K) were used yielding 599,164 SNPs. The genotyping calling algorithms are described in prior reports35,36. Eight SNPs with duplicate numbers were deleted and 73 mitochondrial SNPs were removed for later analysis. From the remaining 599,083 SNPs on the Perlegen chip 435,291 passed quality control. A hundred subjects were excluded because of various quality control issues37. Additional exclusions were made based on phenotype leaving 1,706 subjects in the final analysis dataset.

Imputation was then carried out for genotypes for autosomal SNPs that were present in HapMap Phase II but were not present in the genome-wide chip or did not pass direct genotyping QC. Genotypes were imputed using the genotype data from the GWA
chips and data from HapMap (release 22, build 36) genotype data from the 60 CEU HapMap founders as the reference database. The imputation was performed by IMPUTE version 0.3.2 using the default settings and the recommended number 11418 for the effective population size of Caucasians. In this way we extended the genome-wide autosomal SNP dataset from 435,291 to 2,531,819 SNPs.

Blood was drawn after an overnight fast, and was immediately transferred to a local laboratory to start processing within one hour and storage at −85 °C for later assaying. CRP was assayed at the Clinical Chemistry department of the VU University Medical Center. High-sensitivity plasma levels of CRP were measured in duplicate by an in-house ELISA based on purified protein and polyclonal anti CRP antibodies (Dako). The CRP assay was standardized against the CRM 470 reference agent. Our analyses included a total of 1,706 participants with CRP assayed and genotypes available. The lower detection limit of CRP is 0.1 mg/l and the sensitivity is 0.05 mg/l. Intra- and inter-assay coefficients of variation were 5% and 10%, respectively.

The Netherlands Twin Register (NTR)

The NTR studies the development of health, lifestyle and personality in children and adult twins and their family members. Between 2004 and 2008, all adult participants in longitudinal studies on health, lifestyle and personality were asked to take part in blood sampling. During a home visit, fasting blood samples were obtained between 7:00 a.m. and 10:00 a.m. for more than 9500 individuals.

As part of the NIH-GAIN Study on Major Depression Disorder a subset of individuals was genotyped by Perlegen, USA using the Affymetrix 600K SNP chip.
SNPs were excluded in case of gross mapping problems, 2 or more genotype disagreements in 40 duplicated samples, 2 or more Mendelian inheritance errors in 38 complete trio samples, minor allele frequency < 0.01 or > 0.05 missing genotypes. More details are published elsewhere36. The final dataset consisted of 435 291 SNPs in 1,777 unrelated individuals. Imputation was conducted using IMPUTE and resulted in a total of 2,562,567 SNPs.

CRP was obtained from heparin plasma and determined using the Immulite CRP assay (Diagnostic Product Corporation, USA). This system has a sensitivity of 0.01 mg/dL, an intra-assay coefficient of variation less than 7.5%, and inter assay coefficient of variation less than 10%. CRP was available in 1596 genotyped individuals.

The SardiNIA study

The SardiNIA study is a longitudinal population-based study to investigate the genetic and epidemiology of aging associated conditions. We recruited and phenotyped 6,148 individuals, male and female, aged 14 and older, from a cluster of four towns in the Lanusei Valley (Sardinia, Italy). During physical examination, a blood sample was collected from each individual and divided into two aliquots. One aliquot was used for DNA extraction and the other to characterize several blood phenotypes, including evaluation of serum levels of high sensitivity (hs)CRP.

During the study, we genotyped 4,305 individuals selected from the whole sample to represent the largest available families with the 500K and the 10K Affymetrix Mapping Array set, with 436 individuals genotyped with both arrays. This genotyping strategy allowed us to examine the majority of our cohort in a cost-effective manner since
genotypes for the SNPs that passed quality control checks could be propagated through the pedigree using imputation. Measurements for hsCRP were available for 4,295 individuals, among the 4,305 genotyped. A total of 362,129 SNPs passed initial quality control checks and we used all the autosomal markers (356,359) to estimate genotypes for all polymorphic SNPs in the CEU HapMap population in all individuals genotyped with the 500K Array. The inference was carried out using the MACH software. We focused on the SNPs for which the imputation procedure predicted r² > 0.30 between true and imputed genotypes (the average predicted r² was 0.86). In total, 2,252,228 markers were successfully imputed or genotyped, with an overall error rate of 2.17% per allele. Taking advantage of the relatedness among individuals in the SardiNIA sample, we carried out a second round of computational analysis to impute genotypes at all SNPs in the individuals who were genotyped only with the Affymetrix Mapping 10K Array, being mostly offspring and siblings of the individuals genotyped at high density. At this second round of imputation, we used a modified version of the Lander-Green algorithm to estimate IBD sharing at the location of the SNPs being tested and identify stretches of haplotype shared with close relatives who were genotyped at higher density and probabilistically infer missing genotypes. Briefly, we first calculated the likelihood of the observed genotype data; then we assigned each missing genotype to a specific value and updated the likelihood pedigree. The ratio of the two likelihoods gave a posterior probability for the proposed genotype conditional on all available data. Furthermore, instead of assigning the most likely genotype, we estimated an expected genotype score, representing the expected number of copies of a reference allele (a fractional number between 0 and 2), which allowed us to partially account for uncertainty in genotype
assignment. The genotype scores were then tested for association with the trait in a simple regression model and a variance component approach was used to account for correlation between different observed phenotypes within each family. With this definition of genotype score, the association test evaluates the additive effect of the marker. The within-family imputation procedure and the association test are implemented in Merlin software40,41. Due to computational constraints, we divided large pedigrees into sub-units with “bit-complexity” of 19 or less (typically, 20-25 individuals) before analysis. In the association model, age and sex were included as covariates in all analyses, and a natural logarithm transformation was applied to the trait values. The analyses included 4195 participants with CRP assayed and genome-wide data.

Serum levels of hsCRP were measured by the high sensitivity Vermont assay (University of Vermont, Burlington), an enzyme-linked immunosorbent assay calibrated with WHO Reference Material10. The lower detection limit of this assay is 0.007 mg/l, with an inter-assay coefficient of variation of 5.14%.

\textit{The TwinsUK cohort}

The Twins UK Registry comprises unselected, mostly female volunteers ascertained from the general population through national media campaigns in the UK{Spector, 2006 #96}. Means and ranges of quantitative phenotypes in Twins UK were similar to an age-matched singleton sample from the general population42. Zygosity was determined by standardized questionnaire and confirmed by DNA fingerprinting. Written informed consent was obtained from all participants before they entered the studies, which were approved by the local research ethics committee.
Samples from the TwinsUK cohort were genotyped with the Infinium assay (Illumina, San Diego, USA) using four different SNP arrays, the Hap300 Duo, Hap300, Hap550 and Hap61043. SNP calling was performed using the Illuminus software44. SNPs were excluded if they violated Hardy–Weinberg equilibrium (HWE) (p<1.0×10-4); had genotype call rates <95%; or had a minor allele frequency (MAF) of less than 0.01. Individuals were excluded if the sample call rate was less than 95%, autosomal heterozygosity was outside the expected range, genotype concordance was over 97% with another sample and the sample was of lesser call rate, non-Caucasian ancestry either self-identified or identified by cluster analysis in STRUCTURE45 or multidimensional scaling by comparison to the three HapMap phase 2 reference populations (CEU, YRI, CHB+JPT; www.hapmap.org), or unexplained relatedness (estimated proportion of allele shared identical by descent >0.05) to >120 other samples2. This resulted in GWAS data being available for 5,295 twins from the TwinsUK cohort.

CRP concentrations from serum were measured with the Human Cardiovascular Disease (CVD) Panel 2 (acute-phase proteins) LINCOplex Kit (HCVD2-67BK) from Linco (Millipore) and with the Extracellular Protein Buffer Reagent Kit (LHB0001) from Invitrogen. CRP concentrations were expected to be very high and a dilution step was required prior to analysis. The optimal dilution which was not specified in the assay procedure was set at 1:2000. Sample analyses were performed according to the manufacturers’ protocol (Sensitivity: CRP 6 pg/mL; Intra-assay: 3.7-13.4%; Inter-assay: 16.9-21%; Accuracy: CRP 121.0%) and assayed in duplicate. Data was collected using the Luminex-100 system (Qiagen LiquiChip). CRP measurements were available for 1,093 of these individuals, of which 552 were DZ twins (i.e. 226 pairs) and 541
singletons. These singletons included 407 MZ twins of which the mean log(CRP) of both twins was used to optimize information.

Non-genotyped autosomal SNPs were imputed using Phase II CEU HapMap data (release 22, build 36) as the reference database using IMPUTE version 0.3.27. Only SNPs with MAF > 1%, P >10^{-4} for the HWE test calculated using the genotypes inferred after imputation by maximum likelihood expectation and an imputation quality score reflecting the observed by expected variance ratio > 0.5 for TwinsUK (IMPUTE proper_info) were included in the analysis. Using regression analysis, we adjusted log(CRP) for age and batch. No adjustment for sex was made because all individuals were female. Association between the residuals and autosomal SNPs was tested with an F-test in SNPTEST version 1.1.4 using an additive model and the proper option to account for the uncertainty of the genotypes that were imputed. As the TwinsUK cohort data consisted partly of dizygotic twins, the variances of the regression coefficients were corrected for the sibship relations using the Huber-White method for robust variance estimation in R^{46,47}.
Acknowledgement

The authors acknowledge the essential role of the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium in development and support of this manuscript. CHARGE members include the Netherland’s Rotterdam Study (RS), Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), the NHLBI’s Atherosclerosis Risk in Communities (ARIC) Study, and the Icelandic Age, Gene/Environment Susceptibility (AGES) Reykjavik Study.

The ARIC Study thanks the staff and participants of the ARIC study for their important contributions.

A full list of principal CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm.

The ERF Study thanks the participants, general practitioner and other clinicians for compiling the Genetic Research in Isolated Populations (GRIP) and Erasmus Rucphen Family (ERF) study.

The MICROS study thanks the primary care practitioners Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project.

The NFBC-66 study thanks the participants and the research staff. They acknowledge the National Institute for Health and Wellbeing and Biomedicum Helsinki, Finland for the DNA extractions, sample quality control and biobank up-keeping.

The ORCADES would like to acknowledge the invaluable contributions of the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.
The SHIP authors are grateful to the contribution of Florian Ernst, Anja Hoffmann, and Astrid Petersmann in generating the SNP data. The University of Greifswald is a member of the ‘Center of Knowledge Interchange’ program of the Siemens AG.

The VIS Study acknowledge the members of staff of the Institute for Anthropological Research in Zagreb, Croatia for participants’ recruitment and field work, Medical Schools of the University of Split and Zagreb University for data collection and management, MRC Human Genetics Unit in Edinburgh, UK for samples management, and the Wellcome Trust Clinical Research Facility in Edinburgh, UK for performing the initial SNP genotyping.

The CARLA Study thanks all participants of the CARLA Study and all members of the CARLA Study team who participated in the recruitment, data collection, data management, and analysis.

The SardiNIA Study thanks the many individuals who generously participated in this study, the Bishop of Ogliastra, the mayors and citizens of the Sardinian towns (Lanusei, Ilbono, Arzana, and Elini), and the head of the Public Health Unit ASL4 for their volunteerism and cooperation. The team also thanks the physicians Angelo Scuteri, Marco Orrù, Maria Grazia Pilia, Maria Cristina Spada, Danilo Fois, Liana Ferreli, Francesco Loi, Gianluca Zedda, Danilo Locci, Stefano Angius, nurses Paola Loi, Monica Lai and Anna Cau who carried out participant physical exams, the recruitment personnel Monica Balloi and Susanna Murino, the informatician Giuseppe Basciu and the biologists Mariano Dei, Sandra Lai, Antonella Mulas, Gianluca Usala, Andrea Maschio, Fabio Busonero, Maria Grazia Piras and Monia Lobina for SNP genotyping.
The TwinsUK Study thanks Professor Tim Spector, Department of Twin Research and Genetic Epidemiology Unit, St Thomas’ Campus, King’s College London, St Thomas’ Hospital, London, UK, for kindly providing us the GWAS data of the TwinsUK cohort. We thank Dr Dongling Zheng, Ms Thulasi Nithiyananthan, Miss Sharmin Badiei and Miss Priyatharsini Sivasubramaniam for the twin CRP measurements. We thank the staff from the Genotyping Facilities at the Wellcome Trust Sanger Institute for sample preparation, quality control and genotyping led by Leena Peltonen and Panos Deloukas; Le Centre National de Génotypage, France, led by Mark Lathrop, for genotyping; Duke University, North Carolina, USA, led by David Goldstein, for genotyping; and the Finnish Institute of Molecular Medicine, Finnish Genome Center, University of Helsinki, led by Aarno Palotie, for genotyping. Genotyping was also performed by CIDR as part of a National Eye Institute NIH project grant (PI: Terri Young). We acknowledge Arthur Sas from the Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, The Netherlands for his work on cleaning of the CRP data.

Sources of Funding

AGES

The Age, Gene/Environment Susceptibility Reykjavik Study is funded by NIH contract N01-AG-12100, the NIA Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).

ARIC
The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, and N01-HC-55022.

B58C

We acknowledge use of genotype data from the British 1958 Birth Cohort DNA collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. (http://www.b58cgene.sgul.ac.uk/)

CHS

The CHS research reported in this article was supported by contract numbers N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, grant numbers U01 HL080295 and R01 HL087652 from the National Heart, Lung, and Blood Institute, with additional contribution from the National Institute of Neurological Disorders and Stroke. A full list of principal CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center for Research Resources grant M01RR00425 to the Cedars-Sinai General Clinical Research Center Genotyping core, National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center, and the Cedars-Sinai Board of Governors' Chair in Medical Genetics (JIR).
ERF

The analysis on plasma CRP in the ERF cohort was funded by the Centre for Medical Systems Biology (CMSB, www.cmsb.nl) and the NutriGenomics Consortium (www.nutrigenomicsconsortium.nl) in the framework of the Netherlands Genomics Initiatives (NGI) and by the European Network of Genomic And Genetic Epidemiology (ENGAGE) consortium (www.euengage.org).

FHS

The study was supported in part using data and resources from the Framingham Heart Study of the National Heart Lung and Blood Institute of the National Institutes of Health N01-HC 25195 and Boston University School of Medicine. The work was also supported in part by grants from the National Institutes of Health HL076784, AG028321, HL064753 to Dr. Benjamin, Deutsche Forschungsgemeinschaft (German Research Foundation) Research Fellowship SCHN 1149/1-1. The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by the National Heart, Lung and Blood Institute's Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the NIH NCRR (National Center for Research Resources) Shared Instrumentation grant (1S10RR163736-01A1) and the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.
KORA

The MONICA/KORA Augsburg studies were financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and supported by grants from the German Federal Ministry of Education and Research (BMBF). Part of this work was financed by the German National Genome Research Network (NGFN, project number 01GS0834) and through additional funds from the University of Ulm. Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ.

MICROS

In South Tyrol, the study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano and the South Tyrolean Sparkasse Foundation.

NFBC66

Financial support was received from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), the European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-
F4-2007-201413, the Medical Research Council, UK (G0500539, G0600705, PrevMetSyn/SALVE) and the Wellcome Trust (project grant GR069224), UK.

ORCADES

ORCADES was supported by the Chief Scientist Office of the Scottish Government, the Royal Society and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh.

Rotterdam Study

The Rotterdam Study is supported by the Erasmus Medical Center and Erasmus University Rotterdam; the Netherlands Organization for Scientific Research; the Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. Support for genotyping was provided by the Netherlands Organization for Scientific Research (NWO) (175.010.2005.011, 911.03.012), the Netherlands Genomics Initiative (NGI)/ NWO project nr. 050-060-810 and Research Institute for Diseases in the Elderly (RIDE). Abbas Dehghan is supported by a grant from NWO (Vici, 918-76-619).
SHIP

SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania.

VIS

This research was funded by Grants from the Medical Research Council (UK) to Prof Alan Wright and from the Republic of Croatia Ministry of Science, Education and Sports to Prof Igor Rudan (108-1080315-0302). This study is currently a component of the EU framework 6 project EUROSPAN (contract no LSHG-CT-2006-018947) within which imputation of additional SNP markers was performed thanks to Dr. Yurii Aulchenko (Erasmus Medical Center, Rotterdam).

WGHS

Funding for analysis and data collection in the WGHS came from the Donald W. Reynolds Foundation (Las Vegas, NV), the Foundation Leducq (Paris, Fr.), the National Heart, Lung and Blood Institute (NHLBI; HL043851) and the National Cancer Institute
Genotyping and collaborative scientific support was provided by Amgen, Inc.

HAPI

NIH U01 HL072515, NIH P30 DK072488. Geriatric Research and Education Clinical Center, Baltimore Veterans Administration Medical Center

The CARLA Study

The CARLA study was funded by a grant from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Collaborative Research Center 598 “Heart failure in the elderly – cellular mechanisms and therapy” at the Medical Faculty of the Martin-Luther-University Halle-Wittenberg; by a grant of the Wilhelm-Roux Programme of the Martin-Luther-University Halle-Wittenberg; and by the Federal Employment Office.

BLSA

This study was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. A portion of that support was through a R&D contract with MedStar Research Institute.

Health ABC

The Health, Aging and Body Composition Study was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study
was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging.

InCHIANTI

The InCHIANTI study baseline (1998-2000) was supported as a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336).

NESDA

The infrastructure for the NESDA study is funded through the Geestkracht programme of the Dutch Scientific Organization (ZON-MW, grant number 10-000-1002) and matching funds from participating universities and mental health care organizations. Genotyping in NESDA was funded by the Genetic Association Information Network (GAIN) of the Foundation for the US National Institutes of Health.

NTR

Database Twin register (NWO 575-25-006); Spinozapremie (NWO/SPI 56-464-14192); CNCR (Centre Neurogenetics/Cognition Research); CMSB (Center for Medical Systems
Biology), Twin-family database for behavior genetics and genomics studies (NWO 480-04-004 and Genotype/phenotype database for behavior genetic and genetic epidemiological studies (NWO 40-00506-98-9032).

SardiNIA

This work was supported by the Intramural Research Program of the National Institute on Aging (NIA), National Institutes of Health (NIH). The SardiNIA (“Progenia”) team was supported by Contract NO1-AG-1-2109 from the NIA.

The TwinsUK Study

The study was funded by the British Heart Foundation project grant PG/05/117 (Dr Ali Afzal); the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013)/grant agreement HEALTH-F2-2008-201865-GEFOS and (FP7/2007-2013), ENGAGE project grant agreement HEALTH-F4-2007-201413 and the FP-5 GenomEUtwin Project (QLG2-CT-2002-01254). The study also receives support from the Dept. of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London. The project also received support from a Biotechnology and Biological Sciences Research Council (BBSRC) project grant (G20234).

Membership of the Wellcome Trust Case Control Consortium
Management Committee: Paul R Burton¹, David G Clayton², Lon R Cardon³, Nick Craddock⁴, Panos Deloukas⁵, Audrey Duncanson⁶, Dominic P Kwiatkowski³,⁵, Mark I McCarthy⁶,⁷, Willem H Ouwehand⁸,⁹, Nilesh J Samani¹⁰, John A Todd², Peter Donnelly (Chair)¹¹

Data and Analysis Committee: Jeffrey C Barrett³, Paul R Burton¹, Dan Davison¹¹, Peter Donnelly¹¹, Doug Easton¹², David M. Evans³, Hin-Tak Leung², Jonathan L Marchini¹¹, Andrew P Morris³, Chris CA Spencer¹¹, Martin D Tobin¹, Lon R Cardon (Co-chair)³, David G Clayton (Co-chair)²

UK Blood Services & University of Cambridge Controls: Antony P Attwood⁵,⁸, James P Boorman⁸,⁹, Barbara Cant⁸, Ursula Everson¹³, Judith M Hussey¹⁴, Jennifer D Jolley⁸, Alexandra S Knight⁸, Kerstin Koch⁸, Elizabeth Meech¹⁵, Sarah Nutland², Christopher V Prowse¹⁶, Helen E Stevens², Niall C Taylor⁸, Graham R Walters¹⁷, Neil M Walker², Nicholas A Watkins⁸,⁹, Thilo Winzer⁸, John A Todd², Willem H Ouwehand⁸,⁹

1958 Birth Cohort Controls: Richard W Jones¹⁸, Wendy L McArdle¹⁸, Susan M Ring¹⁸, David P Strachan¹⁹, Marcus Pembrey¹⁸,²⁰

Type 1 Diabetes: David G Clayton2, David B Dunger2,41, Sarah Nutland2, Helen E Stevens2, Neil M Walker2, Barry Widmer2,41, John A Todd2

Tuberculosis (Gambia): Melanie Newport, Giorgio Sirugo; (Oxford): Emily Lyons, Fredrik Vannberg, Adrian VS Hill.

AutoImmune Thyroid Disease: Jayne A Franklyn, Joanne M Heward, Matthew J Simmonds, Stephen CL Gough.

Breast Cancer: Sheila Seal, Michael R Stratton, Nazneen Rahman.

Multiple Sclerosis: Maria Ban, An Goris, Stephen J Sawcer, Alastair Compston.

Gambian Controls (Gambia): David Conway, Muminatou Jallow, Melanie Newport, Giorgio Sirugo; (Oxford): Kirk A Rockett, Dominic P Kwiatkowski.

R Cardon³; (Oxford): Niall J Cardin¹¹, Dan Davison¹¹, Teresa Ferreira¹¹, Joanne Pereira-
Gale¹¹, Ingeleif B Hallgrimsdóttir¹¹, Bryan N Howie¹¹, Jonathan L Marchini¹¹, Chris CA
Spencer¹¹, Zhan Su¹¹, Yik Ying Teo³,¹¹, Damjan Vukcevic¹¹, Peter Donnelly¹¹
PIs: David Bentley⁵,⁵⁴, Matthew A Brown⁴⁸,⁴⁹, Lon R Cardon³, Mark Caulfield³⁸, David
G Clayton², Alistair Compston⁵³, Nick Craddock²³, Panos Deloukas⁵, Peter Donnelly¹¹,
Martin Farrall³⁹, Stephen CL Gough⁵⁰, Alistair S Hall²⁶, Andrew T Hattersley⁴²,⁴³, Adrian
VS Hill³, Dominic P Kwiatkowski³,⁵, Christopher G Mathew²⁹, Mark I McCarthy³,⁷,
Willem H Ouwehand⁸,⁹, Miles Parkes²⁷, Marcus Pembrey¹⁸,²⁰, Nazneen Rahman⁵¹, Nilesh
J Samani¹⁰, Michael R Stratton⁵¹,⁵², John A Todd², Jane Worthington⁴⁰
¹ Genetic Epidemiology Group, Department of Health Sciences, University of Leicester,
Adrian Building, University Road, Leicester, LE1 7RH, UK; ² Juvenile Diabetes
Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory,
Department of Medical Genetics, Cambridge Institute for Medical Research, University
of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK; ³ Wellcome
Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3
7BN, UK; ⁴ Department of Psychological Medicine, Henry Wellcome Building, School
of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; ⁵ The Wellcome
Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10
1SA, UK; ⁶ The Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE,
UK; ⁷ Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford,
Churchill Hospital, Oxford, OX3 7LJ, UK; ⁸ Department of Haematology, University of
Cambridge, Long Road, Cambridge, CB2 2PT, UK; ⁹ National Health Service Blood and
Transplant, Cambridge Centre, Long Road, Cambridge, CB2 2PT, UK; ¹⁰ Department of
Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK; 11 Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK; 12 Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK; 13 National Health Service Blood and Transplant, Sheffield Centre, Longley Lane, Sheffield S5 7JN, UK; 14 National Health Service Blood and Transplant, Brentwood Centre, Crescent Drive, Brentwood, CM15 8DP, UK; 15 The Welsh Blood Service, Ely Valley Road, Talbot Green, Pontyclun, CF72 9WB, UK; 16 The Scottish National Blood Transfusion Service, Ellen’s Glen Road, Edinburgh, EH17 7QT, UK; 17 National Health Service Blood and Transplant, Southampton Centre, Coford Road, Southampton, SO16 5AF, UK; 18 Avon Longitudinal Study of Parents and Children, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 19 Division of Community Health Services, St George’s University of London, Cranmer Terrace, London SW17 0RE, UK; 20 Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK; 21 University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; 22 Department of Psychiatry, Division of Neuroscience, Birmingham University, Birmingham, B15 2QZ, UK; 23 Department of Psychological Medicine, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; 24 SGDP, The Institute of Psychiatry, King’s College London, De Crespigny Park Denmark Hill London SE5 8AF, UK; 25 School of Neurology, Neurobiology and Psychiatry, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK; 26 LIGHT and LIMM Research Institutes, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 3EX, UK; 27 IBD Research Group,
Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK; 28 Gastrointestinal Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU UK; 29 Department of Medical & Molecular Genetics, King's College London School of Medicine, 8th Floor Guy's Tower, Guy's Hospital, London, SE1 9RT, UK; 30 Institute for Digestive Diseases, University College London Hospitals Trust, London, NW1 2BU, UK; 31 Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK; 32 Department of Gastroenterology & Hepatology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK; 33 Gastroenterology Unit, Radcliffe Infirmary, University of Oxford, Oxford, OX2 6HE, UK; 34 Medicine and Therapeutics, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Grampian AB9 2ZB, UK; 35 Clinical Pharmacology Unit and the Diabetes and Inflammation Laboratory, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK; 36 Centre National de Genotypage, 2, Rue Gaston Cremieux, Evry, Paris 91057.; 37 BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK; 38 Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London, Queen Mary’s School of Medicine, Charterhouse Square, London EC1M 6BQ, UK; 39 Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK; 40 arc Epidemiology Research Unit, University of Manchester, Stopford Building, Oxford Rd, Manchester, M13 9PT, UK; 41 Department of Paediatrics, University of Cambridge, Addenbrooke’s Hospital, Cambridge, CB2 2QQ, UK; 42 Genetics of Complex Traits, Institute of Biomedical and
Clinical Science, Peninsula Medical School, Magdalen Road, Exeter EX1 2LU UK; 43 Diabetes Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DU UK; 44 Centre for Diabetes and Metabolic Medicine, Barts and The London, Royal London Hospital, Whitechapel, London, E1 1BB UK; 45 Diabetes Research Group, School of Clinical Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; 46 The MRC Centre for Causal Analyses in Translational Epidemiology, Bristol University, Canynge Hall, Whiteladies Rd, Bristol BS2 8PR, UK; 47 MRC Laboratories, Fajara, The Gambia; 48 Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, University of Queensland, Woolloongabba, Qld 4102, Australia; 49 Botnar Research Centre, University of Oxford, Headington, Oxford OX3 7BN, UK; 50 Department of Medicine, Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; 51 Section of Cancer Genetics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK; 52 Cancer Genome Project, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; 53 Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK; 54 PRESENT ADDRESS: Illumina Cambridge, Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex, CB10 1XL, UK.
Web Resources

SNPTEST, http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html

R-project, http://www.r-project.org

Eigenstrat software, http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm

IMPUTE, http://www.stats.ox.ac.uk/~marchini/software/gwas/impute.html

BIMBAM, http://stephenslab.uchicago.edu/software.html

METAL, http://www.sph.umich.edu/csg/abecasis/Metal/index.html
Supplementary figures

Figure legends

Supplementary Figure I. QQ-plot for the discovery panel

Supplementary Figure II. -Log plot for the discovery panel. Figure (a) illustrates the -log p-values for all tests performed for the association of the SNPs with serum CRP levels in the discovery panel. The grey dashed horizontal lines correspond to the p-value threshold of 5×10^{-8}. Figure (b) focuses on SNPs with a p-value larger than 1.0×10^{-10}

Supplementary Figure III. Regional plots of loci associated with CRP levels. The association p-values (-log10 transformed, indicated by the left y-axis) for SNPs in a 400kb region are plotted against their chromosome positions (NCBI build 36) on the x-axis. Each diamond represents a SNP with the color indicating the linkage disequilibrium (estimated using HapMap CEU sample) between the SNP and the lead SNP. The lead SNP is plotted twice, in dark blue, representing the p-value in the discovery panel and in gray, representing the combined p-value of discovery and replication panels. Shown in light blue are the estimated recombination rates with values indicated by the right y-axis. The bottom panel displays the genes in the region based on the UCSC Genome Browser March 2006 assembly, with the arrow to right (left) indicate indicating +(-) strand.
Supplementary Figure I.
Supplementary Figure II.

a)

b)
Supplementary Figure III.
Supplementary tables
Supplementary table I: Characteristics of the Study Participants

<table>
<thead>
<tr>
<th>Panel</th>
<th>Study</th>
<th>Country</th>
<th>Sample size</th>
<th>(\lambda)</th>
<th>CRP, median(25th, 75th), mg/L</th>
<th>Age, mean (SD), y</th>
<th>Men, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>AGES</td>
<td>Iceland</td>
<td>3218</td>
<td>1.038</td>
<td>1.90 (1.00, 3.90)</td>
<td>76.4 (5.5)</td>
<td>42.0</td>
</tr>
<tr>
<td></td>
<td>ARIC</td>
<td>USA</td>
<td>6431</td>
<td>1.014</td>
<td>2.29 (1.04, 5.04)</td>
<td>63.1 (5.6)</td>
<td>46.8</td>
</tr>
<tr>
<td></td>
<td>B58C</td>
<td>UK</td>
<td>1461</td>
<td>0.995</td>
<td>1.00 (0.51, 2.33)</td>
<td>44.9 (0.4)</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>CHS</td>
<td>USA</td>
<td>3265</td>
<td>1.013</td>
<td>2.26 (1.15, 3.99)</td>
<td>72.3 (5.4)</td>
<td>39.0</td>
</tr>
<tr>
<td></td>
<td>ERF</td>
<td>Netherlands</td>
<td>1792</td>
<td>1.030</td>
<td>1.92 (0.68, 2.75)</td>
<td>48.6 (14.3)</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>USA</td>
<td>6899</td>
<td>0.999</td>
<td>0.62 (1.48, 3.71)</td>
<td>49.4 (13.8)</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td>Health2000</td>
<td>Finland</td>
<td>2080</td>
<td>1.000</td>
<td>0.73 (0.23, 2.01)</td>
<td>50.5 (11.1)</td>
<td>48.6</td>
</tr>
<tr>
<td></td>
<td>KORA</td>
<td>Germany</td>
<td>1587</td>
<td>1.014</td>
<td>1.34 (0.65, 2.73)</td>
<td>52.4 (10.1)</td>
<td>50.1</td>
</tr>
<tr>
<td></td>
<td>MICROS</td>
<td>Italy</td>
<td>1215</td>
<td>1.328</td>
<td>1.60 (0.73, 3.54)</td>
<td>45.0 (16.8)</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td>NFBC66</td>
<td>Finland</td>
<td>5125</td>
<td>1.009</td>
<td>0.81 (0.38, 1.96)</td>
<td>81 (0)</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>ORCADES</td>
<td>UK</td>
<td>715</td>
<td>1.129</td>
<td>1.24 (0.56, 2.68)</td>
<td>53.6 (15.7)</td>
<td>46.5</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>Netherlands</td>
<td>5567</td>
<td>1.019</td>
<td>0.91 (1.88, 3.67)</td>
<td>69.4 (9.1)</td>
<td>58.9</td>
</tr>
<tr>
<td></td>
<td>SHIP</td>
<td>Germany</td>
<td>4103</td>
<td>1.034</td>
<td>1.55 (0.68, 3.01)</td>
<td>50.3 (16.4)</td>
<td>49.1</td>
</tr>
<tr>
<td></td>
<td>VIS</td>
<td>Croatia</td>
<td>774</td>
<td>1.120</td>
<td>1.26 (0.64, 2.72)</td>
<td>56.6 (15.6)</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>WGHS</td>
<td>USA</td>
<td>21953</td>
<td>1.068</td>
<td>0.20 (0.08, 0.44)</td>
<td>54.7 (7.1)</td>
<td>0</td>
</tr>
<tr>
<td>Replication</td>
<td>BLSA</td>
<td>USA</td>
<td>481</td>
<td></td>
<td>1.35 (0.67, 2.92)</td>
<td>69 (13.6)</td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td>CARLA</td>
<td>Germany</td>
<td>1695</td>
<td></td>
<td>1.8 (0.9, 3.5)</td>
<td>64.4 (10.1)</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Finrisk</td>
<td>Finland</td>
<td>1893</td>
<td></td>
<td>1.15 (0.58, 2.6)</td>
<td>55.6 (12.1)</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>HAPI</td>
<td>USA</td>
<td>840</td>
<td></td>
<td>0.9 (0.4, 2.0)</td>
<td>43.7 (14)</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>Health ABC</td>
<td>USA</td>
<td>1658</td>
<td></td>
<td>1.48 (0.94, 2.72)</td>
<td>73.8 (2.8)</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>InCHIANTI</td>
<td>Italy</td>
<td>1202</td>
<td></td>
<td>2.40 (1.15, 5.48)</td>
<td>68.3 (15.5)</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>Nesda</td>
<td>Netherlands</td>
<td>1706</td>
<td></td>
<td>1.27 (0.56, 3.07)</td>
<td>42.5 (12.5)</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>NTR</td>
<td>Netherlands</td>
<td>1598</td>
<td></td>
<td>1.50 (0.70, 3.10)</td>
<td>45.8 (14.0)</td>
<td>37.1</td>
</tr>
<tr>
<td></td>
<td>SardINIA</td>
<td>Italy</td>
<td>4295</td>
<td></td>
<td>1.22 (0.58, 2.79)</td>
<td>43.6 (17.6)</td>
<td>43.8</td>
</tr>
<tr>
<td></td>
<td>TwinsUK</td>
<td>UK</td>
<td>1172</td>
<td></td>
<td>1.42 (0.60, 3.17)</td>
<td>55.4 (12.4)</td>
<td>0</td>
</tr>
<tr>
<td>Panel</td>
<td>Study</td>
<td>Body mass index, mean (SD), kg/m²</td>
<td>Waist circumference, mean(SD), cm</td>
<td>Systolic blood pressure, mean (SD), mm Hg</td>
<td>Total/HDL cholesterol, mean(SD)</td>
<td>Fasting glucose, mean(SD), mg/dL</td>
<td>Triglycerides, mean(SD), mg/dL</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Discovery</td>
<td>AGES</td>
<td>27.1 (4.4)</td>
<td>100.8 (12.2)</td>
<td>142.6 (20.3)</td>
<td>3.8 (1.1)</td>
<td>224.4 (43.5)</td>
<td>107.5 (59.1)</td>
</tr>
<tr>
<td></td>
<td>ARIC</td>
<td>28.4 (5.3)</td>
<td>101.6 (14.3)</td>
<td>126.1 (18.5)</td>
<td>4.5 (1.5)</td>
<td>107.4 (30.4)</td>
<td>151.9 (86.9)</td>
</tr>
<tr>
<td></td>
<td>B58C</td>
<td>27.4 (4.9)</td>
<td>92.15 (13.3)</td>
<td>126.7 (15.3)</td>
<td>4.0 (1.1)</td>
<td>NA</td>
<td>185.1 (133.7)</td>
</tr>
<tr>
<td></td>
<td>CHS</td>
<td>26.3 (4.5)</td>
<td>93.1 (12.8)</td>
<td>135.2 (21.1)</td>
<td>NA</td>
<td>107.6 (29.0)</td>
<td>140.2 (76.2)</td>
</tr>
<tr>
<td></td>
<td>ERF</td>
<td>26.7 (4.3)</td>
<td>86.82 (13.1)</td>
<td>139.5 (20.5)</td>
<td>4.6 (1.3)</td>
<td>82.6 (17.5)</td>
<td>118.7 (70.0)</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>27.4 (5.5)</td>
<td>96.0 (15.1)</td>
<td>121.2 (17.1)</td>
<td>3.9 (1.4)</td>
<td>99.2 (23.2)</td>
<td>125.2 (90.8)</td>
</tr>
<tr>
<td></td>
<td>Health2000</td>
<td>27.6 (4.5)</td>
<td>93.9 (12.7)</td>
<td>134.3 (19.9)</td>
<td>4.9 (1.7)</td>
<td>97.2 (9.0)</td>
<td>141.7 (88.6)</td>
</tr>
<tr>
<td></td>
<td>KORA</td>
<td>27.3 (4.1)</td>
<td>90.3 (12.4)</td>
<td>133.2 (18.2)</td>
<td>4.8 (1.8)</td>
<td>85.9 (18.2)</td>
<td>114.1 (56.7)</td>
</tr>
<tr>
<td></td>
<td>MICROs</td>
<td>25.5 (4.8)</td>
<td>NA</td>
<td>132.3 (21.1)</td>
<td>3.96 (1.3)</td>
<td>91.8 (12.6)</td>
<td>106.3 (62.0)</td>
</tr>
<tr>
<td></td>
<td>NFBC66</td>
<td>24.7 (4.2)</td>
<td>83.8 (12.1)</td>
<td>125.6 (14.0)</td>
<td>3.5 (1.1)</td>
<td>NA</td>
<td>180.7 (143.1)</td>
</tr>
<tr>
<td></td>
<td>ORCADES</td>
<td>27.7 (4.8)</td>
<td>93.7 (14.0)</td>
<td>130.2 (19.3)</td>
<td>3.6 (0.9)</td>
<td>97.9 (17.6)</td>
<td>118.8 (59)</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>26.3 (3.7)</td>
<td>90.6 (11.1)</td>
<td>139.2 (22.3)</td>
<td>5.2 (1.6)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SHIP</td>
<td>27.3 (4.8)</td>
<td>89.4 (13.9)</td>
<td>137.1 (21.5)</td>
<td>4.3 (1.6)</td>
<td>NA</td>
<td>143.1 (129.2)</td>
</tr>
<tr>
<td></td>
<td>VIS</td>
<td>27.3 (4.3)</td>
<td>95.9 (11.8)</td>
<td>137.4 (24.2)</td>
<td>3.9 (0.9)</td>
<td>102.6 (25.2)</td>
<td>137.4 (80.8)</td>
</tr>
<tr>
<td></td>
<td>WGHs</td>
<td>25.9 (5.0)</td>
<td>NA</td>
<td>123.6 (13.7)</td>
<td>4.2 (1.3)</td>
<td>NA</td>
<td>143.7 (91.7)</td>
</tr>
<tr>
<td>Replication</td>
<td>BLSA</td>
<td>26.6 (4.4)</td>
<td>91.9 (12.1)</td>
<td>124.6 (16.2)</td>
<td>3.5 (1.1)</td>
<td>92.8 (12.9)</td>
<td>111.1 (64.1)</td>
</tr>
<tr>
<td></td>
<td>CARLA</td>
<td>28.4 (4.7)</td>
<td>100.0 (12.7)</td>
<td>143.9 (21.3)</td>
<td>4.2 (1.3)</td>
<td>NA</td>
<td>168.0 (133.9)</td>
</tr>
<tr>
<td></td>
<td>Finrisk</td>
<td>27.0 (4.5)</td>
<td>91.9 (13.3)</td>
<td>NA</td>
<td>4.1 (1.3)</td>
<td>NA</td>
<td>132.9 (79.7)</td>
</tr>
<tr>
<td></td>
<td>HAPI</td>
<td>26.6 (4.5)</td>
<td>87.3 (11.0)</td>
<td>121.5 (14.7)</td>
<td>NA</td>
<td>76.8 (8.7)</td>
<td>91.7 (9.7)</td>
</tr>
<tr>
<td></td>
<td>Health ABC</td>
<td>26.6 (4.1)</td>
<td>99.2 (12.3)</td>
<td>133.8 (20.0)</td>
<td>4.2 (1.3)</td>
<td>101.6 (29.1)</td>
<td>153.1 (88.1)</td>
</tr>
<tr>
<td></td>
<td>InCHIANTI</td>
<td>27.2 (4.2)</td>
<td>91.3 (11.2)</td>
<td>145.7 (21.5)</td>
<td>4.1 (1.2)</td>
<td>94.4 (26.4)</td>
<td>125.9 (77.9)</td>
</tr>
<tr>
<td></td>
<td>Nesda</td>
<td>27.8 (5.0)</td>
<td>89.5 (14.1)</td>
<td>134.1 (17.2)</td>
<td>3.4 (1.2)</td>
<td>93.2 (17.4)</td>
<td>115.6 (78.0)</td>
</tr>
<tr>
<td></td>
<td>NTR</td>
<td>25.0 (3.9)</td>
<td>86.6 (12.3)</td>
<td>NA</td>
<td>3.9 (1.3)</td>
<td>100.1 (17.8)</td>
<td>120.5 (68.2)</td>
</tr>
<tr>
<td></td>
<td>SardINIA</td>
<td>25.3 (4.7)</td>
<td>84.8 (13.3)</td>
<td>125.7 (18.6)</td>
<td>3.4 (0.9)</td>
<td>90 (23.2)</td>
<td>87.7 (68.7)</td>
</tr>
<tr>
<td></td>
<td>TwinsUK</td>
<td>25.3 (4.2)</td>
<td>NA</td>
<td>127.5 (48.4)</td>
<td>3.8 (1.3)</td>
<td>86.5 (21.4)</td>
<td>97.1 (55.7)</td>
</tr>
</tbody>
</table>
Supplementary table I: Characteristics of the Study Participants (continued)

<table>
<thead>
<tr>
<th>Panel</th>
<th>Study</th>
<th>Current smoker, (%)</th>
<th>Diabetes, (%)</th>
<th>Hypertension, (%)</th>
<th>Lipid treatment, (%)</th>
<th>Hormone replacement, (%)</th>
<th>Prevalent CHD, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery</td>
<td>AGES</td>
<td>12.7</td>
<td>11.6</td>
<td>80.6</td>
<td>22.7</td>
<td>11.5</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>ARIC</td>
<td>14.5</td>
<td>13.6</td>
<td>43.0</td>
<td>15.8</td>
<td>19.5</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>B58C</td>
<td>23.0</td>
<td>1.9</td>
<td>4.2</td>
<td>NA</td>
<td>0.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>CHS</td>
<td>11.3</td>
<td>11.7</td>
<td>36.7</td>
<td>4.3</td>
<td>8.5</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>ERF</td>
<td>39.4</td>
<td>2.6</td>
<td>19.9</td>
<td>12.6</td>
<td>24.7</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>FHS</td>
<td>15.6</td>
<td>7.5</td>
<td>19.4</td>
<td>13.4</td>
<td>16.5</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Health2000</td>
<td>26.3</td>
<td>0.0</td>
<td>33.3</td>
<td>4.7</td>
<td>32.1</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>KORA</td>
<td>18.0</td>
<td>3.6</td>
<td>17.5</td>
<td>4.4</td>
<td>7.9</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MICROS</td>
<td>16.3</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>0.1</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>NFBC66</td>
<td>48.6</td>
<td>4.4</td>
<td>25.2</td>
<td>4.0</td>
<td>21.9</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>ORCADES</td>
<td>8.5</td>
<td>3.0</td>
<td>21.2</td>
<td>11.5</td>
<td>NA</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>RS</td>
<td>22.5</td>
<td>10.7</td>
<td>32.4</td>
<td>2.6</td>
<td>19.0</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>SHIP</td>
<td>31.2</td>
<td>7.9</td>
<td>61.0</td>
<td>12.6</td>
<td>20.4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>VIS</td>
<td>28.0</td>
<td>6.7</td>
<td>25.0</td>
<td>3.2</td>
<td>NA</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>WGHS</td>
<td>11.7</td>
<td>2.5</td>
<td>24.5</td>
<td>3.3</td>
<td>43.7</td>
<td>NA</td>
</tr>
<tr>
<td>Replication</td>
<td>BLSA</td>
<td>3.6</td>
<td>3.0</td>
<td>48.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CARLA</td>
<td>19.5</td>
<td>15.5</td>
<td>78.9</td>
<td>NA</td>
<td>NA</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Finrisk</td>
<td>23.5</td>
<td>NA</td>
<td>57.2</td>
<td>7.8</td>
<td>NA</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>HAPI</td>
<td>10.7</td>
<td>6.0</td>
<td>13.7</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Health ABC</td>
<td>6.4</td>
<td>10.9</td>
<td>46.9</td>
<td>14.6</td>
<td>30.9</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td>InCHIANTI</td>
<td>18.7</td>
<td>9.9</td>
<td>73.4</td>
<td>7.2</td>
<td>NA</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>Nesda</td>
<td>41.2</td>
<td>3.6</td>
<td>11.6</td>
<td>7.0</td>
<td>9.0</td>
<td>6.2*</td>
</tr>
<tr>
<td></td>
<td>NTR</td>
<td>20.7</td>
<td>2.8</td>
<td>4.8</td>
<td>7.7</td>
<td>0.5</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>SardNIA</td>
<td>19.9</td>
<td>2.1</td>
<td>10.8</td>
<td>NA</td>
<td>5.9</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>TwinsUK</td>
<td>33.1</td>
<td>1.6</td>
<td>13.3</td>
<td>6.0</td>
<td>9.3</td>
<td>1.5</td>
</tr>
<tr>
<td>SNP</td>
<td>Chromosome</td>
<td>Position</td>
<td>Coded Allele</td>
<td>Beta</td>
<td>SE</td>
<td>P-value</td>
<td>Closest Gene</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------</td>
<td>-----</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>rs2794520</td>
<td>1</td>
<td>157945440</td>
<td>C</td>
<td>0.193</td>
<td>0.007</td>
<td>9.5×10^{-189}</td>
<td>CRP</td>
</tr>
<tr>
<td>rs4420638</td>
<td>19</td>
<td>50114786</td>
<td>A</td>
<td>0.240</td>
<td>0.010</td>
<td>2.1×10^{-129}</td>
<td>APOC1</td>
</tr>
<tr>
<td>rs1183910</td>
<td>12</td>
<td>119905190</td>
<td>G</td>
<td>0.152</td>
<td>0.007</td>
<td>3.3×10^{-113}</td>
<td>HNF1A</td>
</tr>
<tr>
<td>rs4420065</td>
<td>1</td>
<td>65934049</td>
<td>C</td>
<td>0.111</td>
<td>0.007</td>
<td>3.2×10^{-64}</td>
<td>LEPR</td>
</tr>
<tr>
<td>rs4129267</td>
<td>1</td>
<td>152692888</td>
<td>C</td>
<td>0.094</td>
<td>0.007</td>
<td>1.1×10^{-47}</td>
<td>IL6R</td>
</tr>
<tr>
<td>rs1260326</td>
<td>2</td>
<td>27584444</td>
<td>T</td>
<td>0.089</td>
<td>0.007</td>
<td>5.4×10^{-43}</td>
<td>GCKR</td>
</tr>
<tr>
<td>rs12239046</td>
<td>1</td>
<td>245668218</td>
<td>C</td>
<td>0.048</td>
<td>0.007</td>
<td>1.6×10^{-13}</td>
<td>NLRP3</td>
</tr>
<tr>
<td>rs6734238</td>
<td>2</td>
<td>113557501</td>
<td>G</td>
<td>0.047</td>
<td>0.007</td>
<td>3.4×10^{-13}</td>
<td>IL1F10</td>
</tr>
<tr>
<td>rs9987289</td>
<td>8</td>
<td>9220768</td>
<td>G</td>
<td>0.079</td>
<td>0.011</td>
<td>2.3×10^{-12}</td>
<td>PPP1R3B*</td>
</tr>
<tr>
<td>rs10745954</td>
<td>12</td>
<td>102007224</td>
<td>A</td>
<td>0.043</td>
<td>0.006</td>
<td>1.6×10^{-11}</td>
<td>ASCL1*</td>
</tr>
<tr>
<td>rs1800961</td>
<td>20</td>
<td>42475778</td>
<td>C</td>
<td>0.120</td>
<td>0.018</td>
<td>2.3×10^{-11}</td>
<td>HNF4A</td>
</tr>
<tr>
<td>rs340029</td>
<td>15</td>
<td>58682257</td>
<td>T</td>
<td>0.044</td>
<td>0.007</td>
<td>2.6×10^{-11}</td>
<td>RORA</td>
</tr>
<tr>
<td>rs10521222</td>
<td>16</td>
<td>49716211</td>
<td>C</td>
<td>0.110</td>
<td>0.017</td>
<td>1.3×10^{-10}</td>
<td>SALL1</td>
</tr>
<tr>
<td>rs12037222</td>
<td>1</td>
<td>39837548</td>
<td>A</td>
<td>0.047</td>
<td>0.008</td>
<td>4.5×10^{-10}</td>
<td>PABPC4</td>
</tr>
<tr>
<td>rs13233571</td>
<td>7</td>
<td>72609167</td>
<td>A</td>
<td>0.054</td>
<td>0.010</td>
<td>2.8×10^{-8}</td>
<td>BCL7B</td>
</tr>
<tr>
<td>rs2836878</td>
<td>21</td>
<td>39387404</td>
<td>G</td>
<td>0.040</td>
<td>0.007</td>
<td>4.0×10^{-9}</td>
<td>DSCR2*</td>
</tr>
<tr>
<td>rs4903031</td>
<td>14</td>
<td>72088989</td>
<td>A</td>
<td>-0.046</td>
<td>0.008</td>
<td>4.6×10^{-8}</td>
<td>RGS6</td>
</tr>
<tr>
<td>rs13962</td>
<td>1</td>
<td>157442151</td>
<td>A</td>
<td>-0.057</td>
<td>0.011</td>
<td>6.6×10^{-8}</td>
<td>DARC</td>
</tr>
<tr>
<td>rs469772</td>
<td>1</td>
<td>91302893</td>
<td>T</td>
<td>-0.042</td>
<td>0.008</td>
<td>1.4×10^{-7}</td>
<td>ZNF644</td>
</tr>
<tr>
<td>rs2847281</td>
<td>18</td>
<td>12811593</td>
<td>A</td>
<td>-0.034</td>
<td>0.007</td>
<td>1.7×10^{-7}</td>
<td>PTPN2</td>
</tr>
<tr>
<td>rs1030023</td>
<td>2</td>
<td>102098706</td>
<td>T</td>
<td>0.034</td>
<td>0.007</td>
<td>3.5×10^{-7}</td>
<td>ILIR1</td>
</tr>
<tr>
<td>rs1292067</td>
<td>17</td>
<td>55285428</td>
<td>T</td>
<td>-0.033</td>
<td>0.007</td>
<td>3.9×10^{-7}</td>
<td>TUBD1</td>
</tr>
<tr>
<td>rs6486122</td>
<td>11</td>
<td>13318100</td>
<td>T</td>
<td>0.033</td>
<td>0.007</td>
<td>6.7×10^{-7}</td>
<td>ARNTL</td>
</tr>
<tr>
<td>rs10189761</td>
<td>2</td>
<td>636364</td>
<td>A</td>
<td>0.040</td>
<td>0.008</td>
<td>1.2×10^{-6}</td>
<td>TMEM18</td>
</tr>
<tr>
<td>SNP</td>
<td>Chromosome</td>
<td>Position</td>
<td>Allele</td>
<td>Beta</td>
<td>SE</td>
<td>P-value</td>
<td>Gene</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>rs6901250</td>
<td>6</td>
<td>117220718</td>
<td>A</td>
<td>-0.034</td>
<td>0.007</td>
<td>1.2×10^{-6}</td>
<td>GPRC6A</td>
</tr>
<tr>
<td>rs1880241</td>
<td>7</td>
<td>22725994</td>
<td>A</td>
<td>0.030</td>
<td>0.006</td>
<td>1.2×10^{-6}</td>
<td>IL6</td>
</tr>
<tr>
<td>rs195522</td>
<td>6</td>
<td>116351709</td>
<td>A</td>
<td>-0.032</td>
<td>0.007</td>
<td>1.2×10^{-6}</td>
<td>FRK</td>
</tr>
<tr>
<td>rs12130660</td>
<td>1</td>
<td>152354882</td>
<td>T</td>
<td>0.085</td>
<td>0.018</td>
<td>1.3×10^{-6}</td>
<td>NUP210L</td>
</tr>
<tr>
<td>rs1962073</td>
<td>8</td>
<td>10297963</td>
<td>A</td>
<td>0.031</td>
<td>0.007</td>
<td>1.3×10^{-6}</td>
<td>MSRA</td>
</tr>
<tr>
<td>rs1441170</td>
<td>2</td>
<td>213741808</td>
<td>A</td>
<td>-0.031</td>
<td>0.006</td>
<td>1.4×10^{-6}</td>
<td>IKZF2</td>
</tr>
<tr>
<td>rs9271605</td>
<td>6</td>
<td>32699426</td>
<td>A</td>
<td>0.039</td>
<td>0.008</td>
<td>1.4×10^{-6}</td>
<td>HLA-DQAI</td>
</tr>
<tr>
<td>rs4985288</td>
<td>6</td>
<td>327246</td>
<td>T</td>
<td>-0.044</td>
<td>0.009</td>
<td>1.7×10^{-6}</td>
<td>IRF4</td>
</tr>
<tr>
<td>rs1317140</td>
<td>3</td>
<td>49853656</td>
<td>A</td>
<td>0.032</td>
<td>0.007</td>
<td>1.7×10^{-6}</td>
<td>TRAIP</td>
</tr>
<tr>
<td>rs4410870</td>
<td>8</td>
<td>11193530</td>
<td>C</td>
<td>0.031</td>
<td>0.007</td>
<td>1.7×10^{-6}</td>
<td>MTMR9</td>
</tr>
<tr>
<td>rs12680682</td>
<td>8</td>
<td>38856003</td>
<td>T</td>
<td>0.054</td>
<td>0.011</td>
<td>1.7×10^{-6}</td>
<td>PLEKHA2</td>
</tr>
<tr>
<td>rs3787428</td>
<td>20</td>
<td>60020185</td>
<td>A</td>
<td>0.046</td>
<td>0.010</td>
<td>1.8×10^{-6}</td>
<td>TAF4</td>
</tr>
<tr>
<td>rs8133426</td>
<td>21</td>
<td>32033763</td>
<td>T</td>
<td>0.072</td>
<td>0.015</td>
<td>1.8×10^{-6}</td>
<td>SFRS15</td>
</tr>
<tr>
<td>rs732878</td>
<td>3</td>
<td>199257080</td>
<td>A</td>
<td>0.067</td>
<td>0.014</td>
<td>1.9×10^{-6}</td>
<td>LMLN</td>
</tr>
<tr>
<td>rs5755993</td>
<td>22</td>
<td>34648865</td>
<td>A</td>
<td>-0.076</td>
<td>0.016</td>
<td>2.2×10^{-6}</td>
<td>RBM9</td>
</tr>
<tr>
<td>rs10460119</td>
<td>18</td>
<td>56256381</td>
<td>C</td>
<td>-0.032</td>
<td>0.007</td>
<td>2.2×10^{-6}</td>
<td>MC4R*</td>
</tr>
<tr>
<td>rs1558902</td>
<td>16</td>
<td>52361075</td>
<td>A</td>
<td>0.032</td>
<td>0.007</td>
<td>2.2×10^{-6}</td>
<td>FTO</td>
</tr>
<tr>
<td>rs6073972</td>
<td>20</td>
<td>44023705</td>
<td>C</td>
<td>0.039</td>
<td>0.008</td>
<td>2.9×10^{-6}</td>
<td>ZNF335</td>
</tr>
<tr>
<td>rs11047132</td>
<td>12</td>
<td>23899702</td>
<td>T</td>
<td>-0.054</td>
<td>0.012</td>
<td>3.1×10^{-6}</td>
<td>SOX5</td>
</tr>
<tr>
<td>rs16889362</td>
<td>6</td>
<td>37073683</td>
<td>A</td>
<td>0.067</td>
<td>0.015</td>
<td>3.4×10^{-6}</td>
<td>FGD2</td>
</tr>
<tr>
<td>rs3862790</td>
<td>11</td>
<td>72162823</td>
<td>T</td>
<td>-0.037</td>
<td>0.008</td>
<td>3.5×10^{-6}</td>
<td>STARD10</td>
</tr>
<tr>
<td>rs17648140</td>
<td>15</td>
<td>49481784</td>
<td>A</td>
<td>0.031</td>
<td>0.007</td>
<td>3.9×10^{-6}</td>
<td>GLDN</td>
</tr>
<tr>
<td>rs3888586</td>
<td>12</td>
<td>119152369</td>
<td>A</td>
<td>0.038</td>
<td>0.008</td>
<td>4.0×10^{-6}</td>
<td>PXN</td>
</tr>
<tr>
<td>rs4705952</td>
<td>5</td>
<td>131867517</td>
<td>A</td>
<td>0.038</td>
<td>0.008</td>
<td>4.1×10^{-6}</td>
<td>IRF1</td>
</tr>
<tr>
<td>rs10086637</td>
<td>8</td>
<td>78206017</td>
<td>A</td>
<td>-0.062</td>
<td>0.014</td>
<td>4.5×10^{-6}</td>
<td>PXMP3*</td>
</tr>
<tr>
<td>rs12890135</td>
<td>14</td>
<td>51269244</td>
<td>A</td>
<td>-0.040</td>
<td>0.009</td>
<td>4.5×10^{-6}</td>
<td>FRMD6</td>
</tr>
<tr>
<td>SNP</td>
<td>Chr</td>
<td>Position</td>
<td>Ref</td>
<td>Alt</td>
<td>p-value</td>
<td>Gene</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>rs17476223</td>
<td>4</td>
<td>149096412</td>
<td>A</td>
<td></td>
<td>5.3×10^{-6}</td>
<td>ARHGAP10</td>
<td></td>
</tr>
<tr>
<td>rs10802285</td>
<td>1</td>
<td>234278509</td>
<td>T</td>
<td></td>
<td>6.6×10^{-6}</td>
<td>GPR137B</td>
<td></td>
</tr>
<tr>
<td>rs3771452</td>
<td>2</td>
<td>70790369</td>
<td>T</td>
<td></td>
<td>7.6×10^{-6}</td>
<td>ADD2</td>
<td></td>
</tr>
<tr>
<td>rs261068</td>
<td>5</td>
<td>169253267</td>
<td>A</td>
<td></td>
<td>7.6×10^{-6}</td>
<td>DOCK2</td>
<td></td>
</tr>
<tr>
<td>rs4767822</td>
<td>12</td>
<td>118404921</td>
<td>T</td>
<td></td>
<td>7.8×10^{-6}</td>
<td>CCDC60</td>
<td></td>
</tr>
<tr>
<td>rs7069110</td>
<td>10</td>
<td>8735184</td>
<td>A</td>
<td></td>
<td>8.5×10^{-6}</td>
<td>GATA3*</td>
<td></td>
</tr>
<tr>
<td>rs1107426</td>
<td>1</td>
<td>31475112</td>
<td>A</td>
<td></td>
<td>9.0×10^{-6}</td>
<td>WDR57</td>
<td></td>
</tr>
<tr>
<td>rs6463598</td>
<td>7</td>
<td>6903863</td>
<td>A</td>
<td></td>
<td>9.1×10^{-6}</td>
<td>C7orf28B*</td>
<td></td>
</tr>
<tr>
<td>rs2635727</td>
<td>6</td>
<td>50928899</td>
<td>T</td>
<td></td>
<td>9.1×10^{-6}</td>
<td>TFAP2B</td>
<td></td>
</tr>
<tr>
<td>rs10869954</td>
<td>9</td>
<td>79481827</td>
<td>A</td>
<td></td>
<td>9.1×10^{-6}</td>
<td>GNA14</td>
<td></td>
</tr>
<tr>
<td>rs13374371</td>
<td>1</td>
<td>65468777</td>
<td>T</td>
<td></td>
<td>9.2×10^{-6}</td>
<td>AK3L1</td>
<td></td>
</tr>
<tr>
<td>rs543678</td>
<td>1</td>
<td>10665764</td>
<td>T</td>
<td></td>
<td>9.2×10^{-6}</td>
<td>CASZ1</td>
<td></td>
</tr>
<tr>
<td>rs707939</td>
<td>6</td>
<td>31834667</td>
<td>A</td>
<td></td>
<td>9.7×10^{-6}</td>
<td>MSH5</td>
<td></td>
</tr>
<tr>
<td>rs7876</td>
<td>11</td>
<td>60654488</td>
<td>A</td>
<td></td>
<td>9.9×10^{-6}</td>
<td>VPS37C</td>
<td></td>
</tr>
</tbody>
</table>

7 * More than 60kb
8
9
10
Supplementary Table III - Association of seven formerly reported loci with CRP levels in the discovery panel and combined with the replication results without data from WGHS

<table>
<thead>
<tr>
<th>SNP</th>
<th>Coded allele</th>
<th>Discovery</th>
<th></th>
<th>Discovery + replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Beta * (SE)</td>
<td>P-value</td>
<td>Beta * (SE)</td>
</tr>
<tr>
<td>rs2794520</td>
<td>C</td>
<td>0.186 (0.008)</td>
<td>5.3 x 10^{-125}</td>
<td>0.147 (0.006)</td>
</tr>
<tr>
<td>rs4420638</td>
<td>A</td>
<td>0.237 (0.011)</td>
<td>1.6 x 10^{-95}</td>
<td>0.232 (0.011)</td>
</tr>
<tr>
<td>rs1183910</td>
<td>G</td>
<td>0.143 (0.008)</td>
<td>6.4 x 10^{-73}</td>
<td>0.137 (0.007)</td>
</tr>
<tr>
<td>rs4420065</td>
<td>C</td>
<td>0.095 (0.008)</td>
<td>1.7 x 10^{-34}</td>
<td>0.075 (0.006)</td>
</tr>
<tr>
<td>rs4129267</td>
<td>C</td>
<td>0.094 (0.008)</td>
<td>3.8 x 10^{-35}</td>
<td>0.076 (0.006)</td>
</tr>
<tr>
<td>rs1260326</td>
<td>T</td>
<td>0.082 (0.008)</td>
<td>3.9 x 10^{-27}</td>
<td>0.064 (0.006)</td>
</tr>
<tr>
<td>rs10745954</td>
<td>A</td>
<td>0.024 (0.007)</td>
<td>1.5 x 10^{-03}</td>
<td>0.023 (0.007)</td>
</tr>
</tbody>
</table>

* Beta coefficient represents one unit change in the natural log transformed CRP (mg/L) per copy increment in the coded allele
<table>
<thead>
<tr>
<th>SNP</th>
<th>Effective allele</th>
<th>Age</th>
<th>Sex</th>
<th>BMI</th>
<th>Smoking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Beta (SE)</td>
<td>P-value</td>
<td>Beta (SE)</td>
<td>P-value</td>
</tr>
<tr>
<td>rs2794520</td>
<td>T</td>
<td>0.0007 (0.0006)</td>
<td>0.27</td>
<td>-0.0023 (0.0025)</td>
<td>0.37</td>
</tr>
<tr>
<td>rs4420638</td>
<td>A</td>
<td>0.0009 (0.0006)</td>
<td>0.13</td>
<td>-0.0045 (0.0045)</td>
<td>0.32</td>
</tr>
<tr>
<td>rs1183910</td>
<td>A</td>
<td>-0.00001 (0.0006)</td>
<td>0.96</td>
<td>-0.0018 (0.0027)</td>
<td>0.51</td>
</tr>
<tr>
<td>rs4420065</td>
<td>T</td>
<td>0.0015 (0.0006)</td>
<td>9.0×10⁻³</td>
<td>0.0031 (0.0025)</td>
<td>0.23</td>
</tr>
<tr>
<td>rs4129267</td>
<td>T</td>
<td>-0.0002 (0.0005)</td>
<td>0.68</td>
<td>0.0004 (0.0025)</td>
<td>0.89</td>
</tr>
<tr>
<td>rs1260326</td>
<td>T</td>
<td>0.0011 (0.0006)</td>
<td>0.05</td>
<td>0.0018 (0.0026)</td>
<td>0.50</td>
</tr>
<tr>
<td>rs12239046</td>
<td>T</td>
<td>-0.0001 (0.0005)</td>
<td>0.91</td>
<td>-0.0003 (0.0026)</td>
<td>0.92</td>
</tr>
<tr>
<td>rs6734238</td>
<td>A</td>
<td>-0.0007 (0.0006)</td>
<td>0.19</td>
<td>-0.0018 (0.0025)</td>
<td>0.49</td>
</tr>
<tr>
<td>rs9987289</td>
<td>A</td>
<td>0.0013 (0.0001)</td>
<td>0.19</td>
<td>-0.006 (0.0045)</td>
<td>0.18</td>
</tr>
<tr>
<td>rs10745954</td>
<td>A</td>
<td>-0.0013 (0.0005)</td>
<td>1.9×10⁻²</td>
<td>0.0014 (0.0025)</td>
<td>0.59</td>
</tr>
<tr>
<td>rs1800961</td>
<td>T</td>
<td>-0.0004 (0.0016)</td>
<td>0.83</td>
<td>0.001 (0.0067)</td>
<td>0.88</td>
</tr>
<tr>
<td>rs340029</td>
<td>T</td>
<td>-0.0006 (0.0006)</td>
<td>0.27</td>
<td>0.0003 (0.0025)</td>
<td>0.91</td>
</tr>
<tr>
<td>rs10521222</td>
<td>T</td>
<td>-0.0007 (0.0001)</td>
<td>0.52</td>
<td>0.0042 (0.0077)</td>
<td>0.59</td>
</tr>
<tr>
<td>rs12037222</td>
<td>A</td>
<td>-0.0004 (0.0007)</td>
<td>0.56</td>
<td>0.0081 (0.0028)</td>
<td>4.3×10⁻³</td>
</tr>
<tr>
<td>rs13233571</td>
<td>T</td>
<td>0.0003 (0.0009)</td>
<td>0.77</td>
<td>-0.0013 (0.0037)</td>
<td>0.73</td>
</tr>
<tr>
<td>rs2847281</td>
<td>A</td>
<td>0.0002 (0.0005)</td>
<td>0.77</td>
<td>-0.0007 (0.0025)</td>
<td>0.79</td>
</tr>
<tr>
<td>rs6901250</td>
<td>A</td>
<td>0.0004 (0.0003)</td>
<td>0.17</td>
<td>0.0014 (0.003)</td>
<td>0.63</td>
</tr>
<tr>
<td>rs4705952</td>
<td>A</td>
<td>-0.0003 (0.0007)</td>
<td>0.66</td>
<td>0.0032 (0.0032)</td>
<td>0.31</td>
</tr>
</tbody>
</table>
Supplementary Table V - Imputation and quality of imputation for the 18 genome-wide significant loci

<table>
<thead>
<tr>
<th>SNP</th>
<th>AGES Quality</th>
<th>ARIC Quality</th>
<th>B58C Quality</th>
<th>CHS Quality</th>
<th>ERF Quality</th>
<th>FHS Quality</th>
<th>Health2000 Quality</th>
<th>KORA Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2794520</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>1 1.01</td>
<td>1 1.00</td>
<td>0 1.00</td>
<td>1 0.98</td>
<td>0 0.97</td>
</tr>
<tr>
<td>rs4420638</td>
<td>1 0.57</td>
<td>1 0.98</td>
<td>1 0.14</td>
<td>0 0.37</td>
<td>0 0.57</td>
<td>1 NA</td>
<td>0 0.67</td>
<td>1 0.99</td>
</tr>
<tr>
<td>rs1183910</td>
<td>1 0.95</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td>0 0.80</td>
<td>0 0.94</td>
<td>0 1.01</td>
<td>0 0.91</td>
<td>0 0.97</td>
</tr>
<tr>
<td>rs4420065</td>
<td>0 1.00</td>
<td>0 0.87</td>
<td>0 0.93</td>
<td>1 1.02</td>
<td>1 1.00</td>
<td>0 0.97</td>
<td>1 1.00</td>
<td>0 0.85</td>
</tr>
<tr>
<td>rs4129267</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 0.96</td>
<td>1 1.01</td>
<td>1 0.96</td>
<td>0 0.99</td>
<td>1 1.00</td>
<td>0 0.96</td>
</tr>
<tr>
<td>rs1260326</td>
<td>0 1.00</td>
<td>0 0.98</td>
<td>0 0.98</td>
<td>1 1.01</td>
<td>1 0.98</td>
<td>0 0.99</td>
<td>1 0.99</td>
<td>0 0.95</td>
</tr>
<tr>
<td>rs12239046</td>
<td>1 0.99</td>
<td>1 1.00</td>
<td>0 0.76</td>
<td>0 0.99</td>
<td>0 0.96</td>
<td>0 1.00</td>
<td>0 0.93</td>
<td>0 0.71</td>
</tr>
<tr>
<td>rs6734238</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>0 1.00</td>
<td>0 0.85</td>
<td>0 1.00</td>
<td>0 0.99</td>
<td>0 0.95</td>
<td>0 1.00</td>
</tr>
<tr>
<td>rs9987289</td>
<td>1 1.00</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td>0 0.84</td>
<td>0 0.98</td>
<td>0 1.01</td>
<td>0 0.94</td>
<td>0 0.97</td>
</tr>
<tr>
<td>rs10745954</td>
<td>1 0.97</td>
<td>0 1.00</td>
<td>0 1.00</td>
<td>0 0.95</td>
<td>0 0.99</td>
<td>0 1.01</td>
<td>0 0.92</td>
<td>0 1.00</td>
</tr>
<tr>
<td>rs1800961</td>
<td>0 0.99</td>
<td>1 0.97</td>
<td>0 0.22</td>
<td>1 1.01</td>
<td>1 0.89</td>
<td>1 NA</td>
<td>1 0.98</td>
<td>0 0.19</td>
</tr>
<tr>
<td>rs340029</td>
<td>0 1.00</td>
<td>1 0.99</td>
<td>0 0.81</td>
<td>1 1.00</td>
<td>1 0.99</td>
<td>0 0.99</td>
<td>1 1.00</td>
<td>0 0.73</td>
</tr>
<tr>
<td>rs10521222</td>
<td>0 0.99</td>
<td>0 0.33</td>
<td>0 0.22</td>
<td>1 0.99</td>
<td>1 0.82</td>
<td>0 0.31</td>
<td>1 1.00</td>
<td>0 0.32</td>
</tr>
<tr>
<td>rs12037222</td>
<td>1 0.97</td>
<td>0 0.97</td>
<td>0 0.98</td>
<td>0 0.91</td>
<td>0 0.97</td>
<td>0 1.01</td>
<td>0 0.96</td>
<td>0 0.97</td>
</tr>
<tr>
<td>rs13233571</td>
<td>1 0.96</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 0.87</td>
<td>0 0.91</td>
<td>0 0.98</td>
<td>0 0.93</td>
<td>0 0.99</td>
</tr>
<tr>
<td>rs2847281</td>
<td>1 0.98</td>
<td>1 1.00</td>
<td>0 0.97</td>
<td>0 0.95</td>
<td>0 0.98</td>
<td>0 0.99</td>
<td>0 0.84</td>
<td>0 0.95</td>
</tr>
<tr>
<td>rs6901250</td>
<td>1 0.97</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>0 0.66</td>
<td>0 0.96</td>
<td>0 0.98</td>
<td>0 0.88</td>
<td>0 1.00</td>
</tr>
<tr>
<td>rs4705952</td>
<td>1 0.90</td>
<td>1 0.97</td>
<td>0 0.70</td>
<td>0 0.75</td>
<td>0 0.92</td>
<td>0 0.62</td>
<td>0 0.76</td>
<td>0 0.61</td>
</tr>
</tbody>
</table>

Gen. = Genotyped
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2794520</td>
<td>1 1.00</td>
<td>1 0.98</td>
<td>1 0.99</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
</tr>
<tr>
<td>rs4420638</td>
<td>0 0.47</td>
<td>0 0.66</td>
<td>0 0.66</td>
<td>0 0.53</td>
<td>1 1.00</td>
<td>0 0.37</td>
<td>0 0.64</td>
<td>0 0.56</td>
</tr>
<tr>
<td>rs1183910</td>
<td>0 0.91</td>
<td>0 0.83</td>
<td>0 0.96</td>
<td>0 0.99</td>
<td>0 0.97</td>
<td>0 0.94</td>
<td>0 0.95</td>
<td>0 0.99</td>
</tr>
<tr>
<td>rs4420065</td>
<td>0 0.99</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 1.00</td>
<td>0 1.00</td>
<td>0 0.95</td>
<td>1 1.00</td>
</tr>
<tr>
<td>rs4129267</td>
<td>1 1.00</td>
</tr>
<tr>
<td>rs1260326</td>
<td>0 0.95</td>
<td>1 0.98</td>
<td>0 0.96</td>
<td>1 0.96</td>
<td>0 0.98</td>
<td>0 0.96</td>
<td>0 0.97</td>
<td>1 0.99</td>
</tr>
<tr>
<td>rs12239046</td>
<td>0 0.99</td>
<td>0 0.73</td>
<td>0 0.99</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 0.82</td>
<td>0 0.96</td>
<td>0 0.99</td>
</tr>
<tr>
<td>rs6734238</td>
<td>0 0.99</td>
<td>0 0.72</td>
<td>0 0.99</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 1.00</td>
<td>0 0.89</td>
<td>0 1.00</td>
</tr>
<tr>
<td>rs9987289</td>
<td>0 0.99</td>
<td>0 0.94</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 0.96</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td>0 0.99</td>
</tr>
<tr>
<td>rs10745954</td>
<td>0 0.97</td>
<td>0 0.62</td>
<td>0 0.97</td>
<td>0 1.00</td>
<td>0 1.00</td>
<td>0 0.99</td>
<td>0 0.92</td>
<td>0 1.00</td>
</tr>
<tr>
<td>rs1800961</td>
<td>1 0.71</td>
<td>1 0.99</td>
<td>1 0.97</td>
<td>1 0.99</td>
<td>1 1.00</td>
<td>1 0.87</td>
<td>1 0.99</td>
<td>1 0.99</td>
</tr>
<tr>
<td>rs340029</td>
<td>1 1.00</td>
</tr>
<tr>
<td>rs10521222</td>
<td>1 0.98</td>
<td>1 1.00</td>
<td>1 0.98</td>
<td>1 0.98</td>
<td>0 0.33</td>
<td>1 0.98</td>
<td>1 0.98</td>
<td>1 0.98</td>
</tr>
<tr>
<td>rs12037222</td>
<td>0 0.98</td>
<td>0 0.88</td>
<td>0 0.98</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td>0 0.99</td>
</tr>
<tr>
<td>rs13233571</td>
<td>0 0.99</td>
<td>0 0.91</td>
<td>0 0.96</td>
<td>0 0.98</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td>0 0.91</td>
<td>0 0.98</td>
</tr>
<tr>
<td>rs2847281</td>
<td>0 0.99</td>
<td>0 0.83</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>0 0.97</td>
<td>0 1.00</td>
</tr>
<tr>
<td>rs6901250</td>
<td>0 0.96</td>
<td>0 0.79</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td>1 1.00</td>
<td>0 0.98</td>
<td>0 0.87</td>
<td>0 0.98</td>
</tr>
<tr>
<td>rs4705952</td>
<td>0 0.89</td>
<td>0 0.74</td>
<td>0 0.94</td>
<td>0 0.91</td>
<td>1 1.00</td>
<td>0 0.93</td>
<td>0 0.83</td>
<td>0 0.86</td>
</tr>
</tbody>
</table>

Gen. = Genotyped
Supplementary Table V - Imputation and quality of imputation for the 18 genome-wide significant loci (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2794520</td>
<td>1 0.98</td>
<td>0 0.98</td>
<td>1 0.99</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
</tr>
<tr>
<td>rs4420638</td>
<td>1 0.58</td>
<td>0 0.54</td>
<td>0 0.66</td>
<td>0 0.53</td>
<td>1 1.00</td>
<td>0 0.37</td>
<td>0 0.64</td>
<td></td>
</tr>
<tr>
<td>rs1183910</td>
<td>1 0.99</td>
<td>0 0.99</td>
<td>0 0.96</td>
<td>0 0.99</td>
<td>0 0.97</td>
<td>0 0.94</td>
<td>0 0.95</td>
<td></td>
</tr>
<tr>
<td>rs4420065</td>
<td>1 0.99</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 1.00</td>
<td>0 1.00</td>
<td>0 0.95</td>
<td></td>
</tr>
<tr>
<td>rs4129267</td>
<td>1 0.99</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td></td>
</tr>
<tr>
<td>rs1260326</td>
<td>1 0.96</td>
<td>0 0.97</td>
<td>0 0.96</td>
<td>1 0.96</td>
<td>0 0.98</td>
<td>0 0.96</td>
<td>0 0.97</td>
<td></td>
</tr>
<tr>
<td>rs12239046</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 0.82</td>
<td>0 0.96</td>
<td></td>
</tr>
<tr>
<td>rs6734238</td>
<td>1 1.00</td>
<td>0 1.00</td>
<td>0 0.99</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 1.00</td>
<td>0 0.89</td>
<td></td>
</tr>
<tr>
<td>rs9987289</td>
<td>1 0.97</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 0.99</td>
<td>0 0.96</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td></td>
</tr>
<tr>
<td>rs10745954</td>
<td>1 1.00</td>
<td>0 1.00</td>
<td>0 0.97</td>
<td>0 1.00</td>
<td>0 1.00</td>
<td>0 0.99</td>
<td>0 0.92</td>
<td></td>
</tr>
<tr>
<td>rs1800961</td>
<td>1 0.68</td>
<td>0 0.68</td>
<td>1 0.97</td>
<td>1 0.99</td>
<td>1 1.00</td>
<td>1 0.87</td>
<td>1 0.99</td>
<td></td>
</tr>
<tr>
<td>rs340029</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td>1 1.00</td>
<td></td>
</tr>
<tr>
<td>rs10521222</td>
<td>0 1.00</td>
<td>0 0.37</td>
<td>1 0.98</td>
<td>0 0.98</td>
<td>0 0.33</td>
<td>1 0.98</td>
<td>1 0.98</td>
<td></td>
</tr>
<tr>
<td>rs12037222</td>
<td>1 0.97</td>
<td>0 0.98</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td>0 0.98</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td></td>
</tr>
<tr>
<td>rs13223871</td>
<td>1 0.98</td>
<td>0 0.99</td>
<td>0 0.96</td>
<td>0 0.98</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td>0 0.98</td>
<td></td>
</tr>
<tr>
<td>rs2847281</td>
<td>0 1.00</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>0 0.98</td>
<td>1 1.00</td>
<td>0 0.99</td>
<td>0 0.97</td>
<td></td>
</tr>
<tr>
<td>rs6901250</td>
<td>1 0.80</td>
<td>0 0.81</td>
<td>0 0.98</td>
<td>0 0.97</td>
<td>1 1.00</td>
<td>0 0.98</td>
<td>0 0.87</td>
<td></td>
</tr>
<tr>
<td>rs4705952</td>
<td>1 0.91</td>
<td>0 0.91</td>
<td>0 0.94</td>
<td>0 0.91</td>
<td>1 1.00</td>
<td>0 0.93</td>
<td>0 0.83</td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table VI - Association of covariates with the effect on serum CRP of SNPs for which heterogeneity was shown

<table>
<thead>
<tr>
<th>SNP</th>
<th>Age Beta (SE)</th>
<th>Age P-value</th>
<th>Sex Beta (SE)</th>
<th>Sex P-value</th>
<th>BMI Beta (SE)</th>
<th>BMI P-value</th>
<th>Smoking Beta (SE)</th>
<th>Smoking P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs2794520</td>
<td>0.0021 (0.0014)</td>
<td>0.13</td>
<td>0.0004 (0.0012)</td>
<td>0.72</td>
<td>0.0046 (0.0174)</td>
<td>0.79</td>
<td>-0.0017 (0.0016)</td>
<td>0.27</td>
</tr>
<tr>
<td>rs4420065</td>
<td>0.0015 (0.001)</td>
<td>0.12</td>
<td>0.0012 (0.0006)</td>
<td>0.06</td>
<td>0.0065 (0.0121)</td>
<td>0.59</td>
<td>0 (0.0011)</td>
<td>0.96</td>
</tr>
<tr>
<td>rs4129267</td>
<td>0.001 (0.0008)</td>
<td>0.20</td>
<td>0.0006 (0.0006)</td>
<td>0.32</td>
<td>0.0046 (0.0102)</td>
<td>0.65</td>
<td>-0.0009 (0.0009)</td>
<td>0.30</td>
</tr>
<tr>
<td>rs1260326</td>
<td>0.0008 (0.0009)</td>
<td>0.40</td>
<td>-0.0001 (0.0007)</td>
<td>0.87</td>
<td>0.0204 (0.0119)</td>
<td>0.09</td>
<td>-0.0007 (0.001)</td>
<td>0.49</td>
</tr>
<tr>
<td>rs10745954</td>
<td>-0.0014 (0.0008)</td>
<td>0.06</td>
<td>-0.0014 (0.0003)</td>
<td>2.8×10⁻⁵</td>
<td>0.0012 (0.0097)</td>
<td>0.90</td>
<td>0.0008 (0.001)</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Supplementary Table VII - Details of methods and analysis for all participating cohorts

<table>
<thead>
<tr>
<th></th>
<th>FHS</th>
<th>CHS</th>
<th>ARIC</th>
<th>RS</th>
<th>KORA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6899</td>
<td>3265</td>
<td>6431</td>
<td>5567</td>
<td>1587</td>
</tr>
<tr>
<td>Sample</td>
<td>Serum</td>
<td>Plasma</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
</tr>
<tr>
<td>Genotyping platform</td>
<td>Affymetrix 500K, MIPS 50K</td>
<td>Illumina HumanHap370CNV Duo</td>
<td>Affymetrix 6.0 Broad Institute of Harvard and Massachusetts Institute of Technology</td>
<td>Version 3 Illumina Infinium II HumanHap550</td>
<td>Affymetrix 500k</td>
</tr>
<tr>
<td>Genotyping center</td>
<td>General Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai</td>
<td>General Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai</td>
<td>Erasmus Medical Center</td>
<td>Erasmus Medical Center</td>
<td>Helmholtz Zentrum München</td>
</tr>
<tr>
<td>Genotyping calling algorithm</td>
<td>Affymetrix BRLMM</td>
<td>Illumina BeadStudio</td>
<td>Affymetrix 6.0 Broad Institute of Harvard and Massachusetts Institute of Technology</td>
<td>HumanHap550 Affymetrix 500k</td>
<td>HumanHap550 Affymetrix 500k</td>
</tr>
<tr>
<td>MAF filter (N filtered)</td>
<td><0.01 (67006)</td>
<td>NA</td>
<td>NA</td>
<td>≤0.01 (24977)</td>
<td>NA</td>
</tr>
<tr>
<td>HWE pvalue filter (N filtered)</td>
<td>p<10^-6 (20469)</td>
<td>p<10^-5 (1829)</td>
<td>p<10^-5 (if MAF >0.05) (21220)</td>
<td>p<10^-5</td>
<td>NA</td>
</tr>
<tr>
<td>Call rate filter (N filtered)</td>
<td><0.95 (23093)</td>
<td>≤0.97 (10220)</td>
<td>≤0.90 (26274)</td>
<td>≤0.90 (811)</td>
<td>≤0.90</td>
</tr>
<tr>
<td>Imputation quality filter (N filtered)</td>
<td>OEvar < 0.3 (61627)</td>
<td>OEvar < 0.01</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Number of genotyped SNPs in the analysis</td>
<td>425593</td>
<td>306655</td>
<td>589253</td>
<td>530683</td>
<td>490032</td>
</tr>
<tr>
<td>Imputation software</td>
<td>MACH</td>
<td>BIMBAM</td>
<td>MACH</td>
<td>MACH</td>
<td>MACH</td>
</tr>
<tr>
<td>Trait transformation Adjustment</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>Adjustment</td>
<td>Age and sex</td>
<td>Age, sex, and study center</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Analysis method</td>
<td>Linear mixed effect model</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
</tr>
<tr>
<td></td>
<td>AGES</td>
<td>B58C</td>
<td>ERF</td>
<td>MICROS</td>
<td>VIS</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>N</td>
<td>3218</td>
<td>1461</td>
<td>1792</td>
<td>1215</td>
<td>774</td>
</tr>
<tr>
<td>Sample</td>
<td>Serum</td>
<td>Citrated plasma</td>
<td>Plasma</td>
<td>Serum</td>
<td>EDTA plasma</td>
</tr>
<tr>
<td>Genotyping platform</td>
<td>Illumina Hu370CNV</td>
<td>Affymetrix 500K</td>
<td>Illumina HumHap 300</td>
<td>Version 2 Illumina HumHap300</td>
<td>Illumina HumanHap300 (v1)</td>
</tr>
<tr>
<td>Genotyping center</td>
<td>National Institute on Ageing</td>
<td>Affymetrix University Medical Centre</td>
<td>Helmholtz Center, Munich, Germany</td>
<td>BeadStudio</td>
<td></td>
</tr>
<tr>
<td>Genotyping calling algorithm</td>
<td>BeadStudio</td>
<td>CHIAMO</td>
<td>BeadStudio</td>
<td>BeadStudio</td>
<td>BeadStudio</td>
</tr>
<tr>
<td>MAF filter (N filtered)</td>
<td><0.01 (17612 SNPs)</td>
<td>NA</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>HWE p-value filter (N filtered)</td>
<td>p<10^-6 (1595 SNPs)</td>
<td>NA</td>
<td>p<10^-5</td>
<td>p<10^-6</td>
<td>p<10^-6</td>
</tr>
<tr>
<td>Call rate filter (N filtered)</td>
<td>≤0.97 (18,819 SNPS)</td>
<td>NA</td>
<td>≤0.90</td>
<td>≤0.98</td>
<td>≤0.98</td>
</tr>
<tr>
<td>Imputation quality filter (N filtered)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Number of genotyped SNPs in the analysis</td>
<td>308340</td>
<td>419829</td>
<td>-</td>
<td>292917</td>
<td>305068</td>
</tr>
<tr>
<td>Imputation software</td>
<td>MACH</td>
<td>IMPUTE</td>
<td>MACH</td>
<td>MACH</td>
<td>MACH</td>
</tr>
<tr>
<td>Trait transformation</td>
<td>Natural logarithm (values +1)</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>Analysis method</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Score test for family-based association</td>
<td>Linear regression</td>
</tr>
<tr>
<td>Adjustment</td>
<td>Sex, date & time of sample collection, postal delay, nurse (which also adjusts for region of residence). No age-adjustment necessary as all cohort members are born in one week.</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age and sex</td>
<td>Analysis method</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
</tr>
</tbody>
</table>
Supplementary Table VII - Details of methods and analysis for all participating cohorts (continued)

<table>
<thead>
<tr>
<th>ORCADES</th>
<th>WGHS</th>
<th>SHIP</th>
<th>NFBC66</th>
<th>Health2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>EDTA plasma</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
</tr>
<tr>
<td></td>
<td>715</td>
<td>21953</td>
<td>4103</td>
<td>5125</td>
</tr>
<tr>
<td>Genotyping platform</td>
<td>Illumina HumanHap300 (v2)</td>
<td>Illumina HumanHap300 Duo+</td>
<td>Affymetrix SNP Array 6.0</td>
<td>HumanCNV370-duo BeadChip</td>
</tr>
<tr>
<td>Genotyping center</td>
<td></td>
<td></td>
<td></td>
<td>University of Greifswald/Affymetrix</td>
</tr>
<tr>
<td>Genotyping calling algorithm</td>
<td>BeadStudio</td>
<td>Amgen lab BeadStudio 3.1</td>
<td>Birdseed V2</td>
<td>Broad institute BeadStudio</td>
</tr>
<tr>
<td>MAF filter (N filtered)</td>
<td><0.01</td>
<td>NA</td>
<td>NA</td>
<td><0.01 (7666)</td>
</tr>
<tr>
<td>HWE p-value filter (N filtered)</td>
<td>p<10^-6</td>
<td>p<10^-6</td>
<td>NA</td>
<td>p<10^-6 (2614)</td>
</tr>
<tr>
<td>Call rate filter (N filtered)</td>
<td>≤0.98</td>
<td>≤0.98</td>
<td>NA</td>
<td>≤0.98 (10922)</td>
</tr>
<tr>
<td>Imputation quality filter (N filtered)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Number of genotyped SNPs in the analysis</td>
<td>306,207</td>
<td>317,186</td>
<td>909,622</td>
<td>339,629</td>
</tr>
<tr>
<td>Imputation software</td>
<td>MACH</td>
<td>MACH</td>
<td>IMPUTE</td>
<td>MACH</td>
</tr>
<tr>
<td>Trait transformation</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>Adjustment</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Analysis method</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
</tr>
</tbody>
</table>
Supplementary Table VII - Details of methods and analysis for all participating cohorts (continued)

<table>
<thead>
<tr>
<th></th>
<th>BLSA</th>
<th>AMISH</th>
<th>Finrisk</th>
<th>InCHIANTI</th>
<th>SardINIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>481</td>
<td>840</td>
<td>1893</td>
<td>1202</td>
<td>4295</td>
</tr>
<tr>
<td>Sample</td>
<td>Serum</td>
<td>Serum</td>
<td>Serum</td>
<td>Plasma</td>
<td>Serum</td>
</tr>
<tr>
<td>Genotyping platform</td>
<td>Illumina 550K</td>
<td>Affymetrix 500K</td>
<td>Illumina Human610-Quad BeadChip</td>
<td>Illumina 550K</td>
<td>Affymetrix SNP array 500K</td>
</tr>
<tr>
<td>Genotyping center</td>
<td>National Institute of Aging</td>
<td>University of Maryland Division of Endocrinology, Diabetes and Nutrition</td>
<td>Sanger Institute</td>
<td>National Institute of Aging</td>
<td>Lanusei, Sardinia</td>
</tr>
<tr>
<td>Genotyping calling algorithm</td>
<td>BeadStudio</td>
<td>Birdseed V2</td>
<td>Illuminus</td>
<td>BeadStudio</td>
<td>BRLMM</td>
</tr>
<tr>
<td>MAF filter (N filtered)</td>
<td><0.01 (23053)</td>
<td>NA</td>
<td><0.02 (40847)</td>
<td><0.01 (20646)</td>
<td><0.05</td>
</tr>
<tr>
<td>HWE p-value filter (N filtered)</td>
<td>p<10^{-4} (470)</td>
<td>NA</td>
<td>p<10^{-4} (5952)</td>
<td>p<10^{-5} (331)</td>
<td>p<10^{-6}</td>
</tr>
<tr>
<td>Call rate filter (N filtered)</td>
<td>≤0.99 (23728)</td>
<td>NA</td>
<td>≤0.95 (5846)</td>
<td>≤0.97 (19009)</td>
<td>≤0.90</td>
</tr>
<tr>
<td>Imputation quality filter (N filtered)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>OEvar < 0.3</td>
</tr>
<tr>
<td>Number of genotyped SNPs in the analysis</td>
<td>NA</td>
<td>338,598</td>
<td>554,988</td>
<td>NA</td>
<td>356,359</td>
</tr>
<tr>
<td>Imputation software</td>
<td>MACH</td>
<td>MACH</td>
<td>MACH</td>
<td>MACH</td>
<td>MACH</td>
</tr>
<tr>
<td>Trait transformation</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>Adjustment</td>
<td>Age and sex</td>
<td>Age, Age^2, Sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Analysis method</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression in a variance-component framework</td>
</tr>
</tbody>
</table>
Supplementary Table VII - Details of methods and analysis for all participating cohorts (continued)

<table>
<thead>
<tr>
<th>Health ABC</th>
<th>NESDA</th>
<th>NTR</th>
<th>TwinsUK</th>
<th>CARLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1658</td>
<td>1706</td>
<td>1596</td>
<td>1093</td>
</tr>
<tr>
<td>Sample</td>
<td>Serum</td>
<td>Plasma</td>
<td>Serum</td>
<td>serum</td>
</tr>
<tr>
<td>Genotyping platform</td>
<td>Illumina 1M-Duo</td>
<td>Affymetrix 600K</td>
<td>Perlegen 600K</td>
<td>Perlegen</td>
</tr>
<tr>
<td>Genotyping center</td>
<td>CIDR</td>
<td>Perlegen Sciences</td>
<td>Perlegen</td>
<td>Perlegen Proprietary</td>
</tr>
<tr>
<td>Genotyping calling algorithm</td>
<td>Bead Studio</td>
<td>Perlegen</td>
<td>Perlegen</td>
<td>Illuminus software</td>
</tr>
<tr>
<td>MAF filter (N filtered)</td>
<td><0.01</td>
<td><0.01</td>
<td>0.01 (41495)</td>
<td><0.01</td>
</tr>
<tr>
<td>HWE p-value filter (N filtered)</td>
<td>p<10^-6</td>
<td>p<10^-6</td>
<td>NA</td>
<td>p<10^-4</td>
</tr>
<tr>
<td>Call rate filter (N filtered)</td>
<td>≤0.95</td>
<td>≤0.95</td>
<td>≤0.95</td>
<td>≤0.95</td>
</tr>
<tr>
<td>Imputation quality filter (N filtered)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>proper_info<0.5</td>
</tr>
<tr>
<td>Number of genotyped SNPs in the analysis</td>
<td>NA</td>
<td>NA</td>
<td>64 for replication</td>
<td>11 for replication</td>
</tr>
<tr>
<td>Imputation software</td>
<td>MACH</td>
<td>NA</td>
<td>IMPUTE</td>
<td>IMPUTE</td>
</tr>
<tr>
<td>Trait transformation</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>Adjustment</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
<td>Age and sex</td>
</tr>
<tr>
<td>Analysis method</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
<td>Linear regression</td>
</tr>
</tbody>
</table>

OEvar = observed variance / expected variance
References

2. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-75.

6. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661-78.

