Randomized Double-Blind Assessment of the ONSET and OFFSET of the Antiplatelet Effects of Ticagrelor Versus Clopidogrel in Patients With Stable Coronary Artery Disease

Randomized Double-Blind Assessment of the ONSET and OFFSET of the Antiplatelet Effects of Ticagrelor Versus Clopidogrel in Patients With Stable Coronary Disease: The ONSET/OFFSET Study

Paul A. Gurbel, MD; Kevin P. Bliden, BS; Kathleen Butler, MD; Udaya S. Tantry, PhD; Tania Gesheff, BSN; Cheryl Wei, PhD; Renli Teng, PhD; Mark J. Antonino, BS; Shankar P. Patil, MD; Arun Karunakaran, MD; Dean J. Kereiakes, MD; Cordel Parris, MD; Drew Purdy, MD; Vance Wilson, MD; Gary S. Ledley, MD; Robert F. Storey, MD

Background—Ticagrelor is the first reversibly binding oral P2Y12 receptor antagonist. This is the first study to compare the onset and offset of platelet inhibition (IPA) with ticagrelor using the PLATO (PLATelet inhibition and patient Outcomes) trial loading dose (180 mg) with a high loading dose (600 mg) of clopidogrel.

Methods and Results—In a multicenter, randomized, double-blind study, 123 patients with stable coronary artery disease who were taking aspirin therapy (75 to 100 mg/d) received ticagrelor (180-mg load, 90-mg BID maintenance dose [n=57]), clopidogrel (600-mg load, 75-mg/d maintenance dose [n=54]), or placebo (n=12) for 6 weeks. Greater IPA (20 μmol/L ADP, final extent) occurred with ticagrelor than with clopidogrel at 0.5, 1, 2, 4, 8, and 24 hours after loading and at 6 weeks (P<0.0001 for all); by 2 hours after loading, a greater proportion of patients achieved >50% IPA (98% versus 31%, P<0.0001) and >70% IPA (90% versus 16%, P<0.0001) in the ticagrelor group than in the clopidogrel group, respectively. A faster offset occurred with ticagrelor than with clopidogrel (4-to-72–hour slope [% IPA/h] −1.04 versus −0.48, P<0.0001). At 24 hours after the last dose, mean IPA was 58% for ticagrelor versus 52% for clopidogrel (P=NS). IPA for ticagrelor on day 3 after the last dose was comparable to clopidogrel at day 5; IPA on day 5 for ticagrelor was similar to clopidogrel on day 7 and did not differ from placebo (P=NS).

Conclusions—Ticagrelor achieved more rapid and greater platelet inhibition than high-loading-dose clopidogrel; this was sustained during the maintenance phase and was faster in offset after drug discontinuation.

Clinical Trial Registration Information—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00528411.

(Circulation. 2009;120:000-000.)

Key Words: platelets • ticagrelor • clopidogrel • antiplatelet agents

Platelet activation by ADP is central to the development of atherothrombosis. The importance of the ADP-P2Y12 receptor interaction has been demonstrated by the clinical benefits associated with the addition of clopidogrel to aspirin therapy in patients with acute coronary syndromes and patients treated with stents.1,2

Clinical Perspective on p ▶️▶️▶️

The antiplatelet effect of clopidogrel is slow in onset, variable, and irreversible, and approximately 15% to 30% of patients have been reported to be nonresponsive.1–3 A 75-mg/d clopidogrel maintenance dose required at least 5 days and a 600-mg loading dose of clopidogrel required up to 8 hours to achieve ≈50% steady state of inhibition of ADP-induced platelet aggregation.1,4,5 Moreover, translational research studies have established a relationship between nonresponsiveness to antiplatelet drugs, high on-treatment platelet reactivity, and the occurrence of ischemic events in percutaneous coronary intervention patients.6–8 In addition, the slow offset of the antiplatelet effect due to irreversible

Received September 29, 2009; accepted October 22, 2009.
From Sinai Center for Thrombosis Research (P.A.G., K.P.B., U.S.T., T.G., M.J.A.), Baltimore, Md; AstraZeneca LP (K.B., C.W., R.T.), Wilmington, Del; University of Sheffield (S.B.P., A.K., R.F.S.), Sheffield, United Kingdom; The Christ Hospital Heart and Vascular Center and The Lindner Research Center (D.J.K.), Cincinnati, Ohio; Dolby Research LLC (C.P.), Baton Rouge, La; Black Hills Clinical Research Center (D.P.), Rapid City, SD; Cardiology Consultants (V.W.), Daytona Beach, Fla; and Drexel University College of Medicine (G.S.L.), Philadelphia, Pa.
Correspondence to Paul A. Gurbel, MD, Sinai Center for Thrombosis Research, Cardiac Catheterization Laboratory, 2401 W Belvedere Ave, Baltimore, MD 21215. E-mail pggurbel@lifebridgehealth.org
© 2009 American Heart Association, Inc.
Circulation is available at http://circ.ahajournals.org
DOI: 10.1161/CIRCULATIONAHA.109.912550
P2Y₁₂ binding by the active thienopyridine metabolite is potentially problematic in the management of patients who are treated before coronary angiography and then require coronary artery bypass graft surgery or who need other unanticipated surgical procedures.

Ticagrelor (formerly AZD6140) is the first reversibly binding oral, direct-acting P2Y₁₂ receptor antagonist. Clinical pharmacology and early dose-finding studies suggested a faster onset and greater inhibition of platelet aggregation (IPA) with ticagrelor than with clopidogrel. Although the clinical efficacy of ticagrelor has been studied extensively in PLATO (A Study of Platelet Inhibition and Patient Outcomes), a comprehensive characterization of its antiplatelet onset and offset effect profile in a statistically powered comparison with clopidogrel has not been conducted in patients with coronary artery disease (CAD). Moreover, ticagrelor has not been compared with high-loading-dose clopidogrel in patients. Therefore, the present study was designed to determine the onset and offset of the antiplatelet effect of ticagrelor with the PLATO trial dose compared with high-loading-dose clopidogrel and placebo in stable CAD patients given background aspirin therapy.

Methods

Study Design and Subjects

The ONSET/OFFSET study was a multicenter, randomized, double-blind, double-dummy, parallel-group study. The study was performed in accordance with standard ethical principles; written consent was obtained from all patients. Patients ≥18 years of age with documented stable CAD who were undergoing aspirin therapy (75 to 100 mg/d) were enrolled in 8 investigational sites in the United States and the United Kingdom between October 2007 and March 2009. Exclusion criteria were a history of acute coronary syndrome within 12 months of screening; any indication (eg, atrial fibrillation, prosthetic heart valve, or coronary stent) for antithrombotic therapy (eg, warfarin, clopidogrel, or aspirin dose other than 75 to 100 mg/d during the study period); congestive heart failure; left ventricular diastolic dysfunction; severe pulmonary disease; pregnancy; current smoking; concomitant therapy with moderate or strong cytochrome P450 3A inhibitors, substrates, or strong cytochrome P450 3A inducers; platelet function testing; study drug on the first day of the offset period (time 0 hours). To ensure blinding of the treatments, matching placebo ticagrelor tablets and placebo clopidogrel capsules were provided. Each treatment group consisted of the same combination of matching active and placebo clopidogrel capsules were provided. Each treatment group was randomized at visit 2 in balanced blocks (6 patients in each block) to ensure 1:1:1 randomization to clopidogrel, ticagrelor, and placebo treatment. The goal was 50 patients per treatment group. After 12 placebo patients had been randomized, the remaining patients were randomized to ticagrelor or clopidogrel in a 1:1 ratio. Randomization numbers were assigned sequentially as patients became eligible. An initial loading dose of ticagrelor (180 mg), clopidogrel (600 mg), or placebo was given after randomization at visit 2 followed by a maintenance administration (90 mg of ticagrelor or clopidogrel, or aspirin dose other than 75 to 100 mg/d) on the first day of the offset period (time 0 hours). To ensure blinding of the treatments, matching placebo ticagrelor tablets and placebo clopidogrel capsules were provided. Each treatment group consisted of the same combination of matching active and
placebo tablets/capsules, so medications provided for each treatment group were identical in appearance.

Patients fasted ≥8 hours before all visits, and all patients received concomitant aspirin (75 to 100 mg/d). Eligible patients undergoing clopidogrel therapy before screening underwent a 14-day minimum washout period before randomization. Compliance was measured by the amount of medication returned at the respective visits. Bleeding was defined according to the PLATO criteria.14 The frequency of patients with dyspnea was determined.

Blood Sampling for Platelet Function Testing

Samples for platelet function testing were taken at predosing (0 hour) and after the first dose of study drug on visit 2, then throughout the onset period (0.5 to 24 hours after the first loading dose), at the start of the offset period (0 hour, visit 4), and throughout the 10-day offset period (2 to 240 hours after the last dose; online-only Data Supplement Table II).

Blood was collected from the antecubital vein into Vacutainer tubes (Becton-Dickinson, Franklin Lakes, NJ) that contained 3.2% trisodium citrate for light-transmittance aggregometry and flow cytometry analysis. Blood was mixed with one part of a 1:1 in 1 tube that contained 3.2% sodium citrate (Greiner Bio-One Vacutette North America, Inc, Monroe, NC) for VerifyNow measurements.

Light-Transmittance Aggregometry

Platelet aggregation induced by ADP (20 and 5 μmol/L), collagen 2 μg/mL, and arachidonic acid 2 mM in platelet-rich plasma was assessed with a Chrono-log Optical Aggregometer (model 490-4D; Chrono-log Corporation, Havertown, Pa) as described previously.4 The assessment of 2 mM arachidonic acid–induced aggregation was performed to evaluate the effects of aspirin.13 The final extent of aggregation, measured at 6 minutes after agonist addition, and the maximal extent of aggregation were expressed as the percent change in light transmittance from baseline, with platelet-poor plasma as a reference. IPA was calculated as follows, where PA is platelet aggregation, b is predosing, and t is postdosing:

\[
\text{IPA(%) = 100\% \times \frac{PA_t - PA_b}{PA_b}}
\]

VerifyNow P2Y12 Assay

VerifyNow is a turbidimetric-based system that measures platelet aggregation in whole blood.9 The instrument measures an optical signal, reported as P2Y12 reaction units (PRU), and calculates the slope of the optical signal, reported as P2Y12 reaction units (PRU), and calculates the signal, reported as P2Y12 reaction units (PRU), and calculates the signal, reported as P2Y12 reaction units (PRU).

Vasodilator-Stimulated Phosphoprotein Phosphorylation Assay

The measurement of vasodilator-stimulated phosphoprotein phosphorylation (VASP-P) is a method of quantifying P2Y12 receptor reactivity and reflects the extent of P2Y12 receptor blockade (Boceytex Inc, Marseille, France).8 The platelet reactivity index (PRI) is calculated after measurement of VASP-P levels (mean fluorescence intensity [MFI]) determined by monoclonal antibodies after stimulation with prostaglandin (PG) E1 (MFI_{PG_E1}) and PGE1 plus ADP (MFI_{PG_E1+ADP}); PRI (%) = [MFI_{PG_E1} - (MFI_{PG_E1} + MFI_{PG_E1+ADP})]*100%.

Glycoprotein IIb/IIIa and P-Selectin Expression

ADP-stimulated (5 μmol/L, final concentration) expression of glycoprotein IIb/IIIa receptors and P-selectin was measured as described previously.5 The percent inhibition of baseline stimulated receptor expression was determined.

Primary End Points for Onset and Offset of IPA

The primary end point for onset was IPA (20 μmol/L ADP, final extent) at 2 hours after the first dose; for offset, it was the slope of IPA between 4 and 72 hours after the last dose of study drug.

Secondary pharmacodynamic end points were IPA (final and maximal extent), measured by 5- and 20-μmol/L ADP– and 2-μg/mL collagen–induced light-transmittance aggregometry; PRI; ADP–induced glycoprotein IIb/IIIa and P-selectin expression; and PRU and percent inhibition, measured by the VerifyNow P2Y12 assay.

Sample-Size Calculation

In the DISPERSE study (Dose confirmation Study assessing anti-Platelet Effects of AZD6140 versus clopidogrel in non–ST-segment Elevation myocardial infarction), the variability (ie, SD) of IPA values at 2 hours after an initial 200-mg dose of ticagrelor (old formulation, comparable to 180 mg under the new formulation) was 12.3% (n=36).10 In the DISPERSE-2 study, the corresponding variability was 20.8% (n=7).11 These 2 estimates were combined to give a weighted estimate of 13.9%. No patient data were available from the previous studies after a 600-mg loading dose of clopidogrel; however, with 50 patients per treatment group, it was calculated that there would be at least 91% power to detect mean differences in IPA of at least 15% between the 2 groups, with the assumption that the variability for the clopidogrel group was no more than double that for ticagrelor (14% versus 28%). The calculation also assumed a 5% significance level (2-sided).

For offset, estimates of the expected intercepts and slopes for each treatment group were obtained from the DISPERSE study.10 IPA data were available up to 24 hours after the last dose. A random coefficients model was fitted to the 4-, 8-, 12-, and 24-hour values and included fixed effects for treatment group, hour (ie, relative to last dose), and the treatment group–by-hour interaction and random coefficients for the patient and patient-by-hour interaction. The power to detect a given difference in slopes was calculated by simulation. Individual patient profiles of IPA were generated with the above estimates. With 50 patients per treatment group, there would be ~90% power to show a difference in slopes of ~0.45 IPA%/h between therapies. The calculations assumed that the linear relationship in IPA offset would continue to the 72-hour time point.

Statistical Analysis

Statistical analyses were performed by QDS (King of Prussia, Pa) with SAS (version 8.2). The analysis was an intention-to-treat analysis that included patients who were randomized to a treatment group, received at least 1 dose of study drug, and contributed interpretable postbaseline data. For all analyses, the primary comparison was made between the ticagrelor and clopidogrel treatments. Demographic data were compared between the 2 treatment groups with t test for numerical data or Fisher exact test for categorical data. The antiplatelet effect of ticagrelor compared with clopidogrel was analyzed by the Wilcoxon rank sum test (level of significance 0.05). The slopes of onset and offset were determined by a random coefficients model fitted to IPA values at 0.5, 1, and 2 hours after loading (onset) and 4, 8, 24, 48, and 72 hours after last dose (offset) and included fixed effects for treatment group, hour (relative to last dose or first dose), the treatment group–by-hour interaction, center, and center–by-treatment interaction, as well as random coefficients for the patient and patient-by-hour interaction. Difference of the slopes and 95% confidence intervals for primary comparisons of interest (ticagrelor versus clopidogrel) were calculated. The area under the effect curve from 0 to 8 hours after loading was determined for each treatment group. The mean time to maximum IPA was determined by the mean of each patient’s time to reach his or her own maximum IPA.

The estimation for the time of IPA declining from 30% to 10% after the last dose was calculated with an IPA exponential decline–with-time model (IPA = IPA_0 e^{-kt}), where t is the time and k is the declining rate constant. Correlation analyses of IPA (20 μmol/L ADP, final extent) versus IPA determined after stimulation by other agonists (final and maximal extent), PRI, the inhibition of stimulated glycoprotein IIb/IIIa and P-selectin expression, and percent inhibition and PRU as assessed by the VerifyNow test were performed with the Pearson product-moment correlation coefficient.
Results

Compliance, Demographics, and Baseline Characteristics

The number of patients enrolled at each center is listed in the online-only Data Supplement (Table I). Two centers, 1 in the United States and 1 in the United Kingdom, enrolled most of the patients (n=43 and n=40, respectively). Fifty-two patients in the ticagrelor group, 51 in the clopidogrel group, and 11 in the placebo group completed the study. For the complete pharmacodynamic analysis set, there were 49 patients in the ticagrelor group, 44 in the clopidogrel group, and 10 in the placebo group. The overall compliance rate was >95% for each treatment group by drug count. The treatment code was not broken prematurely for any patient. The most common protocol deviations related to laboratory tests (18.5% for the ticagrelor group and 10.0% for the clopidogrel group), procedures/tests (14.8% and 12.0%, respectively), and informed consent issues (13.0% and 14.0%, respectively). Approximately 6% of patients in each group had treatment visits outside the protocol window. The treatment groups were evenly balanced and consisted predominantly of white men between 41 and 83 years of age (Table I).

Arachidonic Acid–Induced Aggregation

Overall, 96% and 98% of patients had baseline and end-of-study arachidonic acid–induced maximal platelet aggregation <20%, respectively.
Onset and Maintenance IPA

The primary end point for onset, IPA at 2 hours after loading (20 μmol/L ADP, final extent) was greater for ticagrelor than for clopidogrel (88% versus 38%, P<0.0001; Table 2). IPA was higher at 0.5 hours after loading with ticagrelor (41% versus 8%, P<0.0001) and at all times in the first 24 hours after loading and in the maintenance phase (P<0.0001; Figure 2). Within 1 hour of ticagrelor loading, IPA was greater than the maximum IPA achieved after clopidogrel loading. In the ticagrelor group, IPA did not differ between 2 and 8 hours after loading, whereas in the clopidogrel group, IPA was greater at 8 hours than at 2 hours (P=0.02, repeated-measures ANCOVA model).

The mean time to maximum IPA in the ticagrelor group was 5.8 hours less and the area under the effect curve from 0 to 8 hours after loading (20 μmol/L ADP, final extent) was higher than in the clopidogrel group (Table 3). The rate of onset (slope) of the antiplatelet effect curve as assessed by IPA (20 μmol/L ADP, final extent) from 0 to 2 hours after the loading dose was greater in the ticagrelor group than in the clopidogrel group (43.57 versus 19.45 IPA %/h, P<0.0001; Table 4). By 2 hours after loading, a greater proportion of patients achieved ≥50% IPA (98% versus 31%, P<0.0001) and ≥70% IPA (90% versus 16%, P<0.0001) in the ticagrelor group than in the clopidogrel group, respectively. Concordant results were observed with the final and maximum extent of platelet aggregation (Table 2).

Offset of IPA

At the end of the 6 weeks of treatment, IPA (20 μmol/L ADP, final extent) was significantly higher in the ticagrelor group than in the clopidogrel group (P<0.0001; Figure 2); however, IPA did not differ between the groups at 24 and 48 hours after the last dose. The ticagrelor group had significantly lower IPA at 72 and 120 hours after the last dose (P=0.05), and the IPA did not differ thereafter between the groups (Figure 2). The rate of offset (slope) of the antiplatelet effect curve as assessed by IPA (20 μmol/L ADP, final extent) from 4 to 72 hours after the last dose, the primary end point for offset, was greater in the ticagrelor group than in the clopidogrel group (1.04 versus 0.48 IPA %/h, P<0.0001; Table 4). The time required for IPA to decrease from 30% to 10% in the ticagrelor group was less than half that in the clopidogrel group (53.30 versus 116.20 hours, respectively; Table 5), and the time to reach 10% was nearly twice as long after clopidogrel discontinuation (109.19 versus 195.66 hours, respectively). IPA for ticagrelor on day 3 after the last dose was comparable to that for clopidogrel at day 5; IPA on day 5 for ticagrelor was similar to clopidogrel on day 7 and did not differ from placebo (P=NS).

VerifyNow P2Y12 Assay

The greatest change in PRU from baseline in the ticagrelor group occurred within 2 hours after loading compared with 8

Table 2. IPA (20 μmol/L ADP) at 2 Hours After First Dose of Ticagrelor and Clopidogrel

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor (n=54)</th>
<th>Clopidogrel (n=50)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA, %</td>
<td>7 ± 2</td>
<td>9 ± 1</td>
<td></td>
</tr>
<tr>
<td>Final extent</td>
<td>88 ±15</td>
<td>38 ±18</td>
<td><0.0001</td>
</tr>
<tr>
<td>Maximum extent</td>
<td>65 ±17</td>
<td>23 ±10</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

PA indicates platelet aggregation. Values are mean±SD.

Table 3. IPAmax, TIPAmax, and AUEC0–8 (20 μmol/L ADP, Final Extent) at Onset

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor (n=54)</th>
<th>Clopidogrel (n=50)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPAmax, %</td>
<td>93</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>TIPAmax, h</td>
<td>2.0</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>AUEC0–8, %h</td>
<td>659</td>
<td>275</td>
<td></td>
</tr>
</tbody>
</table>

IPAmax indicates maximum IPA; TIPAmax, time to IPAmax; and AUEC0–8, area under the effect curve from 0 to 8 hours after loading.
hours in the clopidogrel group (Figure 3). PRU was significantly lower in the ticagrelor group at all times in the first 24 hours after loading and during maintenance ($P<0.0001$). PRU was lower at 8 and 24 hours after the final dose in the ticagrelor group ($P<0.0001$). At 48 hours and thereafter, PRU did not differ between groups.

Vasodilator-Stimulated Phosphoprotein Phosphorylation

The greatest change from baseline in PRI in the ticagrelor group occurred within 2 hours after loading compared with 8 hours in the clopidogrel group (Figure 4). PRI after the first loading dose and during maintenance was significantly lower, which indicates greater inhibition at all times in the ticagrelor group than in the clopidogrel group ($P<0.0001$). The PRI was lower at 8 and 24 hours after the final dose in the ticagrelor group ($P<0.005$ for both). At 48 hours and thereafter, there were no differences between the treatment groups.

Expression of Platelet Receptors

Platelet function, as measured by expression of glycoprotein IIb/IIIa and P-selectin receptors, demonstrated wide variability (Figures I and II in the online-only Data Supplement). The maximum antiplatelet effect of ticagrelor, as measured by both receptors, occurred within 2 hours of loading (2 versus 8 hours, $P=NS$) and was lower than in the clopidogrel group at all times after loading and during maintenance ($P<0.05$). Receptor expression was more suppressed for ticagrelor at 0 and 24 hours after the final dose. At 48 hours and thereafter, there were no differences between treatment groups.

Correlation of IPA (20 μmol/L ADP, Final Extent) With Other Pharmacodynamic Measurements

In both treatments groups, IPA (20 μmol/L ADP, final extent) significantly correlated with other pharmacodynamic parameters ($P<0.0001$; Table III in the online-only Data Supplement). The strongest correlations for ticagrelor were with IPA (maximal extent) irrespective of the ADP concentration, inhibition ($\%$), and PRU as measured by the VerifyNow P2Y12 assay and PRI.

Clinical Outcomes

Bleeding-related events occurred more frequently in the ticagrelor group (28.1%) than in the clopidogrel (13.0%) and placebo (8.3%) groups. There was 1 clinically relevant minor bleeding event in the placebo group; the remaining events were classified as minor (1 event in the ticagrelor group) or minimal. There were no major bleeding events. Five patients discontinued study treatment owing to an adverse event (4 treated with ticagrelor and 1 in the placebo group). Dyspnea judged by the investigator to be likely or possibly due to the study drug occurred in 25%, 4%, and 0% of patients in the ticagrelor, clopidogrel, and placebo groups, respectively (ticagrelor versus clopidogrel $P<0.01$). Three patients in the ticagrelor group stopped the study drug owing to dyspnea.

Discussion

This is the first study to comprehensively characterize the onset and offset of the antiplatelet effect of ticagrelor in a statistically powered comparison with clopidogrel, and it is the first comparison of ticagrelor with high-dose clopidogrel (600 mg) in stable CAD patients. The 3 major findings of the present study are as follows: (1) The onset of the antiplatelet effect of ticagrelor with the PLATO dosing regimen was rapid (a significant antiplatelet effect was observed within 30 minutes of loading) and markedly greater than with high-loading-dose clopidogrel; (2) the greater antiplatelet effect of

Table 4. Slope of Onset (0 to 2 Hours After Loading Dose) and Offset (4 to 72 Hours After Last Dose) Measured by IPA (20 μmol/L ADP, Final Extent)

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor (n=54)</th>
<th>Clopidogrel (n=50)</th>
<th>Difference of Mean Slope (Ticagrelor−Clopidogrel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final extent</td>
<td>10.59</td>
<td>8.42</td>
<td>24.12</td>
</tr>
<tr>
<td>Maximum extent</td>
<td>6.75</td>
<td>5.56</td>
<td>19.47</td>
</tr>
<tr>
<td>Offset</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final extent</td>
<td>94.00</td>
<td>71.84</td>
<td>−0.56</td>
</tr>
<tr>
<td>Maximum extent</td>
<td>59.78</td>
<td>41.66</td>
<td>−0.45</td>
</tr>
</tbody>
</table>

CI indicates confidence interval.

Table 5. Time for IPA (20 μmol/L ADP) to Decrease From 30% to 10%

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor (n=54)</th>
<th>Clopidogrel (n=50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final extent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPA₀</td>
<td>94.92±2.01</td>
<td>63.71±2.07</td>
</tr>
<tr>
<td>Time when IPA=30%, h</td>
<td>0.201±0.000096</td>
<td>0.009±0.00084</td>
</tr>
<tr>
<td>Time when IPA=10%, h</td>
<td>55.88</td>
<td>79.66</td>
</tr>
<tr>
<td>Average time, h</td>
<td>109.19</td>
<td>195.66</td>
</tr>
</tbody>
</table>

IPA₀ indicates IPA at beginning of offset; average time, time when IPA=30%−time when IPA=10%.

Data are presented as mean±SE. IPA data from 2 to 240 hours after last dose were used to fit the model.
ticagrelor was sustained during maintenance therapy; and (3) the offset effect for ticagrelor as determined by the rate of offset (slope) measured by aggregometry was significantly faster than clopidogrel, and the residual antiplatelet effect of ticagrelor returned to baseline faster than clopidogrel.

Onset Pharmacodynamics

The pharmacodynamic response to the ticagrelor loading dose in the present study is consistent with the results of the DISPERSE and DISPERSE-2 studies. In those studies, the earliest platelet function assessment was at 2 hours after loading, and at that time, a maximal antiplatelet effect occurred. However, in the ONSET/OFFSET study, platelet aggregation was measured earlier after the loading dose (0.5- and 1-hour measurements), and within 1 hour, we observed a near-maximal response (∼80% inhibition). At 1 hour after loading, platelet inhibition induced by ticagrelor was ∼1.6 times greater than the maximal platelet inhibition induced by clopidogrel that occurred at 8 hours after loading. The significant antiplatelet effect observed within 30 minutes of loading indicates that ticagrelor may have particular utility in the setting of ad hoc percutaneous coronary intervention, for which immediate inhibition is desired. The rapid onset of IPA after ticagrelor loading is consistent with the properties of a direct-acting P2Y12 inhibitor, for which IPA is dependent on plasma drug concentrations.

The present results are also concordant with the CLEAR PLATELETS (Clopidogrel Loading with Eptifibatide to Arrest the Reactivity of Platelets) and CLEAR PLATELETS-2 studies that examined the pharmacodynamic response to a 600-mg clopidogrel loading dose administered at the time of elective coronary artery stenting. The maximum antiplatelet effect from a 600-mg clopidogrel load on a background of aspirin therapy occurred at 6 to 8 hours after dosing, similar to the ONSET/OFFSET study. Overall, the pharmacodynam-
ics measured by light-transmittance aggregometry were largely consistent with the results of VerifyNow and flow cytometry measuring VASP-P. The ONSET/OFFSET study was also the first prospective study to use the VASP-P and VerifyNow P2Y12 assays to detect the antiplatelet properties of a direct-acting P2Y12 inhibitor.

Offset Pharmacodynamics

Despite the greater antiplatelet effect of ticagrelor, IPA at 24 hours after the last dose was equivalent in ticagrelor- and clopidogrel-treated patients, which is indicative of a faster immediate offset of effect. These data suggest that patients who miss 1 dose of ticagrelor will have a level of platelet inhibition at 24 hours after the last dose that is equivalent to patients undergoing maintenance clopidogrel therapy. Platelet inhibition in the ticagrelor group was numerically less at 48 hours after the last dose and was significantly less at 72 and 120 hours. Thereafter, platelet inhibition was equivalent. However, the VASP-P and VerifyNow measurements demonstrated equivalent antiplatelet effects at 48 hours that persisted for 240 hours. Price et al. measured the onset and offset of platelet inhibition by clopidogrel in healthy volunteers with the VerifyNow P2Y12 assay. They demonstrated low platelet inhibition (median 12%) at day 5 of offset in the majority of subjects. The latter results are consistent with the present observations.

On the basis of the present IPA data, bleeding risk may be less in patients taken to surgery between 48 and 120 hours after cessation of ticagrelor therapy compared with clopidogrel therapy. Moreover, in support of the offset data in the present study, in the PLATO trial, coronary artery bypass graft–related bleeding was numerically lower in ticagrelor-treated patients than in clopidogrel-treated patients despite the recommendation that the study drug be withheld for 5 days in the clopidogrel group and for 24 to 72 hours in the ticagrelor group. The primary safety end points in PLATO did not differ between groups, but non–coronary artery bypass graft–related major bleeding by PLATO and TIMI (Thrombolysis In Myocardial Infarction) criteria were greater in the ticagrelor group. However, the lower number of coronary artery bypass graft bleeding events in the ticagrelor group appeared to counterbalance the increased non–coronary artery bypass graft–related major bleeding and drove the primary end point of major bleeding to be no different between groups. It is clear that further prospective studies are required to demonstrate the relation of bleeding to platelet function in patients treated with reversible versus irreversible P2Y12 inhibitors, and at this time, the optimal ex vivo measurements to determine safety and efficacy remain uncertain.

Ticagrelor inhibits the P2Y12 receptor by a noncompetitive mechanism toward ADP. With noncompetitive binding, the agonist cannot displace the drug from the receptor. Theoretically, increasing concentrations of ADP should not significantly alter the antiplatelet effect of ticagrelor. Moreover, direct P2Y12 inhibitors may inhibit the externalized internal pool of P2Y12 receptors that are not accessible during transient exposure to active thienopyridine metabolites. In addition to overall greater platelet inhibition, the latter mechanisms may also explain the lower occurrence of ischemic events associated with ticagrelor than with clopidogrel therapy in the PLATO trial.

Study Limitations

The present study was neither sized adequately nor of sufficient duration to examine the relation of clinical outcomes to platelet function. The patient population had stable CAD, and similar findings may not occur in the analysis of platelet function in patients with unstable CAD or patients undergoing coronary stent implantation.

Conclusions

Ticagrelor achieved a more rapid and greater platelet inhibition than high-loading-dose clopidogrel in patients with stable CAD. This inhibition was sustained during the maintenance phase and was faster in offset than clopidogrel. These effects may explain why ticagrelor treatment in the PLATO trial was associated with a lower occurrence of the primary end point than seen with clopidogrel therapy, whereas no difference in coronary artery bypass graft–related bleeding occurred between the 2 groups.

Acknowledgments

The authors acknowledge Patrick Hoggard, PhD, and Louise Profit, PhD (Gardiner-Caldwell Communications, Macclesfield, United Kingdom) for editorial assistance.

Sources of Funding

This study was funded by AstraZeneca, LP (Wilmingon, Del).

Disclosures

Dr Gurbel received research grants, honoraria, and/or consultancy fees from Hemoscope, AstraZeneca, Schering-Plough, Medtronic, Lilly/Sankyo, sanofi-aventis, Boston-Scientific, and Bayer. Drs Butler, Wei, and Teng are employees of AstraZeneca. Dr Kereiakes received research grants, honoraria, and/or consultancy fees from Abbott Vascular, Amylin Pharmaceuticals, Devax, Eli Lilly & Co, Cordis/Johnson & Johnson, Medpace, Boston Scientific, Medtronic, REVAC Medical Inc, and Duiichi Sankyo. Dr Ledley served on speakers’ bureaus for sanofi-aventis, Bristol-Myers Squibb, Eli Lilly, and Schering-Plough. Dr Storey received research grants, honoraria, and/or consultancy fees from AstraZeneca, Duiichi Sankyo/Eli Lilly, Schering-Plough, The Medicines Company, and Teva. The remaining authors report no conflicts.

References

CLINICAL PERSPECTIVE
In the present study, ticagrelor compared with high-loading-dose clopidogrel achieved more rapid and greater platelet inhibition in patients with stable coronary artery disease. Greater inhibition was also sustained during the maintenance phase, and the offset of action was faster with ticagrelor therapy than with clopidogrel. These pharmacodynamic effects may explain why ticagrelor treatment was associated with a lower occurrence of the primary end point (myocardial infarction, stroke, or cardiovascular death), similar coronary artery bypass graft–related bleeding, and no overall difference in major bleeding compared with clopidogrel therapy in the PLATO (PLATElet inhibition and patient Outcomes) trial.
Randomized Double-Blind Assessment of the ONSET and OFFSET of the Antiplatelet Effects of Ticagrelor Versus Clopidogrel in Patients With Stable Coronary Artery Disease.

Paul A. Gurbel, Kevin P. Bliden, Kathleen Butler, Udaya S. Tantry, Tania Gesheff, Cheryl Wei, Renli Teng, Mark J. Antonino, Shankar B. Patil, Arun Karunakaran, Dean J. Kereiakes, Cordel Parris, Drew Purdy, Vance Wilson, Gary S. Ledley and Robert F. Storey

Circulation. published online November 18, 2009;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2009/11/18/CIRCULATIONAHA.109.912550.citation

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2009/11/20/CIRCULATIONAHA.109.912550.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/
Supplemental Tables

Table S1. Patient Enrollment in Each Center

<table>
<thead>
<tr>
<th>Region</th>
<th>Center</th>
<th>Randomized Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>1</td>
<td>43</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>United States</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>United States</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>United States</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>United States</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>United States</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>United States</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table S2. Platelet Function Testing Schedule

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Time in Onset and Offset Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mM arachidonic acid-induced platelet aggregation by light transmittance aggregometry</td>
<td>• 0 h (pre-dose), on visit 2 and visit 4.</td>
</tr>
<tr>
<td>5 and 20 µM ADP-, and 2µg/ml collagen-induced platelet aggregation by light transmittance aggregometry</td>
<td>• Onset: 0 (pre-dose), 0.5, 1, 2, 4, 8 and 24 h after first dose
• Offset: 0 (pre-dose), 2, 4, 8, 24, 48, 72, 120, 168 and 240 h after last dose</td>
</tr>
<tr>
<td>VASP-Phosphorylation and Platelet receptors (GPIIb/IIIa and P-selectin) VerifyNow™ P2Y12 assay</td>
<td>• Onset: 0 (pre-dose), 2, 8 and 24 h after first dose
• Offset: 0 (pre-dose), 8, 24, 48, 120, and 240 h after last dose</td>
</tr>
</tbody>
</table>
Table S3. Correlation of Inhibition of Platelet Aggregation (final extent, 20µM ADP) Versus Other Pharmacodynamic Measurements

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor (n=54)</th>
<th></th>
<th>Clopidogrel (n=50)</th>
<th></th>
<th>Placebo (n=12)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correlation</td>
<td>P-value</td>
<td>Correlation</td>
<td>P-value</td>
<td>Correlation</td>
<td>P-value</td>
</tr>
<tr>
<td>IPA (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5µM ADP (maximum)</td>
<td>0.9099</td>
<td><0.0001</td>
<td>0.8805</td>
<td><0.0001</td>
<td>0.6149</td>
<td><0.0001</td>
</tr>
<tr>
<td>5µM ADP (final)</td>
<td>0.9257</td>
<td><0.0001</td>
<td>0.9067</td>
<td><0.0001</td>
<td>0.5698</td>
<td><0.0001</td>
</tr>
<tr>
<td>20µM ADP (maximum)</td>
<td>0.9290</td>
<td><0.0001</td>
<td>0.9396</td>
<td><0.0001</td>
<td>0.9400</td>
<td><0.0001</td>
</tr>
<tr>
<td>2ug/mL Collagen (maximum)</td>
<td>0.6249</td>
<td><0.0001</td>
<td>0.4471</td>
<td><0.0001</td>
<td>0.3909</td>
<td><0.0001</td>
</tr>
<tr>
<td>2ug/mL Collagen (final)</td>
<td>0.6640</td>
<td><0.0001</td>
<td>0.4298</td>
<td><0.0001</td>
<td>0.3689</td>
<td><0.0001</td>
</tr>
<tr>
<td>Flow Cytometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRI (%)</td>
<td>0.7463</td>
<td><0.0001</td>
<td>0.3973</td>
<td><0.0001</td>
<td>-0.1310</td>
<td>0.1707</td>
</tr>
<tr>
<td>Inhibition of Stimulated P-Selectin Expression</td>
<td>0.4731</td>
<td><0.0001</td>
<td>0.3586</td>
<td><0.0001</td>
<td>-0.3561</td>
<td>0.0002</td>
</tr>
<tr>
<td>Inhibition of Stimulated GPIIb/IIIa Expression</td>
<td>0.3584</td>
<td><0.0001</td>
<td>0.2934</td>
<td><0.0001</td>
<td>-0.2343</td>
<td>0.0129</td>
</tr>
<tr>
<td>VerifyNow P2Y12 Assay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhibition (%)</td>
<td>0.8483</td>
<td><0.0001</td>
<td>0.7408</td>
<td><0.0001</td>
<td>0.0054</td>
<td>0.9567</td>
</tr>
<tr>
<td>PRU</td>
<td>-0.8631</td>
<td><0.0001</td>
<td>-0.5921</td>
<td><0.0001</td>
<td>-0.1264</td>
<td>0.2640</td>
</tr>
</tbody>
</table>

ADP indicates adenosine diphosphate; IPA, inhibition of platelet aggregation; PRI, platelet reactivity index; PRU, Platelet Reactivity Units
Supplemental Legends

Figure S1. Adenosine diphosphate- stimulated p-selectin expression by protocol time and treatment. Data expressed as mean ± SE.
*P<0.0001, †P<0.005, ‡P<0.05, Ticagrelor vs Clopidogrel

Figure S2. Adenosine Diphosphate- Stimulated GPIIb/IIa Expression by Protocol Time and Treatment. Data are expressed as mean ± standard error.
*P<0.0001, †P<0.05, Ticagrelor vs Clopidogrel

Supplemental Figures

Figure S1.

![Graph showing stimulated p-selectin expression over time for different treatments.](image-url)
Figure S2.