Population-Based Prevention of Obesity
The Need for Comprehensive Promotion of Healthful Eating, Physical Activity, and Energy Balance

A Scientific Statement From American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for Prevention (Formerly the Expert Panel on Population and Prevention Science)

Shiriki K. Kumanyika, PhD, RD, MPH, FAHA; Eva Obarzanek, PhD, MPH, RD, FAHA*; Nicolas Stettler, MD, MSCE, FAHA; Ronny Bell, PhD; Alison E. Field, ScD; Stephen P. Fortmann, MD, FAHA; Barry A. Franklin, PhD, FAHA; Matthew W. Gillman, MD, SM; Cora E. Lewis, MD, MSPH, FAHA; Walker Carlos Poston II, PhD, MPH, FAHA; June Stevens, PhD; Yuling Hong, MD, PhD, FAHA

Abstract—Obesity is a major influence on the development and course of cardiovascular diseases and affects physical and social functioning and quality of life. The importance of effective interventions to reduce obesity and related health risks has increased in recent decades because the number of adults and children who are obese has reached epidemic proportions. To prevent the development of overweight and obesity throughout the life course, population-based strategies that improve social and physical environmental contexts for healthful eating and physical activity are essential. Population-based approaches to obesity prevention are complementary to clinical preventive strategies and also to treatment programs for those who are already obese. This American Heart Association scientific statement aims: 1) to raise awareness of the importance of undertaking population-based initiatives specifically geared to the prevention of excess weight gain in adults and children; 2) to describe considerations for undertaking obesity prevention overall and in key risk subgroups; 3) to differentiate environmental and policy approaches to obesity prevention from those used in clinical prevention and obesity treatment; 4) to identify potential targets of environmental and policy change using an ecological model that includes multiple layers of influences on eating and physical activity across multiple societal sectors; and 5) to highlight the spectrum of potentially relevant interventions and the nature of evidence needed to inform population-based approaches. The evidence-based experience for population-wide approaches to obesity prevention is highlighted. (Circulation. 2008;118:000-000.)

Key Words: AHA Scientific Statement ■ obesity ■ overweight ■ prevention ■ population-based ■ policy strategies ■ environmental strategies
Based on data from the 2003–2004 US National Health and Nutrition Examination Survey (NHANES), approximately 66 million American adults (30 million men and 36 million women) are obese and an additional 74 million (42 million men and 32 million women) are overweight. Among American children 6 to 11 years of age, an estimated 4.2 million (2.3 million boys and 1.9 million girls) are overweight; among American adolescents 12 to 19 years of age, 5.7 million (3.1 million boys and 2.6 million girls) are overweight. Assuming that the same trends continue, by 2015 2 in every 5 adults and 1 in every 4 children in the United States will be obese. Obesity prevalence is also rising in countries throughout the world, reaching 20% to 30% in some European countries and 70% in Polynesia (International Obesity Task Force). According to the World Health Organization, the number of overweight and obese people worldwide will increase to 1.5 billion by 2015 if current trends continue. Clearly, overweight and obesity place a large public health burden on society.

The prevalence of some obesity-related CVD risk factors (eg, elevated cholesterol and high blood pressure) decreased in the United States during the period from 1960 to 2000, despite increased obesity. Nevertheless, the prevalence of these risk factors remained higher in overweight and obese than nonoverweight individuals, despite the concomitant trend of increased use of medications to treat these risk factors. Furthermore, the prevalence of diagnosed type 2 diabetes mellitus continued to increase concurrently with increases in obesity. These trends underscore the importance of curbing the obesity epidemic. Control of type 2 diabetes requires a lifetime of medical care and usually drug therapy from the point of diagnosis, with the attendant financial costs and potential adverse effects on quality of life. Pharmacological control of high blood cholesterol and hypertension likewise requires lifelong medical therapy. Even with medical intervention, increased obesity may ultimately reverse gains made with respect to declines in related CVD risk factors. Thus, there is no room for complacency in dealing with this public health problem.

It is preferable to avoid, in the first place, the excess weight gain that leads to overweight and then obesity. Effective treatment of obese individuals can substantially reduce risk factors for CVD and improve disease management, although some effects of long-standing obesity may not be reversible or readily manageable. However, even those overweight people who are able to lose weight are often unable to maintain their weight at that level, and no clear guidance currently exists on definitive strategies to achieve long-term weight loss in the population at large. The ability of weight loss to improve overall and CVD mortality has also not been clearly established, although a study to address this question is in progress.

A major emphasis on obesity prevention is needed in the population at large to prevent the development of obesity in those adults who are still in the normal weight range and in successive generations of children and adolescents during development. Treatment will continue to be of critical importance, but treatment alone cannot curb
the epidemic. Besides the limited long-term success of most obesity treatments, another factor is the limited ability to deliver enough treatment to enough people. We are already unable to deliver obesity treatment services to those who need such services, while the numbers needing treatment are rising. Health insurance seldom covers the cost of counseling for obesity, particularly the extended treatment of a year or more that is suggested to facilitate long-term weight loss. The need for treatment is highest, relatively speaking, among low-income and ethnic minority populations, who have a high burden of obesity, CVD, and stroke outcomes but less access to healthcare services.

This review provides a rationale for population-based obesity prevention efforts and research from a United States public health perspective. It is intended for a broad audience of health professionals, policy makers, and consumer advocates who may contribute to prevention efforts. As an overview of issues related to obesity prevention, this statement is complementary to published statements, workshop proceedings, and guidelines from the American Heart Association and other organizations that describe the effects of obesity and weight loss on CVD and its risk factors and provide guidance for obesity assessment and treatment and related lifestyle interventions (Appendixes). This statement addresses the need to bring together, in one place, the various arguments for what needs to be done, and how, with respect to population-based initiatives to promote healthful eating, physical activity, and energy balance. A key goal is to motivate health professionals and others to contribute directly to broadly based obesity prevention efforts—“treating the community at large.” The relevance to clinicians is to describe population-based efforts needed to support and complement obesity prevention and treatment activities undertaken in day-to-day practice. Obesity prevention in the population at large is also highly relevant to obesity treatment in that it fosters social and environmental conditions that support healthful eating and active living. Such conditions are essential for all weight-control efforts.

The writing group objectives were as follows: 1) to raise awareness of the importance of undertaking population-based initiatives specifically geared to the prevention of excess weight gain in adults and children; 2) to describe considerations for undertaking obesity prevention overall and in key risk subgroups; 3) to differentiate environmental and policy approaches to obesity prevention from those used in clinical prevention and obesity treatment; 4) to identify potential targets of environmental and policy change using an ecological model that includes multiple layers of influences on eating and physical activity across multiple societal sectors; and 5) to highlight the spectrum of potentially relevant interventions and the nature of evidence needed to inform population-based approaches. The evidence reviewed includes primary sources, systematic reviews and expert reports, emphasizing articles published from June 1995 through May 2007. The population burden and health effects of obesity are described as background. Conceptual frameworks that can be used to describe and analyze prevention strategies are presented.
Background: Scope of the Problem
The Burden of Overweight and Obesity in the US Population

Adults
Overweight and obesity are generally defined using body mass index (BMI), a measure of weight relative to height that is closely correlated with total body fat content. BMI is calculated as weight in kilograms divided by height in meters squared or by dividing weight in pounds by height in inches squared and multiplying by a conversion factor of 703.15

According to the National Heart, Lung, and Blood Institute, for adults, overweight is defined as a BMI of 25 to 29.9 kg/m²; obesity, ≥30 kg/m²; and extreme obesity, ≥40 kg/m².

Measures of waist circumference or waist-hip ratio are indicative of visceral adipose tissue, or intraabdominal fat, which may be more deleterious than overall overweight or obesity in some cases. Accordingly, the National Heart, Lung, and Blood Institute Clinical Guidelines recommend the use of waist circumference in addition to BMI in clinical screening of adults. High waist circumference, defined by cutoffs of >35 inches (>88 cm) for women and >40 inches (>102 cm) for men, increases the level of risk associated with a given BMI level.

Data based on measured heights and weights, which are more reliable and valid than self-report, are available from NHANES. In NHANES data for 2003–2004, an estimated 66.3% of US adults ≥20 years of age were either overweight or obese, a relative increase of 18% from the previous estimate of 56% in NHANES III (1988–1994). The estimated prevalence of obesity alone was 32.3% in the 2003–2004 NHANES, a relative increase of 40.6% from the estimated 22.9% prevalence reported in NHANES III. The prevalence of extreme obesity (BMI ≥40) in the 2003–2004 NHANES was 4.8%. The prevalence of obesity generally increases across adult age groups. Previously observed gender differences in obesity prevalence, at the level of BMI 30 or above, have disappeared, with men “catching up” to women between 1999–2000 and 2003–2004. However, the prevalence of extreme obesity continues to be higher in women.

Long-term trends in overweight and obesity show notable increases (from 47.4% to 66.0%, or a relative increase of 39.2%) in the percent of persons who were either overweight or obese in the last quarter of the 20th century (Figure 1). Most of the increase was attributable to increases in the prevalence of BMI ≥30 (obesity), whereas only minor increases occurred in the prevalence of BMI of 25 to 29.9 (overweight). The prevalence of obesity increased from 15.1% to 32.1% (a relative increase of 112.6%) for those aged 20 to 74 between the 1976–1980 NHANES and the 2003–2004 NHANES.

Children and Adolescents
For children and adolescents up to age 20 years, the term “overweight” rather than “obesity” is currently used by the Centers for Disease Control and Prevention (CDC) and generally defined as a BMI at or above the 95th percentile of sex-specific BMI-for-age values from the 2000 CDC growth charts. In children and adolescents, the term “at risk of overweight” is the counterpart of overweight in adults, which the CDC defined as a BMI between the 85th and 95th percentiles. If recommendations of an expert panel convened by the American Medical Association, Health Services and Resources Administration and CDC are implemented, the terminology for children will change to align with that for adults, ie, overweight and obesity. An estimated 17% of children and adolescents 2 to 19 years of age are overweight according to the 2003–2004 NHANES. Among children 6 to 11 years of age, the percentage of those considered overweight increased from 4.2% to 18.8% (a 348% relative increase) between 1966–1965 and 2003–2004. Among adolescents 12 to 19 years of age, the percentage of those considered overweight increased from 4.6% to 17.4% (a 278% relative increase) between 1966–1970 (for adolescents 12 to 17 years of age) and 2003–2004 (Figure 2 for recent trends).

Waist circumference percentiles based on national data are available for white, African American, and Mexican American children. However, whereas clinical guidelines for obesity assessment in adults include waist circumference, the above-referenced expert committee on child and adolescent overweight did not find sufficient evidence or guidance to warrant a recommendation for routine clinical use of waist circumference in children at present.

Ethnic Disparities
In adults, NHANES data indicate consistent trends of higher obesity prevalence for non-Hispanic blacks and Mexican Americans compared with non-Hispanic whites but do not provide estimates for other ethnic minority populations. Drawing on other data sources—of which some rely on self-reported weight and height and, therefore, underestimate prevalence overall or in specific demographic groups—obesity prevalence is also higher for American Indians and Alaska Natives, other Hispanic/Latino populations, Native Hawaiians, and Pacific Islanders in comparison with non-Hispanic whites, across the adult age spectrum. Depending on the ethnic group, the prevalence of obesity is higher in females only or in both males and females.

In the NHANES data, extreme obesity (BMI ≥40), which is associated with particularly high levels of CVD risk and total mortality, affects approximately 15% of non-Hispanic black women compared with 6% and 8% of non-Hispanic white and Mexican American women and 2% to 5% or fewer in men in these ethnic groups. Among immigrants in ethnic minority populations (Hispanic/Latino, Asian American, Pacific Islander, and possibly non-Hispanic blacks), obesity prevalence typically increases with a longer duration of US residence and, in some cases, approaches rates observed among US-born residents.

Ethnic disparities in obesity prevalence apply to both BMI and waist circumference and are accompanied by disparities in obesity-related diseases. However, there are ethnic differences in the interpretation of obesity indexes. For example, the clinical consequences of obesity are higher for people of Asian descent at lower BMI and waist circumference cut points than for whites. A report from the World Health Organization, Western Pacific Region, suggested that overweight should be defined as a BMI of 23 kg/m² or
greater and obesity as a BMI of 25.0 kg/m² or greater in adults of Asian descent rather than using the respective cutoffs of BMIs of 25 and 30. A subsequent World Health Organization expert panel recognized that a range of plausible BMI cutoffs for overweight and obesity existed for these populations. A more recent article calls for revisions of BMI criteria for South Asians, Chinese, and Aboriginals.

Ethnic disparities in overweight prevalence are also observed in male or female children and adolescents, as in adults. For example, in the NHANES data for 1999–2004, Mexican American male children and adolescents had a higher prevalence of overweight than non-Hispanic white male children and adolescents. The prevalence of overweight among non-Hispanic black male children and adolescents was not materially different from that among non-Hispanic white male children and adolescents. The prevalence of overweight in Mexican American and non-Hispanic black female children and adolescents was higher than non-Hispanic white female children and adolescents. Rates of increase in overweight have been steepest in non-Hispanic black children compared with Mexican American and non-Hispanic white children and generally intermediate for Mexican American children. Together with the higher prevalence of overweight in non-Hispanic black girls and Mexican American boys, these faster rates of increase indicate a particular need for preventive strategies addressed to these populations.

Socioeconomic Status and Geographic Variations

Population-based surveys show a higher prevalence of obesity in populations with lower socioeconomic status (SES), especially among white females, although this relationship is less clear in more recent prevalence trends. Patterns of SES differences in children and adolescents are complex and not consistent across age, gender, and ethnicity. For example, in recent NHANES data, an inverse association of obesity prevalence with SES was observed in white girls, whereas higher SES was associated with higher obesity levels in African American girls. Overall, SES differences in obesity are becoming less prominent in both adults and children.

Geographic variation in obesity has been reported by state, as well as degree of urbanization. For example, interview data (ie, using self-reported height and weight data) from the 2005 Behavioral Risk Factor Surveillance System (BRFSS) survey indicate that the highest prevalence of obesity was seen in Louisiana, Mississippi, and West Virginia, whereas the lowest prevalence was seen in Colorado and Hawaii. This may reflect socioeconomic differences among states. Higher prevalence of obesity has been reported for rural populations compared with urban and suburban populations in the National Health Interview Survey. For example, in 32,440 adult respondents to a 1998 National Health Interview Survey module, obesity was more prevalent among adult residents of rural areas than residents of urban areas (20.4% versus 17.8%; \(P = 0.0002 \)) and this rural-urban difference was consistent across all ethnic groups. An analysis of 2000–2001 BRFSS data showed a similar pattern but with higher prevalence (23.0% and 20.5% in rural and urban areas, respectively). Rural-urban-suburban differences in obesity and health may also reflect socioeconomic differences, with rural areas being more characterized by local poverty and lack of resources, at least in part.

Health Effects of Obesity

Adults

Obesity prevention in adults can potentially have a major impact in reducing morbidity and mortality that result from the chronic effects of excess body fatness. The worldwide increase in obesity portends an increasing epidemic of diabetes and its serious consequences, including CVD. The American Heart Association (AHA) identified obesity as a major CVD risk factor in 1998. As reviewed in a separate AHA scientific statement, the impact of obesity in the pathophysiology of cardiovascular and pulmonary diseases and diabetes is well documented and has been recognized for decades.

Weight gain after young adulthood is associated with an increased risk of CVD events and risk factors later in life independent of BMI levels. For example, in a cohort study of young adults, those who gained more than 5 lb over 15 years had unfavorable changes in CVD risk factors and higher incidence of metabolic syndrome and its components (waist, lipids, blood pressure), independent of initial BMI than those who had stable weight. In a 20-year follow-up of middle-aged men, risks of major CVD events and type 2 diabetes mellitus were related to excess body weight at baseline (overweight and obesity) and to weight gain. Also, in the Nurses Health Study, weight gain was associated with increased risk of all-cause, coronary heart disease, and CVD mortality at any level of initial BMI. The association between obesity and several diseases begins when an individual is well within the “normal” weight range. For example, in a study of >7000 middle-aged men screened in British general practices and monitored for nearly 15 years, the lowest overall mortality rate was at a BMI of 22 to 27.9; however, for a combined end point of myocardial infarction, stroke, type 2 diabetes, and death, risk was lowest at a BMI of 20 to 25.9, and all major CVD risk factors increased progressively from a BMI of <20.

As shown in Table 1, adverse health outcomes associated with obesity are not limited to CVD. There is a large and growing body of evidence on the other myriad health effects of overweight and obesity, based on both animal and human studies, including mechanistic studies, epidemiological studies (eg, prospective cohort and case-control studies), and clinical trials. Of the adverse medical consequences of overweight in adults, diabetes is the most strongly linked with increasing BMI. For example, insulin resistance, which is associated with obesity and is a risk factor for coronary heart disease, also appears to be related to liver disease and obstructive sleep apnea. Obesity increases the risk for several types of cancer, including relatively common cancers, such as breast cancer in postmenopausal women and prostate cancer. As shown in Table 1, other relevant outcomes include osteoarthritis, gastroesophageal reflux disease, erectile dysfunction, and Alzheimer disease, as well as physical disability, employee absenteeism, impaired quality of life, and psychological distress.
of life, and increased healthcare costs. In older adults, obesity is associated with protection against hip fracture, but this protective effect on bone status does not offset the extensive array of potential adverse effects on conditions that are common in the older population.

The extensive data indicating that weight loss can reverse or arrest the harmful effects of obesity are further evidence of the causal link between obesity and disease. Lifestyle intervention studies have shown the effectiveness of weight loss in improving cardiovascular risk factors, including blood pressure, insulin resistance and type 2 diabetes, lipid disorders, and the metabolic syndrome, in some cases lowering the incidence of hypertension or diabetes in a population at high risk for such diagnoses. Data from surgically treated obese subjects with larger weight losses than those usually observed in lifestyle trials have further confirmed the marked improvements in systolic (2 years only) and diastolic blood pressure, pulse pressure, and glucose, insulin, uric acid, triglycerides, high-density lipoprotein cholesterol, and total cholesterol levels, associated with weight loss after up to 10 years of follow-up.

With respect to mortality, although controversies continue, many studies show clear, statistically significant, positive associations of BMI with CVD mortality, suggesting that obesity prevention can improve longevity. Most studies show an association between BMI in the obese range (≥30) and mortality. The Look AHEAD trial was initiated to specifically clarify the potential benefits of intentional weight loss on mortality. However, mortality data—even if conclusive with respect to the presence or absence of an association of obesity or weight loss with longevity—do not reflect the full spectrum of obesity-related health or quality-of-life issues (Table 1).

Children and Adolescents
Events that occur at the earliest stages of human development—even before birth—may have a profound influence on risk for obesity, diabetes, CVD, and other common adult conditions and are, therefore, potentially important focal points for preventative efforts. Excess weight during childhood is associated with chronic disease morbidity and adverse psychosocial effects from childhood onward and, therefore, the lifetime duration of these diseases. Obesity during childhood also increases the risk of being obese as an adult, with the attendant implications for the above-described morbidity during adulthood.

Prenatal Determinants of Obesity and Related Health Risks
Both higher and lower birth weight are correlated to later obesity-related consequences. Higher birth weight is associated with larger amounts of gestational weight gain and with gestational diabetes, 2 factors also implicated in childhood obesity. Lower birth weight is consistently associated with central fat distribution, insulin resistance, the metabolic syndrome, type 2 diabetes, and ischemic CVD. Moreover, the phenotype of lower birth weight followed by higher BMI in childhood or adulthood appears to confer the highest risk of these outcomes. This pattern holds, for example, for insulin resistance among 8-year-olds in India, blood pressure among Filipino adolescents, the metabolic syndrome among white and Mexican American adults, and coronary heart disease among Welsh men and American female nurses. Recent studies have found that excess weight gain during childhood and adolescence appears to explain these observations. Whether accelerated weight gain in infancy confers excess risk for these adult outcomes is controversial.

Other prenatal determinants of obesity-related outcomes may span the entire “fetal supply line” from maternal dietary intake to alterations in utero-placental blood flow, placental function, and fetal metabolism, and they may or may not have any influence on birth weight. Maternal smoking during

Table 1. Adverse Outcomes for Which Obesity Increases Risk or Complications in Adulthood

<table>
<thead>
<tr>
<th>Cardiovascular diseases, diabetes, and related conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease (CHD)</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td>CHD risk factors</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Inflammation</td>
</tr>
<tr>
<td>Hypercoagulability</td>
</tr>
<tr>
<td>Autonomic nervous system dysfunction</td>
</tr>
<tr>
<td>Heart failure</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Deep venous thrombosis</td>
</tr>
<tr>
<td>Pulmonary disease (including obesity hypoventilation syndrome, obstructive sleep apnea)</td>
</tr>
<tr>
<td>Other outcomes*</td>
</tr>
<tr>
<td>Absenteeism from work</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>Asthma</td>
</tr>
<tr>
<td>Cancer (including breast [postmenopausal], endometrial, esophageal, colorectal, kidney, and prostate)</td>
</tr>
<tr>
<td>Disability, physical</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
</tr>
<tr>
<td>Fertility and pregnancy complications</td>
</tr>
<tr>
<td>Gallstones/cholecystitis</td>
</tr>
<tr>
<td>Gastroesophageal reflux disease</td>
</tr>
<tr>
<td>Gout</td>
</tr>
<tr>
<td>Healthcare costs</td>
</tr>
<tr>
<td>Impaired quality of life</td>
</tr>
<tr>
<td>Kidney stones</td>
</tr>
<tr>
<td>Liver (spectrum of nonalcoholic fatty liver disease)</td>
</tr>
<tr>
<td>Mortality</td>
</tr>
<tr>
<td>Obesity-related glomerulopathy</td>
</tr>
<tr>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Psychological disorders (eg, depression, aggressive behaviors)</td>
</tr>
<tr>
<td>Surgical complications</td>
</tr>
</tbody>
</table>

*Listed alphabetically. See text for relevant references.
Table 2. Adverse Outcomes for Which Obesity Increases Risk During Childhood

<table>
<thead>
<tr>
<th>Metabolic</th>
<th>Type 2 diabetes mellitus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metabolic syndrome</td>
</tr>
<tr>
<td>Orthopedic</td>
<td>Slipped capital femoral epiphysis</td>
</tr>
<tr>
<td></td>
<td>Blount’s disease</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Dyslipidemia</td>
</tr>
<tr>
<td></td>
<td>Hypertension</td>
</tr>
<tr>
<td></td>
<td>Left ventricular hypertrophy</td>
</tr>
<tr>
<td></td>
<td>Atherosclerosis</td>
</tr>
<tr>
<td>Psychological</td>
<td>Depression</td>
</tr>
<tr>
<td></td>
<td>Poor quality of life</td>
</tr>
<tr>
<td>Neurological</td>
<td>Pseudotumor cerebri</td>
</tr>
<tr>
<td></td>
<td>Hepatic</td>
</tr>
<tr>
<td></td>
<td>Nonalcoholic fatty liver disease</td>
</tr>
<tr>
<td></td>
<td>Nonalcoholic steatohepatitis</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>Obstructive sleep apnea</td>
</tr>
<tr>
<td></td>
<td>Asthma (exacerbation)</td>
</tr>
<tr>
<td>Renal</td>
<td>Proteinuria</td>
</tr>
</tbody>
</table>

Source: Reference 27.

Consequences of Overweight During Childhood

CVD effects of obesity during childhood are reviewed in detail in other AHA statements. In addition to CVD morbidity, obesity can also lead to a number of other adverse health outcomes in childhood, including sleep apnea, gastroesophageal reflux, fatty liver, and orthopedic problems (Table 2). Evidence relating to type 2 diabetes, asthma, and psychosocial problems associated with childhood overweight is highlighted below.

Given the strong relationship of obesity and diabetes in adults, the increase in childhood obesity is likely driving the concomitant increase in rates of type 2 diabetes among children. Once considered rare in children and adolescents, referrals for type 2 diabetes now rival those for type 1 diabetes in some centers. In a multiethnic, population-based study of diabetes in youth, type 2 diabetes was more common than type 1 diabetes among 10- to 17-year-olds who were black, Asian, or American Indian and almost as common among Hispanics. Among 12- to 19-year-olds in the 1999–2000 NHANES, 32.1% of overweight adolescents met national criteria for the metabolic syndrome. In a referral group of >400 obese children and adolescents studied in detail, elevated BMI was associated with prevalence of the metabolic syndrome, which reached 50% in the most severely obese. Also, in a prospective study of nearly 2400 9- and 10-year-old girls, increased waist circumference was a robust predictor of metabolic syndrome at age 18.

Although the definition of metabolic syndrome itself is controversial, childhood overweight is also related to its individual components. For example, in the Bogalusa Heart Study, overweight children were 12 times more likely than their leaner peers to have high levels of fasting insulin; the relative risk was greater for whites than blacks. The race difference may reflect that independent of body fatness, blacks appear to have lower insulin sensitivity than whites. Higher BMI is also associated with higher blood pressure and abnormal lipid (including higher triglyceride) levels in children and adolescents. Girls who were overweight at age 9 were 10 times more likely than normal-weight girls to have elevated systolic blood pressure, 6 times more likely to have low high-density lipoprotein levels, and 2 to 3 times more likely to have elevated diastolic blood pressure, triglycerides, and total and low-density lipoprotein cholesterol.

The association of obesity with asthma is noteworthy because asthma is the most common chronic disease of childhood. In the late 20th century, the increase in asthma incidence paralleled that of obesity. In addition to the observation that asthmatic children can become overweight because asthma limits their physical activity, prospective studies support the hypothesis that overweight children are more likely than their peers to develop asthma. Among 3792 children and adolescents 7 to 18 years of age who were assessed annually between 1993 and 1998, those who were overweight or obese were nearly twice as likely as their leaner peers to develop asthma. Data are sparse on the relation of weight status in infancy and subsequent risk for asthma but would be of interest given the recent increase in overweight among the youngest children and because the peak age incidence of asthma occurs in the preschool and school years. The results of a preliminary study suggest that increased weight for length at 6 months predicts more wheezing by age 3 years. The mechanisms by which excess weight can increase the risk for asthma include the presence of inflammatory cytokines produced by adipocytes and mechanical disruption of respiration.

Psychosocial problems associated with overweight in children relate to self-concept, discrimination, and excessive weight concern and overeating disorders. Even in children as young as 5 years, a weight for height exceeding the 85th percentile has been associated with impaired self-concept (eg, higher-weight 5-year-old girls having a lower perception of their cognitive ability compared with girls with lower weight status). Overweight children are more likely to be teased or bullied. Overweight adolescents are more likely than their lean counterparts to be socially isolated. Overweight children and youth are also more likely to suffer decreased self-esteem and more likely to be extremely concerned with their weight and engage in bulimic behaviors. It is possible that binge eating leads to, rather than...
results from, excess weight gain, however. Overweight children appear to have lower physical functioning and overall psychosocial health, and in 1 study, their health-related quality of life was similar to that of children and adolescents diagnosed with cancer.

Consequences of Childhood Overweight for Later Morbidity and Mortality

Children and adolescents who are overweight tend to remain so over time, particularly for older compared with younger children and if 1 or both parents are overweight. Overweight adolescents may be as much as 20 times more likely than their leaner peers to be obese in early adulthood. In younger children, parental obesity is a more potent risk factor than the child’s own weight status in predicting whether the child will become an obese adult, whereas the opposite is true for adolescents. The elevated risk of adult obesity is not limited to children who are frankly overweight. Two studies have demonstrated that children with a BMI in the 50th to 74th percentiles are substantially more likely than children with a BMI below the 50th percentile to become overweight or obese adults. Therefore, obesity prevention must not be limited to children in the highest weight status categories.

At least 4 studies demonstrate that adolescent overweight is associated with higher overall mortality. In these studies, males who had a higher BMI had an approximately 1.5 to 2 times greater risk of overall mortality during follow-up periods of approximately 30 to 70 years. Curiously, in 2 studies that monitored both women and men, adolescent females with a higher BMI did not have a substantially elevated risk of dying. However, the more recent study shows that adolescent obesity strongly predicts increased mortality among women at midlife.

At least 1 study indicates that weight in late adolescence is strongly related to risk of developing type 2 diabetes in adulthood. After adjusting for subsequent weight gain, 18-year-old female adolescents with a BMI >30 kg/m² were about 10 times more likely to develop diabetes than those with a BMI <22 kg/m². Both males and females with an elevated BMI in late adolescence appear more likely than their leaner peers to develop CVD. Morrison et al report 25-year follow-up data that showed an association between the presence of metabolic syndrome in children, 77% of whom had BMI at or greater than the 90th percentile, and CVD during adulthood. In the Caerphilly Prospective Study, Yarnell et al studied 2335 middle-aged men who provided recalled information on weight and height at age 18. Males who were obese at age 18 were >2 times more likely than their leaner peers to have a coronary event within 14 years of joining the prospective study. Among the 508 men and women in the Harvard Growth Study, those who had been overweight as adolescents were more likely than their peers to have a coronary event in adulthood or to die from CVD. Greater weight in late childhood or adolescence is also associated with higher blood pressure in adulthood. Excess weight in adolescence may also increase the adult risk of conditions such as polycystic ovarian syndrome or its concomitant ovulatory infertility and ovarian cancer.

It is unclear whether these long-term effects of obesity in childhood stem from its longer duration or from the presence of obesity at certain critical periods for risk development.

The Case for Prevention

Overall Goals and Objectives

The goals of obesity prevention, broadly defined, include avoidance of weight gain to levels defined as overweight or obese and stabilization of weight in those who may already be overweight or obese or after weight loss. Obesity prevention in childhood also has the goal of preventing obesity during adolescence and adulthood. Treatment of obese children to promote weight loss and to avoid tracking of obesity into adulthood is also a goal of obesity prevention. A focus on obesity prevention in childhood may seem particularly intuitive, because, as noted in the previous section, the process of developing obesity may begin in early life and arresting development of obesity in childhood has the greatest long-term payoff in years of healthy life. Preventing or reducing obesity in adulthood may be cost effective, based on the potential immediate benefits of avoiding the otherwise high prevalence of obesity-related comorbidities that develop during adulthood, although the best way to determine the overall cost-effectiveness of interventions in obesity is as yet unclear.

Preventive strategies for adults may include the promotion of small changes in eating and physical activity or small initial weight losses to counteract expected annual weight gains or both. Implicit in all obesity prevention goals are the related objectives of promoting healthful eating and activity patterns, and for children, normal growth and development, avoidance of adverse psychosocial or quality-of-life effects, and improvement in obesity-related health risk factors and outcomes.

Achieving Individual Energy Balance to Prevent Excess Weight Gain

Prevention of excess weight gain relies on the maintenance of energy balance, whereby energy intake equals energy expenditure (in growing children and adolescents, energy expenditure plus energy for healthy weight gain) over the long term. For children and youth, this means growth and development along an acceptable weight trajectory. For adults, this means maintaining a relatively stable weight across life stages, including the reproductive years, in contrast to the average progressive gain of 0.5 to 1 kg per year commonly observed in US adults. A positive imbalance will increase energy storage, deposited as body fat and observed as weight gain. Although the concept is beguilingly simple, the physiological systems that regulate body weight through energy intake and expenditure mechanisms are complex, interactive, homeostatic, and still poorly understood. Furthermore, the components of energy balance are not measured easily or with sufficient precision to be practical as a guide to help individuals maintain energy balance. Theoretically, a small persistent energy imbalance of 50 kcal per day could result in a 5-lb weight gain in 1 year (18 250 kcal per year divided by 3500 kcal/lb weight gain), all other things being equal. This scenario is an oversimplification, however, because the en-
energy cost of 1 lb of weight gain depends on the fat composition of the added weight, and all things do not remain equal because, for example, energy expenditure increases with higher caloric intake and weight gain. Nevertheless, the accumulation of a constant positive energy imbalance over the long term causes weight gain, and the great ease with which this accumulation occurs in people in the United States and many other countries causes the high prevalence of obesity.

Although prevention and treatment of obesity both rely on the same principles of energy balance, the application of the principles is quite different. For treatment of obesity, a large reduction in caloric intake of about 500 to 1000 kcal per day, along with increased physical activity, can produce a loss of approximately 8% to 10% of body weight over the relatively short period of about 6 months. Although the types of low-calorie diets that best promote weight loss are the subject of current investigations, behaviors for weight loss are focused on caloric reduction: decreasing overall food intake, reducing portion sizes, substituting lower-calorie for high-calorie foods, and increasing physical activity. Weight loss is best accomplished by participation in a behavioral program using self-monitoring, goal-setting, and problem-solving techniques. Motivation levels may be high for appearance reasons or if adverse health consequences and quality-of-life impairments associated with obesity are readily perceived. Apparently, behaviors learned for weight loss are not sustained, however, because weight regain after weight loss is common. Motivations and strategies to maintain weight after weight loss may differ substantially from those used to initiate weight loss.

The application of energy balance principles toward prevention of weight gain and obesity is more subtle, and the results are less evident and less reinforcing than those for treatment of obesity. The goal is to prevent a persistent small positive energy imbalance. To prevent obesity and weight gain, permanent lifestyle changes must be achieved and maintained over the long term and perhaps even intensified, because aging and environmental influences continue to create the conditions for positive energy imbalance. On the energy intake side of the equation, a healthy, low-energy-dense diet, along the lines of Dietary Guidelines for Americans and the AHA Dietary Guidelines is recommended: rich in fruits, vegetables, and whole grains and limited in high-fat and sweetened foods with high-energy density and low nutritional value. Important strategies are reading the calorie and serving-size information on nutrition labels, requesting simply prepared foods at food establishments, and preparing and consuming appropriate portion sizes (at restaurants, a strategy is to order or consume only half-portions). Because it is unknown directly whether caloric balance is being maintained, frequent weighing helps determine whether weight is stable. Physical activity also plays a critical role in the prevention of weight gain and obesity. Current physical activity guidelines to prevent weight gain are 60 minutes per day of at least moderate-intensity physical activity, which is more than the amount recommended for general health and cardiovascular function. Motivation is a particularly important issue to address. There are no dramatic improvements on an individual level, because the results are no change in weight or health outcomes in contrast to the weight loss and decrease in risk factors associated with weight loss.

Achieving Energy Balance in Populations

"Population-based" approaches are designed to produce large-scale changes in eating behaviors and levels of physical activity to stabilize the distribution of BMI levels around a mean level that minimizes the percent who become overweight and obese, without increasing prevalence at the underweight end of the continuum. Population-level obesity prevention can and should be approached not as the promotion of widespread "dieting" but rather from the perspective of promoting healthy eating and physical activity patterns and a balance between the two. This approach requires modifications of factors that shape individual choices, as well as individual habits and preferences. There is ample evidence that individual eating and physical activity behaviors are responsive to the surrounding social and physical environmental contexts both for adults and children and, thus, amenable to public health prevention interventions. Population-based approaches reach populations through a variety of routes that extend beyond clinics and traditional health services and, when prevalence is high, at a lower cost per person compared with treatment approaches.

Intake-related behaviors that have been linked to obesity include frequent consumption of meals at fast-food and other eating establishments, consumption of large portions at home and at restaurants, consumption of energy-dense foods, such as high-fat, low-fiber foods and intake of sweetened beverages. These behaviors occur in an environment in which energy-dense food is abundant, relatively inexpensive, easy to obtain, and easy to eat with minimal preparation.

Low levels of physical activity are widespread in the United States and have been associated with obesity and weight gain. In some reports, television viewing and other sedentary activities have also been related to increased body weight, although more of the evidence relates to children. Deficient expenditure of energy could occur not only from sedentary lifestyles, but also from physiological changes that occur with aging. With increasing age, decreases in muscle mass, resting metabolic rate, and aerobic capacity occur. Also, sedentary lifestyles may indirectly result in higher energy intakes because of less ability to regulate energy balance, for example, and more time and opportunity to eat. Low levels of physical activity occur in the context of an automated and automobile-oriented environment that is conducive to a sedentary lifestyle.
Community design and infrastructure characteristics (sometimes referred to as the “built environment,” as differentiated from naturally occurring environmental factors) have become increasingly prominent in efforts to identify population-level determinants of obesity. Evidence related to several of the commonly used variables in this category is highlighted below.

Urban “sprawl” is a geographic concept that has recently been studied in relation to risk of obesity. There is some disagreement about how to define sprawl, but regardless of how sprawl is defined, most agree that sprawl results in larger areas of low-population density that encourage and usually require residents to drive from home to work, stores, school, and recreation facilities rather than to walk or use public transportation. Several studies have examined the relation between urban sprawl and risk of obesity. For example, Ewing and associates constructed a County Sprawl Index that included population density measures and block size; larger scores indicated less sprawl. Health status data, including BMI, were derived from the BRFSS and were self-reported. After adjusting for gender, age, race, education, and smoking status, residents of counties characterized by greater sprawl walked less, weighed more, were more likely to be obese, and were more likely to have hypertension. Similarly, Lopez constructed a 100-point metropolitan sprawl index using the US Census and calculated it for 330 US metropolitan areas that could be linked with data from the 2000 BRFSS. After controlling for age, gender, race, individual income, and education, a significant relation was found between the sprawl index and risk for overweight and obesity. Sprawl at the state level also has been found to increase risk for obesity.

Land use mix and street connectivity are other geographic concepts that also have been linked to obesity. Sprawl is characterized by less diverse land use mix and less street connectivity. Giles-Corti and colleagues found that both overweight and obese adults were more likely to live in neighborhoods that lacked adequate sidewalks and proximal places for physical activity and that overweight people were more than 4 times more likely to live near a highway. Participants with poor access to recreational facilities were 1.68 times more likely to be obese.

Neighborhoods can also be described in terms of “walkability.” Saelens et al characterized residents as living in high-walkable (single- and multiple-family residences) and low-walkable (single-family residences) neighborhoods with comparable SES using census data. They collected data on physical activity using accelerometers, weight status, and self-reported neighborhood perceptions. Residents of highly walkable neighborhoods walked significantly more (eg, a difference of 63 minutes per week of moderate to vigorous physical activity) than residents of low-walkable neighborhoods. In addition, residents of low-walkable neighborhoods tended to report higher average BMIs and higher rates of overweight than residents living in highly walkable neighborhoods.

Frank and associates investigated the impact of community design and physical activity on obesity in the Atlanta metropolitan area, characterizing neighborhoods as connected or disconnected (ie, high- and low-walkable, respectively) by using land-use mix data from the county tax assessor and the 2000 census within a Geographic Information System framework. Participant data within each neighborhood were drawn from a transportation and air-quality survey, which measured individual-level factors. After adjusting for the effects of age, level of education, and individual income, a significant relation was found between land-use mix and the prevalence of obesity, although this relationship was mediated by physical activity (ie, distance walked during a 2-day period). For instance, for each single quartile increase in land-use mix, there was a concomitant 12.2% reduction (odds ratio, 0.878; 95% confidence interval, 0.839 to 0.919) in the probability of obesity.

As discussed in the next section, community characteristics that influence obesity risk in low-income and minority communities may differ from those just described. For example, communities in inner city urban areas may be very “walkable” in the sense of connectivity but offer limited opportunities for physical activity because of safety issues, a lack of affordable recreational facilities and programs, and limited access to healthy foods because of the types of food stores and restaurants that are available.

Considerations for Prevention in Key Risk Subgroups

Whereas clinical preventive services are often characterized in terms of the stage of disease when the intervention occurs (ie, primary, secondary, and tertiary prevention), comprehensive public health approaches can be characterized on the basis of the population segment of interest. In the World Health Organization’s obesity prevention framework, whole-population approaches that target the entire community without prior screening of risk (although those at high risk are included) are termed “universal prevention.” As will be discussed, whole-population approaches that are “passive” (ie, have their effects through environmental and policy changes) improve opportunities for healthful eating and physical activity without requiring deliberate actions by individuals and can be particularly useful in addressing inequities. Universal prevention approaches that rely only on changing individual behaviors directly through social marketing campaigns or community education may actually worsen disparities if they are only feasible for or attractive to relatively advantaged individuals. A combination of these types of approaches is needed.

“High-risk” approaches focus specifically on groups or individuals who are identified as being at high risk. When the focus is on groups at high risk, defined by demographic, health characteristics, or life stage, the term “selective prevention” is used in the World Health Organization framework. Focusing on specific individuals at high risk, including individuals with existing weight problems, is termed “targeted prevention.” As will be discussed in a subsequent section, population approaches draw on tools and strategies from health promotion and public health to reach whole communities with educational or motivational messages or to foster environmental and policy changes that render physical and social contexts more conducive to weight control.
whereas high-risk approaches often resemble treatment programs because they involve screening and follow-up at the individual level and may occur in primary care or specialized treatment settings.

Obesity prevention is important throughout the life course and for both sexes, although prevention approaches and issues may differ according to gender. Body composition (higher percent body fat) and fat distribution (generally more gynoid and less abdominal fat distribution) among females may influence the health effects of a given BMI.296,297 Men are an important population of interest because of their higher absolute risk for obesity-related diseases and lower likelihood of seeking treatment for obesity compared with women.17 As discussed in this section, people with mental and physical disabilities are important subpopulations for focused efforts to prevent excess weight gain.

Childbearing-Age Women

Women of childbearing age in general and particularly women who are pregnant or postpartum are of particular interest for obesity prevention during adulthood. Excess pregnancy weight gain is particularly common among women who were overweight before pregnancy and having their first child.298 Maternal prepregnancy BMI is a strong risk factor for gestational diabetes and is a reminder that the rise in rates of obesity among girls and women of childbearing age is producing a concomitant increase in rates of gestational diabetes, which in turn will likely lead to more obesity—and thus gestational diabetes—in the next generation. This vicious cycle may well fuel the obesity epidemic for decades to come, both in the developed and the developing worlds, particularly given that perpetuation of obesity in girls may ultimately affect the gestational environments of future generations. In addition, the potential for retention of excess weight gained during pregnancy greatly increases a woman’s risk of later obesity-related diseases.

Gender-Related Differences in Obesity Prevention

Compared with men, women on average are more interested in food and nutrition, eat healthier diets than men, are more likely to do the household food shopping and preparation, and are more concerned about weight and familiar with dieting.299–302 Nevertheless, obesity prevention may be more difficult for women than men. Women have lower caloric requirements than men on average and must, therefore, consume less food than men if they are to remain in energy balance.255 This may be particularly disadvantageous for women when eating out, given that restaurant and take-home portion sizes have increased and are the same whether the customer is male or female or large or small. It appears that appetite controls in humans are more effective for avoiding hunger than preventing overeating. Experimental studies have demonstrated that the more food people are given, the more they are likely to eat.271 Unwitting consumption of a few hundred extra calories is more detrimental to energy balance for women than men. Offsetting excess caloric intake by extra expenditure through physical activity is difficult because of the time it takes. For example, moderate activity, such as 15 minutes of walking, burns only 100 calories for an average size adult, whereas it is quite easy to consume an extra 200 or 300 calories in a much shorter time. In addition, the amount of calories expended is proportional to body size and the amount of lean tissue. A potential female advantage with respect to controlling food shopping and preparation may be offset by factors related to food preparation. Both women who work outside the home and busy homemakers may rely on convenience foods, prepared foods, or eating take out or restaurant foods, all of which are associated with higher calorie content. Depression, which is more common in women than in men,303 has been associated with overeating and weight gain, both with respect to using food for comfort and because many antidepressants cause weight gain.304,305 Also, stress has been associated with increased food intake, which could contribute to obesity.306 In a recent survey, more women than men reported overeating under stress.307

In addition to the lower metabolism and energy expenditure associated with having higher percent body fat or a smaller body size, women are also at a disadvantage with respect to energy expenditure from a social and behavioral perspective. Leisure time or recreational activity levels are lower for females than males,39 declining markedly in adolescence and particularly among African American girls.308 Occupational activity levels are also lower for females.309 Moreover, opportunities for physical activity in women are constrained by greater caregiving responsibilities and safety concerns that affect times and places available for physical activity.310,311 Socially acceptable forms of physical activity may be fewer for women than men, particularly in some ethnic groups. Social concerns may include how exercise affects one’s hairstyle or image of femininity,312 as well as the possible displeasure of spouses or other household members, because exercise may be perceived as taking a woman away from family responsibilities.311

The greater concern about weight and dieting among women compared with men is well recognized and is apparently reflected in the tendency of women to participate in weight-loss programs.32 The literature on treatment of obesity is dominated by studies in women to a much greater extent than can be explained by any gender differences in the prevalence of the problem. At any given time, nearly half of women, compared with about one third of men, are trying to lose weight, and women attempt weight loss at a lesser degree of overweight than men.313 But dieting as such does not appear to be associated with success at preventing weight gain or obesity, perhaps because those who diet have the greatest difficulty controlling their weight or because dieting periods are interspersed with periods of overeating.

Social norms and attitudes about attractiveness differ for men and women. Slenderness has a much stronger importance for women, which appears to increase with upward mobility or high social position.314 Social disapproval of obesity and excess weight in men is less strong, and the inverse gradient of obesity with SES, observed in women in many ethnic groups, is less predictable in men and is sometimes absent or reversed (eg, obesity may increase with increasing social position). Another reason for the higher
weight concern in women is retention of weight gained during pregnancy. This may be a major contributor to lifetime weight gain among women, particularly in ethnic groups such as African American women, for whom pregnancy-associated weight gain is more marked.315,316

The advantages and disadvantages for men in relation to obesity prevention are the opposite of those in women. Men may be less knowledgeable about or interested in healthful diets or calorie counting, and men’s lower participation in weight-control programs than women may reflect and reinforce social norms that weight-control issues are not relevant to men and not important or as important for men. Health risks for which men are more susceptible (eg, risk of heart attack) or an interest in physical fitness may attract men to weight control. Physical activity expenditure among men may also be facilitated by their greater participation in sports or higher level of occupational activity.306 Nevertheless, sedentary pastimes, such as watching television, are popular among men, as well as among women.317

Adults With Mental and Physical Disabilities
People with disabilities are included in the Healthy People 2010 focus on elimination of health disparities,3 and those with either mental or physical disabilities constitute an important audience for obesity prevention. This diverse population has higher rates of overweight, obesity, and extreme obesity than those found in the general population.318,319 A wide variety of disabilities have an impact on diet and physical activity, with the result that many different determinants of childhood obesity require prevention and interventions based on changes in the child/adolescent’s environment. Most children attend school or go to daycare centers, where they spend a large part of their waking time, have opportunities for physical activity, and eat 1 or 2 meals. Schools and daycare

Cognitive impairment is present, interventions to change behavior can raise ethical issues, such as in Prader-Willi syndrome, in which the appetite is increased and the ability to understand health consequences is decreased.325

Children and Adolescents
General Issues
Fetal life, infancy, childhood, and adolescence are periods of tremendous physiological changes, which may explain why some periods may be critical in the establishment of not only behaviors, but also physiological processes. As stated previously, the possibility of physiological imprinting or programming early in life suggests that there may be sensitive or critical periods in childhood when an intervention will affect lifelong physiological processes that would be more difficult to change at a later age. Reduced fetal growth is thought to be associated with central fat distribution,326 whereas weight gain in early infancy327 and excessive weight gain in adolescence are associated with obesity in adulthood.216

Eating and physical activity behaviors learned during childhood may persist into adulthood,328–332 and food and taste preferences may be established early in life.333,334 Thus, interventions aimed at changing behavior during this period have the potential of establishing healthy behaviors that will continue over the individual’s life span. Addressing gestational determinants of childhood obesity requires prevention of obesity in women of childbearing age. Apart from associations of lower birth weight with adverse cardiovascular outcomes that have garnered much recent attention, the well-established association of higher birth weight with higher BMI in childhood and adulthood should be emphasized.172,335 Gestational diabetes, which leads to fetal hyperinsulinemia and increased fetal growth, may cause obesity and impaired glucose tolerance as the child becomes an adult.173 Excessive weight gain by the mother during pregnancy is also associated with a higher BMI in the child at age 3.174 Because women are increasingly beginning pregnancy at greater weights and because excessive weight gain during pregnancy has also probably increased during the past 1 to 2 decades,336 avoiding excess pregnancy weight gain is another potential strategy to reduce the burden of obesity-related consequences in the next generation.

Obesity prevention in the pediatric ages involves specific circumstances and considerations. Interventions aimed at this population should be adapted to the neurodevelopmental characteristics of the target age and will require expertise in child development. Because developmental changes are rapid, most behavioral interventions likely need to be targeted at relatively narrow target age groups. Because children and adolescents are generally more sensitive than adults to outside influences (parents, media, and peers), prevention interventions based on changes in the child/adolescent’s environment are particularly attractive for changing behavior in this age group to achieve population-based prevention of obesity.7

Another aspect of obesity prevention in children and adolescents is the potential setting of the interventions. Most children attend school or go to daycare centers, where they spend a large part of their waking time, have opportunities for physical activity, and eat 1 or 2 meals. Schools and daycare
centers are, therefore, ideal settings for interventions for obesity prevention in children. Schools have been used extensively for such interventions, and there are some interventions in preschool, head start, or daycare settings. Schools are also increasingly the setting for battles over politically charged decisions, such as exclusive contracts with beverage companies, regulation of advertising on school grounds, and community pressure on time and funding for physical education. Child-specific settings, such as youth and recreational centers, have also been used for community-based interventions. Well-child visits to the primary care physician offer opportunities for pediatric obesity prevention. However, despite their dedication to preventive care, pediatric care providers are insufficiently trained to feel comfortable about implementing obesity prevention in the office and are not appropriately compensated to implement obesity treatment.

Children and Adolescents With Mental and Physical Disabilities
As in adults, children and adolescents with mental and physical disabilities are an important subpopulation of children who require special attention in relation to obesity prevention. Participation of children with disabilities in school and other social activities is lower than in the general population of children, and children with disabilities are more likely to be institutionalized. Such children are, therefore, less likely to be exposed to population-based obesity prevention strategies based in schools or community organizations.

Children with disabilities constitute a large but very heterogeneous population group with a variety of functional disabilities and medical impairments. In 1994, it was estimated that 12% of noninstitutionalized children and adolescents in the United States 5 to 17 years of age had some type of functional limitation, a percentage that corresponds to >6 million individuals. These numbers have likely increased since 1994. Children with disabilities are overrepresented among US populations at increased risk for obesity, such as minorities and the poor. Children with developmental disorders have a prevalence of overweight as high or higher than that of other children. Many of these children with disabilities use medications that increase the risk of excessive weight gain, such as antiepileptics, antipsychotics, antidepressants, and steroids. However, although children with some types of disabilities and medical impairments are at increased risk for obesity (Down syndrome, brain cancer survivors), others are at decreased risk for obesity because of undernutrition (sickle cell anemia, cystic fibrosis). Even within the same medical impairment, for example, cerebral palsy, some patients can present with undernutrition, whereas others present with overnutrition.

The disabilities affecting children and adolescents are heterogeneous in nature and severity, making it difficult to design a strategy that fits all children with disabilities. Because of limited mobility, communication, or learning abilities, many children and adolescents with disabilities will not be able to participate optimally in obesity prevention programs designed for the general population, and adapting obesity prevention strategies to a wide range of types and severity of disability will be a significant challenge. Existing initiatives, such as the Special Olympics, however, have been successful at increasing physical activity levels in children, adolescents, and adults with a wide range of disabilities and overcoming physical and societal barriers to sports. This could provide a model for prevention of obesity in this population.

Ethnic Minority and Low-Income Populations
Several factors are thought to contribute to the ethnic disparities in obesity in ways that potentially influence the nature of preventive interventions that will be effective. Historical and current exposure to social inequities may lead to adverse eating and physical activity patterns through various mechanisms, including the possibility that overeating is used as a mechanism to cope with stress or that children are overfed as “insurance” against hunger. Studies have indicated ethnic differences in consumption of calories and fat, which to some extent is associated with high levels of consumption of fast foods and in levels of sedentary behaviors. A number of studies have shown that African American women are more likely to accept a larger ideal body image than are women from other ethnic groups, although the ways in which body image influences weight control are uncertain. Also, the nature and impact of body image variables for ethnic groups other than African Americans are unclear. The diversity of ethnic subgroups within the major categories of Hispanics/Latinos, American Indians, and Pacific Islanders makes it inappropriate to state generalities for these groups as a whole. The issue of body image is relevant, at least theoretically, to motivation for weight control and prevention of obesity. Survey data suggest that African American women who are overweight are less likely than Hispanic or non-Hispanic white women to try to lose weight and may not perceive themselves to be overweight. Ethnic minority populations in general are underrepresented in the weight-control literature, although this may reflect the access (both location and eligibility requirements) of minority populations to the studies that have been conducted. Studies comparing weight loss in African Americans and whites in the same program indicate lower average weight loss among African Americans than whites, within sex. This lesser level of success in weight-control programs could reflect social/environmental context issues, motivation, cultural appropriateness of the program, or other factors not yet identified. Again, whether this applies to other ethnic minority populations and also whether the results of treatment studies are informative for designing prevention strategies are unknown.

Recent attention has focused on aspects of the social contexts for obesity development that are less favorable for African Americans and other ethnic minority populations, including types of foods and retail food outlets available, range and accessibility of healthy food availability, opportunities for physical activity, and exposure to targeted marketing of less healthful foods. Acculturation may play a significant role in the association of obesity with increased duration of US residence. In some studies conducted among Asian and Hispanic adolescents, acculturation to a US life-
style was shown to be associated with adoption of unhealthy behaviors in those born outside of the United States, such as sedentary behavior and poor dietary habits. However, culture of origin and circumstances after immigration are important variables to consider. There may also be instances in which less acculturation is associated with a higher occurrence of overweight, as suggested in a study of Chinese American children.

Access to supermarkets, which increases access to healthy foods, has been associated with better dietary quality (eg, greater consumption of fruits and vegetables). Supermarket access is relatively lower in census tracts with a high proportion of African American residents. For example, Morland and colleagues reported that 4 times as many supermarkets were located in non-Hispanic white neighborhoods than in African American neighborhoods. In addition, the ratio of supermarkets:residents was substantially higher in predominantly non-Hispanic white neighborhoods (1:3816 residents) than in African American neighborhoods (1:23582 residents). Zenk et al. found that the most impoverished neighborhoods in Detroit with high proportions of African Americans were farther away (1.1 miles on average) from the nearest supermarket than neighborhoods that were less impoverished and had low proportions of African American residents. In contrast, access to fast-food restaurants may be greater in black or low-SES neighborhoods. Block and colleagues showed that the density of fast-food restaurants was greatest in neighborhoods in which residents were predominantly African American and low income. Neighborhoods in which 80% of the residents were African American had 2.4 fast-food restaurants per square mile, whereas neighborhoods in which 80% of the residents were non-Hispanic white had only 1.5 fast-food restaurants per square mile.

In addition to issues related to types of available food stores, the relative costs of low- versus high-calorie foods is another potentially critical influence on efforts to prevent obesity in low-SES communities. As reviewed by Drewnowski, several lines of evidence converge to suggest that the likelihood of being able to consume a healthful diet with calories appropriate to energy needs decreases with decreasing income. Limited income means limited money to spend on food and less flexibility in food spending as a percentage of available funds. The current price structure of foods is such that products high in fat and sugar and low in other nutrients are the least expensive, whereas fruits, vegetables, and whole-grain products, which are both lower in calories per unit weight and higher in essential nutrients, are relatively more expensive. Therefore, even where supermarkets are available, people with low incomes may purchase a relatively higher-calorie diet of less expensive, higher-calorie foods. High-fat and high-sugar foods are “energy dense” (eg, have more calories per unit weight) and are often highly palatable, making them relatively easy to overconsume. The perception that people with low incomes can afford a healthful, calorically appropriate diet is perpetuated by federal policy—specifically the “Thrifty Food Plan” that is used to calculate the Food Stamp Program benefits—that assumes a base diet of raw foods that will be cooked “from scratch.” However, from a practical perspective, few people, including recipients of federal nutrition assistance or income support, are spending sufficient time in food preparation to consume such a diet.

Studies that suggest that low-SES areas negatively influence physical activity include 1 study by Yen and Kaplan based on data from the Alameda County Study, a population-based longitudinal cohort study that began in 1965. Overall physical activity decreased between 1965 and 1974 but decreased significantly more in areas of poverty than in nonpoverty areas. Even after adjustment for numerous potential confounders, including age, gender, baseline physical activity score, smoking, individual income, education, BMI, alcohol consumption, and perceived health status, living in an area of poverty was significantly associated with a greater decrease in physical activity. Observed interactions indicated differences in effects according to race/ethnicity and individual income. There were no racial/ethnic differences (comparing blacks with all others) in the pattern of changes within poverty areas but a greater decrease in physical activity among blacks versus others in the nonpoverty areas, adjusting for potential confounders. A similar interaction was seen with individual income (ie, similar patterns within poverty areas but greater decreases among those with inadequate incomes in nonpoverty areas). This reduction in physical activity in poorer areas may be owing to the possibility that physical activity-friendly environments (ie, safe, affordable, well maintained, and appealing) are less common in low-SES areas. For example, Powell et al. studied 409 communities and found high-poverty areas had significantly fewer sports areas, parks, greenways, and bike paths than areas characterized by higher median household income and lower poverty rates.

Considerations for Taking Action
The motivational and behavioral issues that people encounter in achieving and maintaining energy balance combined with the fact that the many environmental context factors that influence energy balance are beyond the individual’s control provide a compelling rationale for taking a public health, or population-wide, approach to prevention of obesity. This type of approach is comprehensive, including educational and motivational messages aimed at the entire population, as well as societal, worksite, government, public health, and healthcare organizations promoting health consciousness, providing opportunities for physical activity, and making healthy foods accessible. Such efforts make healthy eating and physically active lifestyles easier to adopt and more socially acceptable and self-reinforcing. The pillar of the rationale for a public health approach to obesity prevention lies in the overall strategy for preventive medicine as outlined by the late Geoffrey Rose.

Determining Where to Intervene: Targets for Action in an Ecological Framework
An Institute of Medicine committee concluded that approaches informed by an ecological model are critical for effectively addressing major public health challenges gener-
ally, and a subsequent Institute of Medicine committee used an ecological framework as the basis for a comprehensive national action plan to address the epidemic of obesity in children and youth. Ecological frameworks emphasize the importance of social, environment, and policy contexts as influences on individual behavior and the interactions and interdependence of influences across different levels extending from the individual to the society at large.

The need for a multilevel, multisectoral approach to population-based obesity prevention has been emphasized and is illustrated in Figure 3. This “causal web” of societal-level influences on obesity provides a framework for conceptualizing the different sectors or processes from which they arise and act (eg, transportation, urbanization, commerce, social welfare, media and marketing, education, agriculture, food and nutrition, and health) and the different levels at which these factors operate to influence the contexts for food choices and activity patterns in the population at large (global, national, regional, and local, as well as immediate environments such as work, school, and home). The arrows in Figure 3 indicate the complexity and interrelationships among processes and pathways emanating from different sectors.

Table 3, which is complementary to Figure 3, was adapted from an ecological framework developed by the Partnership to Promote Healthy Eating and Active Living. The listings in columns 1 to 3 give examples of specific categories of factors that might provide leverage points and settings for interventions in various sectors and settings with a goal of shifting influences in a direction less conducive to chronic positive energy imbalance. Together with Figure 3, these listings illustrate that some influences that relate to obesity may require action through national and international channels (eg, those related to the food industry), whereas others can be influenced by policies and practices that are controlled by state or regional authorities, at the city or neighborhood level, or in schools and workplaces. The other 4 columns in Table 3 reflect the societal and individual response variables that will affect the feasibility and effectiveness of obesity prevention initiatives. Many of these variables are reflected in the earlier described considerations for prevention in key risk subgroups. A longitudinal analysis of patterns of weight gain among members of social networks, including unrelated individuals and spouses, as well as family members who were genetically related, underscores the potentially powerful influence of social relationships in transmission of environmental risks of obesity.

Figure 3 illustrates the complexity of the social and environmental contexts that produce the greatest challenge for obesity prevention. Implicit in the causal web (Figure 3) are processes and pathways that are fundamental to the social fabric and to day-to-day lifestyles. The number and types of potential stakeholders and vested interests potentially af-
fected by interventions in these sectors and channels are vast. Policy makers, industries, and consumers may not support making changes in these factors, even when they recognize the need for action on obesity, because of the structural nature of these factors and the perceived negative consequences for other outcomes, both commercial and personal. Also evident in this understanding of what is required for obesity prevention is that influences controlled by health professionals or health policy makers are only 1 type of influence and are not involved in many important pathways. Creating the multisectoral, multilevel, and interdisciplinary partnerships and initiatives that are needed to influence the many other sectors is one of the major challenges of obesity prevention.20

Increasing the emphasis on population approaches that go “upstream” to focus on environmental and policy change requires a shift in thinking for those trained in clinical or individually oriented interventions. It is difficult to know when one is being effective when taking action so far removed from the ultimate behavioral outcome of interest. Prevailing attitudes of health professionals and others may also argue against reducing the focus on individuals to change their behaviors. The “upstream-downstream” argument is often made by analogy to a situation in which a continuing number of people are struggling in the water downstream, about to drown. Going upstream to find out why people keep falling into the river (eg, a bridge might have collapsed) is as critical as working downstream to pull the people out of the river one at a time. This is not a dichotomy; the goal is both to save “those who are drowning” and to stop others from “falling in.” The analogy is used to make the point that the clinical approaches in which we are so well trained and perhaps confident can never be sufficient to solve widespread population health problems unless broad-based population strategies are also applied. Moreover, upstream approaches are the most cost effective when problems are widespread because individualized screening and counseling are, by comparison, much more costly on a per capita basis. As noted previously, upstream approaches are also the most likely to level the playing field for socially disadvantaged populations whose options for healthy eating and physical activity patterns are the most limited, for a variety of reasons,352,372 and who, because of limited resources and limited social capital or power, are more constrained by the available options than those with more advantages, who may be able to find ways to
work around constraints and create new options for themselves.387,388

How to Intervene: Determining What to Do and Whether It Works

Figure 3 and Table 3 describe potential targets for action—covering many different sectors, levels, and specific potential focal points. How to actually have an impact on these targets requires a more process-oriented perspective related to the design of specific intervention programs or community action initiatives. Useful insights for how to take action can be drawn from general public health and prevention models. For example, the “Spectrum of Prevention”389 is useful for characterizing and differentiating interventions at all of the levels that may be needed to address obesity at the population level and how these levels interrelate. This framework, described in Table 4 and discussed below in relation to obesity, has 7 bands or levels that indicate different types of strategies for environmental and policy changes, as well as community mobilization and individual education directed to selected combinations of the intervention targets outlined above. Consistent with an ecological model, the complementarity of these different strategies should be emphasized. In particular, the more upstream strategies at the upper levels of the spectrum (influencing policy and legislation, mobilizing communities and neighborhoods, changing organizational practices, and fostering coalitions and networks) are important for enabling the effectiveness of those oriented to individuals. Table 4 also includes examples of activities at each level of the spectrum to promote increased physical activity, based on an initiative in California.390 The following narrative, which is organized according to the 4 top bands in the spectrum (influencing policy and legislation, mobilizing communities and neighborhoods, changing organizational practices, and fostering coalitions and networks), provides further highlights of how obesity prevention might be approached at these more upstream levels. Guidance relevant to providers and individual education and counseling is referenced in Appendix 2.

Influencing Policy and Legislation

Initiatives to foster changes in policy and legislation may be undertaken at local, state, and federal levels with a focus on the relative availability or cost of high- versus low-calorie foods or on opportunities to be physically active. Formal or informal policy changes are core to upstream interventions in that they change behavioral options and can reach large numbers of people, regardless of individual health motivations. Food-related policy targets might include snack foods and sweetened beverages, for which the goal would be to decrease consumption, or fruits and vegetables or water, for which the goal would be increase consumption. Activity-related targets might include aspects of community design that are more or less conducive to traveling on foot or by bicycle, availability and cost of recreational facilities, automobile use and availability of public transportation, and factors related to safety (eg, rates of street crime, condition of playgrounds, traffic-related measures to create safe routes for children to walk or bike to school).7 Options for types of policies include taxation of snack foods, subsidy of fruits and vegetables, regulations requiring foods served or sold in schools to meet specified nutritional standards, restrictions on advertising high-calorie foods to children, nutrition labeling regulations, financial incentives to industry (eg, to encourage siting of supermarkets in inner city areas with limited food access), or requiring school physical education classes and health education. Taxation mechanisms may be targeted to raising funds to support prevention programs directly. Worksite policies might include providing time off or facilities and equipment for exercise, providing bike racks and showers for people who cycle to work, providing weight-control programs or covering the cost of such programs or of gym memberships. Policies can also address monitoring and surveillance of weight levels (eg, of school children). Receptivity to various types of policy solutions varies among individuals and communities. There may be concerns that some policies will disadvantage commercial interests, limit individual freedom of choice, or create or aggravate social inequities. For example, taxation to raise the price of certain high-calorie foods could be problematic for people with very low incomes who depend on having cheap sources of calories.

The Institute of Medicine committee to evaluate progress to prevent childhood obesity355 identified 717 bills (of which 123 were passed) and 134 resolutions (of which 53% were passed) relevant to childhood obesity that had been introduced in the United States between 2003 and 2005. Bills with a high rate of passage were related to farmers’ markets, walking and biking paths, establishing task forces or study groups, and model school policies and safe routes to school. None of the 74 bills related to taxes on sodas and snacks passed. Policies to protect children specifically may garner more support than those directed to the general population because the potential vulnerability to environmental factors is relatively easier to argue with respect to children than for adults.

Mobilizing Communities and Neighborhoods

This level of the Spectrum of Prevention emphasizes the importance of community engagement, contrasting the traditional medical model, with the provider expert at the center (which also characterizes many public health activities), with the additional need to involve communities directly in assessing needs and planning and taking actions to address identified problems.389 Such engagement with community members helps to align priorities as viewed by community members with those identified by public health workers and increases the likelihood that resulting initiatives will generate community interest and follow through. Public health workers and academic research partners can support community-generated initiatives through technical assistance. Some obesity prevention research involves community-based participatory research.391–393 There has been increasing rec-
<table>
<thead>
<tr>
<th>Prevention Strategy</th>
<th>Rationale</th>
<th>Examples Related to Increasing Physical Activity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influencing policy and legislation</td>
<td>Both formal and informal policies have the ability to affect large numbers of people by improving the environments in which they live and work, encouraging people to lead healthy lifestyles, and providing for consumer protections</td>
<td>Land use policy established for community gardens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stable funding for Indian Health Service clinics to promote physical activity and nutrition</td>
</tr>
<tr>
<td>Mobilizing neighborhoods and communities</td>
<td>Particularly in low-income communities confronting more urgent concerns of violence, drug use, unemployment, and the struggle to keep families together, engaging community members in developing agendas and priorities is essential</td>
<td>Mapping community assets related to physical activity options</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assisting community residents in setting priorities relevant to physical activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Providing technical assistance to help community residents implement action plans related to physical activity</td>
</tr>
<tr>
<td>Changing organizational practices</td>
<td>Modifying the internal policies and practices of agencies and institutions can result in improved health and safety for staff of the organization, better services for clients, and a healthier community environment; advocacy for such changes can result in a broad impact on community health</td>
<td>Protocols for physician assessment, sliding fees, counseling, and referral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bilingual staff at YMCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work site policies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walking trail signage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improve safety in parks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provide fitness programs in public housing</td>
</tr>
<tr>
<td>Fostering coalitions and networks</td>
<td>Coalitions and networks, composed of community organizations, policy makers, businesses, health providers, and community residents working together, can be powerful advocates for legislation and organizational change and provide an opportunity for joint planning, system-wide problem solving and collaborative policy development</td>
<td>Local project coalitions and advisory committees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local park and recreation departments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Healthy Cities coalitions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>American College of Sports Medicine volunteers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local Governor’s Council on Physical Fitness and Sports</td>
</tr>
<tr>
<td>Educating providers</td>
<td>Service providers within and outside the health system can encourage adoption of healthy behaviors, screen for health risks, contribute to community education, and advocate for policies and legislation</td>
<td>Training for physician screening and referrals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park and recreation staff training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Community exercise leader training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curriculum at university</td>
</tr>
<tr>
<td>Promoting community education</td>
<td>Community education can reach the greatest number of individuals possible with health education messages and also build a critical mass of people who will become involved in improving community health. This includes the use of mass media to shape the public’s understanding of health issues—termed “media advocacy”</td>
<td>Community walkathon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Media campaign</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Work site programs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interdenominational sports leagues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Community fitness event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Community advocate training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Community gardens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Church and community bulletins</td>
</tr>
<tr>
<td>Strengthening individual knowledge and skills</td>
<td>This strategy involves working directly with clients in the home, community settings, or in clinics, providing health information to promote well-being among children, families, senior citizens, and other population groups. It also includes working with both youth and adults to build their capacity in areas such as media advocacy, community mobilizing, and working with policy makers to make positive changes in the health of their communities</td>
<td>Walking club orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercise classes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Education classes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field trips</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Handouts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outreach contacts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Home visits/instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercise demonstrations</td>
</tr>
</tbody>
</table>

Adapted from Rattray et al,389 with permission.

*Examples, except for those related to “mobilizing communities,” were taken directly from Reference 390.
ognition of the importance of community-based participatory research, particularly with respect to research to address health disparities. REACH 2010 (Racial and Ethnic Approaches to Community Health) projects funded by the CDC are examples of such efforts that have specifically mobilized community members through participatory research related to food access and broader issues related to obesity. Resource inventories or assets mapping are useful tools in this approach.

Changing Organizational Practices

Schools and child care facilities, workplaces, and primary care are important settings for implementation of policies and programmatic initiatives. Relevant policy or programs may involve specifying the nutrition composition or cost of foods served or sold in cafeterias, instituting requirements for physical education in schools, increasing the availability of physical activity options or the time available to take advantage of these options, implementing training programs to enable school teachers to provide nutrition or physical education, and providing financial support for programs and services related to weight control. The appeal of setting-based approaches of this type includes the ability to work with a “captive audience” and to also influence social norms within the setting, with possible transfer to behavior outside of the setting. For example, policies that foster integration of 10-minute physical activity breaks into the regular work day or school day appear to be feasible, well received, and associated with meaningful increases in physical activity and possibly improved performance. This approach may be sustainable given that the activity breaks can be led by regular staff or teachers.

Of the possible setting-based interventions, the Task Force on Community Preventive Services has found sufficient evidence to recommend “multicomponent interventions aimed at diet, physical activity, and cognitive change” in worksite settings. In this report, evidence was deemed insufficient to determine effectiveness of single component interventions in worksites or of school-based programs for children and adolescents, and reviews of evidence to support various types of healthcare system interventions and community-wide interventions were still pending. Key issues for intervening in specific settings relate to perceived or actual competition of the interventions with the mission or other priorities of the setting, fear of liability, resource issues, privacy issues, the potential for increasing discrimination against those with existing weight problems, or consumer dissatisfaction. For example, efforts to increase time spent in physical activity may compete with time needed for academic work. Efforts to change school food options may compete with the use of food sales to raise funds for other school activities, as well as be unpopular with students and parents, leading to other problems for school officials. Screening children for BMI levels is controversial owing to the potential for adverse psychosocial effects of identifying children as overweight or obese and also because it is meaningless without the ability to implement ameliorative interven-

Table 5. Components of the American Heart Association–Clinton Foundation Alliance for a Healthier Generation Initiatives to Foster Childhood Obesity Prevention

Founders	American Heart Association and William J. Clinton Foundation
Co-Lead	Governor Arnold Schwarzenegger of California
Mission	To eliminate childhood obesity and to inspire all young people in the United States to develop lifelong, healthy habits
Goals	To stop the nationwide increase in childhood obesity by 2010 and to empower kids nationwide to make healthy lifestyle choices
Programs	Healthy Schools Program, Industry Initiative, Kids’ Movement, Healthcare Initiative

The Alliance is positively affecting the places that make a difference to a child’s health: homes, schools, restaurants, doctor’s offices, and the community.

Source: Reference 402.

Fostering Coalitions and Networks

Community organizations or coalitions of community organizations or members who have a stake in obesity prevention...
Evidence-Based Experience

In contrast to the extensive database available on obesity prevention, research to identify specific interventions to prevent obesity is still at a relatively early stage.7,20,236,405 Elements of promising strategies for obesity prevention can be identified, and there are many relevant efforts under way. These efforts include programs generated spontaneously in communities, as well as formal research or demonstration projects undertaken based on program logic and combinations of strategies that appear to be effective. However, it is difficult to identify what set of interventions will be effective in shifting the BMI distribution for a whole community (also see Research Challenges). Effective interventions will, separately, improve dietary intake and the level of physical activity, but in combination, they must not only improve dietary quality and energy output or fitness but must also result in the avoidance of positive energy imbalance. Effects must also be sustainable over time in that the risk of excess weight gain is ever present. As explained previously, the applicability to obesity prevention of the literature on obesity treatment may be limited, because the challenges of achieving energy balance are different for prevention from those for treatment at the individual level. In addition, social and environmental changes, although relevant to both prevention and treatment, are fundamental to obesity prevention.

Numerous systematic reviews have assessed available scientific evidence on obesity prevention. Results of selected reviews published during the last decade are shown in Table 6.405–411 Two reviews focus on adults in primary care settings,414,415 2 focus on environmental and policy interventions,412,413 and 2 cover all ages.417,418 The remaining articles focus on children or school settings.405–411 Almost all include studies both in the United States and abroad. Perhaps the most striking finding in Table 6 is the relatively small numbers of eligible studies for these reviews of obesity prevention, although the number is increasing. Searches sometimes identify thousands of possible articles, but the number ultimately reviewed and included is relatively small. This is owing in part to the inclusion and exclusion criteria applicable to many reviews (not all of these criteria are included in the Table 6 entries, for brevity; eg, requirements for controlled trials—either randomized or nonrandomized— inclusion of only completed trials, exclusions on the basis of a rating of poor quality, or exclusion of studies that did not provide a measurement of weight status or fatness). With respect to the findings on weight outcomes, the findings are encouraging in identifying many studies that were successful, although evidence of the ability of interventions to change average BMI levels is limited. The relatively limited breadth of studies identified, mainly school based and mainly individually oriented, indicates an urgent need to explore preventive interventions in other settings and at multiple levels upstream. Ongoing research may broaden the evidence base to some extent, but there is an overall impression that this critical area of research has far too little focus.

Research on how to implement effective environmental and policy change is a relatively new aspect to the field of obesity research, and appropriate measures and evaluation designs are still being developed. These measures and designs are needed not only for deliberate experimentation that involves environmental and policy changes, but also for the many spontaneous changes that are occurring in legislatures and communities on a day-to-day basis. Changes in school food and beverage vending policies are a prominent example of spontaneous changes that are being implemented with a limited empirical basis (ie, natural experiments). In addition, as noted above, evaluation of specific interventions is complicated by the fact that additive or synergistic effects of multiple interventions across different levels and sectors may be necessary to have an impact on behaviors related to energy balance and to see effects on weight.411,418 This can be addressed in part by multilevel interventions or combinations of studies, but to date, these studies are few in number.409,411

Another challenging and strongly debated issue is how study designs with the highest level of internal validity, randomized, controlled trials apply in that they may impose limitations on both the feasibility and relevance of testing obesity prevention approaches in naturalistic settings.418,419 An example of a promising multilevel intervention, evaluated with a nonrandomized, controlled trial design is the “Shape Up Somerville” study.420 This study compared the effects of a comprehensive intervention, conducted in partnership with entities in the study communities, on physical activity and food options during the child’s entire day on BMI z-scores 1 year after the initiation of the interventions. Participants were 1178 elementary school-aged children in all 30 schools in 3 participating communities: 10 schools in the intervention community; 10 and 5 schools in the 2 control communities, which received no intervention. An extra control group was used to ensure against the spontaneous
Table 6. Highlights of Selected Systematic Reviews of Intervention Studies Related to Obesity Prevention (Listed Alphabetically by First Author Within Year of Publication, Most Recent First)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Focus, Scope, and Key Inclusion Criteria</th>
<th>Eligible Studies Identified</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluford et al406</td>
<td>Preschool children</td>
<td>7 studies</td>
<td>Significant reductions in weight status or body fat were identified in 4 of the 7 studies, of which 3 sustained reductions 1 to 2 years after the program began</td>
</tr>
<tr>
<td></td>
<td>United States and international, published in 1966 through March 2005</td>
<td>Settings included schools, day care/Head Start programs, clinics, and home settings</td>
<td>2 studies reported no change; the other study found no change in Latino or black children but an increase in weight status in white children</td>
</tr>
<tr>
<td></td>
<td>Interventions to prevent or treat obesity in preschool children (ages 2 to <6 years) of at least 3 months’ duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Mattia et al407</td>
<td>Children and adolescents</td>
<td>12 studies</td>
<td>All of the studies, including 6 that targeted clinic-based populations and 6 that were population based reduced sedentary behaviors (self-reported) and improved weight outcomes (measured)</td>
</tr>
<tr>
<td></td>
<td>United States and international, published in 1966 to February 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interventions to limit sedentary behaviors (recreational screen time but not homework or reading) in children or adolescents in natural settings (eg, at school or home or in a primary care setting)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharma408</td>
<td>Children and adolescents</td>
<td>21 interventions, of which 17 were from elementary schools</td>
<td>Most studies focused on individual level approaches; 16 of the 21 interventions were delivered by existing teachers, often with additional training</td>
</tr>
<tr>
<td></td>
<td>Only studies from countries outside of the United States, published in 1999–2005</td>
<td></td>
<td>Measured weight or fatness variables were available in 11 studies, of which 6 showed improvements; all 3 completed studies that included parents improved measured weight outcomes</td>
</tr>
<tr>
<td></td>
<td>School based interventions for obesity prevention in children; not all studies included measured weight outcomes; and not all had been completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doak et al409</td>
<td>Children and adolescents</td>
<td>25 interventions</td>
<td>17 of the 25 interventions reported statistically significant improvements in obesity measures; estimation of effectiveness differed according to whether skinfold or BMI measures were used</td>
</tr>
<tr>
<td></td>
<td>United States and international, published through August 2005</td>
<td></td>
<td>5 studies found gender differences in effects and 1 study found differences by ethnicity</td>
</tr>
<tr>
<td></td>
<td>Interventions and programs to prevent obesity in children and adolescents, with measured weight or fatness outcomes</td>
<td></td>
<td>No ideal age for intervention could be identified from these studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Physical education and reduction of television viewing were highlighted as examples of effective approaches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>One of the effective interventions was also associated with an increase in underweight prevalence</td>
</tr>
<tr>
<td>Flodmark et al410</td>
<td>Children and adolescents</td>
<td>24 studies in this review</td>
<td>8 studies reported significant positive results on measures of obesity, and 16 were neutral; none had negative results</td>
</tr>
<tr>
<td></td>
<td>United States and international, published until 2004</td>
<td>39 total studies when including other reviews</td>
<td>Considering these results together with those of 5 other systematic reviews yielded 39 studies of which 15 had positive results and the other 24 were neutral; no studies reported harmful effects on children</td>
</tr>
<tr>
<td></td>
<td>Setting or population-based interventions (ie, in groups of children not specifically selected for being overweight or obese to prevent obesity of at least 12 months’ duration; with measured weight or fatness outcomes</td>
<td></td>
<td>Effective programs were relatively limited school-based programs that promoted a combination of healthful eating and increased physical activity</td>
</tr>
<tr>
<td></td>
<td>Articles published until 2004 were added to a prior 2002 review; results of 5 other systematic reviews were also evaluated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Focus, Scope, and Key Inclusion Criteria</td>
<td>Eligible Studies Identified</td>
<td>Main Findings</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Flynn et al⁴¹¹</td>
<td>Children and adolescents
United States and international, including government reports and other published or unpublished sources identified apart from databases of published articles, 1982–2003
Accounts of programs that could shed light on best practices related to reduction of obesity and related chronic disease risk in children</td>
<td>147 programs were analyzed</td>
<td>No single program emerged as a model of best practice, although promising elements applicable to various populations and settings were identified
More upstream and population-focused interventions are needed to balance the emphasis on individually oriented strategies
There is a particular need for programs tailored to ethnic minority and new immigrant children and based in community or home settings</td>
</tr>
<tr>
<td>Health et al⁴¹²</td>
<td>Policy and environmental changes
United States and international, published through 2003
Studies of the effectiveness of urban design and land use and transport policies and practices for increasing physical activity; reviewed for the Guide to Community Preventive Services</td>
<td>12 studies on community-scale urban design, 6 studies on street-scale urban design; and 3 studies on transportation and travel policies and practices</td>
<td>Both community-scale and street-scale urban design and land use policies and practices were found effective in promoting physical activity, with evidence rated as “sufficient.”
The evidence to evaluate the effectiveness of travel and transport policies is insufficient.
Also reported are the following additional findings of the Guide to Community Preventive Services with respect to physical activity promotion, based on prior systematic reviews: strong evidence for community-wide campaigns, individually adapted health behavior change, school based physical education, social support in community settings, and the enhancement of access to physical activity options combined with informational outreach activities
There is sufficient evidence for point-of-decision prompts</td>
</tr>
<tr>
<td>Summerbell et al⁴⁰⁵</td>
<td>Children and adolescents
United States and international, published in 1990 through February 2005
Interventions to prevent obesity, of at least 12 weeks’ duration, in randomized controlled or controlled trials</td>
<td>10 long-term (at least 12 months) and 12 short-term (12 weeks to 12 months)</td>
<td>Of the long-term studies that focused on both diet and physical activity, 5 studies found improvements in weight or fatness outcomes for both boys and girls and 1 found improvements for girls only; a long-term study of a multimedia intervention to improve physical activity was effective; studies that focused on nutrition education only were not effective
Two of the short-term studies were effective in improving weight or fatness outcomes; both focused on physical activity; 2 others that focused on physical activity and diet were not effective</td>
</tr>
<tr>
<td>Matson-Koffman et al⁴¹³</td>
<td>Policy and environmental changes
United States and international, published in 1970–2003
Policy or environmental interventions to promote physical activity or good nutrition, excluding studies of the built environment and media-only campaigns; included studies in whole communities, schools, worksites and restaurants, and healthcare settings</td>
<td>65 studies before 1990 and 64 studies between 1990 and 2003</td>
<td>Strongest evidence was found for
- Promoting stair use
- Improving access to place and options for physical activity
- Improving school physical education
- Implementing comprehensive worksite approaches
- Increasing availability of nutritious foods
- Information at point of food purchase
- Systems for reminding healthcare providers to provide nutrition counseling</td>
</tr>
</tbody>
</table>

(Continued)
development of a nonstudy-related intervention in 1 of the control communities. The numerous activities targeted the home, school, and community environments and included environmental changes and policy development related to food availability and physical activity options, newsletters, training of teachers and medical professionals, and implementation of a restaurant certification program. Children in the intervention community had a more favorable BMI trajectory than those in the comparison arm.

Conclusions

A main objective of this scientific statement is to provide an overview of the types of strategies needed to prevent obesity
using a comprehensive, population-based approach rather than relying only on clinic-based or individually oriented strategies. Given that the ultimate determinants of obesity are individual eating and physical activity behaviors, the perception that one can solve the problem by refining the ability to help individuals to change their behaviors will persist. Central themes here are that what it will take for individuals on average to change their behaviors to the point of avoiding excess weight gain throughout the life course is affected by environmental factors that are not under their personal control. Research recommendations and programmatic initiatives for obesity prevention call for a broad range of strategies, many of which go beyond the knowledge, skill, and experience base of health professionals.

Investigators involved in pilot studies of obesity prevention identified a number of challenges to the design and conduct of research on obesity prevention in various organizational settings and study populations. Foremost among these were the difficulty of motivating people to make the amount of effort needed for prevention of weight gain, the difficulty of measuring energy balance, the need to differentiate adverse weight gain from an increase in weight because of leaner body composition, and the large sample sizes needed to detect statistically significant differences when the primary outcome is no change in weight as opposed to the substantial weight losses obtained in treatment studies. Perhaps partly for these reasons, the evidence to date includes many examples of obesity prevention interventions that have not shown significant differences in weight favoring the intervention group, making it especially important to identify examples of programs that might work.

Although the picture of how to intervene is far from complete, guidance and research recommendations developed by various expert panels, working groups, and systematic reviews (Table 6) have led to an increase in obesity prevention research. One of these expert reports, developed by the Institute of Medicine, provides a national action plan for childhood obesity prevention and includes more than 50 recommendations for actions applicable to governments, industries, communities at large, schools, and homes. A subsequent Institute of Medicine report provides a framework for evaluating progress and an update on progress in implementing elements of the plan. Targeted funding from the National Institutes of Health, the CDC (www.cdc.gov), and, for childhood obesity prevention, from the Robert Wood Johnson Foundation (www.rwjf.org), for example, is a major incentive to conduct population-based obesity prevention research. This research includes community-partnered and community action research and research on the effectiveness of policies implemented in various sectors and at various levels. Unproven efforts will continue as an important part of the community response to this pressing health problem, but the mandate to ground these efforts with some type of mechanism for evaluation is increasingly emphasized and funded.

Ongoing activities, such as the CDC Guide to Community Preventive Services and Cochrane evidence reviews, policy tracking, report cards, and web sites that serve as clearinghouses for sharing information about available resources and extant community programs are creating an increasingly strong platform for action. Several initiatives specifically designed to generate policy and environmental changes and identify effective approaches in this respect have been funded by the Robert Wood Johnson Foundation as part of their commitment to reversing the childhood obesity epidemic by 2015 (see www.rwjf.org). A study of 9 countries in Europe has set the precedent for comprehensive study of how various policy options for obesity prevention are viewed by a broad range of stakeholders. With respect to direct physician involvement, a model of potential interest is the Physicians for Healthy Communities Initiative developed by the California Medical Association Foundation in partnership with the California Nutrition Network for Healthy, Active Families and Kaiser Permanente. This initiative will promote policy and environmental changes in schools and communities and will also assist physicians with training in community collaboration, nutrition messages, and advocacy techniques to enable them to become champions to promote healthy eating and active living throughout California.

Finally, some aspects of the scenario with respect to obesity prevention should sound very familiar to those experienced with CVD prevention. Strategies across the spectrum have been applied to promotion of changes in food intake and physical activity and the needs for upstream interventions clearly articulated, both in the United States and globally. The North Karelia project, in which policy level interventions were implemented to generate population-wide reductions in intake of saturated fat, with benefits for reductions in CVD mortality, is perhaps the best known example of the success of policy changes for CVD risk reduction. The concept of policy level interventions to change contexts for individual behavior is also well known from the experience with tobacco, although the differences between food, which is essential to life and inherently good for health, and tobacco, which is nonessential and inherently bad for health, limit the direct transfer of some concepts and strategies. Many lessons from both tobacco and CVD prevention generally are applicable to obesity prevention. The most overarching lesson is that there is, indeed, the potential for success in combating such a far-reaching and deeply embedded societal pandemic. Obesity treatment and prevention have always been a part of CVD prevention but, especially for prevention, have not been the primary focus. The rapid rise in obesity on a population level—associated with changes in the quantities of food available, marketed, and consumed, along with the very low level of obligatory physical activity for most people—makes obesity prevention efforts as a primary focus truly daunting. Furthermore, the inability to specify—at a population or individual level—the exact behaviors expected to result in energy balance considerably adds to the challenge. Avoiding unhealthy weight gain goes beyond the success of individual efforts to achieve good dietary quality and adequate physical fitness. It requires a broad range of strategies that include environmental and societal efforts.
Appendices

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniels et al</td>
<td>Children and adolescents; provides practical guidelines to clinicians to decrease CVD risk factors in youth, including low physical activity, obesity, insulin resistance and type 2 diabetes, high blood pressure, hypercholesterolemia, and cigarette smoking</td>
</tr>
<tr>
<td>Steinberger et al</td>
<td>Children and adolescents; summarizes evidence to provide a rationale for lifestyle modification and weight control in childhood to reduce risks of developing insulin resistance, type 2 diabetes, and CVD; oriented to clinical practitioners</td>
</tr>
<tr>
<td>Hayman et al</td>
<td>Children and adolescents; provides guidance about how to optimize school environments in population-based strategies to promote cardiovascular health for US children and adolescents; intended for health and education professionals, child health advocates, policy makers, and community leaders; includes recommendations for school curricula, policies, and linkages to community resources and infrastructures</td>
</tr>
<tr>
<td>Mullis et al</td>
<td>Adults, children, and families; explains the complementarity of population-based and high-risk approaches to obesity prevention and treatment; describes important settings for instituting interventions to influence energy balance and the need for creative approaches to developing and evaluating broad policy approaches; makes research recommendations</td>
</tr>
<tr>
<td>Klein et al</td>
<td>Adults; reviews evidence on the clinical effects of weight loss on a variety of cardiovascular risk factors and outcomes and the clinical efficacy of treatments for obesity, including dietary and physical activity change, behavioral modification, pharmacotherapy, and surgery; summarizes guidelines for clinical evaluation and treatment of obese adults</td>
</tr>
<tr>
<td>Smith et al</td>
<td>Adults in racial/ethnic minority populations; highlights the higher-than-average risk of some or all metabolic syndrome components in African Americans, Hispanic Americans, American Indians/Alaska Natives, Asian Americans and Pacific Islanders; makes recommendation to the AHA for initiatives to reduce the related health disparities through professional/lay programs, public policy/advocacy, and research</td>
</tr>
<tr>
<td>Daniels et al</td>
<td>Children and adolescents; summarizes information on the pathophysiology and epidemiology of overweight in children and adolescents; provides an update on adverse health effects of childhood overweight and discusses approaches to prevention and treatment of overweight in children and adolescents</td>
</tr>
<tr>
<td>Grundy et al</td>
<td>Adults; reviews and provides updated information in support of the AHA recommendations for clinical diagnosis, therapeutic goals and management of the metabolic syndrome; identifies related areas of needed research</td>
</tr>
<tr>
<td>Gidding et al</td>
<td>Children and adolescents; summarizes current available information on cardiovascular nutrition in children and makes recommendations for both primordial and primary prevention of cardiovascular disease beginning at a young age; emphasizes the importance of nutrition early in life, including the fetal milieu; includes brief overview of public health issues related to nutrition</td>
</tr>
<tr>
<td>Poirier et al</td>
<td>Adults; updates the evidence for the impact of obesity on CVD, including cardiac structure and function and summarizes the benefits of weight loss on the cardiovascular system; discusses potential CVD risks associated with certain clinical weight loss approaches</td>
</tr>
<tr>
<td>American Heart Association Nutrition Committee et al</td>
<td>Adults primarily, although applicable to children; updates the AHA public health and clinical recommendations for diet and other lifestyle behaviors to prevent and manage CVD, including the guideline to “aim for a healthy weight”; includes practical tips for individuals to achieve these guidelines; provides recommendations for practitioners, restaurants, the food industry, schools, and local governments to promote a more supportive environment for achieving goals</td>
</tr>
<tr>
<td>Pate et al</td>
<td>Children and adolescents; highlights physical activity to be a key determinant of weight status, summarizes the evidence supporting schools’ potential for effectively improving and promoting physical activity, and recommends several key changes in school policy and practice</td>
</tr>
<tr>
<td>Kavey et al</td>
<td>Children and adolescents; provides guidelines for CVD prevention in children and adolescents who are at high risk for early coronary disease; these guidelines recommend more aggressive treatment of CVD risk factors, including obesity, than in the general population for children and adolescents with conditions such as familial hypercholesterolemia, diabetes, chronic kidney disease, heart transplantation, Kawasaki disease, systemic lupus erythematosus, rheumatoid arthritis, congenital heart disease, and past history of cancer treatment</td>
</tr>
<tr>
<td>Hayman et al</td>
<td>Children and adolescents; reviews rationale for primary prevention of CVD in youth and reports interventions at the population level and in high-risk individuals; provides guidelines with particular emphasis on nursing practice</td>
</tr>
</tbody>
</table>
Appendix 2. Selected Evidence-Based Recommendations and Guidelines for Obesity Prevention and Treatment in Adults and Child/Adolescent Populations

<table>
<thead>
<tr>
<th>Source</th>
<th>Relevance*</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Institutes of Health14</td>
<td>Adults</td>
</tr>
<tr>
<td>McTigue et al17</td>
<td>Adults</td>
</tr>
<tr>
<td>Katz et al25</td>
<td>Children/adolescents and adults</td>
</tr>
<tr>
<td>Koplan et al7</td>
<td>Children/adolescents</td>
</tr>
<tr>
<td>American Heart Association Nutrition Committee et al20</td>
<td>Children/adolescents and adults</td>
</tr>
<tr>
<td>Lau et al26</td>
<td>Children/adolescents and adults</td>
</tr>
<tr>
<td>National Initiative for Children’s Healthcare Quality et al27</td>
<td>Children/adolescents</td>
</tr>
</tbody>
</table>

*Children under age 2 years are not targeted in any of the guidelines listed.

Disclosures

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shiriki K. Kumanyika</td>
<td>University of Pennsylvania School of Medicine</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Weight Watchers International*</td>
<td>None</td>
</tr>
<tr>
<td>Ronny Bell</td>
<td>Wake Forest University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Alison E. Field</td>
<td>Harvard University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Stephen P. Fortmann</td>
<td>Stanford University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barry A. Franklin</td>
<td>William Beaumont Hospital</td>
<td>None</td>
<td>None</td>
<td>Providence Hospital*; state cardiac rehab associations*</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Matthew W. Gillman</td>
<td>Harvard</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Yuling Hong</td>
<td>American Heart Association</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Cora E. Lewis</td>
<td>University of Alabama at Birmingham</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eva Obarzanek</td>
<td>NHLBI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Walker Carlos Poston II</td>
<td>University of Missouri at Kansas City</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nicolas Stettler</td>
<td>Children’s Hospital of Philadelphia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Dannon Institute*</td>
<td>None</td>
</tr>
<tr>
<td>June Stevens</td>
<td>University of North Carolina, Chapel Hill</td>
<td>None</td>
<td>Gatorade†; Sanofi-Aventis†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

*This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10 000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10 000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.
Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert H. Eckel</td>
<td>University of Colorado Health Sciences Center</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Gerald Fletcher</td>
<td>Mayo Clinic Jacksonville</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>JoAnn Manson</td>
<td>Harvard University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Youfa Wang</td>
<td>Johns Hopkins University</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Reginald Washington</td>
<td>Rocky Mountain Pediatric Cardiology</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Antronette Yancy</td>
<td>University of California Los Angeles</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit.

References

23. Steinberger J, Daniels SR; American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young); American Heart Association Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). *Circulation.* 2003;107:1448–1453.
24. Hayman LL, Williams CL, Daniels SR, Steinberger J, Paridon S, Dennison BA, McCrindle BW; Committee on Atherosclerosis, Hypertension, and Obesity in Youth (AOHY) of the Council on Cardiovascular Disease in the Young, American Heart Association. Cardiovascular health promotion in the schools: a statement for health and education professionals and child health advocates from the Committee on Atherosclerosis, Hypertension, and Obesity in Youth (AOHY) of the
28 Circulation July 22, 2008

31. Pate RR, Davis MG, Robinson TN, Stone EJ, McKenzie TL, Young JC; American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Physical Activity Committee); Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; Promoting physical activity in children and youth: a leadership role for schools: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Physical Activity Committee) in collaboration with the Councils on Cardiovascular Disease in the Young and Cardiovascular Nursing. Circulation. 2006;114:1214–1221.
32. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, Parekh RS, Steinberger T; American Heart Association Expert Panel on Population and Prevention Science; American Heart Association Council on Cardiovascular Disease in the Young; American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Heart Association Council on High Blood Pressure Research; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on the Kidney in Heart Disease; Interdisciplinary Working Group on Quality of Care and Outcomes Research. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research. Circulation. 2006;114:2710–2728.

Kumanyika et al
Population-Based Prevention of Obesity

381. borhood racial composition, neighborhood poverty, and spatial accessi-

412. Heath GW, Brownson RC, Kruger J, Miles R, Powell KE. Ramsey LT; Task Force on Community Preventive Services. The effectiveness of urban design and land use transport policies and practices to increase physical activity: a systematic review. J Phys Activity Health. 2006;3(suppl 1):S55–S76.

Shiriki K. Kumanyika, Eva Obarzanek, Nicolas Stettler, Ronny Bell, Alison E. Field, Stephen P. Fortmann, Barry A. Franklin, Matthew W. Gillman, Cora E. Lewis, Walker Carlos Poston II, June Stevens and Yuling Hong

Circulation. published online June 30, 2008; Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2008/06/30/CIRCULATIONAHA.108.189702.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/