Editorial

Exercise Training for Heart Failure
Coming of Age

Andrew J.S. Coats, MA, DM, FRCP, FRACP, FESC

We have known for many years of the benefits of an exercise component in cardiac rehabilitation. It was initially thought that significant left ventricular impairment was a contraindication to participation in such programs. In fact, in heart failure, there was a vogue for and reports of the beneficial effects of prolonged bed rest.1 It is against this background that a few challenging reports emerged in the early 1980s that selected patients with significant left ventricular impairment had in fact participated in exercise programs and had achieved training responses with increased exercise capacity.2-4 It was not until the late 1980s, however, that the first reports of training patients with a history of chronic heart failure (CHF) emerged.5,6 Pioneering work from Duke University showed a significant enhancement in exercise capacity and ancillary physiological benefits, including reduced lactate production, improved use of ventilatory reserve, and increased leg blood flow during progressive exercise.5,6 This was quickly followed by the first prospective controlled trial of exercise training in CHF, an 11-patient crossover study of home-based exercise training using a cycle ergometer for 8 weeks versus a similar period of activity restriction.7 The result was an improvement in exercise capacity and an improvement in questionnaire-based heart failure–related symptoms. The era of training as a treatment of heart failure had begun.

See p 1173

In the decade following these first reports, there have been a profusion of small trials and a long list of impressive physiological gains that could be achieved. These included increased peak oxygen consumption,8-10 an increase in peak cardiac output (in some8 but not all trials), and improvement in the autonomic control of the circulation with a reduction in sympathetic nervous system activity and an enhancement in vagal activity.8,11 More recent reports have documented an increase in endothelial function12 and in skeletal muscle biochemical13,14 and histological characteristics15 and improvements in patients’ perceptions of their quality of life and symptom severity. These training benefits have been shown against a background of increasing interest in and realization of the importance of secondary peripheral manifestations of the syndrome of CHF.16 The importance of neurohormonal overactivity has been recognized for a decade, but the importance of other changes, such as altered and wasted skeletal muscle and a host of major metabolic disturbances in CHF, are only now being appreciated.17 These include insulin resistance, deficient insulin-like growth factor-1, immune activation and cytokine release, endothelial dysfunction, and baroreflex, chemoreflex, and muscle ergoreflex (metaboreflex) alterations, all of which have the capacity to worsen the symptoms and prognosis of the heart failure patient and all of which at least in theory might be improved by a customized training program. It is against this background that exercise training (given its diverse and metabolically powerful effects) is being viewed as an exciting potential therapy for stable CHF patients.

The results of training in heart failure, however, have not been uniform. In the setting of a recent myocardial infarction, in particular, early reports stressed caution. Early fears that training after an MI in those with large infarcts could worsen left ventricular asynergy have not been confirmed by later, better-designed studies, which showed that these patients could train safely and improve their exercise capacity, as shown by the EAMI study group.18 In a second study by this group (ELVD), in fact, they actually showed an improvement in the harmful process of left ventricular remodeling by participation in a structured exercise rehabilitation program.19 It is easy to see how the chronic reduction in sympathetic tone could improve the remodeling process, and this may be more important in the long term than the short durations of the exercise necessary to achieve this increased fitness.

Wilson et al20 described a proportion of his patients who either were unable to complete an exercise program or achieved no increase in exercise capacity from so doing. These patients seemed to be those with limiting cardiac output rather than those limited by secondary changes in the periphery, such as impaired peripheral vasodilatory capacity or impaired skeletal muscle function. This distinction is quite plausible, because training does appear to achieve the majority of its beneficial effects through peripheral mechanisms with little or no effect on resting left ventricular function. More recent reports have suggested that some patients with ischemic cardiomyopathy may be able to increase their collateral blood flow to the myocardium as measured by perfusion scanning. Similar results were also seen in the study by Belardinelli in this issue of Circulation, to which this editorial refers.21

Three major questions remain unanswered by the predominantly single-center studies that have been published to date:
place to mount the initiative within Europe. We hope that
like-minded North American units will form with the
European group to make a mortality trial of training in
CHF a reality before the millennium. It would be ironic if
the group of patients initially denied the benefits of
participation in cardiac rehabilitation programs formed the
patient group who finally offered the rehabilitation com-
community their first opportunity to prove a beneficial effect
on mortality in a single prospectively designed mortality
and morbidity trial. Much remains to be done and many
unanswered questions remain, but the excellent work of
Belardinelli and colleagues gives us an incentive to put
exercise rehabilitation for heart failure to the test.

References

1. McDonald CD, Burch GE, Walsh BJ. Prolonged bed rest in the treatment

2. Letac B, Cribier A, Desplanches JE: A study of left ventricular function
in coronary patients before and after physical training. Circulation, 1977;

3. Lee AP, Ice R, Blessey R, Sanmarco ME. Long-term effects of physical
training on coronary patients with impaired ventricular function. Circu-
lation. 1979;60:1519–1526.

4. Conn EH, Williams RS, Wallace AG. Exercise responses before and after
physical conditioning in patients with severely depressed left ventricular

5. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients
with chronic heart failure delays ventilatory anaerobic threshold and
improves submaximal exercise performance. Circulation. 1989;79:
324–329.

with severe left ventricular dysfunction: hemodynamic and metabolic

7. Coats AJS, Adamopoulos S, Meyer TE, Conway J, Sleight P. Effects of

L, Solda PL, Davey P, Ormerod O, Forfar C, Conway J, Sleight P. Controlled
trial of physical training in chronic heart failure: exercise performance,
hemodynamics, ventilation, and autonomic function. Circulation.

U, Schlierf G, Kubler W, Schulter G. Physical training in patients with
stable chronic heart failure: effects on cardiorespiratory fitness and ultra-
structural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25:
1239–1249.

intensity exercise training in patients with chronic heart failure. J Am Coll

drangements by physical training in chronic heart failure assessed by

12. Hornig B, Maier V, Drexlcr H. Physical training improves endothelial
function in patients with chronic heart failure. Circulation. 1996;93:
210–214.

E, Cagle TG, Chick TW, Massie BM, Icnnogle MV. Skeletal muscle

CH, Dunn JB, Stratton J, Kemp GJ, Radda GK, Rajagopalan B. Physical
training improves skeletal muscle metabolism in patients with chronic

Riede U, Schulter G. Effects of endurance training on mitochondrial
ultrastructure and fiber type distribution in skeletal muscle of patients with

16. Clark AL, Poole Wilson PA, Coats AJS. Exercise limitation in chronic


Key Words: Editorials ■ exercise ■ heart failure
Exercise Training for Heart Failure: Coming of Age
Andrew J. S. Coats

Circulation. 1999;99:1138-1140
doi: 10.1161/01.CIR.99.9.1138

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/99/9/1138

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/