Skeletal Muscle Mitochondrial DNA Injury in Patients With Unilateral Peripheral Arterial Disease

Hari K. Bhat, PhD; William R. Hiatt, MD; Charles L. Hoppel, MD; Eric P. Brass, MD, PhD

Background—Patients with peripheral arterial disease (PAD) have exercise limitation due to claudication-limited pain and metabolic alterations in skeletal muscle. PAD is also associated with oxidative stress, which is a known cause of mitochondrial DNA (mtDNA) injury. The present study was designed to test the hypothesis that PAD is associated with mtDNA injury, as reflected by an increased frequency of a specific 4977–base pair (bp) mtDNA deletion mutation.

Methods and Results—The deletion frequency was quantified in gastrocnemius muscle of 8 patients with unilateral PAD and 10 age-matched control subjects with the use of polymerase chain reaction methodologies. Muscle from the hemodynamically unaffected (less affected) PAD limb showed an 8-fold increased deletion frequency and the hemodynamically affected (worse affected) PAD limb had a 17-fold increased deletion frequency compared with muscle from control subjects. The frequency of the 4977-bp deletion in the worse-affected limb was positively correlated with the age of the patients but not the claudication-limited exercise performance of the patients. Total mtDNA content, citrate synthase activity, and cytochrome c oxidase activity were not different in the muscle from the 3 limb populations. However, the ratio of citrate synthase to cytochrome c oxidase was higher in the worse- versus less-affected limbs of PAD patients.

Conclusions—The present study demonstrates a large increase in the frequency of the mtDNA 4977-bp deletion in patients with PAD but in a distribution not limited to the hemodynamically affected limb. (Circulation. 1999;99:807-812.)

Key Words: peripheral vascular disease ▪ aging ▪ metabolism

Peripheral arterial disease (PAD) results from atherosclerotic occlusion and impairment of arterial oxygen delivery to the lower limbs and is associated with development of claudication pain with exercise.2-3 Although the initial insult in PAD is circulatory, peripheral hemodynamics are poor predictors of exercise capacity in PAD patients.4 Thus, factors intrinsic to the skeletal muscle may contribute to the functional impairment of patients with PAD.

Metabolic changes occur in the skeletal muscle of PAD patients.5-7 Muscle mitochondrial enzyme expression is altered,5,8,9 intermediates of oxidative metabolism accumulate,5,10 the kinetic response to exercise is slowed,11 and exercise training is abnormal12,13 in these patients. These metabolic features are similar to those in mitochondrial myopathies7,11 and suggest functionally relevant metabolic sequelae from the chronic hemodynamic abnormalities in PAD patients.

Somatic mutations to mitochondrial DNA (mtDNA) have been hypothesized to cause acquired mitochondrial dysfunction.14,15 mtDNA encodes for 13 polypeptides critical for electron transport chain function.14,16 Well-characterized mtDNA mutations arise from mutation hot spots.17,18 A 4977–base pair (bp) deletion spanning mtDNA nucleotide pairs 8469 to 13 447 (standard human mitochondrial DNA nomenclature used throughout; see Reference 16) has been reported frequently.14,19–21 Because each mitochondrion contains multiple copies of the genome,14 injury results in heteroplasmy in which each cell contains mtDNA molecules with varied sequences.14,22 Increased mtDNA mutation frequency occurs in humans with aging23–25 and in ischemic myocardium.19,21 The impact of acquired mtDNA injury in disease pathophysiology has been difficult to define owing to the lack of data relating mtDNA injury to mitochondrial and tissue function.

PAD provides a unique model for assessing the importance of mtDNA mutations in a clinically important disease. PAD is associated with oxidative stress26,27 analogous to the suggested mtDNA injury mechanism in ischemic heart.14,19,21 Patients with unilateral PAD permit specific influences of ischemia on mtDNA mutation frequency to be defined. Exercise testing and measurement of mitochondrial enzyme activities permits functional measurements as well. The present study was designed to test the hypothesis that PAD is associated with mtDNA injury, as reflected by an increased frequency of the specific 4977-bp mtDNA deletion.

Received May 27, 1998; revision received September 4, 1998; accepted September 25, 1998.

From the Department of Medicine, Harbor-UCLA Medical Center (H.K.B., E.P.B.), Torrance, Calif; University of Colorado Health Sciences Center (W.R.H.), Denver, Colo, and Cleveland VA Medical Center (C.L.H.), Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, Ohio.

Correspondence to Eric P. Brass, MD, PhD, Department of Medicine, Harbor-UCLA Medical Center, 1000 W Carson St, Torrance, CA 90509. E-mail ebrass@ucla.edu

© 1999 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org
Methods

Patients

Eight patients with unilateral PAD and 10 age-matched, sedentary control subjects were recruited. A history and physical examination were performed, and subjects underwent assessment of ankle/brachial index (ABI; ratio of systolic blood pressures in ankle to arm). Unilateral PAD was identified as previously described.28 The limb with hemodynamically determined PAD is referred to as the “worse affected” limb, and the limb with ABI in the normal range is referred to as “less affected.” All subjects underwent graded treadmill testing and peak oxygen uptake (VO2) measurement.13,28,29 PAD subjects underwent needle biopsies of each gastrocnemius muscle at rest as described.6,13 Eight control subjects had a muscle sample taken from 1 leg, and 2 control subjects had a muscle sample taken from both legs. Samples were immediately frozen in liquid nitrogen and stored at −80°C until analysis. All protocols were approved by appropriate Institutional Review Boards, and subjects gave informed consent.

4977-bp Deletion Frequency

Total cellular DNA was extracted from 10 to 20 mg of frozen muscle by use of a QIAamp kit (Qiagen, Inc). Before polymerase chain reaction (PCR) amplification, DNA samples were digested with PstI (acting at nucleotide pairs 6910 and 9020) and HindIII (acting at nucleotide pairs 6203, 11680, and 12567) (Promega, Inc) for 16 hours at 37°C to linearize the mtDNA and cut the sequence within the 4977-bp deletion region.19 The digested DNA was extracted with phenol/chloroform, precipitated, and washed with ethanol, dissolved in Tris-HCl, pH 9.0, and remeasured before dilution and use.

The proportion of total mtDNA containing a specific 4977-bp deletion (deletion of 8469 to 13 447 nucleotide pairs16) was determined with a serial dilution PCR method modified from Corral-Debrinski et al.19 Two sets of PCR reactions were performed on each sample. For the first amplification, primers amplified a region not affected by the 4977-bp deletion or any other known mtDNA deletions (5′-TTC AAA TTC CTC CCT GTA CG-3′ [primer 1], complementary to bases 3108 to 3127, and 5′-TTG GGC TAC TGC TCG CAG TG-3′ [primer 2], complementary to bases 3701 to 3720). This amplification yields a 613-bp product from both wild-type and mtDNA containing the 4977-bp deletion and is termed the total mtDNA product. The second set of primers flanked the 4977-bp deletion and yielded a 593-bp product only if the 4977-bp deletion is present. Each reaction contained a variable amount of DNA template as noted above each lane (A; m indicates DNA mass ladder). Product yields were plotted as a function of template concentration for each primer set (B; ■=total DNA, ■=4977-bp deletion product). The ratio of the template amounts required for the same yield was a measure of the relative amounts of deleted mtDNA vs total mtDNA.

This method demonstrated similar PCR amplification efficiencies for the deletion-specific and wild-type reactions, and no 593-bp deletion product was detected in DNA from young healthy subjects (<0.01% frequency). The coefficient of variation was found to be 20% when a single sample was run multiple times on separate days. The validated lower limit of detection was 0.01%, and thus all estimates that yielded deletion frequencies <0.01% were conservatively reported as 0.01%.

Total mtDNA Content

A competitive PCR strategy was used for the measurement of total mtDNA.30 A 500-bp internal standard was generated with a PCR-MIMIC construction kit from Clontech with a nonhomologous DNA fragment of known sequence. The internal standard fragment was generated with 2 rounds of PCR amplification reactions, the first with composite primers and the second with mtDNA-specific primers. Composite (40-mer) upstream and downstream primers were designed such that each composite primer consisted of a 20-nucleotide base mtDNA template-specific sequence, followed by a 20-nucleotide base sequence complementary to the MIMIC DNA fragment (5′-TTC AAA TTC CTC CCT GTA CGC AAT ATC TTG AGC TAC TGC TCG CAG TG-3′, composite upstream primer 5, and 5′-TTG GGC TAC TGC TCG CAG TG-3′, composite downstream primer 6). The PCR product generated was then used in a second round of PCR amplification with mtDNA-specific primers (primers 1 and 2 used for the amplification of the 613-bp total mtDNA product, discussed above) to provide the internal standard.

Various amounts of internal standard DNA fragment (typically 6.0×104 to 6.0×105 molecules, including at least 6 different concentrations) were added to a known amount of total muscle DNA (typically 0.01 to 0.1 ng). PCR amplification was performed for 30 cycles with primers 1 and 2 under conditions for the amplification of the 613-bp total mtDNA product as described above, except that the primer concentration was 0.6 μmol/L. This reaction thus yielded the 613-bp product from mtDNA and a 500-bp fragment from the competitor template. The PCR reaction products were separated on 2% agarose gel, negative films of the ethidium bromide stained gels were measured by densitometry, and the logs of the ratio of the

![Figure 1. PCR products for total and 4977-bp mtDNA deletion reactions from the worse-affected limb of a PAD patient. Reactions yield a 613-bp product for total mtDNA and a 593-bp product if the 4977-bp deletion is present. Each reaction contains a variable amount of DNA template as noted above each lane (A; m indicates DNA mass ladder). Product yields were plotted as a function of template concentration for each primer set (B; ■=total DNA, ■=4977-bp deletion product). The ratio of the template amounts required for the same yield was a measure of the relative amounts of deleted mtDNA vs total mtDNA.](http://circ.ahajournals.org/doi/fig/10.1161/01.CIR.0000209229.18770.9d)
TABLE 1. Characteristics of Control Subjects and PAD Patients

<table>
<thead>
<tr>
<th></th>
<th>Control (n=10)</th>
<th>PAD (n=8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>61±3</td>
<td>63±4</td>
</tr>
<tr>
<td>Smoking status, n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Former smokers</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ABI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest</td>
<td>1.10±0.02</td>
<td>Less: 1.09±0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse: 0.50±0.05†</td>
</tr>
<tr>
<td>After exercise</td>
<td>ND</td>
<td>Less: 1.00±0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worse: 0.25±0.05*</td>
</tr>
<tr>
<td>Peak (V\dot{O}_2), mL \cdot min^{-1} \cdot kg^{-1}</td>
<td>28.4±2.0</td>
<td>14.3±0.8†</td>
</tr>
</tbody>
</table>

Less indicates less-affected limb; Worse, worse-affected limb; and ND, not determined.

Values are mean±SEM.

*\(P<0.05 \) less vs worse; †\(P<0.05 \) vs control.

As expected, the gastrocnemius muscle from the control subjects showed a low (0.05%) 4977-bp deletion frequency (Table 2). In contrast, the less-affected PAD limbs showed an 8-fold higher deletion frequency than controls (\(P<0.05 \)), and the worse-affected PAD limbs demonstrated a 17-fold higher deletion frequency than control subjects (\(P<0.01 \); Table 2). The frequency of the deletion was not different in worse-affected limbs versus less-affected limbs in the PAD population (\(P=0.119 \)). Six of the 8 PAD subjects had higher deletion frequencies in the worse- versus less-affected limbs (Figure 2). Significant overlap was seen in the deletion frequencies in the worse- and less-affected limbs among the 8 patients (Figure 2). The deletion frequencies in the patients’ less-affected and worse-affected limbs were strongly correlated (\(r=0.88, \ P<0.01 \)).

The frequency of the 4977-bp deletion in the worse-affected limbs from the PAD population was positively correlated with age (Figure 3). A similar correlation of lesser slope was seen in the less-affected limb (log deletion frequency=0.0468×age−5.78; \(r=0.735 \)). The low deletion frequency in the control muscles precluded a meaningful correlation analysis in this population. There were no significant relationships between the 4977-bp deletion frequency in the worse-affected limbs and either the patients’ ABI or claudication-limited exercise performance.

Muscle mitochondrial expression is closely linked to total mtDNA content.\(^{34,35}\) No significant differences in the total mtDNA content were found between control subjects and the less- or worse-affected limbs of PAD patients (Table 2). No differences in the activity of citrate synthase or cytochrome c

![Figure 2](http://circ.ahajournals.org/)

Figure 2. Frequency of 4977-bp deletion in individual subjects with unilateral PAD. Deletion frequencies in less- and worse-affected limbs are shown for each subject by individual points connected by a dotted line. Mean values are shown by a horizontal line and connected by a solid line.

TABLE 2. Frequency of the 4977-bp mtDNA Deletion

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Less-Affected Limb</th>
<th>Worse-Affected Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>% mtDNA with 4977-bp deletion</td>
<td>0.05±0.01</td>
<td>0.43±0.28*</td>
<td>0.88±0.33*</td>
</tr>
<tr>
<td>mtDNA, molecules×10⁶/ng DNA</td>
<td>1.15±0.14</td>
<td>1.01±0.22</td>
<td>0.89±0.12</td>
</tr>
</tbody>
</table>

*\(P<0.05 \) compared with control values. Values are mean±SEM.
oxidase were detected in control subjects versus PAD-affected limbs or between the less- or worse-affected limbs of PAD patients (Table 3). However, the ratio of citrate synthase to cytochrome c oxidase was increased in muscle from the worse-affected PAD limbs compared with the least-affected limbs (P<0.05).

Discussion

Although PAD is a consequence of atherosclerosis-induced blood flow limitations, lower extremity hemodynamics do not predict peak exercise performance. Metabolic changes have been defined in skeletal muscle of PAD patients with many features similar to those in mitochondrial myopathies. The molecular basis for altered muscle metabolism in PAD is not fully understood. The oxidative stress associated with PAD appears to induce mtDNA damage in a distribution beyond the ischemic vascular bed, which may be further aggravated by ischemia in the affected limb.

Accumulation of mtDNA mutations occurs at a slow rate in normal aging. PAD may be viewed as accelerating this process. In the PAD limb, the frequency of the 4977-bp deletion was correlated with the patient’s age (Figure 3). The 4977-bp deletion is only one of many deletion and point mutations that have been identified in human mtDNA. Thus, the quantitative assessment of mtDNA injury demonstrated here does not reflect the full extent of mtDNA damage but rather the lower limit of injury and the relative degree of injury between samples.

Somatic mtDNA mutations have been associated with a number of degenerative diseases. However, the causative role of the mtDNA injury in disease pathophysiology has not been well established in any clinical model. The patient with unilateral PAD illustrates the difficulty in interpreting mtDNA injury as a mechanism in disease pathophysiology. Patients with unilateral PAD clearly lateralize symptoms.

Figure 3. Frequency of the 4977-bp deletion in worse-affected limbs of patients with PAD vs age. Deletion frequency in worse-affected limb from each patient is plotted (log scale) as a function of the patient’s age. Least squares regression line is shown (log [deletion frequency])=0.0478×age−5.62; r=0.689.

TABLE 3. Enzyme Activities for Citrate Synthase and Cytochrome Oxidase

<table>
<thead>
<tr>
<th>Protein</th>
<th>Control</th>
<th>Less-Affected Limb</th>
<th>Worse-Affected Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrate synthase, μmol · min⁻¹ · g protein⁻¹</td>
<td>133±13</td>
<td>108±10</td>
<td>145±22</td>
</tr>
<tr>
<td>Cytochrome c oxidase, min⁻¹ · mg⁻¹</td>
<td>2.12±0.29</td>
<td>1.86±0.31</td>
<td>1.96±0.29</td>
</tr>
<tr>
<td>Citrate synthase/cytochrome c oxidase, μmol citrate synthase · min⁻¹</td>
<td>71±10</td>
<td>66±9</td>
<td>78±7*</td>
</tr>
</tbody>
</table>

*P<0.05 compared with less-affected limb. Values are mean±SEM.
hemodynamics, and biochemical abnormalities between the 2 limbs.\(^6\) Assessment of mtDNA injury in only the diseased limb might have suggested that mtDNA injury was relevant to the pathogenesis of the myopathy of PAD. However, examination of the less-affected limb makes this hypothesis less tenable. The high degree of mtDNA injury in the less-affected limb of some subjects and the overlap in deletion frequency in the less- versus worse-affected limb population (Figure 2) make a primary role for mtDNA injury in the disease unlikely. The deletion frequency in the worse-affected limb was not correlated with either the patient’s hemodynamics (ABI) or claudication-limited function. Similarly, cytochrome c oxidase activity was not decreased in the worse-affected limb of the PAD patients compared with either control or the less-affected limb (Table 3).

Although mitochondrial content varies in muscle with training and detraining, the relative amounts of each of the mitochondrial constituents remains constant.\(^35,41\) Citrate synthase activity is increased in PAD-affected muscle, \(^5,13\) and is often increased compared with mtDNA-encoded enzymes.\(^1\) Consistent with this concept in PAD patients, the ratio of cytochrome c oxidase (nuclear encoded) to cytochrome c oxidase (dependent on mtDNA-encoded subunits) activities was increased in the worse- versus less-affected limb. Again, the present study was not powered to detect differences in this ratio between the control and PAD limbs due to the greater intersubject versus intrasubject variability.

In summary, PAD is associated with accumulation of mtDNA injury, as evidenced by the high 4977-bp mtDNA deletion frequency, but this injury is not limited to the worse-affected limb in patients with unilateral disease. mtDNA injury in the less-affected limb and the relative preservation of mtDNA content and cytochrome c oxidase activity make it unlikely that a simple model of mtDNA injury causing decreased expression is responsible for the metabolic derangements seen in PAD.

Acknowledgment

This study was supported in part by the Harbor-UCLA Research and Education Institute, Sandoz Gerontological Foundation, Sigma Tau Pharmaceuticals, NIH Award in Vascular Medicine (NIH HL-02825), and the American Heart Association, Greater Los Angeles Affiliate, Los Angeles, Calif. The authors thank Kalpana Patel and Timothy Bauer for their technical help.

References

5. Jansson E, Johansson S, Sylvén C, Kaijser L. Calf muscle adaptation in intermittent claudication: side-differences in muscle metabolic character-
6. Hiatt WR, Wolfe EE, Regensteiner JG, Brass EP. Skeletal muscle car-
8. Lundgren F, Dahllöf A-G, Schersten T, Bylund-Fellenius A-C. Muscle enzyme adaptation in patients with peripheral arterial insufficiency: spon-
13. Hiatt WR, Regensteiner JG, Wolfe EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in periph-
23. Cooper JM, Mann VM, Schapira AHV. Analyses of mitochondrial respi-
24. Kadenbach B, Munschker C, Frank V, Muller-Hocker J, Napiwotzki J. Human aging is associated with stochastic somatic mutations of mito-

Skeletal Muscle Mitochondrial DNA Injury in Patients With Unilateral Peripheral Arterial Disease
Hari K. Bhat, William R. Hiatt, Charles L. Hoppel and Eric P. Brass

Circulation. 1999;99:807-812
doi: 10.1161/01.CIR.99.6.807

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/99/6/807

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/