Triglyceride-Rich Lipoprotein Remnant Particles and Risk of Atherosclerosis

Howard N. Hodis, MD

More than 3 decades of clinical research have suggested a relationship between triglycerides and coronary heart disease. However, because of the complexity of what is actually measured by a plasma triglyceride determination, establishing a firm relationship between triglycerides and coronary heart disease has been difficult. Triglycerides are carried in virtually all plasma lipoproteins and present a different risk profile in both the fasting and postprandial states, making triglyceride-rich lipoproteins highly heterogeneous. This heterogeneity is a major contributing factor to the complexity of the relationship between triglycerides and coronary heart disease.

See p 2858

Accumulating evidence indicates that specific triglyceride-rich lipoprotein remnants of differing size and composition, such as VLDL, IDL, lipoprotein B–containing particles (LP-B:C, LP-B:C:E, and LP-A-II:B:C:D:E), and markers of triglyceride-rich lipoprotein metabolism such as apolipoprotein C-III (apoC-III), are more related to progression of atherosclerosis than triglycerides per se. The assertion by Kugiyama et al that fasting remnant lipoproteins are more atherogenic than triglycerides is consistent with evidence that these remnants are partially delipidized lipoproteins and their contribution to atherosclerosis. Remnant lipoproteins are partially catabolized chylomicrons and VLDLs that are reduced in size, partially depleted of triglycerides, and enriched with cholesterol esters. Remnants formed from catabolism of VLDL consist of smaller VLDLs and IDL.

Triglyceride-rich lipoproteins comprise a great variety of nascent and metabolically modified lipoprotein particles differing in size, density, and lipid and apolipoprotein composition. Although the exact physical-chemical composition of an atherogenic lipoprotein is not known, evidence indicates that size and specific structural arrangement of lipids and apolipoproteins are the main factors determining atherogenicity. Studies have consistently shown an inverse relationship between lipoprotein particle size and capacity for lipoproteins to enter the arterial wall. Accordingly, chylomicrons and large VLDLs (Svedberg flotation unit [Sf] 60 to 400) do not seem capable of entering the arterial intima. On the other hand, small VLDLs (Sf 20 to 60) and IDLs (Sf 12 to 20) seem to share a similar mechanism and potential for penetrating the arterial intima. As such, certain triglyceride-rich lipoproteins are atherogenic, whereas others are not. In particular, small VLDLs and IDLs have been shown to be independently associated with the presence, severity, and progression of atherosclerosis.

Serial arterial imaging studies have provided an excellent opportunity to extend cross-sectional associations between triglycerides and coronary heart disease to studies that permit the examination of the relationships between triglyceride-rich lipoproteins and the progression of atherosclerosis. In a subgroup analysis of lipoprotein mass concentrations measured by analytical ultracentrifugation at baseline and after 2 years in the Type II Coronary Intervention Study, change in IDL mass (S 12 to 20) was significantly predictive of coronary artery lesion progression at 5 years. With the same analytical ultracentrifugation methodology, lipoprotein mass concentrations were measured at baseline and every 6 months for 2 years in 220 subjects participating in the Monitored Atherosclerosis Regression Study (MARS). Lipoproteins in the S 12 to 60 range (IDLs and small VLDLs) emerged as the independent correlates of coronary artery atherosclerosis progression.

In the same MARS cohort, apoC-III in the LDL-VLDL subfraction was also found to be significantly correlated with coronary artery lesion progression. ApoC-III is a marker of triglyceride-rich lipoprotein metabolism and clearance of VLDLs and chylomicrons. Inhibition of lipoprotein lipase–activated lipolysis by VLDL-associated apoC-III prolongs the circulatory residence time of VLDL and therefore increases the exposure time of the arterial wall to this atherogenic particle. ApoC-III in VLDL is associated with denser, smaller VLDL subclasses believed to be particularly atherogenic.

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Atherosclerosis Research Unit, Division of Cardiology, University of Southern California School of Medicine, Los Angeles, Calif.

Correspondence to Howard N. Hodis, MD, Associate Professor of Medicine and Preventive Medicine, Director, Atherosclerosis Research Unit, Division of Cardiology, University of Southern California School of Medicine, 2250 Alcezar St, CSC 132, Los Angeles, CA 90033.

(Circulation. 1999;99:2852-2854.)

© 1999 American Heart Association, Inc.

Circulation is available at http://www.circulationaha.org

2852
particles were isolated by column immunoaffinity tech-
niques. Subjects with coronary artery lesion progression had
significantly higher levels of LP-B, a (summed measure of
triglyceride-rich lipoproteins) and LP-A-II:B:C:D:E particles
of small VLDL and/or IDL-like sizes. A specific triglyceride-rich lipoprotein particle with a low
affinity for lipoprotein lipase and a long circulatory residence
time that most likely contributes to its atherogenicity. The 3 independent techniques for identifying triglyceride-
rich lipoproteins outlined above are based on different
physical-chemical properties: protein composition (electro-
immunoassay for apoC-III), lipoprotein mass (analytical ul-
tracentrifugation), and lipoprotein particles (column immu-
noaffinity). These results provide compelling evidence for
the relationship between the progression of coronary artery ath-
erosclerosis and triglyceride-rich lipoprotein remnants. Other
sto, such as the Cholesterol Lowering Atherosclerosis
Study and the Program on the Surgical Control of the
Hyperlipidemias, have also demonstrated a relationship
between coronary artery lesion progression and apoC-III and
VLDL, respectively.

The aforementioned findings have a particular importance
in that triglyceride-rich lipoproteins such as small VLDLs
and apoC-III are related to the progression of mild/moderate
(<50% diameter stenosis) rather than severe (≥50% diame-
ter stenosis) coronary artery lesions. This is relevant to the
findings of Kugiyama et al because coronary artery lesions of
<50% diameter stenosis appear to be the lesions that
predict clinical coronary events. Triglyceride-rich lipopro-
teins may contribute to lesion progression, plaque rupture,
and clinical coronary events through a variety of mechanisms.
Triglyceride-rich lipoproteins are susceptible to peroxidative
damage, can be taken up by macrophages directly without
oxidative modification to produce foam cells, and are inti-
mately associated with the clotting and fibrinolytic pathways,
thus linking atherosclerosis and thrombosis.

Results from the Bezafibrate Coronary Atherosclerosis
Intervention Trial and the Lapid Coronary Angiographic
Trial, randomized serial coronary angiographic clinical
trials that tested bezafibrate and gemfibrozil, respectively,
support the growing evidence for the relationship between
triglyceride-rich lipoproteins and atherosclerosis. In these
trials, a reduction in triglycerides with essentially no change
in LDL-cholesterol levels resulted in a reduction in the
progression of coronary artery atherosclerosis in both native
arteries and aortocoronary bypass grafts to a similar degree as
LDL-cholesterol lowering with the HMG-CoA reductase
inhibitors. These studies suggest that triglyceride-rich lipopro-
tein reduction by fibric acid derivatives, perhaps through the downregulation of apoC-III gene expression and
reduction in VLDL-associated apoC-III levels, results in the
reduction of atherosclerosis progression.

The accumulated literature has consistently indicated tri-
glyceride-rich lipoprotein remnants to be a risk factor for the
progression of atherosclerosis and presents plausible mecha-
nisms by which these lipoproteins may be atherogenic and
result in clinical coronary events. Small VLDL, IDL, apoC-
III, and lipoprotein B-containing particles measured in the
fasting state most likely represent specific remnant lipopro-
teins contained in the fasting remnant lipoprotein immunoaf-
finity mixed-gel measurement by Kugiyama et al. On the
basis of current knowledge concerning the heterogeneity of
triglyceride-rich lipoproteins, it is no surprise that several
independent measures of specific triglyceride-rich lipopro-
teins correlate with the progression of atherosclerosis. Each of
these specific triglyceride-rich lipoproteins represents one
component of the overall remnant particle risk. Although
unravelling the complexity of triglyceride-rich lipoproteins
will be an ominous task, it has important implications. For
example, studies that have reported separation of IDL from
LDL have failed to show a relation between LDL and
progression of atherosclerosis. Whether there is a single
measure or combination of measurements that best represents
the triglyceride-rich lipoprotein remnant particle risk of
atherosclerosis still needs to be determined, but it is clear that
such a pursuit is warranted and well justified.

References

1. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler
2. Hodis HN, Mack WJ. Triglyceride-rich lipoproteins and the progression of
3. Kugiyama K, Doi H, Takazoe K, Kawano H, Soejima H, Mizuno Y,
 Tsunoda R, Sakamoto T, Nakano T, Nakajima K, Ogawa H, Sugiyama S,
 Yoshimura M, Yasue H. Remnant lipoprotein levels in fasting serum
 predict coronary events in patients with coronary artery disease. Circula-
4. Phillips NR, Waters D, Havel RJ. Plasma lipoproteins and progression of
 coronary artery disease evaluated by angiography and clinical events.
5. Krauss RM, Williams PT, Brensike J, Detre KM, Lindgren FT, Kelsey
 SF, Vranizan K, Levy RI. Intermediate-density lipoproteins and progres-
6. Mack WJ, Krauss RM, Hodis HN. Lipoprotein subclasses in the Moni-
 tored Atherosclerosis Regression Study (MARS): treatment effects and
 relation to coronary angiographic progression. Arterioscler Thromb
 Intermediate-density lipoproteins and progression of coronary artery
 disease evaluated by angiography and clinical events. Circulation.
8. Tetani R, Maibuchi H, Ueda K, Ueda R, Toshiihmu H, Kanetani T, Ito S,
 Koizumi J, Ohta M, Miyamoto S, Nakayana A, Kanaya H, Oiwake H,
 Genda A, Takeda R. Intermediate-density lipoprotein and cholesterol-rich
 very low density lipoprotein in angiographically determined coronary
9. Reardon MF, Nestel PJ, Craig IH, Harper RW. Lipoprotein predictors of
 the severity of coronary artery disease in men and women. Circulation.
 levels of intermediate-density lipoproteins with smoking and with coro-
11. Hodis HN, Mack WJ, Azem SP, Alapovit P, Pogoda JM, LaBree L,
 Hemphill LC, Kramsch DM, Blankenhorn DH. Triglyceride- and chole-
 sterol-rich lipoproteins have a differential effect on mild/moderate and
 severe lesion progression as assessed by quantitative coronary
 angiography in a controlled trial of lovastatin. Circulation. 1994;90:
 42–49.
12. Alapovit P, David Rubenstein Memorial Lecture: the biochemical and
 clinical significance of the interrelationship between very low density and
13. Le NA, Gibson JC, Ginsberg IH. Independent regulation of plasma
 atherosclerosis CII and CIII concentrations in very low density and high
 density lipoproteins: implications for the regulation of the catabolism of
14. Alapovit P, Mack WJ, Knight-Gibson C, Hodis HN. The role of tri-
 glyceride-rich lipoprotein families in the progression of atherosclerotic
 lesions as determined by sequential coronary angiography from a con-

Key Words: Editorials ■ atherosclerosis ■ lipoproteins ■ risk factors
Triglyceride-Rich Lipoprotein Remnant Particles and Risk of Atherosclerosis
Howard N. Hodis

Circulation. 1999;99:2852-2854
doi: 10.1161/01.CIR.99.22.2852
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/99/22/2852

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/