Differenciation of Viable and Nonviable Myocardium by the Use of Three-Dimensional Tagged MRI in 2-Day-Old Reperfused Canine Infarcts

P. Croisille, MD; C.C. Moore, MD, PhD; R.M. Judd, PhD; J.A.C. Lima, MD; M. Arai, MD; E.R. McVeigh, PhD; L.C. Becker, MD; E.A. Zerhouni, MD

Background—To limit ischemic myocardial injury, it is important to differentiate viable from infarcted myocardium. Three dimensional (3D) tagged MRI has the ability to quantify myocardial 3D deformation and strain (noninvasively and precisely), and can achieve a true comparison of contraction not only from region to region, but also at different levels of function. In this study, we investigated whether regional strain mapping obtained by 3D-tagged MRI can differentiate between viable but stunned myocardium and nonviable myocardium.

Methods and Results—We examined 7 dogs 2 days after a 90-minute closed-chest left anterior descending coronary artery occlusion followed by 48 hours of reperfusion. 3D-tagged MR images spanning the entire left ventricle were acquired both at rest and during dobutamine infusion (5 µg · kg⁻¹ · min⁻¹ IV). Regional blood flow was measured with radioactive microspheres and used to define risk regions. Infarcted regions were defined as 2,3,5 triphenyltetrazolium chloride negative regions. Strains in infarcted regions were greatly impaired compared with remote regions (P<0.001) and remained unchanged during dobutamine stress. Risk regions showed a dysfunction at rest, with improved function during dobutamine infusion. Receiver operating characteristics analysis showed that radial strain was more accurate for identifying viable regions.

Conclusions—When coupled with a stress test, 3D strain mapping by the use of tagged MRI is a sensitive and noninvasive method for characterizing ischemic injury. Regional strain can be used to differentiate between viable but stunned and nonviable myocardium within the postischemic injured myocardium. (Circulation. 1999;99:284–291.)

Key Words: myocardial contraction ■ stunning, myocardial ■ inotropic agents ■ ischemia ■ magnetic resonance imaging

The rapid and accurate assessment of reperfusion and its functional consequence has become one of the most important issues in the management of the patient with a myocardial infarction.¹ The timing and adequacy of reperfusion of the infarct-related artery are important determinants of patient prognosis in acute myocardial infarction.² In the majority of the cases, however, only partial restoration of coronary blood flow is achieved after significant injury to the jeopardized segment of the ventricular wall. Experimental and clinical studies have established that early intervention to reestablish as much coronary flow as possible has a significant positive effect on the degree of functional recruitment.³ The failure to open an occluded vessel or the reocclusion of an initially reperfused coronary artery both have significant implications for therapeutic management. Thus, the efficacy of revascularization procedures must be evaluated in the early phase after ischemic injury to determine the exact extent of irreversible infarction and, more importantly, to show evidence of restoration of function of the salvaged myocardium. Even if the myocardium escapes necrosis, as a consequence of timely reperfusion, this challenge is made difficult by the delayed functional recovery of the stunned myocardium.⁴

To date, the assessment of viability has been based either on tracer techniques or on low-dose dobutamine stress echocardiography, which has been shown capable of identifying stunned myocardial regions.⁵,⁶ Those methods suffer, however, either from limited spatial resolution or from the inherent limitation of any 2-dimensional method to qualitatively assess contraction because of the complex motion of the heart and the global shape changes during systole that occur during rest and stress. Three-dimensional (3D) tagged MRI has the ability to quantify myocardial 3D deformation and strain noninvasively and precisely, and to permit a true comparison of contraction not only from region to region, but also at different levels of function. In this study, we compared regional strain differences and changes of myocardial con-
tractility occurring under low-dose dobutamine stress 48
hours after reperfusion to investigate whether regional strain mapping obtained by 3D-tagged MRI can differentiate be-
tween viable but stunned myocardium and nonviable
myocardium.

Methods

The animals in this study were handled according to the animal
welfare regulations of and after the approval of the animal committee
of our institution. These regulations are in accordance with the
Position of the American Heart Association on Research Animal
Use, adopted November 15, 1984. These animals were involved in a
recently published study7 that described the mechanisms of con-
trast enhancement in fast MRI of reperfused infarcts.

Experimental Preparation

We studied 7 mongrel dogs (20 to 25 kg). On day 1, the animals were
anesthetized with sodium pentobarbital (35 mg/kg IV), intubated,
and connected to a Harvard respirator. An intravenous femoral
catheter was placed for drug administration. A catheter sheath was
placed in the right femoral artery and was used to introduce a 6F
pigtail catheter into the left ventricular (LV) under fluoroscopic
guidance. This catheter was used for microsphere administration
and for monitoring LV pressure. The sheath of this catheter was used
for microsphere reference sampling from the femoral artery. A second
catheter sheath was then placed in the left femoral artery and used to
introduce a 7F JL 2.5 (Left Judkins 2.5-cm) guiding catheter into the
left main coronary artery. A 3.5F angioplasty balloon catheter was
passed through the guiding catheter and slid into the left anterior
descending (LAD) coronary artery over a 0.35-mm guidewire that
was positioned in the proximal left anterior descending coronary
artery under fluoroscopic guidance. The balloon was then inflated,
and the aVL lead of the ECG was monitored for ST-segment
elevation. The balloon remained inflated for 90 minutes to produce
myocardial infarction and then was deflated to allow reperfusion of
the infarcted myocardium. Regional myocardial blood flow was
measured immediately before LAD occlusion and 80 minutes after
occlusion by LV injection of ±2 million sonicated microspheres
(15±1 μm diameter) labeled with 1 of several radionuclides (153Gd,
113Sn, 103Ku, 95Nb, or 46Sc; DuPont). The animals were then allowed
to recover for 48 hours.

Imaging Protocol

MRI was performed 48 hours after reperfusion. The animals were
again anesthetized and mechanically ventilated, and a pigtail catheter
was advanced into the LV under fluoroscopic guidance to monitor
myocardial blood flow during 3D tagged imaging. The rest/stress imaging protocol lasted
1 hour.

The imaging protocol is based on an ECG-triggered segmented
k-space SPGR pulse sequence. Contiguous stacks of short-axis images in double obliquity were prescribed at end systole to cover
the entire heart from base to apex. Six long-axis views were also
prescribed from the midventricular short-axis image and were
distributed in a radial fashion every 30°.5 Imaging parameters were as
follows: 32-cm field of view; 8-mm slice thickness; repetition time,
6.5 ms; echo time, 2.3 ms; 15° tip angle; 256×110 image matrix; 1
signal acquired; and 5 phase-encoded views per movie frame
(temporal resolution of 32 ms). Slab saturation achieved “black
blood” in the LV cavity. To describe the 3D deformation of the heart,
we used myocardial tissue tagging to encode the motion in 3 orthogonal directions (Figure 1).8,9 The tagging pulse consisted of
nonselective radiofrequency pulses separated by spatial modulation of
magnetization encoding gradients6 to achieve a tag separation of
6 mm. Tagging pulses were applied immediately before the imaging
pulse and were triggered by the upslope of the QRS from the ECG. Reproducible diaphragmatic positions between image sets were
obtained by stopping the respirator at end expiratory volume during
acquisition time. A total of 15 (5 image planes×3 sets) breathholds
was needed to acquire a complete set of tagged images. Without
removing the animal from the magnet, we administered dobutamine
intravenously during continuous ECG monitoring and blood pressure
recording. A dose of 5 μg·kg⁻¹·min⁻¹ of dobutamine was infused
into the intravenous femoral catheter 10 minutes before imaging and
during 3D tagged imaging. The rest/stress imaging protocol lasted
≈1 hour.

Definition of Infarct, Risk, and Remote Regions

After MR imaging, the hearts were arrested with KCl and excised.
The LV was isolated, then sectioned from base to apex into 5
short-axis slices. The junctions of the right ventricular (RV) walls and
the interventricular septum were identified to determine the
position of the midseptum point on the most basal slice used as a
landmark for later registration of the stack with corresponding MR
images. The slices were then incubated in a 2% solution of 2,3,5
triphenyltetrazolium chloride (TTC) for 20 minutes at 37°C. Regions
that failed to demonstrate brick red staining were considered to
represent infarcted myocardium.10 For each slice, a shallow cut was
made to divide the LV circumference into 12 pie-shaped sections.
Each of the pie-shaped sections was further divided into 3 to 5 pieces
of approximately equal thickness from the endocardial to epicardial
surfaces. The exact locations of these cuts were recorded before the
slices were photographed to relate TTC regions to the location from
which tissue samples were taken for microsphere blood-flow count-
ing. After the slices were photographed, myocardial samples (0.1 to
0.5 g) were obtained for microsphere counting. Each of the samples
was then weighted and counted in a gamma-emission well spectrom-
eter (model 5986, Hewlett-Packard) along with the reference blood
samples at appropriate energy windows. Regional myocardial blood
flow (mL/min per 100 g) was then calculated by standard methods.11
On the basis of TTC staining and regional myocardial blood flow
findings for each animal, we assigned samples to 1 of the 3 following
regions: infarcted, risk (but noninfarcted), and remote regions.
Samples that were partly located in >1 zone were excluded from the
analysis. The infarcted regions corresponded to samples failing to
stain with TTC. The risk (but noninfarcted) region was defined as
those noninfarcted samples (outside the TTC negative zones) in
which myocardial blood flow was reduced by ≥50% during the
occlusion compared with remote regions at the time of the occlusion. Remote regions were chosen on the side of the ventricle opposite the infarction.

Data Analysis

Strain Computation

Tagged-image data consisted of sets of 120 to 180 images (5 slices×8 to 12 phases×3 directions). When a stress study was performed, a second set of images was acquired. Images were processed by the use of an in-house developed software program on a Silicon Graphics workstation. Contour and tag detection was performed by the use of a semiautomated detection algorithm described in detail elsewhere. Then, 3D displacement and strain throughout the LV were determined at each time point using the displacement field-fitting method at rest and at stress. This technique uses all of the available information in the 3 orthogonal tag patterns to compute the 3D deformation gradient tensor at any point in the heart wall. A material point mesh is defined within the heart wall at end diastole as the point at which 3D displacement and deformation is calculated over time. The mesh density was set to 12 angular locations equally spaced around the circumference, at 3 points radially through the wall at each circumferential location, and at 5 levels equally spaced in the longitudinal direction. A total of 180 material points were defined that corresponded to 180 volume elements of myocardium. The inner and outer shell of points was distributed radially 2 mm into the myocardium from the fitted endocardial and epicardial surfaces, and the midwall shell of points was distributed at an equal distance from the endocardial and epicardial surfaces. The shape of the mesh was determined by the end-diastolic endocardial and epicardial contours and the density of material points was chosen to match the microsphere sampling layout for spatial registration purposes. Coordinates of the RV-LV junctions and the corresponding midseptum points were calculated on the most basal slice at end-diastole on the stack of MR images and were used as reference landmarks for strain calculation and to display reconstructed 3D strain maps. The same mesh dimensions were used for rest and stress studies allowing to match spatially the corresponding regions on the rest and stress strain maps. A data processing time of 3 to 4 hours was required to analysis a full 3D data set at rest and stress.

Circumferential registration (in-plane registration) between 3D strain maps and pathology sampling layouts was achieved by matching landmark locations. Axial registration (between-slice levels) was controlled by the use of the same number of levels (n=5) when prescribing the stack of slices during MR imaging, when choosing the size of the reconstruction mesh of the 3D strain maps, and when sectioning the isolated heart into short-axis slices for sampling.

In this study, we report strain changes between the reference state (end diastole) and the deformed state (usually end systole) by the use of the fractional changes in length (in percent) for each of the 3 orthogonal normal strains in the radial, circumferential, and longitudinal directions (see Appendix A). Radial strain was calculated by the use of the tissue incompressibility correction that improves the robustness of wall thickening measurements (see Appendix B). We calculated in addition the end-systolic first principle strain E1 (maximum thickening), and reported the vector magnitude and its direction, given by the angles between the eigen vector, the local circumferential direction (E1ac) and the longitudinal direction (E1al), respectively (Figure 2).

Accuracy of Viability Detection

To assess the accuracy of strain mapping for the detection of viable regions and nonviable regions, we performed receiver operating characteristic (ROC) analysis to compare observer performance to differentiate viable from nonviable regions based on strain mapping.

For each animal we plotted strain time course at rest and under dobutamine stress of each strain components as an array of graphs in which each of the 60 midwall volume elements was considered to be a separate region (Figure 3). Each region (box) of the array was categorized as either viable or nonviable on the basis of the transmural extent of the infarction (as determined by TTC staining) in that region. Regions were considered viable when transmural extent of the infarction was equal or less than 1/3 of the wall thickness in that region. Regions were considered nonviable when transmural extent of the infarction was >1/3 of the wall thickness in that region. Arrays of graphs were then reviewed independently by 3 readers in a blind fashion without knowledge of the pathology results. Observers were given an unrestricted amount of time to evaluate the cases. On the basis of the degree of contraction at rest and stress and the functional recruitment that occurred under dobutamine stress, they were asked to identify viable regions and to assign a level of confidence for that particular finding. Level of confidence was graded on a 4-point scale as follows: 4=definitely viable, 3=probably viable, 2=probably nonviable, and 1=definitely nonviable.

Statistical Analysis

All measurements are presented as mean (SEM). Changes in hemodynamic variables were compared by the use of paired t tests. Differences in microsphere blood flow measurements between regions and over time were assessed by the use of repeated-measures ANOVA. To compare strain values between regions, data were averaged by region in each animal. Differences between regions at rest were analyzed by the use of a 1-way ANOVA. To test the effect of low-dose dobutamine stress on differences in strain between regions, we used repeated-measures ANOVA. Whenever applicable, a posteriori comparisons were made according to the Tukey HSD method. The CORROC2 and LABMRMC programs (C. Metz, PhD, University of Chicago) were used to conduct the ROC analysis for this study with a maximum-likelihood estimation technique to obtain binomial ROC data. Comparison of the observed responses across readers and for the different strains was achieved with a multireader multcases ROC ANOVA by the use of the LABMRMC algorithm. A z score test was further used to calculate, when required, the statistical significance of the difference between the areas under 2 estimated ROC curves. Statistical significance was inferred when P≤0.05, and all reported P values were 2-tailed.

Results

Hemodynamics

There was no change in average heart rate (HR) at the end of ischemia (90 minutes) compared with baseline (130 [5 bpm] versus 136 [6 bpm], P=NS), whereas systolic arterial blood pressure (SBP) decreased significantly (110 [6] versus 138 [5 mm Hg], P<0.01). At the time of imaging (48 hours of
reperfusion), HR was 129 (6 bpm) and SBP was 107 (4 mm Hg). During infusion of dobutamine, HR increased from 127 (8 bpm) to 151 (7 bpm) ($P_{0.05}$), whereas SBP rose from 119 (6 mm Hg) to 136 (7 mm Hg) (P_{NS}). Accordingly, the rate-pressure product increased by 35 (5%), from 15 236 (1015) to 20 502 (1340) ($P_{0.01}$).

Myocardial Blood Flow

During LAD occlusion, blood flow decreased markedly in both infarcted (0.09 [0.03 mL ⋅ min$^{-1}$ ⋅ g$^{-1}$]) and risk regions (0.15 [0.04 mL ⋅ min$^{-1}$ ⋅ g$^{-1}$]) compared with remote regions (0.82 [0.07] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$) ($P_{<0.01}$). After 48 hours of reperfusion, blood flow returned to near normal values in risk regions (0.68 [0.11 mL ⋅ min$^{-1}$ ⋅ g$^{-1}$]) compared with remote regions (0.95 [0.11] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$) ($P_{=0.1}$), but remained decreased in infarcted regions (0.50 [0.12] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$) ($P_{<0.01}$). Low-dose dobutamine slightly increased regional blood flow (from 0.48 [0.07] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$ to 0.57 [0.12] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$) in infarcted regions, and increased of a greater extent in risk regions (from [0.62 [0.10] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$ to 1.05 [0.18] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$) and normal regions (from [1.05 [0.2] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$ to 1.46 [0.26] mL ⋅ min$^{-1}$ ⋅ g$^{-1}$).

Strain Analysis

Overall, the size of infarcted regions (TTC-negative regions) was 6.4 (1.8%) of total LV mass and of risk regions, 23.5 (2.9%). A total of 436 of 1260 samples from all 7 dogs fulfilled the selection criteria, and each of these 436 assigned to 1 of the predefined infarcted, risk, or remote regions. Among them, there were 91 samples in the infarcted regions, 180 in the risk region, and 157 in the remote regions. The number of samples in each animal varied from 4 to 37 for the infarcted region and from 13 to 71 for the risk regions. Figure 3 shows array plots of normal strains as a function of time for 1 animal 48 hours after reperfusion at rest and under dobutamine stress. Figure 4 shows 3D strain maps of maxi-
End-Systolic Strains: Rest
Radial strain exhibited at rest an overall significant difference across regions at end systole \((P<0.0001)\), with a depressed radial strain in both infarcted and risk regions of 5.2 (1.3\%) and 6.1 (1.5\%), which contrasted with remote regions, in which wall thickening was 23.2 (1.9\%) \((P<0.01)\) (Figure 5). However, radial strain was not significantly different in infarcted and risk regions. Circumferential and longitudinal strains demonstrated comparable trends, even if circumferential strain failed to show overall differences across all regions. Both showed decreased negative strains in both infarcted and risk regions \((P=\text{NS})\) compared with remote regions. Maximum principal strain \(E_1\) (or greatest thickening) at end systole showed results similar to those observed with radial normal strain (Figure 6). The magnitude of \(E_1\) was reduced in both infarcted and risk regions \((P=\text{NS})\) compared with remote regions \((P<0.001)\). Maximum principal strain direction changed in infarcted and risk regions compared with remote regions. Angle from the local longitudinal direction \((E_{1l})\) decreased in both regions \((P<0.01)\), whereas angle from the local circumferential direction \((E_{1c})\) decreased only in risk regions \((P<0.01)\).

End-Systolic Strains: Stress
Figure 5 summarizes end-systolic strain results grouped by region for all experiments at rest and under low-dose dobutamine infusion. Under dobutamine challenge, end-systolic radial strain increased as expected in the remote regions from 23.2 (1.9\%) to 41.7 (4.2\%) \((P<0.001)\). Whereas end-systolic strains remained unchanged in the infarcted regions, a significant increase in end-systolic radial strain was observed in the risk regions (6.1 [1.7\%] versus 20.1 [2.2\%]; \(P=0.002\)). The difference between end-systolic radial strain in infarcted and risk regions became significant \((P=0.002)\) under dobutamine stress. Again, circumferential and longitudinal strains exhibited a comparable trend, but the differences between and within regions between rest and stress were not statistically significant. Maximum principal strain \(E_1\) allowed identification of the increase of the magnitude of maximum thickening in the risk regions 14.2 (1.5\%) to 36.4 (4\%) \((P=0.005)\), whereas the average magnitude of maximum thickening remained almost unchanged (11 [1.8\%] versus 18 [2.2\%]; \(P=\text{NS})\) (Figure 6). Changes in direction of maximum principal strain that occurred under dobutamine stress were not statistically significant.

Accuracy of Viability Detection
Of a total of 420 regions analyzed \((7 \times 60\) midwall volume elements\), 39 were categorized as nonviable regions. Figure 7

![Figure 4](image-url) **Figure 4.** 3D strain maps (at the midwall point) of the maximum principal strain at end systole: rest \((t=208\text{ ms})\) (left) vs stress \((t=145\text{ ms})\) (right) for the same animal. Note the existence of a lack of thickening in the anteroseptal region at rest. Under low-dose dobutamine challenge, a recovery occurs in the most anterior portion of the dysfunctional region, illustrated by an increase of the magnitude of the eigenvectors, whereas no visible changes can be identified in its septal portion.

![Figure 5](image-url) **Figure 5.** End-systolic normal strains 48 hours after reperfusion: rest vs low-dose dobutamine stress. Regional differences at rest between infarcted, risk, and remote regions. A, Radial; B, circumferential; and C, longitudinal strains. Data were averaged within each region for each animal \((n=7)\). \%ES indicates percent change in dimension at end systole from end diastole. *\(P<0.05\), **\(P<0.001\) by repeated-measures ANOVA.
Figure 6. End-systolic maximum principal strain E_1 (wall thickening) 48 hours after reperfusion: rest vs low-dose dobutamine stress. Regional differences between infarcted, risk, and remote regions. Results in the histogram (A) are the average magnitude of E_1 within each region and between animals; B indicates the average direction of the maximum principal strain from the local circumferential direction (E_{1ac}), and from the local longitudinal direction (E_{1al}). *$P<0.05$, **$P<0.001$ by repeated measures ANOVA. Results are mean (SEM). %ES indicates percent change in dimension at end systole from end diastole.

Figure 7. ROC curves derived from data pooled across 3 observers. Observer performance for the detection of viable and nonviable regions are plotted by the use of Sri (radial strain calculated with the tissue incompressibility correction), Srr (normal radial strain), Scc (normal circumferential strain), and Sll (normal longitudinal strain). Numbers in parentheses give the averaged area under the curve across 3 readers. TPF indicates true positive fraction; FPF, false-positive fraction.
dysfunction does not alter the direction of maximal shortening deformation. However, in nonreperfused infarction models, more radical changes in principal strain direction have been reported.

Experimental studies with isoproterenol or dopamine demonstrated that stunned myocardium maintains functional reserve that may be recovered after moderate inotropic stimulation without deleterious effects. Several clinical studies have subsequently shown that dobutamine stress echocardiography is a useful method to predict reversible dysfunction. Although the exact mechanism of stunning is still unknown, this observation raises the possibility that stunning is due in part to increased local mechanical stress secondary to endocardial damage that increases local afterload. In this hypothesis, stunned myocardium generates tension but no observable shortening, unless inotropic stimulation is used to reduce local afterload earlier in systole by increased contractility of the normal regions, consequently unmasking the function of the stunned myocardium. More accurate measures of contractile recruitment that can be afforded by 3D tagging can thus be of value because they provide a more accurate map of the extent of viable regions.

Our study is the first to report noninvasive measurements of 3D strain in the postischemic myocardium after reperfusion and is also the first to report strain changes that occur under low-dose dobutamine stress. Accurate measurements of myocardial deformation with implanted markers have been recently reported in postischemic injury. Implantation of markers is limited, however, to a focal region of the myocardium and is too invasive for clinical use. MR tagging has the unique ability to provide noninvasive measurements of tissue deformation. Recent experimental studies with MR tagging have reported the mechanical behavior of nonreperfused transmural infarction by the use of 2D-tagged MR. The combination of parallel-tag MR imaging and displacement field fitting has the major advantage of providing an accurate and robust method to calculate 3D deformation in a particular region of the myocardium as well as its time course. The accuracy and robustness of this method is based on its reliance on accurately identifiable tag profiles rather than poorly defined heart contours. Also, it uses all the available data along the entire length of each tag line in all 3 directions rather than only points that intersect with other tags or contours. The field-fitting technique has the advantage of giving an analytical representation of LV displacement for calculation of smooth estimates of strain and of being robust on uncertainty in the tag position estimates. The reproducibility of tag position is extremely good, even with noisy images, especially when compared with the reproducibility of myocardial contours, which is lessened by the variable interpretation of the endocardium position between observers. Because 3D-tagged MRI has the ability to register strain maps spatially, a true and accurate comparison of contractility within the same region or between different regions can be achieved under varying physiological conditions (such as during a stress test) and despite conformation changes of the heart during systole.

Summary
The experimental model is an important determinant of the mechanisms for postischemic dysfunction. By using a closed-chest canine model with a 90-minute balloon catheter LAD occlusion reperfused for 48 hours, we found that not only was the invasiveness of the experimental procedure limited, but also the infarct size and the time window for tissue salvage were close to the clinical circumstances of performance of an early thrombolysis. In addition, the time of MR imaging (48 hours after reperfusion) was chosen to correspond to that at which assessment of viability is required for therapeutic planning. The results of our study form a framework on which to base ongoing and future clinical evaluations. 3D strain mapping with tagged MRI is an entirely noninvasive technique that is directly applicable clinically. This technique should constitute a diagnostic tool and an alternative to existing methods when more accurate assessment of regional mechanics is required.

Appendix A: Strain Tensor Definition
The strain tensor is solved at each point of the myocardium on the basis of the orthogonal parallel-tagged MR image sets that provide the 1-dimensional displacement field of the heart for each direction of the space. For each material point of the mesh, the local displacement gradient tensor \(\nabla U \) was computed mathematically by evaluating the directional derivatives of the local displacement field in the deformed state. From this, the lagrangian finite deformation gradient tensor \(F \) was calculated according to \(F = (I + U)^{1/2} \), where 1 is the identity tensor. The lagrangian finite deformation strain tensor \(E \) and linearized strain tensor \(S \) were then calculated from \(E = \frac{1}{2}(F^T F - I) \) and \(S = (F^T F)^{1/2} - I \). The tensor \(S \) is useful because its axial components \((S_{rr}, S_{sc}, S_{ll}) \) represent the percent change in length from end diastole when multiplied by 100.

Appendix B: Radial Thickening Calculation
Because there were often only 2 tag lines across the heart wall, the radial component of \(S \) \((S_{rr}) \) was the least well supported by the tag data and was subject to higher variability. For this reason, the other components of the stretch tensor, which were well supported by the tag data and the assumption of tissue incompressibility, were used to estimate the radial thickening \((S_{rr}) \). The incompressibility correction was performed by the use of all the components of the right stretch tensor \(U \) except \(U_{rr} \), and the incompressibility constraint (determined of \(U=1.0 \)) to solve for the radial thickening component \(S_{rr} \).

\[
S_{rr} = \frac{1.0 + U_{rr} - U_{dd} - U_{ll}}{U_{cc} - U_{dd} - U_{ll}} - 1.0
\]

Acknowledgments
This study was supported in part by a Research Award from the SCBT/MR (Society of Computed Body Tomography and Magnetic Resonance), a Société Française de Radiologie grant, and NIH grants RO1HL45090 and LH45683.

References

Differentiation of Viable and Nonviable Myocardium by the Use of Three-Dimensional Tagged MRI in 2-Day-Old Reperfused Canine Infarcts

Circulation. 1999;99:284-291
doi: 10.1161/01.CIR.99.2.284

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/99/2/284

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/