Repolarizing K^+ Currents I_{TO1} and I_{KS} Are Larger in Right Than Left Canine Ventricular Midmyocardium

Paul G.A. Volders, MD; Karin R. Sipido, MD, PhD; Edward Carmeliet, MD, PhD; Roel L.H.M.G. Späjtens, BS; Hein J.J. Wellens, MD, PhD; Marc A. Vos, PhD

Background—The ventricular action potential exhibits regional heterogeneity in configuration and duration (APD). Across the left ventricular (LV) free wall, this is explained by differences in repolarizing K^+ currents. However, the ionic basis of electrical nonuniformity in the right ventricle (RV) versus the LV is poorly investigated. We examined transient outward (I_{TO1}), delayed (I_{Ks} and I_{Kr}), and inward rectifier K^+ currents (I_{K1}) in relation to action potential characteristics of RV and LV midmyocardial (M) cells of the same adult canine hearts.

Methods and Results—Single RV and LV M cells were used for microelectrode recordings and whole-cell voltage clamping. Action potentials showed deeper notches, shorter APDs at 50% and 95% of repolarization, and less prolongation on slowing of the pacing rate in RV than LV. I_{TO1} density was significantly larger in RV than LV, whereas steady-state inactivation and rate of recovery were similar. I_{Ks} tail currents, measured at -25 mV and insensitive to almokalant (2 μmol/L), were considerably larger in RV than LV. I_{K1}, measured as almokalant-sensitive tail currents at -50 mV, and I_{Kr} were not different in the 2 ventricles.

Conclusions—Differences in K^+ currents may well explain the interventricular heterogeneity of action potentials in M layers of the canine heart. These results contribute to a further phenotyping of the ventricular action potential under physiological conditions. (Circulation. 1999;99:206-210.)

Key Words: action potential ● myocytes ● ions ● potassium ● arrhythmia

Regional heterogeneity of the action potential configuration and duration (APD) characterizes the ventricular myocardium in large mammals, including humans.1-3 A prominent notch shapes the typical spike-and-dome action potential of the epicardium and midmyocardium (M layer) but is absent in the endocardium. A relatively large transient outward current, containing a 4-aminopyridine–sensitive component (I_{TO1}) and Ca$^{2+}$-activated Cl$^-$ current, is mainly responsible for this notch. Another in vitro electrophysiological distinction is the longer APD of midmyocardium and its pronounced increase in response to slow pacing rates and class Ia and class III agents.1,4,5 These repolarization characteristics have been explained on the basis of a lesser contribution of the slowly activating component (I_{Ks}) of the delayed rectifier K^+ current in M cells,6,7 whereas the rapidly activating component (I_{K1}) and the inward rectifier current (I_{Kr}) appear similar in the 3 transmural layers.7

Only limited information is available on action potential and ionic differences in right ventricular (RV) versus left ventricular (LV) comparisons. A larger I_{TO1} in RV versus LV epicardial cells has been correlated with a larger notch in the former cell type.8 Because an interventricular comparison of K^+ currents in M cells is lacking, we examined action potentials and the K^+ currents I_{TO1}, I_{Ks}, I_{Kr}, and I_{K1} in RV and LV M cells of the same adult canine hearts.

Methods

Sixteen mongrel dogs of either sex (26±1 kg) were anesthetized and received perioperative care as described previously.9 Thoracotomy was performed, and hearts (weight, 225±12 g) were quickly excised. RV and LV M cells were obtained by simultaneous cannulation of the left anterior descending and right coronary arteries.10 After ~30 minutes of collagenase perfusion, the epicardial surface layer was removed from both wedges until a depth of ≥3 mm was reached,4,7 and softened tissue samples were removed by pipette from the M layer underneath while contamination with the endocardium was avoided. Samples were gently agitated, filtered, and washed. Isolated myocytes were stored at room temperature in standard buffer solution.

The setup was built around an inverted microscope.10 Microelectrodes (standard glass) had resistances of 30 to 60 MΩ when filled with 3.0 mol/L KCl. Intracellular pacing was done at various cycle lengths (CLs). For the recording of ionic currents, we used the whole-cell variant of the patch-clamp technique. Patch pipettes (borosilicate glass) had resistances of 1.0 to 3.0 MΩ when filled with internal solution. Experiments were performed at 37°C. Cell capacitance, measured by hyperpolarizing steps from ~60 mV, was similar in RV (n=27) and LV (n=25) M cells, being 226±12 and 226±11 pF, respectively (P=NS). L-type Ca$^{2+}$ current was blocked with nifedipine (5 μmol/L). Na$^+$...
current was inactivated by 10-ms prepulses to −45 mV. The voltage-clamp protocols are illustrated in Figures 1 and 2. I_{T01} amplitudes were measured as peak amplitudes minus steady-state values at the end of the test pulses (V_{test}). For I_{K1}, we measured the tail currents on repolarization to −50 mV sensitive to almokalant (2 μmol/L; a specific I_{K1} blocker). For I_{K1}, we measured the almokalant-insensitive tail currents on repolarization to −25 mV.

Figure 1. K^+ currents I_{T01} and I_{K1} are larger in RV than LV M cells isolated from the same normal dog heart, whereas I_{K1} is similar. I_{T01} was activated by V_{test} from −40 up to 70 mV from a holding potential of −70 mV (interval, 10 seconds). Shown are the traces of −10 to 70 mV. I_{K1} was recorded in the presence of almokalant; we applied depolarizations from −20 up to 70 mV followed by repolarizations to −25 mV. Shown are the traces of −70 to −140 mV. I_{K1} was recorded during V_{m} of −20 to −140 mV. Shown are the traces of −70 to −140 mV. Holding potential was −50 mV (interval, 3 seconds). Left horizontal bars indicate 0-pA level. Capacitances of RV and LV M cells used for illustrations are similar (I_{T01}: 247 and 226 pF; both I_{K1} and I_{K1}: 249 and 244 pF). Action potentials (microelectrode technique; vertical scale bars indicate 0 to −50 mV) were recorded at pacing CLs of 500 and 4000 ms and illustrate that the difference of configuration and rate-dependent prolongation between ventricles is likely related to underlying K^+-current differences.
The standard-buffer solution used for the experiments was composed of (in mmol/L) NaCl 145, KCl 4.0, CaCl₂ 1.8, MgCl₂ 1.0, NaH₂PO₄ 1.0, glucose 11, HEPES 10, pH 7.4 with NaOH at 37°C. The patch-pipette solution contained (in mmol/L) potassium aspartate 125, KCl 20, MgCl₂ 1.0, MgATP 5, HEPES 5, EGTA 10, pH 7.2 with KOH.

Data are expressed as mean±SEM. Intergroup comparisons were made with the Student’s t test for unpaired and paired data groups, after testing for the normality of distribution. Differences were considered significant if P<0.05.

Results

Action Potential Characteristics

Typical examples of RV and LV M action potentials are shown in Figure 1. Quantitative data are given in the Table. RV M cells had a more pronounced spike-and-dome configuration than LV M cells at fast and slow pacing rates.¹ Both the action potential upstroke and plateau (phase 0 and phase
Properties of I_{TO1}

I_{TO1} activated at $V_{\text{res}} \approx -20 \text{ mV}$ in both ventricles, but amplitudes were significantly larger in RV than at V_{res} (Figures 1 and 2A). A-aminopyridine (5 mmol/L) nearly completely suppressed I_{TO1} in both cell types. Inactivation during the V_{res} was best fitted with a single exponential function yielding similar time constants for RV and LV. The voltage dependence of I_{TO1} steady-state inactivation (Figure 2B) was well described by a Boltzmann fit with half points ($V_{1/2}$) of -52 ± 0.6 and $-50 \pm 0.5 \text{ mV}$ and slope factors of 6.8 ± 0.6 and $4.5 \pm 0.5 \text{ mV}$ in RV and LV, respectively ($P=\text{NS}$). Time-dependent recovery from inactivation was not different between the ventricles.

Properties of I_{Ks} and I_{Kr}

I_{Ks} tail currents were evaluated on repolarization to -25 mV with I_{Kr} blocked by almokalant. Examples of current traces are shown in Figure 1. Pooled data are given in Figure 2C. There was no saturation of tail-current amplitudes. Voltage dependence of I_{Ks} activation was similar for both cell types, but density was significantly larger in RV (0.72 $\pm 0.12 \text{ pA/pF}$) than in LV (0.32 $\pm 0.13 \text{ pA/pF}$) ($P<0.05$; depolarization to 50 mV). This difference persisted after increasing I_{Ks} in K$^+$-free solution (0 [K$^+$]$_0$): 0.98 $\pm 0.21 \text{ pA/pF}$ in RV versus 0.58 $\pm 0.17 \text{ pA/pF}$ in LV. Deactivation proved similar in RV and LV myocytes. Tail currents in 0 [K$^+$]$_0$ were best fitted by biexponential functions on repolarization to -10 to -40 mV and by monoexponential functions on more negative repolarizations (-50 to -80 mV). At -20 mV, time constants of the fast and slow components were 228 ± 25 and 1105 ± 199 ms in RV ($n=7$) and 278 ± 35 and 1486 ± 269 ms in LV ($n=6$), respectively; at -60 mV, monoexponential time constants were 99 ± 16 in RV and 94 ± 11 in LV ($P=\text{NS}$ for all).

I_{Kr} was quantified as the almokalant-sensitive tail-current portion measured by digital subtraction at -50 mV in 4.0 mmol/L [K$^+$]$_0$ (Figure 2D). Activation showed saturation at conditioning voltages $>20 \text{ mV}$. Boltzmann fits to the data revealed $V_{1/2}$ of 2.9 ± 1.0 and 4.3 $\pm 2.5 \text{ mV}$ in RV and LV, respectively, while corresponding slope factors were 6.2 ± 2.1 and 5.3 $\pm 0.8 \text{ mV}$ ($P=\text{NS}$). I_{Kr} density was not different between RV and LV M cells. Voltage dependence and time course of I_{Kr} deactivation were also not different.

Properties of I_{K1}

Whole-cell recordings of I_{K1} are shown in Figure 1. I_{K1} rapidly activated and showed inactivation at the more negative voltages. In all cases, this current was fully inhibited in 0 [K$^+$]$_0$. There were no differences in the magnitude of I_{K1} (initial minimal values as well as steady-state levels) between RV and LV throughout the voltage range tested (Figure 2E).

Discussion

For interventricular comparisons of action potentials and K$^+$ currents, we isolated myocytes from the deep subepicardial layers of the RV and LV free wall of the same canine hearts. In both ventricles, these myocytes have been designated M cells on the basis of distinctive electrophysiological characteristics.1-6 Our results show that action potentials have a deeper notch, a shorter duration, and less prolongation on slowing of the pacing rate in RV than in LV M cells. A longer APD in the LV versus RV has already been recorded in dogs, both in vitro4,8 and in vivo (in dogs with complete atrioventricular block).9 In 6 dogs with sinus rhythm (CL, 507 ± 32 ms), we found endocardial monophasic APDs to be longer in LV than in RV in all animals (219 ± 6 versus 203 ± 6 ms; $P<0.05$).12 Taken together, these data indicate that a larger LV than RV APD exists at normal heart rates and during bradycardia.

The presence of I_{Kr} and I_{Ks} was confirmed in M cells from the LV and was also demonstrated in RV M cells. Densities of I_{Kr} were similar in both ventricles. I_{Ks} density however, was significantly larger in RV, and this difference could explain, at least in part, why APD$_{\text{DAP}}$ and APD$_{\text{DAP}}$ were longer and why the APD/pacing CL relationship was steeper in LV than in RV M cells. Heterogeneity of I_{K1} across the transmural LV wall has been linked to dispersion of repolarization and the danger of torsade de pointes.8,10 Our results on I_{Ks} and I_{Kr} suggest that arrhythmic mechanisms could also arise at the septal junction of the RV and LV.

In human ventricular myocytes, the presence of I_{Kr} and I_{Ks} has also been demonstrated.13 Interestingly, Li et al13 made their observations in apparently undiseased RV myocytes of patients with left-sided heart failure. The finding of substantial amplitudes of I_{Ks} and I_{Kr} as well as the sensitivity of both
components to their blockers (E-4031 and indapamide), may underscore the importance of these currents for human ventricular repolarization, as expected from the clinical response to class Ia and class III agents in patients and from molecular studies on K$^+$ channels in human myocardial tissue.

Our finding of a large I_{TO1} in RV M cells is in keeping with the prominent spike-and-dome morphology of the action potentials. Yan and Antzelevitch14 presented evidence that the distribution of I_{TO1} across the canine ventricular wall is causally linked to the J wave of the ECG. The joint results of this and another study8 indicate that a large I_{TO1}-mediated notch can be found throughout most of the RV mass, which suggests that the contribution of the RV to the formation of the J wave on the ECG may be larger than previously assumed. Furthermore, this may have important consequences for our understanding of the Brugada syndrome. ST-segment elevation in the right precordial ECG leads of patients suffering from this disorder has been linked to the concept of “all-or-none repolarization” in the RV epicardium.15 If our data are applicable to patients, then the substrate predisposed to all-or-none repolarization may cover most of the RV transmural wall.

References

4. Liu DW, Antzelevitch C. Characteristics of the delayed rectifier current (I_{Kr} and I_{Ks}) in canine ventricular epicardial, midmyocardial, and endocardial myocytes: a weaker I_{Kr} contributes to the longer action potential of the M cell. Circ Res. 1995;76:351–365.
Repolarizing K+ Currents I_{TO_1} and I_{KS} Are Larger in Right Than Left Canine Ventricular Midmyocardium

Paul G. A. Volders, Karin R. Sipido, Edward Carmeliet, Roel L. H. M. G. Spätjens, Hein J. J. Wellens and Marc A. Vos

Circulation. 1999;99:206-210
doi: 10.1161/01.CIR.99.2.206

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/99/2/206

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/