Protease-Activated Receptor-2 Involvement in Hypotension in Normal and Endotoxemic Rats In Vivo

Carla Cicala, PhD; Aldo Pinto, PhD; Mariarosaria Bucci, BSc; Raffaella Sorrentino, PhD; Brian Walker, PhD; Patrick Harriot, BSc; Alan Cruchley, PhD; Supriya Kapas, PhD; Gareth L. Howells, PhD; Giuseppe Cirino, PhD

Background—The protease-activated receptor-2 (PAR-2) is expressed by vascular endothelial cells and upregulated by lipopolysaccharide (LPS) in vitro. PAR-2 is activated by a tethered ligand created after proteolytic cleavage by trypsin or experimentally by a synthetic agonist peptide (PAR-2AP) corresponding to the new amino terminus of the tethered ligand.

Methods and Results—Intravenous administration of PAR-2AP (0.1, 0.3, and 1 mg/kg) to rats caused a dose-dependent hypotension. A scrambled peptide was without effect. A specific trypsin inhibitor, biotin–SGKR-chloromethylketone, inhibited trypsin-induced hypotension but not that stimulated by PAR-2AP. In animals treated with LPS 20 hours earlier, we found an increased sensitivity to trypsin and PAR-2AP in the hypotensive response. In particular, PAR-2AP caused hypotension at a low concentration of 30 ng/kg. Moreover, PAR-2 was immunolocalized to endothelial and smooth muscle cells in aorta and jugular vein in LPS-treated rats, and increased levels of PAR-2 mRNA were shown by reverse transcription–polymerase chain reaction analysis.

Conclusions—Our findings suggest that PAR-2 is important in the regulation of blood pressure in vivo. A functional upregulation of PAR-2 by LPS was demonstrated by the activity of concentrations of PAR-2AP that were inactive in normal animals. We conclude that PAR-2 may play an important role in the hypotension associated with endotoxic shock and may represent a new therapeutic target. (Circulation. 1999;99:2590-2597.)

Key Words: receptors ■ trypsin ■ endotoxemia ■ hypotension ■ shock

Endothelial cells represent a major interface with plasma proteins and play a key role in modulating platelet adhesion, aggregation, and fibrinolysis. The vascular tone is regulated mainly locally, by the release of vasoconstrictory or vasodilatory factors, such as nitric oxide, endothelin, and eicosanoids, particularly prostacyclin and thromboxane. In the late 1930s, Rocha e Silva1–3 made the observation that an intravenous injection of trypsin caused hypotension. Trypsin also caused histamine release from perfused guinea pig lungs4 and other tissues, including liver5 and blood leukocytes.6

These early observations may be relevant to the recent finding that at the molecular level, trypsin is able to activate the protease-activated receptor-2 (PAR-2). PAR-2 is a G protein–coupled receptor that, like the thrombin receptor PAR-1, is activated by proteolytic cleavage of its extracellular amino-terminus domain to create a new N-terminus that functions as a tethered ligand.7,8 PAR-2 expressed in Xenopus oocytes can be activated by low concentrations of trypsin (0.3 to 3 nmol/L) or by a short synthetic agonist peptide (PAR-2AP) corresponding to the new amino terminus exposed after trypsin cleavage, and the agonist peptide (SLIGRL-NH₂) has an EC₅₀ of ≈5 µmol/L.7,8 Recent immunolocalization studies show that PAR-2 is expressed in a variety of normal human tissues, but its physiological roles are unknown.9,10 Significantly, in contrast to PAR-1, PAR-2 is upregulated 5- to 10-fold in endothelial cells in vitro after exposure to lipopolysaccharide (LPS), interleukin-1, and tumor necrosis factor-α, suggesting a possible role for PAR-2 in endotoxemia.11 Here, we have investigated the effect on blood pressure of trypsin and human PAR-2AP on normal and LPS-treated rats.

Methods

Reagents
PAR-2–activating peptide (PAR-2AP) from human (SLIGKV-NH₂) and control peptide with a scrambled sequence (KGLVS-NH₂) were synthesized by standard solid-phase 9-fluorenylmethoxycarbonyl (Fmoc) chemistry with an automated peptide synthesizer (Applied Biosystems, model 432A). Peptides were purified by reverse-phase high-performance liquid chromatography, and their identity was confirmed by mass spectroscopy as described previously.12 Poly
myxin B, mepramine, cyproheptadine, and nordihydroguaiaretic acid (NDGA) were from Sigma Chemical Co. Activated CH-
Sephrose 4B was from Pharmacia-LKB Biotechnology. Trypsin (porcine pancreas, EC 3.4.21.4, 13 000 to 20 000 BAEE U/mg),
indomethacin, atropine, bradykinin, nitro-l-arginine methyl ester
(L-NAME), LPS from Escherichia coli (serotype 0127:B8), salts,
and buffers were purchased from Sigma. Glycylglyrritriniridate (GTN)
was a generous gift of Dr Vincenzo Greco (Cardiology Unit, Naples,
Italy). The ETa/ETb endothelin inhibitor (SB209670) was obtained
from SmithKline Beecham, and HOE-140 was obtained from
Hoechst. Hirulog was a generous gift of Dr Maraganore (Biogen,
USA). The biotinylated inhibitor biotin-Ser-Lys-Gly-Arg-CH2 CP,
which is based on the PI-P4 residues of the PAR-2 cleavage site, was
synthesized according to the method of Kay et al.13

Blood Pressure Measurement
Rats (Charles River, Wilmington, Mass, 250 to 300 g) were
anesthetized with urethane (solution 15% wt/vol; 1.5 g/kg IP), and
the left carotid artery and right jugular vein were cannulated for
blood pressure measurement and drug administration, respectively.
All the drugs tested were administered intravenously as a slow bolus
injection except L-NAME, which was infused through the tail vein
with a pump (Harvard, model 21) at 3 µg · kg⁻¹ · min⁻¹ for 45
minutes. This dose was previously determined not to cause an
increase in blood pressure but to reduce acetylcholine-induced
hypotension. PAR-2AP (0.1, 0.3, and 1 mg/kg) or trypsin (0.2, 0.6,
and 2 mg/kg) was administered through the jugular vein every 20
minutes 3 times consecutively. Blood pressure values were ex-
pressed as mean arterial blood pressure (MABP).

Studies in LPS-Treated Rats
Rats (Charles River, 250 to 300 g) were treated with LPS (13.5×10⁶
U/kg IV) or saline. After 6, 12, or 20 hours, animals were anes-
thetized and blood vessels cannulated as described above for blood
pressure measurement and drug administration. PAR-2AP (0.03, 0.3,
and 1 mg/kg) or trypsin (0.02, 0.2, 0.6, and 2 mg/kg) was adminis-
tered through the jugular vein. In some cases, rats were killed and the
abdominal aorta and jugular vein were removed, immediately frozen
in liquid nitrogen, and stored at −70°C for immunohistochemistry or
reverse transcription–polymerase chain reaction (RT-PCR) studies.

In Vitro Studies
Rats that had received saline or LPS were killed, and the thoracic
aorta was removed and immersed in cold gassed (95% O2 /5% CO₂)
Krebs solution composed of (in nmol/L) NaCl 115.3, KCl 4.9, CaCl₂
1.46, MgSO₄ 1.2, KH₂PO₄ 1.2, NaHCO₃ 25.0, and glucose 11.1. Aortas
were cleaned of adherent connective tissue and cut into rings
(5 mm long) and placed in 2 mL isolated organ bath filled with
gassed Krebs solution maintained at 37°C. The rings were connected
to an isometric transducer (model 7004, Basile), and changes in
tension were recorded continuously with a polygraph linear recorder
(WR 3310 Graphtec). The rings were washed at 30-minute intervals
during the equilibration period, and a tension of 0.5 g (basal tone)
was applied. For each ring mounted, the molar concentration
that produced 80% of the maximum contraction (EC₈₀) was established.
Briefly, arteries were contracted with cumulative concentrations
of phenylephrine (PE, 0.01 to 3 µmol/L), and the EC₈₀ was determined
from the curve obtained before the rings were washed with Krebs
solution. Aortas were then contracted with PE EC₈₀, and when a
stable tone was reached, a single concentration of acetylcholine
(1 µmol/L) was applied to assess the endothelial response. Rings
that showed relaxation of <70% were discarded. On the subsequent
stable PE contraction, the effect of PAR-2AP or control peptide (10,
30, and 100 µmol/L) was assessed. Peptides were also tested in the
presence of L-NAME (100 µmol/L). Data are expressed as percent
of relaxation calculated as percent of the maximum relaxation
induced by acetylcholine in the same tissue.

Preparation of PAR-2 Antibodies
A peptide corresponding to the activation site of human PAR-2
(SKGRSLIGKV/DGTSHVTGK-NH₂, residues 33 to 51) was synthe-
sized as a multiple antigenic construct and was used as an immuno-
ogen.14 Rabbit anti–PAR-2 IgGs were purified with an affinity
column of the linear peptide coupled to activated CH-Sepharose
4B, as previously described.15 Preimmune sera were purified with a
protein-A Sepharose column to yield control IgG.

Immunohistochemistry
Aorta and jugular veins removed from rats were stored at −70°C
before use. Serial cryostat (Bright) sections (6 µm) were cut and
mounted on APES-coated slides (Sigma) and dried overnight at room
temperature. Sections were fixed in cold acetone for 1 minute before
blocking with 10% FCS in 0.2 mol/L Tris-HCl buffer for 15 minutes
to reduce nonspecific staining. Anti–factor VIII rabbit IgG (Dako),
affinity-purified rabbit anti–PAR-2 IgG, or preimmune control IgG
was diluted in 2% FCS Tris-HCl (1, 5, 10, and 20 µg/mL) applied
to sections, and incubated overnight in a humid chamber at 4°C.
After a washing step with PBS, sections were dried and incubated
with biotinylated anti-rabbit IgG (Dako) for 30 minutes, followed by
avidin–biotinylated alkaline phosphatase complex (Dako) incubated
for a further 30 minutes at room temperature. Color was developed
with Vector Red (Vector Laboratories) containing 1 mmol/L levami-
sol to block endogenous alkaline phosphatase activity. The sections
were counterstained with hematoxylin, mounted, and examined with
a light microscope (Photomat FX4, Nikon).

RT-PCR Analysis
Aortas and jugular veins were removed from control and LPS-treated
rats, snap-frozen in liquid nitrogen, and stored at −70°C. Total RNA
was isolated with RNazol solution (Biogenex) according to the
manufacturer’s instructions. RNA purity was estimated by measure-
ment of optical density at 260/280 nm. Total RNA (5 µg) was
subjected to first-strand cDNA synthesis in a 10-µL reaction
containing 250 mmol/L Tris-HCl (pH 8.3 at 20°C), 375 mmol/L
KCl, 15 mmol/L MgCl₂, 1 mmol/L DTT, 1 mmol/L of each dNTP,
and 20 U RNAse inhibitor, in the presence of 1.5 µg oligo dT(12-18)
primer and 200 U Superscriptase (all from Life Technologies). After
completion of first-strand cDNA synthesis, the reaction was stopped
by heat inactivation (5 minutes, 95°C) and diluted to 50 ng/µL RNA
equivalents with water. cDNA amounts equivalent to 100 ng of total
RNA were subjected to PCR in a 50-µL reaction volume containing
10 mmol/L Tris-HCl (pH 9 at 25°C), 50 mol/L KCl, 1.5 mmol/L
MgCl₂, 0.01% (wt/vol) gelatin, 0.1% (vol/vol) Triton X-100,
2 mmol/L DTT, 200 µmol/L of each dNTP, 1 mol/L of each primer,
and 0.2 U of Taq DNA polymerase (AB Biotechnology)
under the following conditions: denaturation for 30 seconds at 94°C,
primer annealing for 1 minute at 58°C, and primer extension for 1
minute at 72°C. The PCR products (10 µL) were electrophoresed
through 1% agarose gels and viewed by UV illumination. Primers
used were 5’-ATGCGAAGTCTCAGCCTG-3’ (sense) and 5’-
TCATAGGAGTTTCCC-3’ (antisense) to amplify a 1900-bp
product. In addition, 150 nmol/L of Taq polymerase and
20 µL of each primer, a 100-bp product was amplified. In
the absence of any primer, a 250-bp product was amplified.

Statistics
Data were analyzed by ANOVA, 1- or 2-way as appropriate,
followed by Dunnett’s test.

Results
Effect of PAR-2AP and Trypsin on MABP
As shown in Figure 1A, intravenous administration of human
PAR-2AP (0.1, 0.3, and 1 mg/kg IV) caused a dose-related
hypotension. The change in MABP was characterized by a
rapid fall lasting ∼30 seconds for 0.1 mg/kg, 1 minute for 0.3
mg/kg, and 2 minutes for 1 mg/kg (Figure 2A). Trypsin-

Downloaded from http://circ.ahajournals.org/ by guest on January 15, 2018
induced hypotension (Figure 1B) was very similar to that caused by PAR-2AP. The kinetics of the hypotension and the return to basal blood pressure levels for the doses of 0.2 and 0.6 mg/kg occurred at almost the same time intervals as seen with PAR-2AP (Figure 2B). A dose of 2 mg/kg took ≈3 minutes to return to the basal value. There was no tolerance to the hypotensive effect of both PAR-2AP and trypsin (data not shown).

Effect of Inhibitors on Hypotension

Atropine (0.5 mg/kg), HOE-140 (0.1 mg/kg), NDGA (15 mg/kg), and mepyramine (5 mg/kg IV) had no effect on the hypotension caused by trypsin (data not shown). The doses chosen are able to cause at least 50% inhibition of the response to the specific agonist. However, indomethacin (5 mg/kg IV) administered 1 hour before trypsin (2 mg/kg) caused a reduced hypotensive response (Figure 3A), from 47±2.4 to 16±2.2 mm Hg (n=4; P<0.01). The mixed endothelin (ET\textsubscript{A}/ET\textsubscript{B}) antagonist SB209670, at a dose of 1 mg/kg IV given 30 minutes before trypsin (2 mg/kg) administration, caused a reduction of hypotensive response (Figure 3B) from 38±7 to 18±3.4 mm Hg (n=4; P<0.01). L-NAME was given as an infusion at a rate 3 \(\mu \)g · kg\(^{-1} \) · min\(^{-1} \). This dose was determined, in a separate set of experiments, not to cause hypertension (data not shown). Trypsin (2 mg/kg IV)–induced hypotension before the L-NAME infusion was started was 46±8.2 mm Hg. After L-NAME, the hypotension was 29.3±10.4 mm Hg (n=4; P<0.02), 28.7±5 mm Hg (n=4; P<0.02), and 25.7±5.6 mm Hg (n=4; P<0.02) after 20, 30, and 40 minutes after administration, respectively (Figure 3C). Biotin–SKGR-chloro-methylketone (0.1 mg/kg IV), a potent irreversible inhibitor of trypsin proteolysis,\(^{13} \) given 30 minutes before trypsin (2.4 mg/kg) reduced the hypotensive response significantly, from 41.5±6.4 to 21±6.9 mm Hg (n=5; P<0.01). Strikingly, none of the drugs tested, including the trypsin inhibitor, caused a significant inhibition of the PAR-2AP–induced hypotension. Indeed, at a dose of 0.3 mg/kg IV, PAR-2AP gave a hypotension of 27.3±6.3 mm Hg (n=6) that was not significantly inhibited...
by indomethacin 5 mg/kg (27±6.3 mm Hg; n=5; P=NS), L-NAME 3 μg · kg⁻¹ · min⁻¹ (28±3 mm Hg; n=4; P=NS), SB209670 1 mg/kg (27±2.7 mm Hg; n=4; P=NS), biotin-SKGR-chloromethylketone 0.1 mg/kg (26.5±4.8 mm Hg, n=4, P=NS), or Hirulog 10 mg/kg (20±5 mm Hg; n=3; P=NS), a specific thrombin inhibitor.

Immunolocalization and RT-PCR Analysis of PAR-2 in LPS-Treated Rats
Polyclonal IgGs to PAR-2 were produced in rabbits by use of a multiple antigenic peptide corresponding to the activation site of human PAR-2 (SKGRSLIGVDGTSHVTGK-NH₂, residues 33 to 51). The resulting antibodies were purified from rabbit serum with an affinity chromatography column consisting of linear peptide SKGRSLIGVDGTSHVTGK-NH₂ (peptide was synthesized as a C-terminal amide) coupled to Sepharose as reported previously. The specificity of the PAR-2 antibodies was established in flow cytometric and immunohistochemical studies. Because LPS had been shown to upregulate PAR-2 expression in endothelial cells in vitro, we investigated expression of PAR-2 in blood vessels obtained from normal and LPS-treated rats. Control and PAR-2 antibodies at a range of dilutions (1, 5, 10, and 20 μg/mL) were used for immunohistochemistry, and the staining intensities obtained with PAR-2 and control antibodies were compared at the same concentration. PAR-2 staining was apparent in endothelial cells and vascular smooth muscle cells within the blood vessels obtained from normal rats and rats treated with LPS 20 hours before death. Endothelial cells were identified in sequential sections by staining for factor VIII antigen (Figure 4A).

The expression of PAR-2 after LPS administration in vivo was investigated by semiquantitative RT-PCR analysis (Figure 4B). Primers based on the rat PAR-2 sequence were used with cDNA of total RNA obtained from the aortas and jugular veins of rats treated with LPS or saline 20 hours before death. The increased intensity of the PAR-2 PCR product bands (1900 bp) obtained (Figure 4) indicated that expression of PAR-2 mRNA was increased in both the aorta and jugular veins of LPS-treated rats compared with saline-treated controls.

Effect of PAR-2AP and Trypsin on LPS-Treated Rats
PAR-2AP- and trypsin-induced hypotensive responses were significantly increased in those rats given LPS 20 hours earlier. Initial MABP in LPS-treated rats was 127.4±4.12 mm Hg. However, if experiments were performed 6 or 12 hours after LPS administration, there was no change in hypotension induced by either PAR-2AP or trypsin. As shown in Figure 5A, in LPS-treated rats (13.5×10⁶ U/kg IV 20 hours earlier), the hypotension caused by PAR-2AP (0.1 mg/kg IV) was 21.7±1.87 mm Hg, versus 6.2±1.59 mm Hg in saline-treated rats (n=4; P<0.001). PAR-2AP given at 0.03 mg/kg did not cause hypotension in normal rats, but strikingly, the hypotension in LPS-treated rats was 20.7±3.2 mm Hg (n=4; P<0.001; Figure 5A). The hypotensive response to higher doses (0.3 and 1 mg/kg) was not affected significantly by LPS (data not shown). As shown in Figure 5B, the potency of trypsin in the induced hypotensive response was also significantly increased in LPS-treated rats compared with normal rats. At the doses of 0.2 and 0.6 mg/kg, trypsin hypotension was 26±3.64 and 36.2±1.99 mm Hg in LPS-treated rats versus 9.87±1.03 and 23.9±1.55 mm Hg in controls (n=4; P<0.001); a lower dose (0.02 mg/kg) was inactive. All the inhibitors tested had no effect on the hypotension induced by trypsin (0.2 to 0.6 mg/kg) or PAR-2AP (0.3 and 0.1 mg/kg). In separate experiments, the hypotensive response in LPS-treated rats to GTN (0.5 mg/kg IV) and bradykinin (10 μg/kg IV) was also evaluated. Hypotension produced by GTN in normal rats (Figure 5C) was not significantly different from that produced in LPS-treated rats (26±2.93 versus 27.1±2.43 mm Hg). Conversely, bradykinin-induced hypotension was enhanced significantly, from 36.3±1.29 mm Hg in normal rats to 50±2.29 mm Hg (P<0.001) in LPS-treated rats (Figure 5D).

The 10-fold reduction in the minimum effective dose of agonist peptide to induce hypotension in LPS-treated rats was striking. As shown in Figure 6, both the kinetics and
magnitude of the hypotension induced by PAR-2AP in LPS-treated rats were identical to those seen in control animals at a 10-fold higher concentration of peptide. These data suggest a functional upregulation of PAR-2 in vivo.

In Vitro Studies

Aortic rings from normal rats precontracted with PE relaxed in a concentration-dependent manner to PAR-2AP (10, 30, and 100 μmol/L) and trypsin. Both responses were significantly potentiated in aortic rings from LPS-treated rats and abolished by L-NAME 100 μmol/L (Figure 7). Removal of endothelium caused a complete loss of the relaxing effect of both trypsin and PAR-2AP.

Discussion

Intravenous administration of trypsin was followed almost immediately by a dose-related hypotension. When PAR-2AP was tested under the same experimental conditions, it caused a hypotensive response that was very similar. Our results are consistent with those obtained previously by others, showing that in vivo activation of PAR-2 causes hypotension. On the basis of the earliest studies of Rocha e Silva, we evaluated the involvement of histamine in the trypsin effect on blood pressure. The H1 antagonist mepyramine had no effect on trypsin or PAR-2AP–induced hypotension. These data are in agreement with an earlier study that demonstrated that trypsin-induced hypotension in vivo is resistant to anti-
We investigated the possible mediators involved in the hypotensive response induced by trypsin or PAR-2AP, using a set of inhibitors as pharmacological tools. For this purpose, we used atropine; a cyclooxygenase inhibitor, indomethacin; a bradykinin B2 antagonist, HOE140; an ETα/ETβ endothelin antagonist, SB-209670X; and a nitric oxide inhibitor, L-NAME. Trypsin hypotension was inhibited by indomethacin, SB-209670X ETα/ETβ, and L-NAME. We also used a trypsin inhibitor, biotin–SKGR-chloromethylketone, a peptide that specifically blocks the proteolytic activity of trypsin. The finding that trypsin-induced hypotension was inhibited by biotin–SKGR-chloromethylketone indicates that proteolysis is required for the induction of hypotension. Unexpectedly, and strikingly, none of these inhibitors affected the hypotension caused by PAR-2AP. Similarly, in vitro experiments have shown that PAR-2AP–induced relaxation of rat vascular tissues is not affected by a broad range of inhibitors, including atropine, indomethacin, chlorpheniramine, genistein, propranolol, or ritanserin, but only by nitric oxide synthase inhibition. When we tested the effect of PAR-2AP in vitro on precontracted rat aortic rings, the relaxant effect was clearly endothelium-dependent and blocked by L-NAME, confirming the in vitro data obtained previously. Furthermore, we observed a potentiation of relaxation of aortic rings from LPS-treated rats similar to that observed in vivo. The discrepancy between the effects of L-NAME on PAR-2AP actions in vitro and in vivo most likely reflects other interactions that contribute to the hypotension in vivo, whereas in vitro, the effect is completely dependent on nitric oxide. It also seems likely that trypsin activates multiple signaling pathways in vivo, whereas the agonist peptide–induced PAR-2 activation involves specific pathways, unaffected by the inhibitors, which remain to be identified.

To exclude the possibility that thrombin generated after the administration of trypsin may be mediating the hypotensive response, we treated rats with Hirulog, a specific inhibitor of thrombin, before administration of trypsin and PAR-2AP. Neither the PAR-2AP nor trypsin responses were inhibited in rats pretreated with Hirulog. However, we cannot exclude a role for the thrombin receptor, because high concentrations of trypsin can cleave and activate PAR-1 as well as PAR-2. Importantly, by contrast, the PAR-2–activating peptide PAR-2AP is relatively specific and does not activate PAR-1. Therefore, the differences between the responses to trypsin compared with those induced by PAR-2AP in vivo may be due, in part, to the simultaneous activation of PAR-1 and PAR-2 by trypsin but of PAR-2 alone by PAR-2AP. This raises interesting questions about what effects PAR-1 and PAR-2 activation together may have on blood pressure. Some authors have suggested that PAR-1 activation produces a biphasic change in blood pressure, whereas PAR-2 activation alone may cause a single-phase hypotensive response, and our data would support the latter.

After stimulation of endothelial cells with LPS, PAR-2 mRNA is elevated 5- to 10-fold, whereas the thrombin PAR-1 receptor expression is unaffected. Therefore, we extended this study to test the possible role of PAR-2 in the hypotension of endotoxemic rats and to evaluate whether endotoxin has a role in the regulation of PAR-2 receptor in vivo. Because hypotension is one of the main features of septic shock, we evaluated in vivo whether the hypotensive response to PAR-2AP and trypsin was modified by LPS and whether expression of PAR-2 was concomitantly increased in artery and vein ex vivo. PAR-2 was immunolocalized to

![Figure 6. Comparison between a representative tracing of effect of PAR-2AP in (A) rats treated with LPS 20 hours before PAR-2AP administration with a 10-fold lower dose of PAR-2AP (0.03 mg/kg IV; n = 4) vs B, control rats (0.3 mg/kg IV; n = 4). Dose of 0.03 mg/kg in normal rats was without effect.](http://circ.ahajournals.org/ stockholm/2595)
Interestingly, a drug called ulinastatin, a trypsin inhibitor, causes hypotension associated with endotoxemia and septic shock. Possibility that PAR-2 may play an important role in the hypotensive response to trypsin was increased significantly at controls to give the same effect (0.3 mg/kg IV). Similarly, the PAR-2AP (0.03 mg/kg IV) caused a 10-fold lower dose of PAR-2AP inducing hypotension in LPS-treated rats. These data strongly indicate a potentially important role for PAR-2 hypotension and endotoxemia. Unraveling the roles of PAR-2 in endotoxemia, along with those of PAR-1 and the newly cloned PAR-3, may lead to the development of new therapeutic strategies and targets.

Acknowledgments

This work was supported in part by grants from the Wellcome Trust, Special Trustees of the Royal London Hospital, and by Ministero della Ricerca Scientifica e Tecnologica (MURST).

References

Protease-Activated Receptor-2 Involvement in Hypotension in Normal and Endotoxemic Rats In Vivo
Carla Cicala, Aldo Pinto, Mariarosaria Bucci, Raffaella Sorrentino, Brian Walker, Patrick Harriot, Alan Cruchley, Supriya Kapas, Gareth L. Howells and Giuseppe Cirino

Circulation. 1999;99:2590-2597
doi: 10.1161/01.CIR.99.19.2590

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/99/19/2590

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/