A 65-year-old man was admitted with a pulmonary embolism. He complained of progressive exertional dyspnea followed by thrombophlebitis of his left lower limb for several weeks before admission. Venography showed multiple thrombi in the varicose left small saphenous vein. A pulmonary perfusion scintigram revealed multiple perfusion defects in both lungs; the ventilation scintigram was normal. The patient was placed on heparin 20 000 U/d IV for 7 days and urokinase 240 000 U/d IV for 4 days and was also given warfarin 2.5 mg/d PO during the same period of time.

Pulmonary helical CT (X Vision; Toshiba Medical System) was performed with 5-mm-thick sections and a 3-mm/second table increment rate. The patient received 100 mL of contrast medium (60% solution of iopamidol; Schering) at the rate of 3 mL/s with 15-second delay. Three-dimensional pulmonary CT angiography (3DCTA) was obtained by the shaded-surface-rendering method at a 1.5-mm pitch.

The 3DCTA on admission depicted clearly deformed pulmonary arterial trees (Figure 1), whereas the 3DCTA taken 2 weeks later demonstrated marked improvement in pulmonary arterial configuration (Figure 2). These findings were compatible with the patient’s clinical recovery. The 3DCTA was very useful in the diagnosis and the follow-up study of pulmonary embolism.
Figure 1. 3DCTA obtained before thrombolytic therapy demonstrated that many branches of pulmonary artery were obliterated abruptly by thrombi. Top, Anterior aspect of cardiovascular system; bottom, posterior aspect.

Figure 2. Many branches of pulmonary artery could be visualized, along with abolishment of thrombi by treatment.
Case of Pulmonary Embolism
Shogo Egashira, Yusuke Yamamoto, Yoshitaka Doi, Osamu Nakagaki and Shunichi Matsumoto

Circulation. 1999;99:e6
doi: 10.1161/01.CIR.99.15.e6
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/99/15/e6

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at: http://circ.ahajournals.org//subscriptions/