Extracellular K⁺ Dependence of Inward Rectification
Kinetics in Human Left Ventricular Cardiomyocytes

Patrick Bailly, PhD; Maud Mouchonière, PhD; Jean-Pierre Bénitah, PhD; Lionel Camilleri, MD;
Paco Lorente, MD

Background—In human ventricular cells, the inwardly rectifying K⁺ current (I_K1) is very similar to that of other
mammalian species, but detailed knowledge about the K⁺-dependent distribution of open and blocked states during
rectification and about the K⁺-dependent modulation of inactivation on hyperpolarization is currently lacking.

Methods and Results—We used the whole-cell patch-clamp technique to record I_K1 in myocytes isolated from
subendocardial layers of left ventricular septum from patients with nonfailing hearts with aortic stenosis and cardiac
hypertrophy who were undergoing open-heart surgery. Outward currents were very small at voltages positive to the
reversal potential but increased at high external [K⁺]. Chord conductance measurements and kinetic analyses allowed us
to estimate the proportion of channels in the open state and of those showing either slow unblock or instantaneous
unblock (the so-called slow or instantaneous “activation”) on hyperpolarization: the distribution in the individual states
was dependent on external [K⁺]. The proportion of channels unblocking slowly was greater than that of channels
unblocking instantaneously on hyperpolarization from the plateau voltage range. Hence, because of the previously
reported link between the presence of highly protonated blocking molecules and slow unblock kinetics, it is suggested
that high cellular concentrations of spermine may account for the low outward current density recorded in these cells.
The current decrease observed on extended hyperpolarization was significantly relieved by an increase in external [K⁺].

Conclusions—The pattern of I_K1 current alterations observed in the present model of human ventricular hypertrophy might
favor enhanced excitability and underlie ventricular arrhythmias, possibly via increased intracellular polyamine levels.
(Circulation. 1998;98:2753-2759.)

Key Words: potassium ■ myocytes ■ electrophysiology

The inward rectifier K⁺ current (I_K1) is a major determinant of a stable resting potential in excitable cells.1
Mediating a reduced flow of outward currents at voltages positive to reversal potential, inward-going rectification also
allows development of the long plateau phase of the cardiac action potential2 and sets the excitability threshold for depo-
larizing currents.3 Furthermore, it has been suggested that outward currents through I_K1 channels contribute to the
final phase of repolarization of the action potential.4-6

The steep inward rectification of I_K1 around the reversal potential (E_rev) is typically associated with a time- and voltage-
dependent current increase after an instantaneous current jump on hyperpolarization. In the 1980s, it was shown that a voltage-
dependent block by internal Mg²⁺ ions contributes to strong rectification,7 mainly at depolarized levels far from E_rev.8 However,
the fast kinetics of the Mg²⁺ block cannot account for the observed activation kinetics, because in the absence of Mg²⁺,
inward rectifier K⁺ channels still rectify strongly, and the slow open-close transitions of the so-called activation gate remain
little affected.8 Indeed, recent studies on channels exogenously expressed from cloned inward rectifier K⁺ channel genes,
Kir2.19 and Kir2.3,10 have shown that the intrinsic gating reflects the blocking and unblocking kinetics of intracellular protonated
polyamines.11-18 Regulatory mechanisms are reportedly involved in these processes: on the one hand, the higher the cationic
charge of the polyamine, the slower the time course of recovery from the polyamine-induced block14,19; on the other hand, cloned
channels, like native I_K1 channels, exhibit clear relief of rectification after external K⁺ concentration ([K⁺]o) increases.20

In humans, a few recent data suggest that the characteristics of ventricular native I_K1 channels are similar to those of other
mammalian hearts,21-24 except for smaller outward current amplitudes than in other species.2,3,5,25 No information is currently
available on the [K⁺]o dependence of unblocking and blocking kinetics or on the conductance properties of the native human
ventricular I_K1. In the present article, we examine the influence of [K⁺]o changes on the voltage dependence of nonconductive
states induced by depolarizing pulses and on the “inactivation” kinetics observed during prolonged hyperpolarization in human
ventricular cells from patients without left ventricular (LV)
dysfunction. We report that the \([K^+]_i\) dependence in the distribution of blocked states on depolarization in isolated human ventricular cells follows a pattern similar to that observed in Kir2.1 exogenously expressed channels.\(^6\) The hyperpolarization-induced “inactivation” may be accounted for both by extracellular Na\(^+\) block and by external K\(^+\) depletion, possibly facilitating a polyamine-induced channel reblock; this process seems to be significantly relieved by an increase in \([K^+]_i\).

Methods

Characterization of Patients

Ventricular tissue samples were obtained from 21 patients undergoing corrective cardiac surgery for acquired aortic stenosis with LV hypertrophy but without LV dysfunction. Patient age was 63.5±8.6 years (range, 48 to 78 years); 12 were men, 9 women. Clear evidence of LV hypertrophy was based on echocardiographic and ECG findings (echocardiographic septal thickness was 13.2±3.0 mm; normal values, <10 mm). All the patients had compensated hypertrophy (NYHA functional class II; cardiac index, 2.67±0.51 L min\(^{-1}\) m\(^{-2}\); ejection fraction, 0.63±0.15; LV end-diastolic pressure, 14.0±3.1 mm Hg; echocardiographic shortening fraction, 0.35±0.06) and hence were not receiving any cardiotoxic drugs. All patients gave written informed consent to the study protocol, which had previously been approved by the institutional committee on human investigation and complies with principles outlined in the Declaration of Helsinki.

Cell Isolation

Endocardial LV septal sampling was performed through the aortic orifice during circulatory arrest. Specimens were taken from the muscular septum just beneath the commissure between left and right coronary leaflets of the aortic valve. They consisted of scalpel shavings from the LV septal wall (≈10 to 12 mm long, 5 to 7 mm wide, <3 mm thick, 0.1 to 0.6 cm\(^3\) in every case superficial (<3-mm depth). Immediately after the specimens were taken, they were placed in cardioplegia solution bubbled with 100% O\(_2\) at 19°C. Experimental procedures began within 15 minutes of removal.

Ventricular myocytes were isolated by an enzymatic dissociation method as described previously.\(^26\) Briefly, chunks were incubated at 35°C for 30 minutes in a Ca\(^{2+}\)-free Tyrode’s solution supplemented with 300 IU/mL collagenase V, 4 IU/mL protease XXIV, and 1 mg/mL BSA (Sigma). Then, the supernatant was removed and replaced by a fresh enzyme medium having the same composition but without protease. When the yield appeared to be maximal, minced tissue was strained through a 200-μm nylon mesh to remove debris and undigested tissue. Cells were then suspended in Ca\(^{2+}\)-free Tyrode’s solution and stored for 1 hour at room temperature (20°C to 22°C) before the experiment was begun. Only quiescent rod-shaped cells showing clear striations without significant granulation were used.

Recording Techniques

Current recordings were obtained by the standard whole-cell recording technique with an Axopatch 1D amplifier (Axon Instruments) with a 100-MΩ feedback resistance headstage, the 125-kHz Labmaster board, and pClamp program V 5.5.1 (Axon Instruments). Microelectrodes pulled from soft glass capillary tubing (1.5 to 1.6 mm OD) had tip resistances ranging from 1 to 1.5 MΩ. A silver-silver chloride pellet encased in a 3 mol/L KCl agar bridge was placed in the bath and used as the ground reference electrode. Cell capacitance and series resistance were measured by ±10-mV voltage steps applied from a −70-mV holding potential and calculated as previously described.\(^{26}\) Series resistance was kept <5 MΩ (2.26±1.04 MΩ; n=42) and was compensated by 60% to 80%; the time constant of the capacitive current decay was 0.19±0.04 ms after compensation. The electrode potential was adjusted to zero after immersion of the pipette tip; this zeroing caused a positive voltage bias that was not corrected. Currents were low-pass filtered at 2 kHz, digitized at a sampling interval of 200 μs, and stored for off-line analysis.

Solutions

The transport solution contained (in mmol/L) NaCl 147, KCl 20, CaCl\(_2\) 2, MgCl\(_2\) 16, glucose 6, and HEPES 5 (pH adjusted to 6.8 with KOH). For cell isolation and cell storage, the Ca\(^{2+}\)-free Tyrode’s solution had the following composition (in mmol/L): NaCl 120, KCl 4, MgCl\(_2\) 1, HEPES 10, and glucose 6; pH was adjusted to 7.4 with NaOH. For study of \(I_{Ki}\), kinetics and gating properties, the standard Tyrode’s solution contained (in mmol/L) NaCl 130, KCl 4, CaCl\(_2\) 2, MgCl\(_2\) 1.1, mannitol 0.4, HEPES 25, and glucose 11; pH was adjusted to 7.4 with NaOH. In experiments designed to study the \([K^+]_i\) dependence of inward rectification kinetics, different \([K^+]_o\), were set by equimolar substitution of KCl for NaCl in the Tyrode’s solution. Patch pipettes were filled with an internal solution containing (in mmol/L): KCl 120, MgCl\(_2\) 1, Mg-ATP 3, Tris-GTP 0.4, EGTA 10, HEPES 25, and glucose 10 (pH adjusted to 7.2 with KOH). The addition of EGTA buffer to the internal solution aimed at minimizing calcium-activated outward currents and the absence of Na\(^+\) ions in the internal solution were also expected to inhibit calcium influx through Na\(^+\)-Ca\(^{2+}\) exchange. Ca\(^{2+}\) current was inhibited by 2 mmol/L Co\(_2\). \(I_{Ks}\) was inhibited by 3 mmol/L 4-aminopyridine, and Na\(^+\) current was minimized by the voltage-clamp protocol.

Kinetic Analysis

The results are expressed as mean±SEM. As recently reported by Ishihara,\(^6\) current kinetics relative to channel states were analyzed at the end of depolarizing pulses, as follows. The proportion of the channels residing in the open state has been estimated by the institutional committee on human investigation and complies with principles outlined in the Declaration of Helsinki.

Results

The cell membrane was held at −50 mV (\(V_m\)) at −50 mV positive to the predicted K\(^+\) equilibrium potential (\(E_{Ks}\)).
Currents were elicited by 200-ms voltage-clamp steps applied from \(V_h \) to \(-2170 \) to \(-220 \) mV at 0.16 Hz. After a 5-ms return to \(V_h \), a 50-ms voltage-clamp pulse was delivered to \(-140 \) mV. Inward rectification was evidenced by larger current amplitudes at voltage steps negative to \(-80 \) mV (Figure 1A). The “activation” phase of the inward current speeded up as voltage steps were made more negative. A significant decay of inward current (“inactivation”) occurred at voltages negative to \(-100 \) mV, and marked declines at stronger hyperpolarizations caused a negative slope region in the steady-state relation (Figure 1B). \(E_{rev} \) was between \(-80 \) and \(-70 \) mV, and for less negative potentials, very small outward currents gave rise to a flat zone without any negative slope conductance; on the average, the maximum outward current density was \(0.57 \pm 0.15 \) pA/pF at \(-50 \) mV.

Increasing \([K^+]_o\) induced a depolarizing shift in \(E_{rev} \), an increase in the peak current and slope conductance, and a slight increase of outward currents in 20 mmol/L \([K^+]_o\) (Figure 2A). Linear fitting to mean \(E_{rev} \) plotted against log \([K^+]_o\) yielded a slope of 51.5\(\pm \)3.0 mV, close to the 58.5 mV expected from the Nernst equation (Figure 2B), thus suggesting that the main charge carriers for the background current in human ventricular cells are \(K^+ \) ions. The square-root dependence of conductance of inward rectifiers on \([K^+]_o\) was also a property of the human ventricular macroscopic \(I_K1 \) (Figure 2C): slope conductances measured from the linear portion of the I-V relationship at potentials negative to \(E_{rev} \) were plotted versus \([K^+]_o\), and fitted by a linear regression function. The mean slope of regression lines obtained from individual cells was \(0.54 \pm 0.19 \) (n=11).

“Activation” (Unblock) Kinetics

As in native and cloned channels, \(20,25 \) the “activation” phase of current followed a monoeexponential, voltage-dependent, and \(K^+ \)-sensitive time course (Figure 3). The time constant decreased as the test potential was made more negative, whereas increasing \([K^+]_o\) caused a rightward shift of the “activation” time constant, \(\tau_{act} \), without any appreciable change in the voltage sensitivity. Time constants decreased \(e \)-fold for a 32.5-, 34.1-, and 33.1-mV hyperpolarization at 4, 8, and 20 mmol/L \([K^+]_o\), respectively. When the time constants at different \([K^+]_o\) values were replotted against \(V_m \) to account for the shift in \(V_{rev} \) induced by increasing \([K^+]_o\), the data points were superimposed along the same line (not shown).

It is currently acknowledged that “activation” of inward currents results from the relief of \(Mg^{2+} \) and polyamine channel block from the channels \(11,12,14 \) and can follow a multiphase time course. \(6,14 \) Unblock “activation” kinetics were described by analyzing tail currents on hyperpolarization to \(-130 \) mV after various voltage steps (Figure 4A). The individual fits superimposed on current traces show that the exponential increase in inward currents started from 91%.

![Figure 1](http://circ.ahajournals.org/)

Figure 1. Whole-cell \(I_K1 \) in human ventricular myocytes. A, Current records in a representative cell \((C_m=74 \) pF). B, Mean peak (■) and steady-state (○) current densities obtained in 16 cells bathed in 4 mmol/L \([K^+]_o\). In all figures, SEMs are shown when they are larger than symbols.

![Figure 2](http://circ.ahajournals.org/)

Figure 2. Effects of \([K^+]_o\) changes. A, a, Mean peak-voltage relationships from 7 cells successively exposed to 4 (●), 8 (□), and 20 (▲) mmol/L \([K^+]_o\). A, b, Same data between \(-60 \) and \(-20 \) mV with expanded ordinates. B, Dependence of \(E_{rev} \) on \([K^+]_o\). Semilogarithmic plot of \(E_{rev} \) determined at 4, 8, and 20 mmol/L \([K^+]_o\) (n=11). Solid line indicates linear fit to data points; dashed line, Nernst equation. C, Bilogarithmic plot of slope conductance vs \([K^+]_o\).
creased when prepulse levels were successively depolarized from −100 to −50 mV. Conversely, the proportion of channels blocked by the least protonated molecules, $P_{C,\text{fast}}$, corresponds to the value 1−$P_{C,\text{slow}}−P_O$, where P_O is the probability of the channel being opened in the preceding membrane potential. From the I-V relations obtained at the end of 20-ms prepulses, the voltage dependence of P_O was estimated at different [$K^+]_o$ successively applied (Figure 4B). Increasing [$K^+]_o$, augmented P_O (ie, decreased channel block) at any given membrane potential and caused an obvious P_O shift to more positive potentials. To describe the [$K^+]_o$ dependence of inward rectification, the membrane potential at which channels were half-blocked (V_{1/2}) was obtained from single Boltzmann fits to experimental P_O values, and its dependence on E_K was examined. In 4, 8, and 20 mmol/L [$K^+]_o$, V_{1/2} and E_K mean values were (in mV) −92.3, −90.4; −74.2, −72.8; and −48.5, −49.5, respectively. Hence, inward rectification shifted proportionally to the change in E_K, and a linear approximation to these data gave a slope factor of 1.07. $P_{C,\text{slow}}$ and $P_{C,\text{inst}}$ at the end of prepulses were estimated from the kinetic analysis of currents in the following hyperpolarization (Figure 4C and 4D). Steep increases in $P_{C,\text{slow}}$ were observed at potentials around E_K (−90 and −73 mV at 4 and 8 mmol/L [$K^+]_o$, respectively), but $P_{C,\text{slow}}$ decreased only to a moderate extent at more depolarized potentials. $P_{C,\text{inst}}$ increased in a voltage-dependent manner at both [$K^+]_o$, but did not cross over the $P_{C,\text{slow}}$-voltage relationship within the voltage range studied, in contrast to previously reported findings.6

“Inactivation” Kinetics on Hyperpolarization
The time-dependent decline of I_{K_1} on hyperpolarization has been referred to as “inactivation.” As previously reported, the best fit to current traces was also provided in our cells by 2 exponentials demonstrating a clear dependence on voltage. On average, at −120, −130, −150, and −170 mV, the time constants of the fast and slow components, τ_f and τ_s, were (in ms) 30, 243; 25, 135; 16, 53; and 11, 33, respectively.

The [$K^+]_o$ dependence of “inactivation” kinetics was investigated in cells successively bathed in 4, 8, and 20 mmol/L [$K^+]_o$, and using voltage steps to −170 mV (Figure 5A). As [$K^+]_o$ was raised, both peak (I_{peak}) and steady-state (I_{ss}) currents were increased and the time course of “activation” was accelerated. However, “inactivation” was slowed down, resulting in a decrease of the relative amount of current “inactivated” at the end of the pulse. If we define the difference between the peak and steady-state current as $I_{\text{peak}}/I_{\text{ss}}$, then the $I_{\text{max}}/I_{\text{peak}}$ ratio was 0.80, 0.63, and 0.23 at 4, 8, and 20 mmol/L [$K^+]_o$, respectively. This behavior was observed in 5 of 5 cells studied.

It was also of interest to examine the classic steady-state inactivation relationship (Figure 5B). Normalized currents plotted versus prepulse potentials were well fitted with the function $I/Imax=1/(1+\exp[(V_{\text{ss}}−V_{\text{ss}}\text{m})/k])$, where B is the steady-state baseline level. In 4 and 8 mmol/L [$K^+]_o$, V_{ss} (V ss for $Imax=0.5$) and k were (in mV) −154.8±2.1, 8.1±1.1 mV and −161.9±1.3, 11.0±1.3, respectively; in 20 mmol/L [$K^+]_o$, k was 22.2±2.8 mV. For potentials more negative than −140 mV, the availability was higher with increasing [$K^+]_o$.

Figure 3. Unblock activation kinetics. A, Inward currents elicited by 200-ms pulses delivered from −50 mV (V h) to −140 to −170 mV in a cell bathed in 4 mmol/L [$K^+]_o$. Monoeponential fits with τ values noted near each evoked current. C_m = 131 pF. B, [$K^+]_o$ and voltage dependence of activation time constants (τ_{act}) in 4 cells successively exposed to 4 (♂), 8 (♀), and 20 (▲) mmol/L [$K^+]_o$. Fitting equation: $\tau = K \exp(V_m/s)$, where V_m is membrane potential and s slope factor.

64%, and 36% of the maximum inward current on hyperpolarization from −100, −90, and −50 mV, respectively. Because the relative amplitude of the time-dependent component, $P_{C,\text{slow}}$, is assumed to reflect the proportion of channels blocked by the most protonated polyamines at the end of prepulses, these findings suggest that this proportion increased when prepulse levels were successively depolarized from −100 to −50 mV. Conversely, the proportion of channels blocked by the least protonated molecules, $P_{C,\text{fast}}$, corresponds to the value 1−$P_{C,\text{slow}}−P_O$, where P_O is the probability of the channel being opened in the preceding membrane potential. From the I-V relations obtained at the end of 20-ms prepulses, the voltage dependence of P_O was estimated at different [$K^+]_o$ successively applied (Figure 4B). Increasing [$K^+]_o$, augmented P_O (ie, decreased channel block) at any given membrane potential and caused an obvious P_O shift to more positive potentials. To describe the [$K^+]_o$ dependence of inward rectification, the membrane potential at which channels were half-blocked (V_{1/2}) was obtained from single Boltzmann fits to experimental P_O values, and its dependence on E_K was examined. In 4, 8, and 20 mmol/L [$K^+]_o$, V_{1/2} and E_K mean values were (in mV) −92.3, −90.4; −74.2, −72.8; and −48.5, −49.5, respectively. Hence, inward rectification shifted proportionally to the change in E_K, and a linear approximation to these data gave a slope factor of 1.07. $P_{C,\text{slow}}$ and $P_{C,\text{inst}}$ at the end of prepulses were estimated from the kinetic analysis of currents in the following hyperpolarization (Figure 4C and 4D). Steep increases in $P_{C,\text{slow}}$ were observed at potentials around E_K (−90 and −73 mV at 4 and 8 mmol/L [$K^+]_o$, respectively), but $P_{C,\text{slow}}$ decreased only to a moderate extent at more depolarized potentials. $P_{C,\text{inst}}$ increased in a voltage-dependent manner at both [$K^+]_o$, but did not cross over the $P_{C,\text{slow}}$-voltage relationship within the voltage range studied, in contrast to previously reported findings.6

“Inactivation” Kinetics on Hyperpolarization
The time-dependent decline of I_{K_1} on hyperpolarization has been referred to as “inactivation.” As previously reported, the best fit to current traces was also provided in our cells by 2 exponentials demonstrating a clear dependence on voltage. On average, at −120, −130, −150, and −170 mV, the time constants of the fast and slow components, τ_f and τ_s, were (in ms) 30, 243; 25, 135; 16, 53; and 11, 33, respectively.

The [$K^+]_o$ dependence of “inactivation” kinetics was investigated in cells successively bathed in 4, 8, and 20 mmol/L [$K^+]_o$, and using voltage steps to −170 mV (Figure 5A). As [$K^+]_o$ was raised, both peak (I_{peak}) and steady-state (I_{ss}) currents were increased and the time course of “activation” was accelerated. However, “inactivation” was slowed down, resulting in a decrease of the relative amount of current “inactivated” at the end of the pulse. If we define the difference between the peak and steady-state current as $I_{\text{peak}}/I_{\text{ss}}$, then the $I_{\text{max}}/I_{\text{peak}}$ ratio was 0.80, 0.63, and 0.23 at 4, 8, and 20 mmol/L [$K^+]_o$, respectively. This behavior was observed in 5 of 5 cells studied.

It was also of interest to examine the classic steady-state inactivation relationship (Figure 5B). Normalized currents plotted versus prepulse potentials were well fitted with the function $I/Imax=1/(1+\exp[(V_{\text{ss}}−V_{\text{ss}}\text{m})/k])$, where B is the steady-state baseline level. In 4 and 8 mmol/L [$K^+]_o$, V_{ss} (V ss for $Imax=0.5$) and k were (in mV) −154.8±2.1, 8.1±1.1 mV and −161.9±1.3, 11.0±1.3, respectively; in 20 mmol/L [$K^+]_o$, k was 22.2±2.8 mV. For potentials more negative than −140 mV, the availability was higher with increasing [$K^+]_o$.

Figure 4. Distribution of channel states: P_O, open; $P_{C,\text{slow}}$, blocked by most protonated polyamines; $P_{C,\text{inst}}$, blocked by least protonated blocking molecules; evaluated at end of 20-ms pulses applied as shown in inset. A, Currents on hyperpolarization from −100 (♂), −90 (♀), and −50 (▲) to −130 mV, with superimposed fits (tau ranging between 1.7 and 2.0 ms for all traces). B, P_O curves at 4 (♂), 8 (♀), and 20 (▲) mmol/L [$K^+]_o$ (n=6). C, Voltage dependence of $P_{C,\text{slow}}$ and $P_{C,\text{inst}}$ in 4 mmol/L [$K^+]_o$ (n=6). D, Voltage dependence of $P_{C,\text{slow}}$ and $P_{C,\text{inst}}$ in 8 mmol/L [$K^+]_o$ (n=5).
the calculated steady-state baseline level was 0.19±0.02, 0.31±0.03, and 0.60±0.05 in 4, 8, and 20 mmol/L [K+]o respectively.

The time-dependent decrease of Ikr during hyperpolarizing pulses was attributed in part to extracellular K+ depletion in isolated feline ventricular myocytes. The notion that depletion may also occur in human ventricular myocytes was tested with a 2-pulse tail protocol in 4 mmol/L [K+]o (Figure 5C). Erev deduced from tail-current measurements was compared with that obtained from the steady-state I-V relationship. At the end of the conditioning pulse, there was a −8.2-mV shift of Erev relative to the one determined from the steady-state I-V relationship. On average, the negative shift of Erev related to extracellular K+ depletion amounted −7.0±1.3 mV (n=7). Assuming that intracellular K+ activity does not change, this shift in Erev corresponded to a decrease of 1.1 mmol/L in [K+]o (Figure 2B). From the expected change in conductance resulting from this [K+]o decrease (Figure 3C) and the consequent change in driving force, we may expect a current decline of ≈24% at −170 mV caused by depletion of extracellular K+ in the unstripped solution layer close to the cellular surface. Because the difference between peak and steady state at −170 mV shown in Figure 1B suggests a mean decrease of 73% in Ikr conductance, depletion might account for ≈33% of the reduction in Ikr conductance at −170 mV.

Discussion

The major findings of the present study are threefold. (1) The nonconductive states in human ventricular Ikr channels follow a [K+]o dependence analogous to that observed in expressed Kir2.1 channels. (2) The distribution pattern of blocked states suggests a more prominent binding to high-affinity than to low-affinity blocking molecules within the plateau voltage range. (3) There is clear evidence that increasing [K+]o may relieve the “inactivation” induced by strong hyperpolarizations.

[K+]o Dependence of Ikr Conductance in Human Ventricular Myocytes

The square-root dependence of conductance on [K+]o is a property of native and cloned inward rectifier channels from mammalian tissues. Exogenous expressions of cloned channels have demonstrated that inward currents are substantially inhibited by polyamines over the full range of voltages negative to EK, raising the question of possible alterations of inward conductance in native cells as well. Therefore, the conductance-[K+]o relationship may depend on several polyamine-related factors. Indeed, an approximate square-root dependence can be found in macroscopic native currents (eg, in the present study), possibly because conductance measurements are performed at [K+]o much lower than the expected internal K+ concentration. In this case, it is recognized that Ikr channels behave as unsaturated open-channel pores at potentials negative to EK, and the square-root dependence of conductance on [K+]o just reflects this behavior.

[K+]o Dependence of Unblocking Kinetics

We previously showed that action potential duration (APD) is prolonged in human LV septal cells from nonfailing hypertrophied hearts, and we attributed this pattern partially to a dramatic downregulation of Ikr. However, outward Ikr currents also contribute to the final phase of repolarization. Accordingly, the rate of late repolarization, which was found to be slower in hypertrophied cells than in control cells, prompted us to search for alterations in Ikr current. We found only very weak outward currents at potentials positive to Erev compared with those reported in other mammalian species but consistent with other studies on human ventricular cells and may suggest the presence of high cytoplasmic polyamine levels and particular distributions of Ikr channel states on depolarization.

The assumed distribution of channels in the individual states was apparently dependent on [K+]o. Since the P0 fitted curve reflected the voltage dependence of inward rectification, the [K+]o-dependent shift of inward rectification was estimated by the V1/2=EK relationship, which demonstrated high sensitivity on [K+]o, because the slope between V1/2 and EK was 1.07, a value close to that observed for spermine in inside-out patches from Xenopus oocytes expressing Kir2.1. The voltage and [K+]o, dependence of Pslow and Pslow was reminiscent of that established for the proportion of channels blocked by Mg2+ (P Mg) and spermine (P Spm) in murine fibroblast cells, with a positive shift of ≈20 mV by increasing [K+]o from 4 to 8 mmol/L. However, in contrast to the latter reported findings, no relationship crossover was found; the fraction of channels blocked by highly protonated molecules remained greater than the fraction of channels blocked by weakly protonated molecules within the plateau voltage range. This pattern must be interpreted by considering the reported ability of Mg2+ and putrescine (Put2+) to increase outward currents as follows. Given that Put2+ and Mg2+ blocking rate constants are larger than that of spermine, Put2+/Mg2+-blocked states can reach higher proportions than spermine-blocked states at short depolarizing voltage steps. Thereafter, the highest affinity of spermine with the channel induces time-dependent redistribution of Put2+/Mg2+-blocked to spermine-blocked states, and this occurs through an intermediate open state. As a result, the larger the number of Mg2+/Put2+-blocked channels are, the more channels reside in the open state before passing into the spermine-blocked state, thus increasing outward current amplitude. However, because blocking rates depend on the concentrations of blocking molecules, an increase in spermine concentration may entail negative and upper shifts of Pslow at the expense of P Mt/Pu and thus reduce outward currents because of the competitive binding of blocking molecules to the channel. Therefore, the higher values of Pslow within the plateau voltage range compared with Pslow might be indicative of relatively high levels of spermine concentration, underly decreased availability of outward current and hence enhanced excitability.

[K+]o Dependence of Current “Inactivation”

Increasing [K+]o apparently relieves Ikr “inactivation” during hyperpolarizing pulses (Figure 5A). The steady-state “inactivation” shown in Figure 5B also favors the notion that high [K+]o, significantly alleviates “inactivation,” because after
strong hyperpolarizing pulses, the current availability is 8-10-fold greater in 20 than in 4 mmol/L [K+]c.

The time-dependent decline of inward \(I_{\text{Kt}} \) on hyperpolarization in physiological solution was classically ascribed to a voltage-dependent block of the channel by external Na+, reportedly found in native and cloned inward rectifiers.9,25,29 This view is supported by the disappearance of the negative slope in the steady-state current-voltage relationship when Na+ substitutes are used.25,26,29 However, this phenomenon may develop in the absence of external Na+ in guinea-pig ventricular cells11 and in Kir2.3 channels expressed in Xenopus oocytes.14 In contrast, the notion of [Na+]o, block–induced “inactivation” has emerged from the use of various Na+ substitutes subsequently considered inhibitory28 or even as open-channel blockers.32 Indeed, it is unlikely that [Na+]o, acts as an open-channel blocker, but it can redistribute channels to a closed state, thus contributing to the decline of current during prolonged hyperpolarization.32 This may be reconciled with the multiple-ion-block hypothesis that suggests interactions between permeant and blocking ions at multiple binding sites.1 Accordingly, Na+/K+ competition in the channel pore may be an important mechanism by which increasing [K+]o, can relieve “inactivation.”

Extracellular K+ depletion may also account for some decrease in \(I_{\text{Kt}} \), conductance during hyperpolarization29 and is presumably amplified by the structure of the T-tubular system. The K+ selectivity filter, cradled at the external mouth of the pore,33 and the deep, high-affinity binding sites for polyamines probably underlie the key structures governing the selective K+ conduction in \(I_{\text{Kt}} \) channels through electrostatic interactions.20 Thus, the extracellular K+ depletion induced by hyperpolarization might reduce K+ occupancy at the selectivity filter and thus decrease interactions with polyamine binding sites; this should allow partial re-block of the channel by polyamines and might contribute to the “inactivation” process. Because relative changes of extracellular K+ in restricted spaces are expected to be less important in high than in low [K+]o, this “interactive” mechanism might also contribute to the relief of “inactivation” induced by high [K+]o, together with the Na+/K+ competition mentioned above.

Physiological Implications

Extended depolarization decreases outward current by strengthening high-affinity spermine block.6,10 A depolarizing shift of \(V_{\text{h}} \) also reduces it by increasing \(P_{\text{emp}} \) and diminishing the availability of channels to be blocked by Mg2+ on depolarization.6 Therefore, APD prolongation usually observed in the present model10 or slight resting potential depolarizations can reduce the proportion of Mg2+/Put2+ blocked channels during the plateau, then decreasing the outward current flow during repolarization and further lengthening APD. Conversely, recent reports15,17 have demonstrated that manipulation of polyamine levels can bring about dramatic changes in the repolarization phase and significantly increase excitability. Hence, \(I_{\text{Kt}} \) alterations during evolving cardiac hypertrophy in patients with aortic stenosis may favor enhanced excitability and arrhythmias, insofar as elevated polyamine levels have been found in hypertrophy models.17

In other aspects, the question remains whether the depolarizing shift of the voltage dependence of blocked states induced by [K+]o, increases might contribute to the APD lengthening observed at the initial stage of acute myocardial ischemia.14 Indeed, the possibility cannot be ruled out that the cellular K+ loss subsequent to acidification at the early stage of acute ischemia may entail a rightward shift of blocked-state relationships. A subsequent increased prevalence of high-affinity polyamine-blocked states in the plateau voltage range might be expected from the observed patterns (Figure
4), with a resulting decrease in outward current availability and AP prolongation.

Acknowledgments
This work was supported in part by European grant PL 950287, BIOMED II. We gratefully acknowledge Dr Yves Tourneur for reading the manuscript and J.P. Da Ponte for his valuable technical assistance.

References
Extracellular K+ Dependence of Inward Rectification Kinetics in Human Left Ventricular Cardiomyocytes
Patrick Bailly, Maud Mouchonière, Jean-Pierre Bénitah, Lionel Camilleri, Guy Vassort and Paco Lorente

Circulation. 1998;98:2753-2759
doi: 10.1161/01.CIR.98.24.2753

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/98/24/2753

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/