Low Circulating Folate and Vitamin B₆ Concentrations
Risk Factors for Stroke, Peripheral Vascular Disease, and Coronary Artery Disease

Killian Robinson, MD; Kristopher Arheart, EdD; Helga Refsum, PhD; Lars Brattström, MD, PhD; Godfried Boers, MD; Per Ueland, PhD; Paolo Rubba, MD; Roberto Palma-Reis, MD; Raymond Meleady, MRCPI; Leslie Daly, PhD; Jacqueline Witteman, MD; Ian Graham, FRCPI; for the European COMAC Group*

Background—A high plasma homocysteine concentration is a risk factor for atherosclerosis, and circulating concentrations of homocysteine are related to levels of folate and vitamin B₆. This study was performed to explore the interrelationships between homocysteine, B vitamins, and vascular diseases and to evaluate the role of these vitamins as risk factors for atherosclerosis.

Methods—In a multicenter case-control study in Europe, 750 patients with documented vascular disease and 800 control subjects frequency-matched for age and sex were compared. Plasma levels of total homocysteine (before and after methionine loading) were determined, as were those of red cell folate, vitamin B₁₂, and vitamin B₆.

Results—In a conditional logistic regression model, homocysteine concentrations greater than the 80th percentile for control subjects either fasting (12.1 μmol/L) or after a methionine load (38.0 μmol/L) were associated with an elevated risk of vascular disease independent of all traditional risk factors. In addition, concentrations of red cell folate below the lowest 10th percentile (<513 nmol/L) and concentrations of vitamin B₆ below the lowest 20th percentile (<23.3 nmol/L) for control subjects were also associated with increased risk. This risk was independent of conventional risk factors and for folate was explained in part by increased homocysteine levels. In contrast, the relationship between vitamin B₆ and atherosclerosis was independent of homocysteine levels both before and after methionine loading.

Conclusions—Lower levels of folate and vitamin B₆ confer an increased risk of atherosclerosis. Clinical trials are now required to evaluate the effect of treatment with these vitamins in the primary and secondary prevention of vascular diseases. (Circulation. 1998;97:437-443.)

Key Words: atherosclerosis ■ cerebrovascular disorders ■ coronary disease ■ peripheral vascular disease ■ risk factors

An increased plasma homocysteine concentration is associated with premature arterial disease and may reflect deficiency states of folate, vitamin B₁₂, or vitamin B₆ or of certain essential enzymes. The relationship between these B vitamins and vascular diseases, however, remains poorly defined. The present study demonstrates that lower circulating levels of folate and vitamin B₆ are often seen in patients with atherosclerosis and confer an increased and independent risk of cardiovascular disease.

Methods

Case Subjects

Patients with clinical evidence of coronary artery disease, peripheral vascular disease, or cerebrovascular disease confirmed by standard diagnostic techniques were included. The inclusion and exclusion criteria have been reported extensively elsewhere. Briefly, 750 case subjects with vascular disease and 800 control subjects younger than 60 years of age, of both sexes, were recruited at 19 centers in nine European countries. Case subjects had defined clinical and objective investigational evidence of vascular disease. Newly or recently diagnosed case subjects were recruited wherever possible, and 69% were recruited within 1 year of diagnosis. Exclusion criteria for both case and control subjects included nonatherosclerotic vascular disease, cardiomyopathy, diabetes mellitus, pregnancy, recent (within 3 months) systemic illness, and psychiatric illness. Conditions thought to influence homocysteine concentrations, such as renal or thyroid

Received June 5, 1997; revision received November 17, 1997; accepted November 17, 1997.

From the Departments of Cardiology (K.R.) and Biostatistics and Epidemiology (K.A.), The Cleveland Clinic Foundation, Cleveland, Ohio; Department of Clinical Biology, Division of Pharmacology (H.R., P.U.), University of Bergen, Norway; Department of Medicine (L.B.), County Hospital, Kalmar, Sweden; Department of Endocrinology (G.B.), Katholieke Universiteit, Nijmegen, Netherlands; Facolta di Medicina e Chirurgia (P.R.), Universita degli Studi di Napoli, Federico II, Naples, Italy; Servicio de Medicina (R.P.-R.), Hospital de S. Francisco Xavier Lisbon, Portugal; Department of Cardiology, Adelaide Hospital, Trinity College, Dublin and the Department of Epidemiology, Royal College of Surgeons in Ireland (R.M., I.G.); Department of Public Health Medicine and Epidemiology (L.D.), University College Dublin, Ireland; and Department of Epidemiology (J.W.), Erasmus University Medical School, Rotterdam, Netherlands.

*For a complete list of investigators and their affiliations, please see the “Appendix.”

Correspondence to Killian Robinson, MD, Desk F15, Department of Cardiology, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195.

E-mail robinsk@ccsmtp.ccf.org

© 1998 American Heart Association, Inc.
TABLE 1. Clinical Data in 750 Case Subjects With Vascular Disease and 800 Control Subjects

| Variable | Case Subjects | Control Subjects | *P*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, %</td>
<td>73</td>
<td>71</td>
<td>.574</td>
</tr>
<tr>
<td>Mean age (SE), y</td>
<td>47.2 (0.31)</td>
<td>43.9 (0.36)</td>
<td><.001</td>
</tr>
<tr>
<td>Mean weight (SE), kg</td>
<td>74.7 (0.46)</td>
<td>73.9 (0.45)</td>
<td>.046</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>54</td>
<td>33</td>
<td><.001</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>38.5</td>
<td>12</td>
<td><.001</td>
</tr>
<tr>
<td>Hypercholesterolemia, %</td>
<td>53</td>
<td>36</td>
<td><.001</td>
</tr>
<tr>
<td>Mean creatinine (SE), μmol/L</td>
<td>70.8 (0.61)</td>
<td>69.3 (0.44)</td>
<td>.057</td>
</tr>
</tbody>
</table>

Risk Factors for Vascular Disease

Age, sex, smoking habits, blood pressure, lipid concentrations, weight, and both drug and vitamin usage were documented in all subjects and are shown in Table 1.

Methionine-Loading Test

A methionine-loading test was performed on all subjects in standard fashion. Blood was drawn into tubes containing EDTA for measurement of fasting tHcy. An oral dose of 0.1 g/kg L-methionine was administered, and blood was drawn again 6 hours later for the postload measurement. We refer to the difference between these two concentrations as the increase in tHcy.

Laboratory Measurements

Homocysteine Assay

Total plasma homocysteine was measured by use of a previously described method involving reduction with sodium borohydride, derivatization with monobromobimane, high-performance liquid chromatography (HPLC) separation, and fluorescence detection. Blinded analyses were performed on all samples that were reanalyzed twice on two separate days. A maximum of 10% difference between the two results, ie, 5% difference from the mean, was allowed. If this was exceeded, the analyses were repeated for a third time. The average of these analyses is presented.

Vitamin Concentrations and Other Assays

Measurements of red cell folate, vitamin B₁₂, vitamin B₆ (measured as pyridoxal 5'-phosphate), and creatinine were performed centrally at Minelab-AB, Søraker, Sweden. Vitamin B₁₂ and folate concentrations were measured by use of a radioimmunoassay technique, and pyridoxal 5'-phosphate was measured by enzymatic photometry with HPLC separation.

Definitions

Traditional Risk Factors

Smokers were defined as those currently smoking any tobacco (at the time of diagnosis for case subjects and at the time of the methionine-loading test for control subjects). Hypertension was considered present if at the time of the methionine-loading test a systolic blood pressure ≥160 mm Hg or a diastolic pressure of 95 mm Hg was observed or if treatment for high blood pressure was administered. For both systolic and diastolic blood pressures, the mean of four values was used (two obtained before and two after the administration of methionine). Hypercholesterolemia was considered present if subjects were taking lipid-lowering drug treatment or had a serum cholesterol ≥6.5 mmol/L (251.4 mg/dL).

Homocysteine Concentrations

For categorical analyses, high tHcy concentrations were defined as levels greater than the 80th percentile for control subjects in both the fasting (12 μmol/L) and the post–methionine-loading state (38 μmol/L). The 80th percentile for control subjects was also used to define an abnormally high increase after methionine loading (27 μmol/L).

Vitamin Deficiencies and Low Vitamin Status

Folate deficiency was defined as a red cell folate concentration <372 nmol/L, which is similar to widely used reference ranges. Low folate status was defined as a concentration below the 10th percentile for control subjects (513 nmol/L). Concentrations of fasting tHcy below this level of folate were higher than those in the upper decile of folate concentration (see Figure). Because this difference persisted when adjusted for deficiencies of both vitamin B₁₂ and vitamin B₆, we inferred a functional folate deficiency at and below this level. Vitamin B₁₂ deficiency was defined as a plasma concentration <125 pmol/L. Low vitamin B₁₂ status was defined arbitrarily as a value below the 10th percentile for control subjects (139.5 pmol/L). Definitions of vitamin B₆ deficiency are not uniform, and values <30^{20,31} or <20 nmol/L³⁰ may indicate deficiency. In the present study, frank deficiency was defined as <20 nmol/L. Because this was almost identical to the 10th percentile for control subjects (20.8 nmol/L), low vitamin B₆ status was defined as less than the 20th percentile for control subjects (23.3 nmol/L).

Diagnostic Criteria for Vascular Disease

The following criteria were used for the diagnosis of vascular diseases:
1. Coronary heart disease: clinical evidence of angina or myocardial infarction plus a ≥2-fold rise in cardiac enzymes with evolutionary ST-T changes or pathological Q waves alone or angiographic evidence of ≥70% stenosis of a major coronary artery.

2. Cerebrovascular disease: clinical evidence of stroke or transient ischemic attack plus carotid stenosis ≥50% on Doppler or angiography or unequivocal atherosclerotic plaque on angiography or computed tomographic evidence of cerebral infarction without demonstrable source of embolism.

3. Peripheral vascular disease: clinical evidence of intermittent claudication or clearly diminished foot pulses plus obstruction of one major peripheral artery on angiography or Doppler ankle-arm index <0.9.

Statistical Methods

Sample size considerations for this study have been presented elsewhere. Data are presented as mean ± SE or percents. When necessary, log transformation was used for skewed variables, and these data are presented as geometric means and 95% CIs. We compared risk factors between case and control subjects using a t test or χ² test as appropriate. We examined the relationship among tHcy and vitamin concentrations using Pearson correlations. Conditional logistic regression stratified by center, age, and gender was used to investigate models of the risk of coronary artery disease; odds ratios with 95% CIs are reported for these analyses. Differences in tHcy among vitamin deciles were evaluated with ANOVA. A two-sided 5% level of significance is considered significant for all statistical tests; exact probability values are reported down to P < 0.001.

Results

Concentrations of tHcy

Geometric means for fasting, postload, and increase in tHcy values and for the vitamins are shown in Table 2 according to gender and case status. Overall, fasting tHcy values were higher in case subjects than in control subjects in both men and women. Age and weight adjustment had little effect on the values shown in the tables or on significance levels (data not shown). After the methionine-loading test, tHcy values were higher in case subjects than in control subjects, both in men and women. These concentrations also remained high when adjusted for age and weight (data not shown). The increase in tHcy after methionine loading was significantly greater in case subjects than in control subjects but was more marked in women than in men. These concentrations also remained high when adjusted for age and weight (data not shown).

Vitamins

Folate concentrations were higher in men than in women. Within men as a group, however, folate levels were lower in case subjects than in control subjects (819.0 ± 1.0 versus 876.2 ± 1.0 mmol/L; P = .005; see Table 2). Mean vitamin B₁₂...
concentrations were similar in both case and control subjects. Vitamin B6 concentrations were lower in case subjects than in control subjects.

Correlations Between Vitamins and tHcy
The correlations between tHcy and the three vitamins are shown in Table 3 and the Figure.

Fasting tHcy correlated negatively with folate. Postload values correlated negatively with folate in male case subjects and in female control subjects. In contrast, values for the increase in tHcy did not correlate with folate. Fasting, postload, and increases in tHcy values correlated negatively with vitamin B12 (see Table 3) in both case and control subjects. The majority of these correlations were significant. Fasting, postload, and increases in tHcy values correlated negatively with vitamin B6 (see Table 3), and the majority of these correlations were significant. Across the range of vitamin B6 concentrations, postload tHcy levels were greater in case than control subjects (see Figure).

Vitamin Deficiencies
Prevalences of vitamin deficiencies (defined by use of conventional definitions) and values for the lower 10th and 20th percentiles are shown in Table 4. When a definition of folate deficiency of 372 nmol/L was used, folate deficiency was seen in 2% of control subjects and 4% of case subjects (\(P<.05\)). Low folate status, corresponding to the 10th percentile for control subjects (\(513 \text{ nmol/L}\)), was seen in 15% of case subjects (\(P<.002\)). Prevalences of deficiency of vitamin B12 (\(<125 \text{ pmol/L}\)) and low vitamin B12 status were no different in case subjects than in control subjects. Deficiency (\(<20 \text{ nmol/L}\)) was seen in 21% of case subjects (\(P<.001\)). This concentration was almost identical to the 10th percentile for control subjects (20.75 nmol/L; see Table 4). Low vitamin B12 status (less than the 20th percentile for control subjects, or 23.2 nmol/L) was seen in 35% of case subjects (\(P<.001\)).

Relationships Between Homocysteine, Vitamins, and Vascular Disease
Variables included in the conditional logistic regression models for vascular diseases included hypertension, smoking, hypercholesterolemia, creatinine, and the concentrations of fasting tHcy, postload tHcy, increase in tHcy, folate, vitamin B12, and vitamin B6. The results for these analyses are shown in Table 5.

Table 3. Correlations Between Plasma Total Homocysteine and Vitamin Levels in Case and Control Subjects

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Case Subjects</th>
<th></th>
<th>Control Subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Folate vs fasting tHcy</td>
<td>-0.320†</td>
<td>-0.251†</td>
<td>-0.161†</td>
<td>-0.255†</td>
</tr>
<tr>
<td>Folate vs postload tHcy</td>
<td>-0.162†</td>
<td>-0.013</td>
<td>-0.033</td>
<td>-0.146*</td>
</tr>
<tr>
<td>Folate vs increase in tHcy</td>
<td>-0.030</td>
<td>0.078</td>
<td>0.029</td>
<td>-0.091</td>
</tr>
<tr>
<td>B12 vs fasting tHcy</td>
<td>-0.273†</td>
<td>-0.292†</td>
<td>-0.279†</td>
<td>-0.233†</td>
</tr>
<tr>
<td>B12 vs postload tHcy</td>
<td>-0.160†</td>
<td>-0.149*</td>
<td>-0.175†</td>
<td>-0.179*</td>
</tr>
<tr>
<td>B12 vs increase in tHcy</td>
<td>-0.090*</td>
<td>-0.088</td>
<td>-0.109*</td>
<td>-0.139*</td>
</tr>
<tr>
<td>B6 vs fasting tHcy</td>
<td>-0.161†</td>
<td>-0.252†</td>
<td>-0.127*</td>
<td>-0.060</td>
</tr>
<tr>
<td>B6 vs postload tHcy</td>
<td>-0.111*</td>
<td>-0.254†</td>
<td>-0.098*</td>
<td>-0.108</td>
</tr>
<tr>
<td>B6 vs increase in tHcy</td>
<td>-0.064</td>
<td>-0.222†</td>
<td>-0.08</td>
<td>-0.112</td>
</tr>
<tr>
<td>Folate vs vitamin B12</td>
<td>0.087*</td>
<td>0.160*</td>
<td>0.088*</td>
<td>0.097</td>
</tr>
<tr>
<td>Folate vs vitamin B6</td>
<td>0.005</td>
<td>0.099</td>
<td>0.137†</td>
<td>0.060</td>
</tr>
<tr>
<td>Vitamin B12 vs vitamin B6</td>
<td>0.086*</td>
<td>0.164*</td>
<td>0.059</td>
<td>-0.030</td>
</tr>
</tbody>
</table>

*\(tHcy\) indicates total homocysteine. All data are log transformed. *\(P<.05\); † \(P<.001\).

Table 4. Prevalence of Low Vitamin Status and Conventionally Defined Vitamin Deficiencies in Case and Control Subjects

<table>
<thead>
<tr>
<th>Variable</th>
<th>Threshold</th>
<th>Case Subjects</th>
<th>Control Subjects</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin B6</td>
<td>10th percentile (20.8 nmol/L)</td>
<td>23</td>
<td>10</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>20th percentile (23.3 nmol/L)</td>
<td>35</td>
<td>20</td>
<td><.001</td>
</tr>
<tr>
<td></td>
<td>Deficiency (20.0 nmol/L)</td>
<td>21</td>
<td>8</td>
<td><.001</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>10th percentile (140 pmol/L)</td>
<td>12</td>
<td>10</td>
<td>.130</td>
</tr>
<tr>
<td></td>
<td>20th percentile (170 pmol/L)</td>
<td>28</td>
<td>20</td>
<td>.328</td>
</tr>
<tr>
<td></td>
<td>Deficiency (125 pmol/L)</td>
<td>8</td>
<td>6</td>
<td>.179</td>
</tr>
<tr>
<td>Red cell folate</td>
<td>10th percentile (513 nmol/L)</td>
<td>15</td>
<td>10</td>
<td>.002</td>
</tr>
<tr>
<td></td>
<td>20th percentile (604 nmol/L)</td>
<td>26</td>
<td>20</td>
<td>.007</td>
</tr>
<tr>
<td></td>
<td>Deficiency (372 nmol/L)</td>
<td>4</td>
<td>2</td>
<td>.048</td>
</tr>
</tbody>
</table>

Cutpoints defining groups are given in parentheses (see “Methods”) and are based on control data. Patients with deficiencies in vitamins other than the one being analyzed are eliminated from the analysis. *For vitamin B6, \(n=748\) case subjects and 800 control subjects; for vitamin B12, \(n=749\) case subjects and 800 control subjects; and for red cell folate, \(n=685\) case subjects and 775 control subjects.
shown in Table 5) and low vitamin B6 status (odds ratio, 1.84; 95% CI, 1.39 to 2.42; \(P < .001\)). An increased odds ratio of vascular disease was seen both with vitamin B6 deficiency (not shown in Table 5). A level of folate below the lowest decile (20.75 nmol/L) was used, folate deficiency was not associated with an increased odds ratio of vascular disease (1.12; CI, 0.52 to 2.41; \(P = .392\)). The risk associated with low folate status, however, was associated with an increased risk of vascular disease. Low folate status, however, was associated with an increased risk of vascular disease. This risk was reduced by the inclusion of fasting homocysteine in the model, implying that the increased risk of vascular disease accompanying lower folate levels may be explained by the higher circulating homocysteine concentrations. These findings are consistent with those of Pancharuniti et al,\(^{12}\) who showed an association between lower folate levels and angiographic evidence of \(\geq 50\%\) occlusion of one or more major coronary arteries in white males younger than 50 years of age. Recently, Morrison et al\(^{13}\) reported a higher 15-year coronary mortality rate in patients with lower folate concentrations.

Discussion

Increases in plasma concentrations of homocysteine are common in patients with stroke, coronary disease, and peripheral vascular disease and confer an independent risk of atherosclerosis.\(^{1-16}\) In the present study, important links between homocysteine, low vitamin concentrations, and vascular disease risk were seen. The causes of hyperhomocysteinemia in these patients are poorly understood, although reduced activity of cystathionine \(\beta\)-synthase\(^{2,4}\) or methylenetetrahydrofolate reductase,\(^{24,25}\) which are essential for the metabolism of homocysteine, could play a role. More importantly, however, concentrations of homocysteine rise as the levels of folate, vitamin \(B_12\), and vitamin \(B_6\) fall,\(^{17,22}\) and high homocysteine concentrations are often seen with deficiency of these vitamins.\(^{17-19}\)

In this investigation, homocysteine levels were higher in men, although the postload increase was greater in case subjects, with a consequently greater value in total homocysteine level. The gender difference may be because of the fact that more homocysteine is formed in men than in women in conjunction with creatine-creatinine synthesis.\(^{32}\) It is also possible that there are gender differences in the transsulfuration and remethylation of homocysteine, with more efficient remethylation in women and more efficient transsulfuration in men. Men may therefore have a higher folate requirement. Indeed, in the present study, folate levels were lower in women than in men, and case-control differences were only apparent in men.

In the present study, homocysteine correlated negatively with all three vitamins, although the rise in homocysteine was steepest with lower vitamin levels. When a standard definition (372 nmol/L) was used, folate deficiency was not associated with an increased risk of vascular disease. Low folate status, however, was associated with an increased risk of vascular disease. This risk was reduced by the inclusion of fasting homocysteine in the model, implying that the increased risk of vascular disease accompanying lower folate levels may be explained by the higher circulating homocysteine concentrations. These findings are consistent with those of Pancharuniti et al,\(^{12}\) who showed an association between lower folate levels and angiographic evidence of \(\geq 50\%\) occlusion of one or more major coronary arteries in white males younger than 50 years of age. Recently, Morrison et al\(^{13}\) reported a higher 15-year coronary mortality rate in patients with lower folate concentrations.

In their study, folate levels were lower in women than in men, and case-control differences were only apparent in men.

Homocysteine

Odds ratios for vascular disease for \(t\)Hcy have already been reported, adjusted for conventional risk factors.\(^{16}\) High fasting, increase, and postload \(t\)Hcy concentrations were significant risk factors for vascular disease after adjustment was made for traditional risk factors and vitamins (see Table 5).

Vitamins

When a conventional definition (<372 nmol/L) was used, folate deficiency was not associated with an increased odds ratio of vascular disease (1.12; CI, 0.52 to 2.41; \(P = .77\); data not shown in Table 5). A level of folate below the lowest decile (51.3 nmol/L) conferred an odds ratio of 1.50 (CI, 1.03 to 2.20; \(P = .045\); see Table 5) for vascular disease, adjusted for traditional risk factors. When adjusted for fasting \(t\)Hcy but not the increase or postload values, this was no longer significant.

Neither vitamin \(B_12\) deficiency (data not shown) nor low vitamin \(B_6\) status was associated with a significant likelihood of vascular disease (see Table 5). An increased odds ratio of vascular disease was seen both with vitamin \(B_6\) deficiency (not shown in Table 5) and low vitamin \(B_6\) status (odds ratio, 1.84; CI, 1.39 to 2.42; \(P < .001\)). The risk associated with low vitamin \(B_6\) status persisted when adjusted for the concentrations of \(t\)Hcy (fasting, postload, or increase; see Table 5).

Table 5: Adjusted Odds Ratio of Vascular Disease in Subjects With High Total Homocysteine or Low Vitamin Levels Relative to Subjects With Normal \(t\)Hcy or Vitamin Levels

<table>
<thead>
<tr>
<th>Variable</th>
<th>Additional Adjustment</th>
<th>RR (95% CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High fasting (t)Hcy</td>
<td>(\cdots)</td>
<td>1.96 (1.49–2.58)</td>
<td><.001</td>
</tr>
<tr>
<td>Vitamin levels</td>
<td></td>
<td>1.69 (1.26–2.26)</td>
<td>.001</td>
</tr>
<tr>
<td>High postload (t)Hcy</td>
<td>(\cdots)</td>
<td>1.82 (1.39–2.40)</td>
<td><.001</td>
</tr>
<tr>
<td>Vitamin levels</td>
<td></td>
<td>1.62 (1.2–2.16)</td>
<td>.001</td>
</tr>
<tr>
<td>High increase in (t)Hcy</td>
<td>(\cdots)</td>
<td>1.41 (1.06–1.86)</td>
<td>.017</td>
</tr>
<tr>
<td>Vitamin levels</td>
<td></td>
<td>1.28 (0.96–1.72)</td>
<td>.094</td>
</tr>
<tr>
<td>Folate <10th percentile*</td>
<td>(\cdots)</td>
<td>1.50 (1.03–2.20)</td>
<td>.045</td>
</tr>
<tr>
<td>Fasting (t)Hcy</td>
<td></td>
<td>1.38 (0.93–2.03)</td>
<td>.108</td>
</tr>
<tr>
<td>Postload (t)Hcy</td>
<td></td>
<td>1.45 (0.99–2.13)</td>
<td>.060</td>
</tr>
<tr>
<td>Increase in (t)Hcy</td>
<td></td>
<td>1.50 (1.02–2.20)</td>
<td>.038</td>
</tr>
<tr>
<td>(B_12) <10th percentile*</td>
<td>(\cdots)</td>
<td>1.19 (0.80–1.76)</td>
<td>.392</td>
</tr>
<tr>
<td>Fasting (t)Hcy</td>
<td></td>
<td>1.09 (0.73–1.63)</td>
<td>.670</td>
</tr>
<tr>
<td>Postload (t)Hcy</td>
<td></td>
<td>1.16 (0.78–1.72)</td>
<td>.481</td>
</tr>
<tr>
<td>Increase in (t)Hcy</td>
<td></td>
<td>1.17 (0.79–1.73)</td>
<td>.440</td>
</tr>
<tr>
<td>(B_6) <20th percentile†</td>
<td>(\cdots)</td>
<td>1.84 (1.39–2.42)</td>
<td><.001</td>
</tr>
<tr>
<td>Fasting (t)Hcy</td>
<td></td>
<td>1.76 (1.33–2.34)</td>
<td><.001</td>
</tr>
<tr>
<td>Postload (t)Hcy</td>
<td></td>
<td>1.79 (1.35–2.37)</td>
<td><.001</td>
</tr>
<tr>
<td>Increase in (t)Hcy</td>
<td></td>
<td>1.81 (1.37–2.40)</td>
<td><.001</td>
</tr>
</tbody>
</table>

\(t\)Hcy indicates total homocysteine; RR, relative risk.

Analyses are stratified by center, age, and gender. All models include hypertension, smoking status, hypercholesterolemia, and creatinine. All three vitamin levels are simultaneously included in models to adjust for their combined influence.

*Also adjusted for lower levels of the other two vitamins.
†The 20th percentile for vitamin \(B_6\) levels is given here because the conventional definition of deficiency (<20 nmol/L) and the 10th percentile (20.75 nmol/L) were virtually identical. Odds ratio of vascular disease was in fact elevated at all three levels (deficient and less than the 10th and 20th percentiles).

Table 5. Adjusted Odds Ratio of Vascular Disease in Subjects With High Total Homocysteine or Low Vitamin Levels Relative to Subjects With Normal \(t\)Hcy or Vitamin Levels

Robinson et al 441
myocardial infarction, concentrations return to baseline levels after 3 to 4 days. Confounding disorders associated with reduced vitamin B6 levels, such as cancer, renal disease, diabetes, or alcoholism, also could not have been responsible because such patients had been excluded from the present study. Control subjects had also been selected carefully, and values for random population control subjects were similar to those seen in control subjects recruited from other sources. The large sample size permitted the exploration of a number of models of vitamin B6 deficiency and low vitamin B6 status that confirmed the increased relative risk of vascular disease with lower vitamin B6 concentrations. Risk fell with rising vitamin B6 concentrations and was independent of traditional risk factors. Adjustment for fasting, post-load, and increase in homocysteine concentrations did not abolish this effect. High homocysteine concentrations often follow a methionine load and have been ascribed to cystathionine β-synthase deficiency. In such patients, however, deficiency of vitamin B6 may be a more satisfactory explanation, because the loading test may be abnormal in such case subjects and the gene frequency for cystathionine β-synthase deficiency is low.

In summary, low concentrations of folate and vitamin B6 are often associated with high homocysteine concentrations. Lower levels of both these vitamins confer an increased risk of vascular disease. This risk may be mediated through homocysteine in the case of folate but not in the case of vitamin B6. Such vitamin levels are commonplace in the population and include many individuals now thought to have vitamin concentrations in a normal range. The abnormalities may be readily reversed by folic acid either alone or in combination with vitamins B12 and B6. Intervention studies are now required to test the effects of such treatment on the primary and secondary prevention of vascular disease.

Appendix

Other Investigators in the European Concerted Action Project

Isabella Higgins (Department of Cardiology, Adelaide Hospital, Trinity College, Dublin, Ireland); Armando Sales Lús (Servicio de Medicina, Hospital de S. Francisco Xavier Lisbon, Portugal); Richard Sheahan (Division of Cardiology, University of Texas Medical Branch at Galveston); Bo Isaksson (Department of Medicine, Malmö General Hospital, Malmö, Sweden); Dorothy McMaster and Alun Evans (Department of Medicine, The Queen’s University of Belfast, Northern Ireland); Petra Verhoef (Department of Public Health and Epidemiology, Agricultural University, Wageningen, Netherlands); Cuno Uiterwaal (Department of Epidemiology and Biostatistics, Erasmus University Medical School, Rotterdam, Netherlands); Genroso Andra (Facolta di Medicina e Chiruriga, Università degli Studi di Napoli, Federico II, Naples, Italy); Hélène Bellet (Laboratoire de Medicine Experimentale, Institut de Biologie, Montpelier, France); Claude Wautrecht (Service de Pathologie Vasculaire, Clinique Médicale, University Libre de Bruxelles, Belgium); Harald de Valk (Department of Internal Medicine, University Hospital, Utrecht, Netherlands); Françoise Parrot Roulaud (Département Chromatographie, Hôpital Pellegrin, Bordeaux, France); Koko Soon Tan (Department of Cardiology, Toa Payoh Hospital, Singapore); Danielle Garçon (Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France); Maria José Medrano (Instituto de Salud “Carlos III”, Centro Nacional de Epidemiologia, Madrid, Spain); Mirande Candito (Laboratoire de Biochimie, Hôpital Pasteur, Nice, France).

Acknowledgments

We acknowledge with gratitude the funding for this work partially supplied by the following research organizations: Irish Heart Foundation; The Irish Health Research Board; The Norwegian Council on Cardiovascular Diseases and the Norwegian Research Council; The Netherlands Organization for Scientific Research; The Foundation for Metabolic Research of Utrecht; The Northern Ireland Chest Heart and Stroke Association; Instituto Nacional de Investigacion Sanitarias de la Seguridad Social; FIS No. 92/0914E, Spain; Progetto strategico “Famigli per malattie orofane” nell’ambito del sottoprogetto Omocistinurina, CNRF Roma, Consiglio Nazionale delle Ricerche, Rome, Italy; S.A. Roche, Brussels; The Swedish Heart and Lung Foundation; The Swedish Medical Research Council; and several other bodies.

References

Downloaded from http://circ.ahajournals.org/ by guest on November 6, 2017

Low Circulating Folate and Vitamin B₆ Concentrations: Risk Factors for Stroke, Peripheral Vascular Disease, and Coronary Artery Disease

Killian Robinson, Kristopher Arheart, Helga Refsum, Lars Brattström, Godfried Boers, Per Ueland, Paolo Rubba, Roberto Palma-Reis, Raymond Meleady, Leslie Daly, Jacqueline Witteman and Ian Graham

for the European COMAC Group

Circulation. 1998;97:437-443
doi: 10.1161/01.CIR.97.5.437
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/97/5/437

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/