Endothelin-1 Inhibits Endothelin-Converting Enzyme-1 Expression in Cultured Rat Pulmonary Endothelial Cells

Shojiro Naomi, MD; Taisuke Iwaoka, MD; Tumba Disashi, MD; Junnosuke Inoue, MD; Yoshie Kanesaka, MD; Hiroshi Tokunaga, MD; Kimio Tomita, MD

Background—The lung expresses large amounts of endothelin-converting enzyme-1 (ECE-1), which catalyzes a step in the biosynthesis of potent vasoactive endothelin-1 (ET-1) from the inactive intermediate big ET-1. Because there has been no report concerning a possible relationship between ET-1 and ECE-1, we investigated the effects of ET-1 on ECE-1 expression in cultured rat pulmonary endothelial cells.

Methods and Results—ECE-1 messenger RNA (mRNA) and protein expression in cultured endothelial cells were assayed by Northern and Western blotting, respectively. Incubation with ET-1 for 6 hours caused a significant decrease in ECE-1 mRNA expression. The action of ET-1 on ECE-1 mRNA expression was antagonized by pretreatment with BQ788, a specific ETB receptor antagonist, but not by pretreatment with BQ123, a specific ETA receptor antagonist. The expression of ECE-1 protein was also inhibited at 6 hours after incubation with ET-1. The effects of ET-1 on ECE-1 mRNA and protein expression were shown to be mimicked by ionomycin, a calcium ionophore, but not by 12-O-tetradecanoylphorbol 13-acetate, a protein kinase C activator.

Conclusions—The present results demonstrate that ET-1 suppressed ECE-1 protein levels by inhibiting ECE-1 mRNA expression through the ETB receptor, suggesting the existence of a feedback action of ET-1 on ECE-1 in pulmonary endothelial cells. (Circulation. 1998;97:234-236.)

Key Words: endothelin ■ endothelium ■ receptors
Selected Abbreviations and Acronyms

ECE-1 = endothelin-converting enzyme-1
ET-1 = endothelin-1
ETA = endothelin A
ETB = endothelin B
PKC = protein kinase C
TPA = 12-O-tetradecanoylphorbol 13-acetate
TRLEC-03 = SV40-transformed rat vascular endothelial cell line in lung

or the calcium ionophore ionomycin. ET-1 (10^{-7} \text{ mol/L}) was applied at time zero with or without pretreatment of the ETA receptor antagonist (BQ123) or ETB receptor antagonist (BQ788) for 30 minutes. Samples were obtained for RNA or protein analysis at 1, 3, 6, and 20 hours. At each time point, samples were also obtained from cells not exposed to the interventional compounds as time controls.

Northern Blot Analysis

Total RNA was isolated from endothelial cells with the acid guanidinium thiocyanate–phenol-chloroform method. Total RNA (20 \mu g) was size fractionated by 1.2% agarose gel electrophoresis and transferred to a nylon membrane. The rat ECE cDNA probe was labeled with [32P]dCTP (3000 Ci/mmol, Amersham International PLC) by the random primed labeling method. The RNA immobilized on the membrane was hybridized with the labeled probes in the presence of 50% formamide, 5X Denhardt’s solution, 100 \mu g/ml salmon sperm DNA, 0.5% SDS, and 5X SSPE buffer (1X SSPE buffer: 150 mmol/L NaCl, 10 mmol/L NaHPO_4, 1 mmol/L EDTA, pH 7.4) for 20 hours at 42°C. Autoradiography was performed with an intensifying screen at ~80°C. The results were quantified by densitometric scanning. To control for variability in the loaded quantity of RNA, membranes were probed with GAPDH cDNA and used to normalize ECE-1 mRNA.

Western Blot Analysis

The confluent cells were collected with scrapers. After centrifugation, precipitated cells were homogenized in 10 vol of homogenization buffer (20 mmol/L Tris/HCl, pH 7.5, 5 mmol/L MgCl_2, 0.1 mmol/L PMSF, 20 \mu mol/L pepstatin A, and 20 \mu mol/L leupeptin) by use of a Polytron homogenizer. The homogenates were centrifuged at 10000 \text{ g} for 10 minutes. The supernatants were centrifuged at 100000 \text{ g} for 30 minutes at 4°C. The membrane proteins (1 \mu g) obtained were subjected to a 4% to 20% gradient SDS–polyacrylamide gel. The separated proteins were transferred to poly(vinylidene) membranes (Millipore Co). The resultant blots were incubated with a purified monoclonal antibody against rat ECE-1, AEC27–121, at 4°C overnight followed by the goat anti-mouse IgG antibody coupled with horseradish peroxidase for 1 hour. The blots were activated with an enhanced chemiluminescence kit (Amersham International PLC) and exposed to hyperfilm.

Statistical Analysis

Results are expressed as mean±SEM. Statistical analyses were performed by ANOVA and Fisher’s least significant difference post hoc test. Values of P<0.05 were considered to be statistically significant.

Results

ECE-1 mRNA levels were measured at different time points up to 20 hours after the addition of ET-1 (10^{-7} \text{ mol/L}). Fig 1A shows that the ECE-1 message that was normalized as a ratio of ECE-1 mRNA to GAPDH mRNA decreased after 6 hours of exposure to ET-1 (P<0.05 versus control; n=5). We tested whether the inhibitory effect of ET-1 on ECE-1 mRNA expression was mediated by either the ETA or ETB receptor. Fig 1B shows that ET-1 inhibited ECE-1 mRNA to 62±10% of control levels (P<0.05 versus control; n=5) at 6 hours after incubation. ECE-1 mRNA expression by ET-1 remained suppressed to 57±10% of control (P<0.05 versus control; n=5) by preincubation with BQ123 (10^{-6} \text{ mol/L}). Preincubation with BQ788 (10^{-6} \text{ mol/L}) abolished ET-1–induced inhibition in ECE-1 mRNA expression to 85±12% of control (P=NS versus control; n=5). TPA (5X10^{-7} \text{ mol/L}) did not alter ECE-1 mRNA expression up to 20 hours after incubation (data not shown). Ionomycin (5X10^{-6} \text{ mol/L}) decreased ECE-1 mRNA expression at 3, 6, and 20 hours’ incubation to 79±7%, 39±5%, and 44±12% of control, respectively (Fig 1C).

As shown in Fig 2A, ECE-1 protein level decreased to 71±12% of control (P<0.05 versus control; n=6) after incubation with ET-1 for 6 hours. ECE-1 protein level did not change significantly after 6 hours’ incubation with TPA (Fig 2B). As with the action on ECE-1 mRNA expression, ionomycin inhibited the ECE-1 protein level to 73±11% of control (P<0.05 versus control; n=8) at 6 hours after the incubation (Fig 2B).

Discussion

We used SV40-transformed rat pulmonary endothelial cells in which the mRNA and protein for ECE-1 were abundantly expressed. To prove the existence of a feedback action between ET-1 and ECE-1, we first obtained data showing that ECE-1 mRNA expression was suppressed at 6 hours after treatment with ET-1. Similar suppression occurred in the ECE-1 protein level at

![Figure 1. Northern blot analysis demonstrating effects of ET-1 on ECE-1 mRNA expression in cultured endothelial cells.](image-url)
ET-1–induced intracellular signaling. Uchida et al.8 studied the activation of PKC is one of the important components of ECE-1 protein abundance quantified by scanning densitometry. Values are expressed as percent of time controls (100%). 3P<.05 compared with controls. B. Representative Western blot analysis (top) of ECE-1 protein. Lane 1 shows control cells (C). In lane 2, cells were stimulated with ET-1 (10^{-7} mol/L) for 6 hours. Bar graph (bottom) shows ECE-1 protein abundance quantified by scanning densitometry. 4P<.05 compared with controls.

Figure 2. Western blot analysis demonstrating effects of ET-1, TPA, and ionomycin on ECE-1 protein level in cultured rat endothelial cells. A. Representative Western blot analysis (top) of ECE-1 protein. Lane 1 shows control cells (C). In lane 2, cells were stimulated with ET-1 (10^{-7} mol/L) for 6 hours. Bar graph (bottom) shows ECE-1 protein abundance quantified by scanning densitometry. Values are expressed as percent of time controls (100%). 3P<.05 compared with controls. B. Representative Western blot analysis (top) of ECE-1 protein. Lane 1 shows control cells (C). In lane 2, cells were stimulated with TPA (5×10^{-7} mol/L) for 6 hours. In lane 3, cells were stimulated with ionomycin (I) (5×10^{-6} mol/L) for 6 hours. Bar graph (bottom) shows ECE-1 protein abundance. 4P<.05 compared with controls.

6 hours after incubation with ET-1. These results indicate that the reduction in the ECE-1 protein level is reflected by changes in the transcription and/or mRNA stability of ECE-1. Because endothelial cells possess the ETB receptor dominantly, we hypothesized the inhibitory action of ET-1 on ECE-1 expression could be mediated by the ETB receptor. The present results revealed that the specific ETB receptor antagonist BQ788 antagonized the inhibitory action of ET-1 on ECE-1 mRNA expression. These results are the first to demonstrate that ET-1 can affect ECE-1 expression through the ETB receptor.

The ETB receptor has been reported to be coupled to phospholipase C and could mediate phosphoinositide hydrolysis, thereby inducing elevation of cytosolic Ca^{2+} in endothelial cells.7 We showed that ionomycin suppressed mRNA and protein expression for ECE-1. Thus, ionomycin mimics the action of ET-1 on ECE-1 expression, supporting the idea that elevation of cytosolic Ca^{2+} may be responsible for the intracellular signaling caused by ET-1 on the regulation of ECE-1 expression.

The activation of PKC is one of the important components of ET-1–induced intracellular signaling. Uchida et al.8 studied the regulation of ECE-1 mRNA in bovine glomerular endothelial cells. They found that TPA increased the expression of ECE-1 mRNA. However, they did not measure the ECE-1 protein level. In the present study, TPA did not change either ECE-1 mRNA expression or the protein level. This discrepancy may be explained by the difference in cell type used. The AP-1 site, which mediates the transcriptional response from TPA, has been found in the human promotor regions of the ECE-1 isozyme ECE-1a gene but not in the promotor of the ECE-1b gene.9 TRLEC-03 cells possess only ECE-1b.10 Although the promotor region of rat ECE-1 has not been analyzed, our data suggest that AP-1 sites on the promotor region of ECE-1b either do not exist as they do in humans or are not involved in operating the transcriptional response of rat ECE-1b. Collectively, our results indicate that the inhibitory action of ET-1 on ECE-1 may not be mediated by the activation of PKC in TRLEC-03 cells.

Miyauchi et al.11 reported that in patients with chronic hemodialysis, strikingly elevated big ET-1 levels with only slightly elevated ET-1 levels in plasma are observed. Recently, it has been reported that rats with hypertension induced by hepatic overexpression of human preproET-1 have a high big ET-1 to mature ET-1 ratio.12 These findings suggest that under certain conditions in which big ET-1 is elevated, ECE-1 can act as a rate-limiting enzyme in the conversion of big ET-1 to mature ET-1 in plasma.

The present results have demonstrated that ET-1 inhibits the level of ECE-1 protein by suppressing the expression of ECE-1 mRNA through the ETB receptor in cultured pulmonary endothelial cells. Future analysis of the feedback system in certain pathophysiological conditions with elevated ET-1 levels should prove that it plays an important role in the regulation of ECE-1 expression by ET-1 in vivo.

Acknowledgments

Our work was supported by a grant-in-aid for scientific research in Japan (grant No. B 07457242 and No. 09470238), a grant-in-aid for exploratory research in Japan (No. 09877220), and a grant from the Houansha Foundation. The authors acknowledge Drs K. Shimada, M. Takahashi, and K. Tanzawa (Sankyo Co Ltd, Tokyo) for technical support and advice. The authors are indebted to Y. Kitamoto and H. Nonoguchi for their helpful discussion.

References

Endothelin-1 Inhibits Endothelin-Converting Enzyme-1 Expression in Cultured Rat Pulmonary Endothelial Cells
Shojiro Naomi, Taisuke Iwaoka, Tumba Disashi, Junnosuke Inoue, Yoshie Kanesaka, Hiroshi Tokunaga and Kimio Tomita

Circulation. 1998;97:234-236
doi: 10.1161/01.CIR.97.3.234

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/97/3/234

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/