Understanding of the factors that lead to atherosclerotic plaque instability causing thrombosis is increasing rapidly. The morphological characteristics of plaques that are unstable, ie, complicated by recent thrombosis, lend insight into the structural and cellular features of presently stable plaques that are vulnerable, ie, at high risk of becoming unstable in the future. The risk of any individual with coronary atherosclerosis developing an acute ischemic event depends on the number of such vulnerable plaques present in that individual rather than the number of plaques overall. One factor in the variation in risk for a further acute event after, for example, an acute myocardial infarction is the variation from individual to individual in the number of vulnerable plaques.

See p 2445

The features found in unstable plaques compared with stable plaques have been shown by study of both necropsy and atherectomy material to be a large core of extracellular lipid, a high density of macrophages containing lipid, a reduced smooth muscle content, and a thin cap. The majority of episodes of major thrombi, particularly in white men with high plasma lipids, are due to plaque rupture. In plaque rupture, the fibrous cap of a plaque tears, exposing the highly thrombogenic lipid core to blood in the lumen of the artery. The mechanical strength of the plaque cap is therefore a vital component of plaque stability and depends on the amount and organization of collagen and other connective tissue proteins. Smooth muscle cells exist in lacunae in the plaque cap, where they produce and maintain the connective tissue matrix on which the cap integrity depends. Both sides of this equation are detrimentally altered by inflammatory processes within the plaque. A reduction in the smooth muscle cell density will inevitably lead to a decline in connective tissue synthesis. There is growing evidence that smooth muscle cell death by apoptosis occurs in plaques, perhaps related to a decline in growth factors needed for their maintenance or to the activity of macrophages in the vicinity producing ROSs.

Interferon-γ production by lymphocytes depresses collagen synthesis by smooth muscle cells. Enhancement of the catabolic side of the equation of connective tissue synthesis, however, is probably more important. Connective tissue matrix proteins are degraded by a range of proteases, the most widely studied of which are the metalloproteinase family. There are at least 12 members of this family, with a large range of molecular weights and with considerable individual variation in their affinity for different components of the connective tissue matrix. One form (MT-MMP) is bound to cell membranes, and its activation plays a role in cell migration. Those with the ability to initiate or enhance the degradation of collagen include interstitial collagenase (MMP-1), gelatinase B (MMP-9), and stromelysin (MMP-3). Although several cell lines in the plaque, including smooth muscle cells and basophils, produce metalloproteinases, the major source is the macrophage. A feature common to all these metalloproteinases is that they are secreted into the extracellular milieu as an inactive precursor that is then converted to an active lower-molecular-weight enzyme. The same cell type, although not necessarily the same cell, also produces TIMPS, which bind to and neutralize the active enzyme. Control of the catabolism of connective tissue is potentially exerted at three levels. The first is in the transcription and secretion of metalloproteinases by the macrophage, the second is at the activation point, and the third is at the level of inhibition because of binding of TIMPS to the active enzyme.

Observational studies on human plaque tissue have used either in situ hybridization to show metalloproteinase mRNA or immunohistochemistry to show the metalloproteinase itself. The difficulty of such observational studies is that most of the antibodies used recognize both the active and inactive forms of the metalloproteinase and therefore give no indication of the balance of the active enzyme with its inhibitor. Nevertheless, these observational studies have shown large amounts of, in particular, MMP-9 (gelatinase B) and MMP-3 (stromelysin) in macrophages in unstable plaques. A biological assay of dynamic enzyme activity within the plaque can be made by placing the tissue section on a gelatin sheet and observing where lysis occurs. This approach has confirmed that an excess of active enzyme over its inhibitor is present in unstable human plaques and is maximal at vulnerable areas in the cap.

These data suggest that one potential way of inhibiting or preventing atherosclerotic plaque progression and clinical events is to reduce metalloproteinase production or activation. Although MMP-9 is emerging as a major member of the metalloproteinase family in the context of plaque events, it must be remembered that its proenzyme is constitutively expressed by monocytes and macrophages, for example in fatty streaks, long before any question of instability of the plaque arises. Mecha-
As in human atherosclerosis and thereby reduce the risk of further acute events.

References


Selected Abbreviations and Acronyms

MMP = matrix metalloproteinases
MT-MMP = membrane-type MMP
ROS = reactive oxygen species
TIMPS = tissue inhibitors of metalloproteinases

Animal models of atherosclerosis induced by high-lipid diets give a system in which the control of metalloproteinases can be explored more fully. In this issue of *Circulation*, such a rabbit model is described which suggests new ways in which metalloproteinase expression is induced and enhanced.

The data in this article provide another rational explanation of why antioxidant therapy might be effective against atherosclerosis.
Reactive Oxygen Species, Metalloproteinases, and Plaque Stability
M.J. Davies

Circulation. 1998;97:2382-2383
doi: 10.1161/01.CIR.97.24.2382
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/97/24/2382

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/