coming through and have failed to demonstrate substantial benefits of GH treatment in patients with CHF due to dilated cardiomyopathy.\(^8\) We agree with Dr Dreifuss entirely—more in vivo and in vitro studies must be performed.

Stefan D. Anker, MD
Andrew J.S. Coats, DM
Cardiac Medicine
National Heart and Lung Institute
London, UK


Response
We thank Dr Heller for his comments on our article. After reviewing the original data, we must admit that some statistical data of the in vivo part of the study were reported incorrectly. This was due to a misunderstanding between the statistician and the authors of the manuscript with regard to the probability values. Unfortunately, this error leads to statistical significance that does not exist in reality. However, we want to emphasize that the in vitro data were not affected by this error. The original data, the mean values, and the correct probability values are reported as follows in the Table. The correct probability values are \(P=.18\) for mean intimal wall area, \(P=.45\) for intimal wall thickness, and \(P=.31\) for degree of stenosis. Therefore, paclitaxel applied with the microporous balloon was not able to inhibit intimal growth in this preliminary in vivo study. However, concerning the conclusion of our study, we have completed comprehensive experiments with the double-balloon catheter and paclitaxel in which we could show in vivo efficacy. The results have been submitted for publication. We sincerely apologize for the errors.

D.I. Axel, PhD; W. Kanert, MD; C. Göggelmann; M. Oberhoff, MD; C. Herdeg, MD; A. Kütten; D.H. Wild; B.R. Brehm, MD; R. Riessen, MD; G. Köveker, MD; K.R. Karsch, MD
Department of Cardiology
University of Tübingen
Tübingen, Germany

Paclitaxel and Arterial Smooth Muscle Cell Proliferation

To the Editor:
I have recently completed reading “Paclitaxel Inhibits Arterial Smooth Muscle Cell Proliferation and Migration In Vitro and In Vivo Using Local Drug Delivery,” published in the July 15, 1997, issue of Circulation. My questions concerning this study are related to the claimed statistical significance of the in vivo data. According to the published methodology, the data were analyzed by a two-tailed unpaired \(t\) test. Having applied this test to verify the significance between the reported means, I find that none of the presented in vivo data have any statistical significance, and I am curious whether Axel et al, in error, might have used a paired \(t\) test.

Phillip F. Heller, PhD
Laboratory of Cardiovascular Sciences
National Institutes of Health
Baltimore, Md

Prospective Study of Asymptomatic Aortic Stenosis

To the Editor:
Relevant points were raised in the study of Otto et al\(^1\) on 123 adults with asymptomatic aortic stenosis and in the editorial by Carabello.\(^2\) We wish to endorse the crucial but neglected role of exercise testing in the management of patients with “asymptomatic” hemodynamically significant aortic stenosis. Stress testing is particularly pertinent before a decision is made to postpone surgical treatment. It is not only in the United States, as stated by Carabello,\(^2\) but also in the United Kingdom and in our own environment that there is some reluctance to exercise patients

<table>
<thead>
<tr>
<th>Animal No.</th>
<th>Intimal Area</th>
<th>Intimal Wall Thickness</th>
<th>Degree of Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paclitaxel</td>
<td>Control</td>
<td>Paclitaxel</td>
</tr>
<tr>
<td>1</td>
<td>0.13 mm²</td>
<td>0.96 mm²</td>
<td>0.11 mm</td>
</tr>
<tr>
<td>2</td>
<td>0.15 mm²</td>
<td>0.31 mm²</td>
<td>0.08 mm</td>
</tr>
<tr>
<td>3</td>
<td>0.16 mm²</td>
<td>0.15 mm²</td>
<td>0.09 mm</td>
</tr>
<tr>
<td>4</td>
<td>0.46 mm²</td>
<td>0.29 mm²</td>
<td>0.11 mm</td>
</tr>
<tr>
<td>5</td>
<td>0.14 mm²</td>
<td>0.18 mm²</td>
<td>0.09 mm</td>
</tr>
<tr>
<td>6</td>
<td>0.20 mm²</td>
<td>Thrombus</td>
<td>0.12 mm</td>
</tr>
<tr>
<td>7</td>
<td>0.25 mm²</td>
<td>0.12 mm²</td>
<td>0.20 mm</td>
</tr>
<tr>
<td>8</td>
<td>0.10 mm²</td>
<td>0.23 mm²</td>
<td>0.06 mm</td>
</tr>
<tr>
<td>9</td>
<td>0.30 mm²</td>
<td>0.81 mm²</td>
<td>0.15 mm</td>
</tr>
<tr>
<td>10</td>
<td>Thrombus</td>
<td>0.21 mm²</td>
<td>Thrombus</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td></td>
<td>0.21±0.11 mm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11±0.04 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.8±8.0%</td>
</tr>
</tbody>
</table>

\(P=.18\) \(P=.45\) \(P=.31\)
Paclitaxel and Arterial Smooth Muscle Cell Proliferation
Phillip F. Heller

Circulation. 1998;97:1651
doi: 10.1161/01.CIR.97.16.1651

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/97/16/1651

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/