Hyperpolarization-Activated Inward Current in Ventricular Myocytes From Normal and Failing Human Hearts

Uta C. Hoppe, MD; Erik Jansen; Michael Südkamp, MD; Dirk J. Beuckelmann, MD

Background—The hyperpolarization-activated inward current (I_f) was found to be overexpressed in hypertrophied rat ventricular myocytes, indicating that I_f might favor arrhythmias in hypertrophied or failing ventricular myocardium. In the present study, we evaluated whether I_f is expressed in human ventricular myocardium, if it may be increased in human heart failure, and if its autonomic modulation may be altered.

Methods and Results—The whole-cell patch-clamp technique was used to record I_f in isolated ventricular myocytes from 34 failing (dilated [DCM] or ischemic [ICM] cardiomyopathy) and 13 donor hearts (NF). I_f was observed in all myocytes showing typical current properties, i.e., time and voltage dependence, block by [Cs+]o, permeability for K⁺ and Na⁺, and current increase with raising [K+]o. There was a trend toward larger current densities in myopathic (at −130 mV in [K+]o, 25 mmol/L; DCM: −1.37±0.12 pA/pF, n=50; ICM: −1.39±0.24 pA/pF, n=30) than in nonfailing cells (−1.18±0.21 pA/pF, n=24), although this difference did not reach statistical significance (P=0.23). Boltzmann distributions yielded an activation threshold of −80 mV and half-maximal activation at −110.96±0.06 mV in myopathic and normal myocytes. Isoproterenol (10⁻⁵ mol/L) shifted the current activation by 10 mV (31 myopathic, 5 NF). Carbachol and adenosine had no direct effect on I_f (6 and 12 myopathic, 3 and 3 NF, respectively) but reversibly antagonized β-adrenergic stimulation (5 and 7 myopathic, 2 and 2 NF, respectively). Autonomic modulation was similar in failing and nonfailing cells.

Conclusions—In end-stage heart failure, no significant change of I_f could be found, although there was a trend toward increased I_f. Together with an elevated plasma norepinephrine concentration and a previously reported reduction in I_K1 in human heart failure, I_f might favor diastolic depolarization in individual myopathic cells. (Circulation. 1998;97:55-65.)

Key Words: electrophysiology ■ heart failure ■ ventricles ■ adenosine ■ arrhythmia

Congestive heart failure is a common and highly lethal cardiovascular disorder, with an annual mortality as high as 50%.1–5 From 35% to 50% of these death are sudden and unexpected.7–9 Most sudden cardiac deaths in heart failure are thought to be caused by ventricular tachyarrhythmias.10–14 Although ACE inhibitors were demonstrated to decrease overall mortality in patients with heart failure, the high rate of sudden cardiac death remained almost unchanged despite various therapeutic interventions.1–5 Most patients with terminal heart failure have not suffered a previous myocardial infarction.7 Thus, classic reentry tachycardias around a scar are unlikely to be the main cause of sudden death in these patients.

The evaluation of possible underlying arrhythmogenic mechanisms in severe heart failure has focused mainly on alterations of repolarization.15 In failing human hearts, a reduction in the transient outward current (I_o) and of the inward rectifier current (I_K1) have been demonstrated,16 consistent with an action potential prolongation measured in multicellular and in single-cell recordings.16–18 However, spontaneous diastolic depolarizations may also initiate arrhythmias in diseased myocardium.

In sinus node and Purkinje cells, the hyperpolarization-activated inward current (I_f) is considered to contribute significantly to the spontaneous diastolic depolarization phase.19–24 I_f is a nonselective cation inward current that is blocked by extracellular cesium.21–25 I_f was found to be stimulated by β-adrenoceptor agonists through a shift of the current activation curve to more positive potentials.21,22,25 An I_f-like current has also been recorded in ventricular myocytes of mammalian species, such as guinea pigs,26 dogs,25,26 and rats.27,28 In spontaneously hypertensive rats, I_f density was linearly related to the severity of cardiac hypertrophy and was found to be significantly larger than in undiseased control animals.28 This led to the hypothesis that overexpression of I_f might contribute to the increased propensity of arrhythmias in hypertrophied ventricular myocardium.28 More recently, we (published in abstract form)29 and Cerbai et al30 recorded a hyperpolarization-activated inward current with properties similar to I_f in isolated human ventricular myocytes. Our preliminary data suggested an increased I_f density in end-stage heart failure compared with cells from undiseased control hearts.29 Cerbai et al30 investigated myocytes from three failing hearts but not from nonfailing controls. Therefore, the aim of the present study was to investigate whether I_f is overexpressed in ventricular myocytes isolated from...
hearts of patients with terminal heart failure. Furthermore, the effects of β-adrenergic-, muscarinic-, and A1-receptor-mediated stimulation, which might additionally increase or decrease If, have not yet been evaluated in human myocytes. The possible functional relevance of If for the initiation of arrhythmias in human heart failure is also discussed.

Methods

Patients

Ventricular myocytes were isolated from 34 hearts of patients with end-stage heart failure caused by dilated cardiomyopathy (n=23) or ischemic cardiomyopathy (n=11) undergoing transplantation. All patients received digoxin and diuretics. No catecholamines or β-adrenoceptor blocking drugs were given during 48 hours before transplantation. Informed consent was obtained before organ transplantation. Results were compared with cells prepared from 13 human hearts without heart failure that could not be transplanted for technical reasons (coronary artery disease without myocardial infarction or heart failure [n=10], possible systemic infectious disease [n=2], and blood group incompatibility [n=1]). The isolation procedure was identical in all hearts used.

Cell Isolation

The isolation procedure was described in detail before.17 A part of the left ventricular wall was excised, together with its arterial branch. The wall segment was then perfused via its arterial branch: 30 minutes with "standard" Tyrode’s solution ([mM/L] NaCl 135, KCl 4, MgCl2 1, glucose 10, NaH2PO4 0.33, and HEPES 10; pH was adjusted to 7.3 with NaOH, 37°C), followed by 40 minutes with the same solution with added collagenase (type II, 200 IU/mL; Worthington) and protease (type XIV, 0.3 IU/mL; Sigma Chemical Co). Finally, the enzyme was washed out for 15 minutes with modified Tyrode’s solution that contained 100 μmol/L Ca2+. Cells used in this study were taken from the central part of the myocardial wall. Cells were disaggregated by mechanical agitation and, after filtering through a nylon mesh, were stored at room temperature in Tyrode’s solution containing 2.0 mmol/L Ca2+.

The living-cell yield was ~5% to 10%. Only cells with clear striation without significant granulation were selected for experiments. In the Tyrode’s solution that was used to store cells (containing 4 mmol/L K+, 2 mmol/L Ca2+), we observed few cells with slow spontaneous contractions (~20 to 30 oscillations per minute). By face value, the frequency and number of spontaneously beating myocytes were similar in normal and failing hearts. We were not able to patch spontaneously contracting human ventricular myocytes. We therefore did not measure any spontaneously contracting myocytes, although we were investigating the pacemaker current. A total of 133 cells yielded results for these experiments; mean cell capacity was 223.7±7.3 pF.

Solutions

Cells were superfused with a “standard” Tyrode’s solution (mmol/L) CaCl2 2.0, NaCl 115, KCl 25, MgCl2 1, BaCl2 8 (unless indicated), CdCl2 0.3, 4-aminopyridine 3, HEPES-NaOH 10; pH was adjusted to 7.3 with NaOH ([mM/L]) [CaCl2]o 140 mmol/L). A pipette with 4.9 mV for the solution containing [K+]o 25 mmol/L Ca2+.

Recording Techniques

Experiments were carried out by use of standard microelectrode whole-cell patch-clamp technique21 using an axopatch 200-B amplifier (Axon instruments). Microelectrodes were pulled from borosilicate glass and had tip resistances of 2 to 4 MΩ when filled with the pipette solution. All voltage recordings were corrected for the liquid junction potentials (range, −4.9 mV for the solution containing [K+]o, 5 mmol/L to −1.1 mV for the solution containing [K+]o, 140 mmol/L). A pipette with multiple superfusion lines was positioned over the cell studied to allow fast solution changes. Experiments were performed at a temperature of 22.0±0.5°C (unless indicated).

Analogue filtering of current recordings was done at 3 kHz. Currents were digitized and stored for off-line analysis (pclamp 6.0, Axon instruments). Cell capacitance was calculated in each cell by applying hyperpolarizing 10-mV steps from a holding potential of −80 mV and integrating the current required to charge the membrane when stepping back to −80 mV.

Statistical Analysis

If size was measured as the difference between the instantaneous current at the beginning of the hyperpolarizing step and the steady-state current at the end of hyperpolarization.27 Currents were normalized to membrane capacitance to calculate current densities when indicated. Specific conductance of If was determined for each cell accounting to the equation g = gmax/[(V - Vrev)], where gmax is the conductance calculated at the membrane potential Vm, V is the current amplitude, and Vrev is calculated from the analysis of tail currents. For calculation of steady-state activation curves, specific current conductances were normalized to the maximal current conductance to give g/gmax. Boltzmann distributions were fitted to these normalized values: Y = Ymax/[1 + exp(ΔV/V1/2)], where Y is the membrane voltage, Ymax is the voltage at half-maximal activation, and V1/2 is the slope factor at Ymax = Y/2. The relative permeabilities of potassium and sodium (PNa/K) were estimated by fitting the Goldman-Hodgkin-Katz equation6 to the reversal potential (Vrev): Vrev = Ymax/2 = [1 / (1 + exp(ΔV/V1/2))], where PNa/K is the adenosine concentration giving a half-maximal effect, [Ado] is the adenosine concentration, and h is the Hill coefficient. Data are presented as mean±SEM when appropriate. The Mann-Whitney nonparametric test was used for statistical evaluation, and values of P<0.05 were considered significant.

Characteristics of If

Initially, we investigated the basal characteristics of If in human ventricular myocytes. Fig 1A shows a typical original current recording of If in a single human ventricular myocyte in “standard” Tyrode’s solution containing [K+]o, 25 mmol/L. From a holding potential of −40 mV, a family of hyperpolarization steps in 10-mV increments elicited a time-dependent inward current that increased with more negative potentials. If could be recorded in all cells investigated (n=133). Mean current densities in myopathic cells at −80 mV and −130 mV were −0.15±0.01 pA/pF and −1.38±0.14 pA/pF, respectively (n=59). A Boltzmann distribution, which was fitted to normalized current conductances of these 59 cells, showed current activation first at approximately −80 mV (Fig 1B). Half-maximal activation and slope factor were −110.96±0.06 mV and −12.26±0.06 mV−1, respectively (n=59). To evaluate, whether there was any significant temperature dependence over a range of 22°C to 37°C, we also investigated 21 myopathic myocytes under similar conditions at a temperature of 37±0.5°C. At 37±0.5°C, current densities at −80 and −130 mV were not significantly different from results obtained...
at 22°C. However, consistent with observations in the rabbit sinoatrial node33 and in sheep Purkinje fibers,34 current activation was faster at higher temperatures with a Q\textsubscript{10} of 2.28\pm0.13.

Similar to mammalian pacemaker cells and ventricular myocytes, the current amplitude increased with increasing external K\textsuperscript+ concentrations.21,22,27,35 In [K\textsuperscript+]\textsubscript{o} 5 mmol/L, current densities at \(-80\) and \(-130\) mV were \(-0.03\pm0.01\) and \(-0.47\pm0.06\) pA/pF (n=39); in [K\textsuperscript+]\textsubscript{o} 140 mmol/L, they were \(-0.64\pm0.15\) and \(-3.95\pm0.57\) pA/pF (n=16), respectively. Extracellular addition of Cs\textsuperscript+ 2 mmol/L suppressed the time-dependent part of the inward current (n=4). Fig 2 depicts original current traces of a single myocyte in “standard” Tyrode’s solution before (Fig 2A) and during (Fig 2B) the addition of external Cs\textsuperscript+ . Consistent with results reported for other mammalian cardiac tissue, extracellular Cs\textsuperscript+ did not affect outward tail currents.21,27 On removal of [Cs\textsuperscript+]\textsubscript{o}, the Cs\textsuperscript+ -dependent block was partially reversible.

Tail current recordings were used to evaluate the reversal potential (V\textsubscript{rev}) of I\textsubscript{f}. Tail currents, after a hyperpolarizing step to \(-120\) mV, were elicited by 10-mV steps to 40 to \(-40\) mV. Normalized tail current amplitudes from 13 cells in 25 mmol/L [K\textsuperscript+]\textsubscript{o} are plotted as a function of tail step potential in Fig 3. Data points were fitted by a single linear function with a reversal potential of \(-16.80\pm0.32\) mV (slope factor, 0.021 mV-1; \(r^2=0.97\) for goodness of fit). The relative permeabilities of potassium and sodium (P\textsubscript{Na/K}) were estimated by fitting the Goldman-Hodgkin-Katz equation32 to V\textsubscript{rev} - P\textsubscript{Na/K} calculated for a [Na\textsuperscript+] range of 1 to 10 mmol/L was 0.41 to 0.43. Because results in rabbit sinoatrial node cells36,37 and canine ventricular myocytes25 indicated that I\textsubscript{f} might exhibit outward rectifica-
We also fitted the inward (slope, 0.013 mV$^{-1}$; $r^2 = 0.99$) and outward (slope, 0.027 mV$^{-1}$; $r^2 = 0.98$) sections with two separate linear functions, yielding a V_{rev} of -12.27 ± 0.30 mV and a $P_{Na/K}$ ratio of 0.53 to 0.56. Because the goodness of fit was not significantly different, we used the simplified single linear approximation for further evaluations.

Effect of β-Adrenergic Stimulation

To investigate the effect of β-adrenergic stimulation, 36 cells (31 myopathic, 5 nonfailing) were hyperpolarized in “standard” Tyrode’s solution before and after the addition of 10$^{-5}$ mol/L isoproterenol. Isoproterenol shifted current activation to more positive potentials without changing the maximal current amplitude and accelerated current activation in myopathic (Fig 4A) and nonfailing cells. At potentials more positive to -110 mV, current activation followed a single-exponential function. Time constants at -100 mV before and after the addition of isoproterenol were 744.7 ± 17.4 and 703.1 ± 13.5 months, respectively (n=36) ($P=NS$). At more negative voltage steps, I_f exhibited a sigmoidal time course with an initial delay in activation and was best fitted by a double-exponential function (at -130 mV: $\tau_{fast} = 98.5 \pm 3.5$ and 72.4 ± 2.6 months, $P<.05$; $\tau_{slow} = 810 \pm 28$ and 824 ± 29 months in the absence and presence of isoproterenol, respectively; n=36). Activation curves before and during isoproterenol application were obtained with hyperpolarizing steps to potentials between -60 and -160 mV (Fig 4B). Activation parameters, calculated by Boltzmann fits of normalized current conductances, showed that isoproterenol 10^{-5} mol/L shifted the potential of half-maximal activation by 10.30 ± 0.28 mV (from -110.42 ± 0.23 mV to -100.12 ± 0.30 mV; n=36; $P<.05$) without a significant difference between myopathic (10.17 ± 0.32 mV; n=31) and nonfailing (10.40 ± 0.48 mV; n=5) cells. There was no difference in the current reversal potential in the absence (-16.1 ± 0.9 mV) and presence (-15.2 ± 0.6 mV) of isoproterenol (n=4; $P=NS$).

Modulation of I_f by Carbachol and Adenosine

In rabbit sinus node cells, I_f was found to be directly modulated by acetylcholine and adenosine via muscarinic and A$_1$-recep-

![Figure 2. Effect of external Cs$^+$ on the hyperpolarization-activated inward current.](http://circ.ahajournals.org/graphics/58.png)
Because If in human ventricular myocytes was found to be stimulated by isoproterenol, we evaluated the indirect effects of carbachol and adenosine on prestimulated If. Thus, after hyperpolarization in standard Tyrode’s solution, cells were exposed to standard Tyrode’s solution containing isoproterenol 10⁻⁵ mol/L. Then the myocytes were hyperpolarized in the same isoproterenol solution in the presence of carbachol 10⁻⁴ mol/L or adenosine 10⁻⁵ mol/L and after washout. No direct effect of carbachol (n=9; 6 myopathic, 3 controls) or adenosine (n=15; 12 myopathic, 3 controls) was observed.

Because If in human ventricular myocytes was found to be stimulated by isoproterenol, we evaluated the indirect effects of carbachol and adenosine on prestimulated If. Thus, after hyperpolarization in standard Tyrode’s solution, cells were exposed to standard Tyrode’s solution containing isoproterenol 10⁻⁵ mol/L. Then the myocytes were hyperpolarized in the same isoproterenol solution in the presence of carbachol 10⁻⁴ mol/L or adenosine 10⁻⁵ mol/L and after washout. Both carbachol and adenosine reversibly antagonized the stimulating β-adrenergic shift of current activation. Steady-state activation curves were calculated by Boltzmann distributions, which were fitted to normalized current conductances. Carbachol (10⁻⁷ mol/L) shifted the potential of half-maximal activation by −8.44±0.38 mV from −101.52±0.72 to −109.95±0.34 mV (n=7; 5 myopathic, 2 controls; P<.05) (not shown). Half-maximal activation before isoproterenol stimulation (−110±0.48 mV) and during carbachol exposure was not significantly different. There was no difference in response to carbachol in myopathic and control cells. The current reversal potential was unchanged before (−15.8±0.4 mV) and during (−15.3±0.8 mV) carbachol application (n=3; P=NS).

After isoproterenol prestimulation, adenosine was also found to reversibly shift current activation to more negative potentials (Fig 5A). From Fig 5A, it is also evident that adenosine antagonized acceleration of current activation by isoproterenol. Fig 5B shows activation curves obtained by Boltzmann fits of 9 myocytes (7 myopathic, 2 controls) in standard Tyrode’s solution without and with added isoproterenol (10⁻⁵ mol/L) alone and with added isoproterenol plus adenosine (10⁻⁵ mol/L). Adenosine shifted the (prestimulated) potential of half-maximal activation from −100.74±0.59 to −107.22±0.33 mV (n=9; P<.05). Thus, adenosine did not completely reverse the stimulating effect of isoproterenol, although the difference in half-maximal activation in standard Tyrode’s solution (−109.13±0.43 mV) and in the presence of adenosine was not significantly different. No difference in response to adenosine was obtained between myopathic and nonfailing cells. The reversal potential was similar before (−15.5±0.6 mV) and during (−15.2±0.4 mV) exposure to adenosine (n=5; P=NS).

The dose dependence of the adenosine effects was examined by exposing cells to adenosine concentrations of 0.1 (n=3), 0.3 (n=4), 1 (n=3), 3 (n=7), 10 (n=9), 30 (n=5) and 100 (n=2) μmol/L. The adenosine effect was measured as the shift of the activation curve. Fig 6 depicts a Hill function, which was fitted to the average shift values. The Hill function yielded a Kᵢ of the adenosine effect of 2.12±0.33 μmol/L, a maximal shift of −6.75±0.29 mV, and a Hill coefficient (h) of 1.76.

If in Patients With Heart Failure Versus Undiseased Controls

To evaluate whether there was any overexpression of If in human heart failure, normalized current densities (at −130 mV) measured in cells from patients with heart failure were compared with cells from donor hearts. Average current densities in myocytes from patients with dilated cardiomyopathy (−1.37±0.12 pA/pF; n=50) and ischemic cardiomyopathy (−1.39±0.24 pA/pF; n=30) were larger than in nonfailing controls (−1.18±0.21 pA/pF; n=24). This observation was also true when current densities were compared at 22°C and 37°C separately. However, because of the variation in current densities, these differences did not reach statistical significance (P=.23). We did not observe any difference of activation threshold between myopathic cells and nonfailing controls.

Because the inward rectifier current (Iᵢₖ) contributes significantly to the stabilization of the resting membrane potential, we investigated myocytes in physiological potassium concentration ([K⁺]=5 mmol/L) in the absence and in the presence of external Ba²⁺. Fig 7 depicts original current recordings of a single ventricular myocyte, demonstrating the magnitude of the outward current Iᵢₖ at potentials positive to −80 mV in relation to the inward current (Iₙ). Mean current densities of the outward current (Iᵢₖ) obtained in 13 myopathic cells at −70 and −60 mV were 0.02±0.07 and 0.29±0.07 pA/pF, respectively. Mean current density of Iₙ at −80 mV in the same cells was −0.03±0.01 pA/pF (n=13).

Discussion

This report describes the presence of a hyperpolarization-activated inward current in human ventricular myocytes. The current typically activates at potentials negative to −80 mV, is time and voltage dependent, and can be suppressed by the addition of extracellular cesium. Reversal potentials are consistent with a permeability for the monovalent cations Na⁺ and K⁺. The relative permeability P₀=K was in the same range as in canine ventricular myocytes at comparable ionic concentrations. Thus, this current has properties similar to the pacemaker current Iₙ,21–25 Iₙ has been observed in sinus node,20,21,24
frog sinus venosus,39 AV node,30 atrium,35,41 Purkinje fibers,22,42 and mammalian ventricular myocytes of the guinea pig,26 dog,25,26 and rat.27,28 In pacemaker cells, \textit{I}_f is believed to be the major current determining the diastolic depolarization phase.19–24 In sinoatrial node cells, \textit{I}_f activates at more positive potentials than in Purkinje cells. But in both tissues, activation occurs within the physiological diastolic voltage range.21,22,24 In mammalian ventricular myocytes, results are controversial. In guinea pig and canine ventricular cells, the activation threshold for \textit{I}_f ranged between \textendash 105 and \textendash 140 mV,25,26 much more negative than the potassium equilibrium potential (\textit{E}_K). In rat ventricular myocytes, however, \textit{I}_f first activated at voltages (\textendash 60 mV) overlapping the resting membrane potential range.27,28 In hypertrophic ventricular myocardiun of the rat, \textit{I}_f density was significantly higher than in control animals.28 The authors postulated that overexpression of \textit{I}_f in hypertrophied rat myocardium might be an important arrhythmogenic mechanism in these animals.

Because electrophysiological alterations like prolongation of the action potential and reduction in \textit{I}_\text{to} were found to be similar in animal models of heart failure and in human heart failure,16–18,43–45 we especially wanted to determine whether patients with heart failure might also have an overexpression of \textit{I}_f. The existence of \textit{I}_f in human ventricular myocytes has previously been reported only in a limited number of patients in abstract form by our group39 and as a Brief Rapid Communication by Cerbai et al.30 However, data concerning the potential pathophysiological role of \textit{I}_f in the failing human heart compared with undiseased myocardium are still lacking. Therefore, we recorded \textit{I}_f in isolated myocytes of patients with...
terminal heart failure caused by dilated or ischemic cardiomyopathy and compared these results with nonfailing controls. Our preliminary data obtained in a small number of patients suggested a larger current in the failing human heart.29 The present results obtained in a much larger group of patients supported our previous findings. Cells isolated from hearts of patients with terminal heart failure were found to have larger average current densities than myocytes from undiseased donor hearts. However, this difference did not reach statistical significance because of large current variations. We did not find any difference in activation threshold between myopathic and undiseased myocytes. First current activation and half-maximal activation were observed at approximately 280 and 2110 mV, respectively. Thus, similar to rats, activation of I_f in human ventricular myocytes occurs at voltages near the diastolic membrane potential, and there seems to be at least a tendency toward an increased current size in the failing human heart.

However, to estimate the potential functional relevance of I_f in human heart failure, autonomic regulation has to be considered. In various mammalian cardiac tissue, I_f was found to be increased by β-adrenergic stimulation and decreased by muscarinic agonists via a shift in current activation to more positive or negative potentials, respectively.21,22,25,28,38,46 In sinus node preparations, β-adrenoceptor agonists increased the slope of phase 4 diastolic depolarization and enhanced automaticity, whereas muscarinic stimulation slowed the pacing rate.20,22,38,47,48 In rat ventricular myocytes, isoproterenol 10^{-7} mol/L shifted activation of I_f by approximately 10 mV.28 In dog ventricular cells, the phosphatase inhibitor calyculin A led to a maximal current shift of 30 mV.25 In human ventricular myocytes, we found a shift in current activation by 10 mV after β-adrenergic stimulation with isoproterenol 10^{-5} mol/L. Unlike in rabbit sinus node cells and sheep and rabbit Purkinje cells,16,42,49,50 the muscarinic agonist carbachol was found to have no direct effect on I_f in human ventricular myocardium. However, similar to canine Purkinje fibers,46,51 carbachol antagonized the stimulating action of isoproterenol. Thus, muscarinic agonists seem to have a negative feedback function that might protect the cells from I_f increase caused by β-adrenergic stimulation. However, patients with heart failure are known to have an increased

Figure 5. Effects of adenosine (10^{-5} mol/L) on β-adrenergic prestimulated I_f. A. Superimposed current traces of a single myocyte (myopathic cell) recorded in “standard” Tyrode’s solution containing isoproterenol 10^{-5} mol/L (ISO) and in the same isoproterenol solution with added adenosine 10^{-5} mol/L (ADO+ISO). Adenosine led to a shift in current activation to more negative potentials and slowed activation kinetics but had no effect on maximal current size. B. Normalized current amplitudes under basal conditions in the presence of isoproterenol (10^{-5} mol/L) alone and in the presence of both isoproterenol and adenosine (10^{-5} mol/L) were fitted by Boltzmann distributions (n=9). Adenosine led to a shift in half-maximal current activation from -100.74 ± 0.59 to -107.22 ± 0.33 mV ($P<.05$). Points represent mean±SEM.
sympathetic and reduced parasympathetic tone. In patients with heart failure, plasma norepinephrine levels are increased. Additionally, a depressed heart rate variability, an indirect measure of higher sympathetic tone, has been observed in these patients. In our experiments, β-agonists stimulated If in myopathic cells despite the known β-receptor downregulation in the failing human heart. Therefore, the higher sympathetic tone in patients with heart failure is likely to be of special importance, because it might lead to a shift in If activation to more positive potentials in vivo and thus to a further current increase.

In addition to the autonomic β-sympathomimetic and muscarinic systems, the endogenous nucleoside adenosine plays a physiological role in the modulation of cardiac function. In mammalian and human myocardium, adenosine binds to specific A1-receptors. Depending on the species and the type of myocytes, A1-receptors are coupled to various ionic channels via Gi proteins in a direct way or an indirect, cAMP-dependent way, antagonizing the effects of catecholamines. In rabbit sinoatrial myocytes, Zaza et al found a direct effect of adenosine on basal If and a direct reduction in the pacing rate. We did not observe any direct modulation of If by adenosine in human ventricular myocytes. However, similar to the mode of If inhibition by carbachol, adenosine attenuated the stimulating effect of β-agonists in human ventricular myocardium. This mode of adenosine action is consistent with the negative inotropic effect of adenosine in human ventricular myocardium described by Böhme et al. These authors also observed only an indirect negative inotropic effect but no direct action of adenosine. Under physiological conditions, atrial and ventricular myocardial cells release adenosine at concentrations of 0.1 to 1 μmol/L. Therefore, adenosine concentrations that showed inhibitory effects on If in our experiments were in the physiological range. Under pathological conditions, such as ischemia, or heart failure, elevated adenosine concentrations have been measured. However, in our experiments, adenosine did not entirely antagonize the β-adrenergic stimulating effect on If even at high adenosine concentrations (shift by isoproterenol, 10 mV; maximal shift by adenosine, 27 mV), although this difference was not statistically significant.

Cerbai et al observed first activation of If in 24 ventricular myocytes of patients with dilated cardiomyopathy at approximately −55 mV. This difference in current threshold com-

Figure 6. Dose dependence of indirect adenosine effects on If. Dose-response curve obtained as the shift of If activation induced by increasing adenosine concentrations (0.1 μmol/L, n=3; 0.3 μmol/L, n=4; 1 μmol/L, n=3; 3 μmol/L, n=7; 10 μmol/L, n=9; 30 μmol/L, n=5; and 100 μmol/L, n=2). A Hill fit of the average shift values yielded a half-maximal effect of adenosine (Kd) at a concentration of 2.12±0.33 μmol/L, a maximal shift of −6.75±0.29 mV, and a Hill coefficient of 1.76.

Figure 7. Magnitude of the inward rectifier current If in relation to the hyperpolarization-activated inward current If. In physiological external potassium concentration ([K+]o 5 mmol/L), original current traces of a single ventricular myocyte were recorded in the absence (A) and in the presence (B) of external Ba2+. Mean current densities of the outward current If obtained in 13 myopathic cells at −70 and −60 mV were 0.02±0.07 and 0.29±0.07 pA/pF, respectively. Mean current density of If at −80 mV in the same cells was ±0.03±0.01 pA/pF (n=13).
pared with our results may partially be due to the liquid junction potential for which their data apparently were not corrected (approximately −16 mV).25 Additionally, the higher Ca²⁺ concentration in the pipette solution that these authors used may have contributed to this difference in Iₜ threshold. Elevation of intracellular Ca²⁺ from Pca 10 to 7 shifted the Iₜ activation curve by 13 mV in rat sinoatrial node cells, although not by a direct effect on Iₜ channel.68,69 In our experiments, intracellular Ca²⁺ was buffered and Ca²⁺ transients were abolished (EGTA in the pipette solution, extracellular Cd²⁺ to block Ca²⁺ currents, Na⁺-free pipette solution to block Ca²⁺ influx through the Na⁺-Ca²⁺ exchange system) to investigate pure Iₜ and to avoid any possible influence of altered intracellular Ca²⁺ handling on current measurements. However, in patients with end-stage heart failure, an increased diastolic [Ca²⁺]o has been described.17,18,70 This alteration in diastolic Ca²⁺ may further increase Iₜ in vivo in addition to the effects of elevated sympathetic tone.

We were not able to patch any spontaneously contracting cells. Because Iₜ is known to contribute to diastolic depolarizations in pacemaker cells, Iₜ might have been larger in these spontaneously contracting myocytes. This might have led to an underestimation of current size in our experiments. However, by face value, there was no difference in the number of spontaneously beating cells between failing and control hearts. In addition, the frequency of oscillations was slow, and some myocytes showed "waveform" contractions. Thus, we suppose that in a significant proportion of these cells, spontaneous contractions were caused by calcium overload after the isolation procedure rather than by the pacemaker current Iₜ.

In addition to physiological concentrations of [Ca²⁺]o and [Mg²⁺]o, we used [Ba²⁺], 8 mmol/L and [Cd²⁺], 0.3 mmol/L in our external solutions to suppress the interference of Iₜ and Ca²⁺ currents. Divalent cations are known to shift the activation curves of most voltage-dependent channels on the surface membrane,71−74 including Iₜ,75−77 by different amounts in the depolarizing direction through surface charge screening and/or binding. Because low barium concentrations (2 mmol/L) do not block Iₜ effectively in human ventricular myocytes, it is difficult to measure the shift in Iₜ activation caused by [Ba²⁺], in these cells. However, it is known from the literature that in sinoatrial node preparations77 and Purkinje fibers,78−80 elevation of [Ca²⁺]o from physiological calcium concentrations by 5.4 to 10.0 mmol/L led to a shift in Iₜ activation by 4 to 10 mV and that barium exhibits fewer effects on the surface potential than calcium.72,74,81 Estimated from these data, [Ba²⁺], 8 mmol/L and [Cd²⁺], 0.3 mmol/L would be expected to shift Iₜ activation by ≈8 mV under our experimental conditions. However, this value has to be compensated for further for the barium-induced dose- and voltage-dependent block of Iₜ.82 In sinoatrial node cells, external barium (3 to 5 mmol/L) decreased Iₜ amplitude and shifted the midactivation potential to more negative voltages.82,83 More than half of Iₜ activation shift caused by [Mn²⁺], was compensated for the addition of [Ba²⁺], (1 mmol/L).76 Thus, the use of divalent cations in our experiments (predominantly [Ba²⁺], in addition to physiological concentrations of [Ca²⁺], and [Mg²⁺],) is unlikely to have caused a significant overestimation of Iₜ amplitude but might rather have led to an underestimation of Iₜ size, especially at less negative potentials.

In discussions of the functional significance of Iₜ in human myocardium, Iₜ also has to be compared with other currents, especially the inward rectifier current (Iₚ). Negative to the potassium equilibrium potential (Eₚ), the stabilizing effect of Iₚ will drive the membrane potential back to normal resting values. However, at voltages positive to Eₚ, the outward current density of Iₚ is rather small. Additionally, the density of Iₚ is reduced by ≈40% in cells from myopathic ventricles compared with undiseased controls.16,84 Although in most myocytes Iₚ seems to be larger than Iₜ at physiological potentials, the combination of reduced Iₚ size and increased Iₜ size in the failing human heart might favor diastolic depolarizations in individual cells.

In conclusion, patients with end-stage heart failure have a trend toward increased Iₜ densities compared with nonfailing control hearts. Additionally, the elevated sympathetic tone and elevated diastolic [Ca²⁺]o might further increase Iₜ in these patients. Together with a reduced current density of Iₚ in heart failure, Iₜ might drive the membrane potential toward threshold in individual cells in the failing human heart. However, further studies are necessary to test whether under these conditions Iₜ can lead to spontaneous diastolic depolarizations in vivo.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Be 1113/2–3) and the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (01 KS 9502, ZMMK Projekt 4). We thank I. Beckmann for assistance with cell isolation and L. Prebe for comments on the manuscript.

References

I\textsubscript{f} in Human Ventricular Myocytes

Hyperpolarization-Activated Inward Current in Ventricular Myocytes From Normal and Failing Human Hearts

Uta C. Hoppe, Erik Jansen, Michael Südkamp and Dirk J. Beuckelmann

Circulation. 1998;97:55-65
doi: 10.1161/01.CIR.97.1.55

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1998 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/97/1/55

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/