4. Muldoon M, Manuck S, Matthews K. Lowering cholesterol concent-
trations and mortality: a quantitative review of primary pre-

5. Davey Smith G, Pekkanen J. Should there be a moratorium on the

7. Law MR, Thompson SG, Wald NJ. Assessing possible hazards

8. Grundberg TE, Salomaa VV, Naukkarinen VA, Vanhanen GT, Sarna
SJ, Miettinen TA. Long-term mortality after 5-year multi-
factorial primary prevention of cardiovascular diseases in

9. Jacobs DR. Why is low blood cholesterol associated with risk
14:95-114.

10. Frick MH, Heinonen OP, Huttunen JK, Koskinen P, Manttari M,
Manninen V. Efficacy of gemfibrozil in dyslipidemic subjects
with suspected heart disease: an ancillary study in the Helsinki Heart

11. Huttunen JK, Heinonen OP, Manninen V. The Helsinki Heart

12. Heady JA, Morris JN, Oliver MF. WHO clofibrate/cholesterol

13. Bradford RH, Shear CL, Chremos AN, Dujovne C, Downton M,
Franklin DB, Reid AL, Hesney M, graduating M, Hurley DP, Lan-
gendorfer A, Nash DT, Pool JL, Schnaper H. Expanded clinical
evaluation of lovastatin (EXCEL) study results. *Arch Intern Med.*
1991;151:43-49.

15. Davey Smith G, Song F, Sheldon TA. Cholesterol lowering and
mortality: the importance of considering initial level of risk. *BMJ.*
1993;306:1367-1373.

Medical Economics Data; 1994.

17. Hulley SB, Newman TB, Grady D, Garber AM, Baran RB,
Browner WS. Should we be measuring blood cholesterol levels in

19. Eddy DM. Practice policies: where do they come from? *JAMA.*
1990;263:1265-1268.

21. Expert Panel. Summary of the second report of the National
Cholesterol Education Program (NCEP) Expert Panel on
detection, evaluation, and treatment of high blood cholesterol in

22. Canadian Task Force. Periodic health examination, 1993 update,
II: lowering the blood total cholesterol level to prevent coronary

23. Sox HC. Screening for lipid disorders under health system reform.

24. Garber A, Littenberg B, Sox H, Wagner J, Gluck M. Costs and
health consequences of cholesterol screening for asymptomatic

25. Criqui MH. Cholesterol, primary and secondary prevention, and

26. Brett AS. Psychologic effects of the diagnosis and treatment of

27. Ramsay LE, Yeo WW, Jackson PR. Dietary reduction of serum
cholesterol concentration: time to think again. *BMJ*. 1991;303:
955-957.

28. Hunninghake DB, Stein EA, Dujovne CA, Harris WS, Feldman
EB, Miller VT, Tobert JA, Laskawegi PM, Quiter E, Held J,
Taylor AM, Hopper S, Leonard SB, Brewer BK. The efficacy of
intensive dietary therapy alone or combined with lovastatin in
1243-1249.

29. Giles WH, Anda RF, Jones DH, Serdula MK, Merritt RK,
DeStefano F. Recent trends in the identification and treatment of
high blood cholesterol by physicians: progress and missed oppor-

30. Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE,
Rosner BA. Intake of trans fatty acids and risk of CHD among

31. Jacobs DR, Blackburn H. Models of effects of low blood cho-
lesterol on the public health: implications for practice and policy.
Circulation. 1993;87:1033-1036.

32. Sackett DL, Haynes RB, Guyatt GH, Tugwell P. *Clinical Epide-
miology: A Basic Science for Clinical Medicine*. Boston, Mass: Little,

Do the Right Thing: Stop Worrying About Cholesterol

To the Editor:

Stamler et al argue that a low cholesterol level is not the cause of
the increased mortality seen in population studies but is a
marker for causative factors. They are probably right, but they
disregard that a high cholesterol level may also be a marker only.
Smoking, obesity, lack of exercise, and psychological stress, for
instance, increase blood cholesterol but may cause coronary heart
disease by other mechanisms.

The crucial point is that lowering cholesterol actively increases
noncoronary mortality, and this increase is not balanced by a
decrease of coronary mortality.8 Stamler et al claim that the
increased mortality found in the meta-analyses is due to selection
of trials. They are wrong, because the excluded trials were mostly
unsupportive.8

Stamler et al are skeptical of meta-analysis and use instead the results
from only three trials to argue for a “healthier” level of serum cholesterol.
The effects of the two largest trials were pathetic, however, and as all of them were
multifactorial, their effect, if any, may have been due to other causes than cholesterol
lowering.

In a recent meta-analysis of 35 cholesterol-lowering trials, mortality decreased in a subgroup of trials including 5116 individ-
uals.9 But mortality increased in a much larger subgroup of 27 918 individuals.
The first subgroup was called a high-risk group and the other one a low-risk group, according to the mortality of the
control subjects. But how should we classify before treatment?10 Several trials in the so-called low-risk group were secondary
preventive, and the mean cholesterol level was higher (7.15
mmol/L) than in the so-called high-risk group (6.72 mmol/L).
Thus, when Stamler et al say that only those at highest risk should
be treated, they impose an impossible mission on physicians.
The risk is greater that we will shorten the lives of our patients instead of
prolonging them.

Stamler et al think that the increased mortality after drug
treatment should be prevented by careful monitoring. However, I
am confident that the trial directors monitored their patients
carefully, probably more carefully than we physicians do, and yet
mortality increased. There are also obvious methodologic prob-
lems connected with the prevention of cancer, violence, and other
unexpected causes of death.

Finally, Stamler et al stress the importance of diet. It is true that
trials using an extreme diet or trials on patients in mental
hospitals have lowered the cholesterol level significantly, but it is
unrealistic to think that healthy people should accept these rigorous diets during many years. In trials where a more palatable
diet was used, the effect on blood cholesterol has been trivial
despite intensive counseling. In MRFIT,10 for instance, cholesterol
was lowered by 2%, in the WHO study11 by 1%, and in the
Gothenburg trial12 by even less. In the Helsinki study,13 the control
group was treated by diet, but their cholesterol increased. Note
also that a significant reduction of nonfatal coronary heart disease has not been achieved in dietary trials.8

The right thing to do is to stop the cholesterol campaign. The evidence for a causal relation among atherogenic diet, high serum
cholesterol, and coronary disease is far from overwhelming. On
the contrary, a host of studies have shown many inconsistencies
with this idea.14-18

Uffe Ravnskov, MD
Lund, Sweden
References

To the Editor:

Regarding the editorial in Circulation in October 1993, Stamler et al1 seem to imply that the 50% reduction in coronary and cardiovascular disease death since the 1960s is significantly related to health policies, including reduced cholesterol, more physical activity, etc. In the same issue, however, Kaplan and Keil2 document the increasingly apparent relation between cardiovascular disease and socioeconomic factors, including income, education, and occupation. Blue collar work, low income, lower education level, and high psychological stress relate to cardiovascular mortality. Since the 1960s, per capita income in the developed world has continued its phenomenal ascent, with the standard of living 3 times its level 60 years ago in the United States, 7 times in Germany, and 10 times in Japan. This has been accompanied by a relative reduction in blue collar jobs as well as a widespread increase in education levels. Kaplan et al cite the work of Williams et al,3 who report a 5-year survival independent of all baseline invasive and noninvasive medical prognostic factors of 0.91 for patients with coronary artery disease and an annual household income of $40,000 or more as compared with a 5-year survival of 0.76 in patients with incomes of $10,000 or less.

It would seem plausible from the above that the 50% reduction in coronary and cardiovascular disease death since the 1960s in the developed world is most likely predominantly a result of the increasing wealth and accompanying lifestyle modifications resulting from this wealth rather than predominantly a result of more enlightened health policies, although such policies may well have made some contribution, as Stamler et al suggest.

G. Kessler, MD
Caesarea, Israel

References

Reply

Our Circulation editorial emphasized that the cornerstone of US national health policy on serum cholesterol is a population-wide strategy to achieve by dietary means a downward shift in serum cholesterol level, first and foremost for the primary prevention of epidemic coronary heart disease (CHD).1 It concluded: “The present national policy . . . has the added merit that the recommended healthier eating patterns can be beneficial in preventing or controlling other chronic diseases as well as coronary disease. There is no sound evidence that justifies a withdrawal from this policy. On the contrary, we need to expand and intensify efforts to achieve its goals.”1

Our editorial assessed as unfounded all three concerns set down in the prior editorial by Hulley et al.2 In the first paragraph of their letter above, Hulley et al note this and restate the three concerns but make no effort to reply to our reasons for concluding that concerns No. 1 and No. 2 were unsound. They focus solely on concern No. 3, related to meta-analyses of data from randomized controlled trials (RCTs) of cholesterol lowering. Olson and Ravnkov also rely heavily on these meta-analyses as a basis for their critiques of our editorial and of US national policy on serum cholesterol.

Altogether, their three letters cite findings in 8 such meta-analyses (of 6 to 35 trials).3-10 However, the fact is that all these meta-analyses are at best irrelevant or at worst misleading in regard to recommended dietary approaches for CHD primary prevention. Specifically, of the cited unifactorial trials on CHD primary prevention, only two were dietary trials. All others were drug trials, hence by definition unrelated to the main thrust, that is, the nutritional emphasis, of US national policy. Lumping diet and drug RCTs together is a flawed use of the meta-analysis method, and citing overall findings from such meta-analyses is inappropriate when the primary issue under discussion is national nutritional policy. Moreover, combining all these RCTs results in ignoring the details of their nature, design, procedure, and outcome that are critical for assessment of their soundness and policy relevance.

As to specifics, first on the two unifactorial diet trials,3,12 both were actually combined primary and secondary prevention trials. Both had design features that make their findings uninformative in regard to public policy on reduction of coronary and all-cause mortality rates by population-wide improved nutrition. First, they

Downloaded from http://circ.ahajournals.org/ by guest on October 29, 2017

Correspondence 2573
Doing the right thing: stop worrying about cholesterol.
U Ravnskov

Circulation. 1994;90:2572-2573
doi: 10.1161/01.CIR.90.5.2572

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/90/5/2572.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/