Randomized Comparison of Rescue Angioplasty With Conservative Management of Patients With Early Failure of Thrombolysis for Acute Anterior Myocardial Infarction

Stephen G. Ellis, MD; Expedito Ribeiro da Silva, MD; Guy Heyndrickx, MD; J. David Talley, MD; Carmelo Cernigliaro, MD; Gabriel Steg, MD; Chris Spaulding, MD; Masakiyo Nobuyoshi, MD; Raimund Erbel, MD; Corrado Vassanelli, MD; Eric J. Topol, MD, for the RESCUE Investigators

Background When used in the setting of acute myocardial infarction, intravenous thrombolytic agents fail to achieve early infract artery patency in 15% to 50% of patients. We tested the hypothesis that immediate balloon angioplasty applied to patients with failed early reperfusion would improve left ventricular function and clinical outcome at 30 days compared with conservative management alone.

Methods and Results One hundred fifty-one patients with first anterior wall infarction treated with any accepted intravenous thrombolytic regimen and angiographically demonstrated to have an occluded infract vessel within 8 hours of chest pain onset were randomized to aspirin, heparin, and coronary vasodilators (conservative therapy) or to this therapy and balloon angioplasty supplemented by further thrombolytic therapy as needed. Left ventricular function was assessed using multiple-gated equilibrium radionuclide technique to determine ejection fraction, and adverse clinical outcome was assessed evaluating death, ventricular tachycardia, and class III or IV heart failure at 30 days. Seventy-three patients were randomized to conservative therapy and 78 to angioplasty. The two groups were well balanced for patient age (59±11 years), sex (82% were male), and time to randomization (4.5±1.9 hours). Angioplasty was technically successful in 72 of 78 randomized patients (92%). Two patients randomized to conservative therapy crossed over to angioplasty within 72 hours. Resting 30-day ejection fraction was 40±11% in the angioplasty group and 39±12% in the conservative group (P=.49), but ejection fraction with exercise was 43±15% and 38±13% for the angioplasty and conservatively treated groups, respectively (P=.04). Adverse clinical outcomes included death in 5% and 10% (P=.18), severe heart failure in 1% and 7% (P=.11), and either death or severe heart failure in 6% and 17% (P=.05) of the angioplasty and conservatively managed groups, respectively.

Conclusions When applied to patients with first anterior infarction, rescue angioplasty appears to be useful in the prevention of death or severe heart failure, with improvement in exercise, but not resting, ejection fraction. This strategy deserves further study and highlights the potential advantage of early mechanical restoration of infract vessel patency when thrombolytic therapy has failed. (*Circulation*, 1994;90:2280-2284.)

Key Words angioplasty • thrombolysis • infarction

 Intravenous thrombolytic therapy given to patients with acute myocardial infarction demonstrably reduces mortality,1,2 probably by improving systolic and diastolic ventricular function and reducing susceptibility to life-threatening ventricular arrhythmias, although these mechanisms appear to be uniquely dependent on the time from infarct onset to treatment and are not all operative in every patient.3-6

With this form of therapy, early (90-minute) infarct artery patency is established in only 50% to 85% of patients,7,8 and 90-minute TIMI 3 flow has been shown to be a marker of subsequent survival.9,10 Early coronary angioplasty may successfully open 75% to 85% of occluded arteries in this setting,11 and in part because it seems intuitive to many physicians that the infract artery should be opened promptly, angioplasty is frequently applied in this setting despite the absence of clinical trials justifying its use.11,12

It is well recognized that 30% to 60% of infract arteries that are closed 90 minutes after thrombolytic therapy will open within the time window when clinical benefit may still accrue.13,14 Furthermore, rescue angioplasty may be costly and, when it fails, is associated with a high mortality;11 therefore, its practice remains highly controversial.11,12

Our aim was to assess the clinical benefit of rescue angioplasty in a select relatively homogeneous and high-risk (no prior myocardial infarction, chest pain of less than 8 hours, anterior location) patient population in a randomized study of 151 patients from 20 centers.

Methods

Patients

Between January 1990 and March 1993, all patients meeting enrollment criteria at 20 sites were sought for randomization.
To assess possible bias in patient recruitment, a registry of eligible but nonrandomized patients with cursory demographic and outcome data was kept.

Patients were eligible for randomization if they met all the following inclusion criteria: (1) anterior myocardial infarction with ST-segment elevation ≥ 2 mV in at least two of six precordial leads with cardiac catheterization within 6 hours of chest pain onset; with severe ongoing chest pain, the time window could be extended to within 8 hours at the discretion of the investigator; (2) treatment with any acceptable intravenous thrombolytic regimen (including but not limited to streptokinase [1.5 million U], tissue-type plasminogen activator [TPA; 100 to 125 mg], and urokinase [3 million U]); (3) age 21 to 79 years; (4) TIMI flow grade 0-1 in the left anterior descending coronary artery (LAD) after intracoronary nitrate administration and at least 90 minutes after initiation of thrombolytic therapy; and (5) ability to give informed consent.

Patients were excluded from study entry for any of the following reasons: (1) cardiogenic shock (systolic blood pressure <90 mm Hg after fluid resuscitation and treatment of bradycardia <60 beats per minute); (2) prior myocardial infarction; and (3) left main stenosis $\geq 50\%$ in diameter. Approval of the protocol by local institutional review boards was obtained before patient randomization.

Randomization and Treatment Assignments

Patients were randomized using a closed-envelope system and a permuted block design, stratifying for investigational site and time from chest pain onset to randomization (≥ 4 or <4 hours). Before catheterization, all patients received aspirin (325 mg chewed) and adequate sedation. Catheterization and angioplasty were performed using standard technique.\(^{15}\) Performance of angioplasty was limited to investigators with demonstrated expertise in this setting (≥ 50 procedures with $\geq 80\%$ success). It was recommended that noninfarct artery stenoses not be dilated. For patients randomized to angioplasty who had received fibrin-specific thrombolytic agents, additional streptokinase (500 000 U) or urokinase (1 million U) was given as part of the standard treatment consequence to the potential adverse interaction between fibrin-specific agents and angioplasty noted in several prior nonrandomized studies\(^ {11}\) (and since refuted by randomized studies\(^ {16}\)). Use of intra-aortic balloon counterpulsation was left to the discretion of the operator. After initial randomized treatment, all patients received aspirin (80 to 325 mg/d), intravenous nitrates for at least 24 hours, and intravenous or high-dose ($>10 000$ U BID) subcutaneous heparin for at least 3 days, as tolerated. Treatment of heart failure was specified to include digitalis, diuretics, and an angiotensin-converting enzyme inhibitor as possible. In patients randomized to conservative management, angioplasty or bypass surgery was proscribed for 72 hours. Data were collected on standardized forms by trained research personnel and, with the procedural cineangiograms, were mailed to the Data Analysis Laboratory for review and compilation.

Additional protocol-mandated studies included 24-hour Holter monitor for ventricular arrhythmias at 5 to 7 days, left ventricular ejection fraction by multiple-gated radionuclide ventriculography at 25 to 35 days, evaluation of severity of heart failure at 25 to 35 days and 1 year by a noninterventional cardiologist with expertise in heart failure, and assessment of vital status at 30 days and 1 year.

Statistical Analysis

Normally distributed data are presented as mean±1 SD. Nonnormally distributed data are presented as median and interquartile range. Comparisons between treatment groups were performed using Student's t, Mann-Whitney, and Pearson χ^2 tests, where appropriate. All tests are two-sided.

The prespecified primary end point was 25- to 35-day ejection fraction, with a value of 20% imputed for nonsurvivors. Sensitivity analyses were also performed using no imputation and imputation of 0% for nonsurvivors. Prespecified secondary end points were a composite of death, severe (New York Heart Association functional class III or IV) heart failure, and ventricular tachycardia (sustained or nonsustained occurring at least 48 hours after infarction onset), and each of the individual clinical end points, assessed at 30 days. Sample size was determined by expected primary and secondary end points. One hundred thirty-eight patients would be required to detect a 4±12% difference in ejection fraction with two-sided $P=.05$ and $\beta=.80$.

A three-member Data and Safety Committee was charged with assessing the ethics of continuing the study after data from the first 100 patients were reviewed. The investigators remained blinded to study outcome at all times.

Results

Baseline clinical and angiographic data for randomized patients are enumerated in Table 1. Randomized groups were well balanced (Table 1) for all parameters evaluated. The registry group ($n=134$) had similar characteristics except that time from infarction onset was considerably less (3.0±1.9 versus 4.5±1.9 hours, $P=.001$).

Procedural and 30-day ventriculographic and clinical outcomes are shown in Table 2. In the angioplasty group, that procedure was successfully performed (final TIMI flow grade ≥ 2 and percent stenosis $\leq 50\%$) in 0 of 72 attempts (92%). Infarct artery patency at prehospital discharge in centers that routinely performed catheterization at that time was 35 of 38 (92%) for the angioplasty group and 10 of 24 (42%) for the conservatively managed group ($P=.001$). Thirty-day clinical outcomes were available in all patients, and ventriculographic outcomes were available in 130 of 140 (93%) eligible patients. There was no difference in resting ejection fraction or the incidence of ventricular tachycardia, but angioplasty appeared to reduce death or severe heart failure ($P=.05$) as well as improve exercise ejection fraction ($P=.04$) and possibly reduce severe heart failure alone ($P=.11$). Causes of death in the

Table 1. Baseline Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Angioplasty</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>78</td>
<td>73</td>
</tr>
<tr>
<td>Age, y</td>
<td>59±11</td>
<td>59±11</td>
</tr>
<tr>
<td>Sex, % male</td>
<td>79</td>
<td>85</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Smoking, %</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>Time from MI, h</td>
<td>4.5±1.9</td>
<td>4.5±1.9</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>126±23</td>
<td>135±26</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>84±15</td>
<td>83±17</td>
</tr>
<tr>
<td>Killip class ≥ 2, %</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>Multivessel disease, %</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Ongoing angina at the time of catheterization, %</td>
<td>81</td>
<td>67</td>
</tr>
<tr>
<td>Proximal occlusion site, %</td>
<td>46</td>
<td>51</td>
</tr>
<tr>
<td>TIMI 1 flow, %</td>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>Angiographic collaterals, %</td>
<td>32</td>
<td>37</td>
</tr>
</tbody>
</table>

MI indicates myocardial infarction; BP, blood pressure; and bpm, beats per minute.
Prior studies had found postinfarction survival to be correlated with resting or exercise ejection fraction, left ventricular end-systolic volume, ventricular arrhythmias, and heart failure. Logistical concerns dictated that the primary end point for this study be ejection fraction, in that it was readily obtainable and that with a modest number of patients the potential for a meaningful difference in outcome could be assessed (a 4% difference in ejection fraction in a group of patients with anterior infarction might "translate" into a 4% to 7% absolute percentage difference in mortality). At the same time, however, it was recognized that a disparity between ejection fraction and survival had been noted in several prior studies, and therefore clinical end points were prespecified as secondary end points.

Indeed, no benefit from angioplasty was found on resting ejection fraction measured at 30 days, even in patients treated relatively early, or in freedom from ventricular tachycardia. However, patients randomized to angioplasty did appear to have a reduction in the combination of death and severe heart failure and in ejection fraction with exercise at 30 days. These apparent benefits were noted despite the fact that there appeared to be a strong investigator bias not to randomize patients presenting particularly early in the course of their infarction.

Reperfusion within the first 1 to 2 hours of myocardial infarction appears necessary to routinely obtain a sizable benefit in systolic ventricular function assessed by ejection fraction. Given the inherent time delay with the current strategy of rescue angioplasty—90 to 120 minutes to make the difficult diagnosis of failed reperfusion and another 30 to 60 minutes to rush the patient to the catheterization laboratory, perform diagnostic angiography, and then perform rescue angioplasty—it probably is not surprising that benefit measured by resting ejection fraction could not be demonstrated. However, reperfusion therapy by thrombolytic therapy has been shown to improve survival when administered up to 12 hours after infarct onset, and it has been suggested that this benefit occurs via changes in ventricular diastolic function and healing, and possibly via a decrease in susceptibility to serious arrhythmias. Nearly immediate improvement in diastolic function with very delayed reperfusion has been demonstrated in animal models of infarction, and reduction in ventricular tachycardias by streptokinase therapy was observed in GISSI I. Assuming this paradigm to be correct, then any benefit from rescue angioplasty would need to result from angioplasty affecting a higher incidence of, or earlier, reperfusion than might be expected by delayed lytic-mediated reperfusion and not be offset by any adverse effect of the angioplasty procedure itself. Data from this study and its much smaller predecessor, taken together, strongly suggest that rescue angioplasty may exert a benefit for selected patients and that the responsible mechanism(s) likely involve improved diastolic function and/or systolic function under stress.

Such conclusions must be tempered by an understanding of the source from which they are drawn. First, the entire “universe” of patients randomized to assess potential benefit of rescue angioplasty numbers less than 200, and like primary angioplasty, the benefit, although substantial in relative terms, has been demon-
stratified only in a small population compared with intravenous thrombolytic therapy. Second, the angioplasty success rate of 92% in this study is considerably higher than that previously reported in most series11 and may not be representative of that achieved in the community. Third, only patients with anterior wall infarcts were included in this study. This is known to be a high-risk subset with large infarcts, as witnessed by an average ejection fraction 10 to 15 points lower than that noted in most reperfusion studies assessing ventricular function.30,31 and therefore they have much to gain.22 Any benefit seen, were it to be reproducible, should not necessarily be generalized to all patients with myocardial infarction treated by all interventional cardiologists. Conversely, a modest but clinically meaningful benefit of rescue angioplasty on systolic ventricular function could have been obscured by differences in technique at the 20 centers or by the apparent bias within this study not to randomize patients seen in the first few hours of their infarction.

The results provide support for (1) immediate catheterization and angioplasty of patients with large infarcts who have received thrombolytic treatment and are suspected not to have had early reperfusion within 6 to 8 hours of symptom onset, and (2) development of noninvasive techniques to accurately and rapidly detect reperfusion so as to better identify patients likely to benefit from this strategy.

Acknowledgments

The authors are indebted to Ms Patti Durnwald and Ms Lin Nicholson for their expert secretarial and managerial assistance provided throughout this study.

Appendix

Unicó r Hospital, São Paulo, Brazil

Expedito E. Ribeiro da Silva, MD; Leilio A. Silva, MD (principal investigators); Antonia Petrizzi, MD; Rinaldo Carneiro, MD; Lai O. D’Oliveira, MD; Ênio Buffolo, MD; Renato Duprat F, MD (co-investigators).

OLV Ziekenhuis Cardiovascular Center, Aalst, Belgium

Guy Heyndrickx, MD (principal investigator); Bernard DeBruyne, MD; Paul Nellens, MD; Marc Goethals, MD; Peter Goemaere, RN (co-investigators).

University of Louisville, Louisville, Ky

J. David Talley, MD (principal investigator); Abraham Joseph, MD; Charles R. Prince, MD; ZoeAnn Yussman, RN; Wendy Etka, RN (co-investigators).

Ospedale Maggior e di Novara, Italy

Carmelo Cernigliaro, MD (principal investigator); A. Carfora, MD; A.S. Bongo, MD; A. Campi, MD; M. Sansa (co-investigators).

Hô pital Bichat, Paris, France

P. Gabriel Steg, MD (principal investigator); Jean-Michel Juiard, MD; Dominique Himbert, MD; Gaë ten Karrillon, MD (co-investigators).

Hô pital Cochin, Paris, France

Christian M. Spaulding, MD (principal investigator); Antoine Py, MD (co-investigator).

Kokura Memorial Hospital, Kitakyushu, Japan

Masakiyo Nobuyoshi, MD (principal investigator).

Klinikum der Johannes Gutenberg Universität, Mainz, Germany

Raimund Erbel, MD (principal investigator); Jü rgen Rö rig, MD; Jü rgen Meyer, MD (co-investigators).

University of Verona, Ospedale Civile Borgo Trento, Italy

Corrado Vassanelli, MD (principal investigator); Gabriele Zanotto, MD (co-investigator).

University of Michigan, Ann Arbor, Mich; and Cleveland Clinic, Cleveland, Ohio

Stephen G. Ellis, MD (principal investigator); Eric J. Topol, MD; Michelle Webb, RN (co-investigators).

St Elizabeth’s Hospital, Boston, Mass

Douglas Losordo, MD (principal investigator); Ann Piez ek, RN (co-investigator).

University of Massachusetts, Worcester, Mass

Bonnie Weiner, MD (principal investigator); Paul Wanta, RN (co-investigator).

George Washington University, Washington, DC

Allan Ross, MD (principal investigator); William Herzog, MD; Gail Cavallo, RN (co-investigators).

Midwest Cardiovascular Institute, Downer’s Grove, Ill

Joseph Hartman, MD (principal investigator); Elaine En ger, RN (co-investigator).

Hillcrest Medical Center, Tulsa, Okla

Gary Gershony, MD (principal investigator); Jolene Durham, RN (co-investigator).

Arizona Heart Institute, Phoenix, Ariz

Richard Heuser, MD (principal investigator); Liz Grinnel, RN (co-investigator).

Akron Cardiology Consultants, Akron, Ohio

Richard Josephson, MD (principal investigator); Jan Sears, RN; Diane Jasso, RN (co-investigators).

Iowa Heart Center, Des Moines, Iowa

Mark Tannenbaum, MD (principal investigator); Kathy Stephenson, RN (co-investigator).

Hô pital Tenon, Paris, France

Alec Vahanian, MD (principal investigator).

Data and Safety Monitoring Committee

Edwin Alderman, MD, Stanford University Medical Center, Stanford, Calif; Jeffrey Anderson, MD, L.D.S. Hospital, Salt Lake City, Utah; Ward Kennedy, MD, University of Washington School of Medicine, Seattle.

References

3. Sheehan FH, Doerr R, Schmidt WG, Bolson EL, Uebis R, von Essen R. Early recovery of left ventricular function after throm-
bolytic therapy for acute myocardial infarction: an important
4. Topol EJ, Califf RM, Vandormael M, Grines CI, George BS, Sanz
ML, Wall T, O'Brien M, Schweiger M, Aguirre FV, Young S,
Popma JJ, Sigmon KN, Lee KL, Ellis SG, and the TIMI 6 Study
Group. A randomized trial of late reperfusion therapy for acute
5. White HD, Norris R, Brown MA, Brandt PWT, Whitlock RML,
Wild CJ. Left ventricular end-systolic volume as the major
determinant of survival after recovery from myocardial infarction.
Circulation. 1987;76:44-51.
6. Volpi A, Cavalli A, Santoro E, Tognoni G, and the GISSI Inves-
tigators. Incidence and prognosis of secondary ventricular fibrila-
ation in acute myocardial infarction: evidence for a protective
7. TIMI. Special report: the Thrombolysis in Myocardial Infarction
Niederer W, Forycki F, Wirtzfeld A, Mauerer W, Limbourg P,
Mers W, Haerten K. Improved thrombolysis in acute myocardial
infarction with front-loaded administration of alteplase: results of
the rt-PA-APSAC Patency Study (TAPS). J Am Coll Cardiol. 1992;
19:885-891.
KL. Impact of early perfusion status of the infarct-related artery
on short-term mortality after thrombolysis for acute myocardial
infarction: retrospective analysis of four German multicenter
10. The GUSTO Investigators. An international randomized trial
comparing four thrombolytic strategies for acute myocardial
infarction: prospective analysis of four German multicenter
11. Ellis SG, van de Werf F, Ribeiro-daSilva E, Topol EJ. Present
status of rescue coronary angioplasty: current polarization of
12. McKendall GR, Forman S, Sopko G, Braunwald E, Williams DO,
and the TIMI Investigators. The value of rescue PTCA following
an unsuccessful thrombolytic therapy: a report from TIMI. J Am Coll
Cardiol. 1993;21:396A.
13. PRIMI. Randomized double-blind trial of recombinant pro-
urokinase against streptokinase in acute myocardial infarction.
14. Topol EJ. Mechanical interventions for acute myocardial infarction.
In: Topol EJ, ed. Textbook of Interventional Cardiology. Phila-
YA, Lundergan CF, for the GUSTO Investigators. Immediate and
follow-up procedural outcome of 214 patients undergoing rescue
16. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis
of coronary artery disease and the acute coronary syndromes.
I, Holt R, Fallon JT, Collen D. Comparative effects of aspirin,
a synthetic thrombin inhibitor and a monoclonal antiplatelet glyco-
protein IIb/IIIa antibody on coronary artery reperfusion, recoc-
clusion and bleeding with recombinant tissue-type plasminogen
activator in a canine preparation. J Am Coll Cardiol. 1990;16:
714-722.
D, Filippuck NG, Schnurr LP, Rosenal TW, Smith ER, Knudtson
ML. Rescue angioplasty during myocardial infarction has a bene-
ficial effect on mortality: a tenable hypothesis. Can J Cardiol.
FR, Califf RM, Jones RH. Prognostic indicators from radionuclide
angiography in medically treated patients with coronary artery
20. Moss AJ, Benhorin J. Prognosis and management after a first
JW. Risk stratification for 1 year survival based on characteristics
identified in the early hours of acute myocardial infarction: the
22. ISAM Study Group. A prospective trial of intravenous Strep-
tokinase in Acute Myocardial Infarction (ISAM): mortality, mor-
bidity and infarct size at 21 days. N Engl J Med. 1986;314:
1384-1471.
23. Van de Werf F, Arnold AER. Intravenous tissue plasminogen
activator and size of infarct, left ventricular function, and survival
24. Meinertz T, Kasper W, Schumacher M, Just H, for the APSAC
Multicenter Trial Group. The German multicenter trial of
anisoylated plasminogen streptokinase activator complex versus
heparin for acute myocardial infarction. Am J Cardiol. 1988;62:
347-351.
C, Mosseri M, Sapoznikov D, Juria MH, Gotsman MS. Prevention
of myocardial damage in acute myocardial ischaemia by early
treatment with intravenous streptokinase. N Engl J Med. 1985;313:
1384-1389.
26. Califf RM, O’Neill W, Stack RS, Aronson L, Mark DB, Mantell S,
George BS, Candela RJ, Kereiakes DJ, Abbottsmit C, Topol EJ.
Failure of simple clinical measurements to predict perfusion status
27. Krucoff MW, Croll MA, Pope JE, Pieper KS, Kanani PM, Granger
CB, Veldkamp RF, Wagner BL, Sawchak ST, Califf RM. Continu-
ously updated 12-lead ST-segment recovery analysis for myo-
cardial infarct artery patency assessment and its correlation with
multiple simultaneous early angiographic observations. Am J
28. Brown EJ, Swinford RD, Gadde P, Lillis O. Acute effects of
delayed reperfusion on myocardial infarct shape and left ven-
tricular volume: a potential mechanism of additional benefits from
29. Topol EJ, Califf RM, George BS, Kereiakes CJ, Abbottsmit CW,
Candela RJ, Lee KL, Pitt B, Stack RS, O’Neill WW. A ran-
domized trial of immediate versus delayed elective angioplasty
after intravenous tissue plasminogen activator in acute myocardial
30. The TIMI Study Group. Comparison of invasive and conservative
strategies after treatment with intravenous tissue plasminogen
activator in acute myocardial infarction: results of the Throm-
bolyis in Myocardial Infarction (TIMI) phase II trial. N Engl J
Randomized comparison of rescue angioplasty with conservative management of patients with early failure of thrombolysis for acute anterior myocardial infarction.
S G Ellis, E R da Silva, G Heyndrickx, J D Talley, C Cernigliaro, G Steg, C Spaulding, M Nobuyoshi, R Erbel and C Vassanelli

Circulation. 1994;90:2280-2284
doi: 10.1161/01.CIR.90.5.2280
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/90/5/2280

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/