17β-Estradiol Preserves Endothelial Vasodilator Function and Limits Low-Density Lipoprotein Oxidation in Hypercholesterolemic Swine

John F. Keaney, Jr, MD; Glenn T. Shwaery, MS; Aiming Xu, MD; Robert J. Nicolosi, PhD; Joseph Loscalzo, MD, PhD; Thomas L. Foxall, PhD; Joseph A. Vita, MD

Background Cardiovascular events are less prevalent in premenopausal women and women receiving estrogen replacement than in postmenopausal women or men. Endothelium-derived relaxing factor (EDRF) is an important local modulator of vascular tone, and abnormal endothelial function is related, in part, to the oxidative modification of low-density lipoprotein (LDL). Estrogens possess substantial antioxidant activity and inhibit LDL modification in vitro.

Methods and Results We investigated the effects of 17β-estradiol (E2) on endothelial vasomotor function in cholesterol-fed miniature swine. Animals underwent ovariectomy or a sham procedure and received E2 or placebo via implant yielding three groups: sham, ovariectomy (E2 placebo), and implant (E2 implant). After 16 weeks, coronary arteries were harvested and endothelial function was examined in vitro. Vessels from the sham and implant groups demonstrated preserved endothelium-dependent relaxation to bradykinin, substance P, and A23187. Vessels from the ovariectomy group exhibited impaired relaxation to bradykinin and substance P (P<.05 versus sham and implant groups) but not to A23187. Plasma E2 levels were strongly correlated with the response to bradykinin (R=.82, P<.001), substance P (R=.64, P<.01), and A23187 (R=.65, P<.01). Compared with the ovariectomy group, LDL derived from the sham and implant groups was markedly resistant to ex vivo oxidation (P<.05), and this effect correlated with preserved endothelium-dependent relaxation to bradykinin (R=.62, P<.03) and substance P (R=.61, P<.03).

Conclusions Thus, E2 preserves endothelial function in cholesterol-fed swine in association with protection of LDL against oxidative modification. These data suggest that E2 may, in part, favorably affect vascular function and coronary artery disease by virtue of its antioxidant properties. (*Circulation*. 1994;92:2251-2259.)

Key Words • lipoproteins • 17β-estradiol • estrogens • relaxing factors • hypercholesterolemia

Coronary atherosclerosis and cardiovascular events are less prevalent in women than in age-matched men.1 After natural or surgical menopause, women are more likely to develop coronary artery disease than premenopausal women of the same age.2 Estrogen replacement therapy limits the development of coronary artery disease and clinical events in both ovariectomized and postmenopausal women.3 Putative mechanisms responsible for the "protective" role of estrogens include estrogen-mediated effects on lipid metabolism, coagulation parameters, and blood pressure.1 Oral estrogen therapy is associated with increased levels of high-density lipoprotein cholesterol (HDLC) and decreased low-density lipoprotein cholesterol (LDL-C),4 although large-scale studies indicate that only 25% to 50% of the beneficial effect of estrogen is due to effects on lipoprotein levels.5,6

The coronary vascular endothelium plays a central role in regulating arterial tone7 and platelet function,8 in part through the actions of endothelium-derived relaxing factor (EDRF). Impairment of endothelium-dependent control of vascular tone develops early in atherosclerosis9 and may contribute to the development of myocardial ischemia.10 Abnormalities in endothelial control of vascular tone may be related, in part, to the oxidative modification of LDL. Exposure of normal arteries to oxidized LDL (ox-LDL) results in impaired endothelium-dependent arterial relaxation,11,12 and ox-LDL may inactivate EDRF directly.13

Recent evidence suggests that estrogens possess antioxidant activity that is related to the presence of a phenolic ring.14 Modification of LDL by copper ions, monocytes, and endothelial cells in vitro is inhibited by estrogens.15 In phospholipid microsomes, estrogens with a phenolic structure (ie, 17β-estradiol, estradiol) inhibit membrane phospholipid peroxidation in proportion to the extent of their membrane incorporation.16 Moreover, membrane estrogens are subject to conversion into their catechol analogues, which possess substantial antioxidant activity.14

There is evidence to suggest that estrogens influence endothelium-dependent regulation of vasomotor tone. In ovariectomized rabbits, 17β-estradiol treatment enhances endothelium-dependent relaxation to acetylcholine,17 and similar findings have been reported in canine coronary arteries with 17β-estradiol and progesterone in combination.18 The release of EDRF in response to vasoconstricting agents is enhanced in female rabbits compared with males or ovariectomized females,19 and...
estrogen replacement modulates endothelium-dependent vasomotor function in pathological states. In spontaneously hypertensive rats, estrogen treatment lowers blood pressure and improves endothelium-dependent relaxation.\(^{20}\) Estrogen replacement (with \(17\beta\)-estradiol) in atherosclerotic monkeys limits acetylcholine-mediated coronary vasoconstriction,\(^{21}\) and the acute administration of ethinyl estradiol has a similar effect.\(^{22}\)

We sought to examine the effect of endogenous and exogenous estrogens on endothelium-dependent arterial relaxation in a hypercholesterolemic swine model. In particular, we hypothesized that estrogens may improve endothelial vasomotor function by virtue of their antioxidant properties. We report the effects of endogenous and exogenous estrogens on endothelium-dependent arterial relaxation as well as effects on plasma lipoproteins and LDL susceptibility to ex vivo oxidation.

Methods

Materials

Nitroglycerin was obtained from Solopak Laboratories, and 2.2'-azobis-(2-amidinopropane) hydrochloride (AAPH) was purchased from Kodak, Inc. Glutaraldehyde, formaldehyde, osmium tetroxide, and cacodylate were purchased from Polysciences, Inc. Bradykinin, substance P, calcium ionophore (A23187), and all other compounds were purchased from Sigma Chemical Co. Physiological saline solution (PSS) contained 118.3 mmol/L NaCl, 4.7 mmol/L KCl, 2.5 mmol/L CaCl\(_2\), 1.2 mmol/L MgSO\(_4\), 0.8 mmol/L KH\(_2\)PO\(_4\), 25 mmol/L NaHCO\(_3\), 11.1 mmol/L glucose, 10 mmol/L indomethacin, and 0.026 mmol/L Na\(_2\)EDTA. Phosphate-buffered saline (PBS) consisted of 10 mmol/L Na\(_2\)PO\(_4\), 0.15 mol/L NaCl (pH 7.4). A23187 was prepared and diluted in dimethylsulfoxide; all other reagents were prepared with distilled water.

Animals

Fifteen sexually mature female Yucatan miniature swine (Sus scrofa) 26 weeks old (30 to 40 kg) were used for these studies. Animals were subjected to either laparoscopic ovariec- tomy (n=10) or laparotomy and sham ovariotomy (n=5) as described below. Ovariectomized animals were randomized to receive \(17\beta\)-estradiol or placebo via implant for 16 weeks yielding three groups of animals: (1) sham (sham ovariotomy), (2) ovariotomy (ovariectomy without hormonal replacement), and (3) implant (ovariectomy with \(17\beta\)-estradiol replacement). After recovering from surgery (=1 week), animals consumed an atherogenic diet containing 1% (w/w) cholesterol, 40% of calories as coconut oil, and 0.7% (w/w) sodium cholate for the study period. Dietary intake was limited to 1 kg/d, and plasma samples were obtained at the end of the study period for determination of fasting (18-hour) plasma lipoproteins and \(17\beta\)-estradiol levels. Animal protocols used for this study were approved by IACUC at both the West Roxbury VA Medical Center and the University of New Hampshire. Twelve of the 15 animals in this study were used concurrently for a study detailing the effect of estrogens on lipoprotein levels, lipoprotein composition, LDL oxidation, and antioxidant levels in hypercholesterolemic swine.

Laparoscopic Ovariectomy and Estrogen Replacement

Prophylactic benzathine penicillin (40 000 U/kg IM) was administered after surgery. The animals were sedated with 15 mg/kg xylazine IM (Mobay Co) and 2.5 mg/kg ketamine IM (Aveco), and anesthesia was maintained with 1.5% to 2.0% isoflurane (Anaquest) by nose cone. With aseptic technique, a laparoscope and trocar sleeves (US Surgical) were placed into the abdomen, the ovaries were identified, and ovariotomy was performed using a laparoscopic gastrointestinal anastomosis stapler (US Surgical). Estrogen replacement was administered via two subcutaneous implants constructed from 4-cm sections of sterile Silastic tubing (0.132-in. i.d., 0.183-in. o.d., Dow Corning Inc) containing 200 mg \(17\beta\)-estradiol powder (Steraloids). Two implants produced plasma \(17\beta\)-estradiol levels of approximately 200 to 250 pmol/L in a 45-kg animal corresponding to a high physiological \(17\beta\)-estradiol level in a normal pig.\(^{23}\) Plasma \(17\beta\)-estradiol concentrations were measured using standard radioimmunoassay on ether-extracted plasma.\(^{24}\) Antibody for these assays was kindly provided by Dr G. Niswender of Colorado State University.

Organ Chamber Methodology

Animals were killed with 120 mg/kg sodium pentobarbital IV (Anthony Products) after premedication with 100 IU/kg sodium heparin IV (Elkins-Sinn) and 20 mg/kg ketamine IM in accordance with the methods approved by the Panel on Euthanasia of the American Veterinary Medical Association.\(^{25}\)

After the animals were killed, the hearts were excised and immediately placed into ice-cold PSS. The epicardial coronary arteries were carefully dissected away from the myocardium, and the proximal half of each artery was cut into 3-mm rings (four to six rings per artery), placed in an organ chamber (37°C, pH 7.4) containing 20 mL PSS, and suspended between two tungsten stirrups for the measurement of isometric tension with a force transducer (model FT-03, Grass Instrument Co) and a chart recorder (model RS 3800, Gould Instrument Co). The chamber was aerated with 95% \(\mathrm{O}_2\)/5% \(\mathrm{CO}_2\) and each vessel was gradually stretched to 12 g of resting tension (optimal tension based on preliminary studies) and allowed to equilibrate for 1 hour before the introduction of vasoactive drugs. Vessel contraction was assayed in quiescent rings in response to PSS containing 10, 20, 40, and 80 mmol/L KCl (substituted for NaCl). In selected vessels, the endothelium was removed by gently rolling the vessel with a wooden applicator stick positioned in the vessel lumen. Vessels were contracted with the thromboxane mimetic U46619 (1 mmol/L), and vascular function was examined by the cumulative addition of bradykinin, calcium ionophore (A23187), substance P, or nitroglycerin. Representative rings were fixed in 3% glutaraldehyde for scanning electron microscopy to confirm the presence or absence of endothelium. With the exception of A23187, the order of agonists was randomized to control for cumulative effects. Vessel ring studies were performed by personnel blinded to hormonal therapy.

Lipoprotein Determination

Blood was drawn into tubes containing EDTA (1.5 mg/mL) and aprotinin (0.05%), and plasma was obtained after low-speed centrifugation at 4°C. Plasma total cholesterol (TC)\(^{26}\) and triglycerides (TG)\(^{27}\) were quantified using enzymatic methods. HDL-C was measured after phosphotungstic-MgCl\(_2\) precipitation of apoprotein B containing very-low-density lipoproteins (VLDL) and LDL.\(^{28}\) The LDL-C plus VLDL cholesterol (VLDL-C) fraction was determined from the difference between TC and HDL-C as described by Terpstra and colleagues.\(^{29}\)

Lipoprotein Isolation and LDL Susceptibility to Ex Vivo Oxidation

LDL (density=1.009 to 1.040 g/mL) was isolated using single-spin gradient ultracentrifugation as described previously.\(^{29}\) The purity of the LDL fraction was assessed by agarose electrophoresis.\(^{30}\) Standard incubation of LDL to assess susceptibility to oxidation was performed at a LDL concentration of 0.05 mg/mL LDL protein in the presence of 10 μmol/L AAPH at 37°C. LDL oxidative susceptibility was assessed by continuous spectrophotometric monitoring at 234 nm and quantified by the lag-phase duration preceding the formation
Histological Examination

In each animal, the midportion of the left anterior descending coronary artery was fixed with a solution of 10% formalin in PBS (pH 7.4) for 20 minutes. The coronary artery was gently cleaned of loose connective tissue, washed in cacodylate-sucrose buffer (10.26 g sucrose in 150 mL 0.1 mol/L cacodylate) for 5 minutes, and further fixed in glutaraldehyde-cacodylate solution (3% glutaraldehyde, 0.1 mol/L cacodylate) for 24 hours. Samples prepared in this manner were sectioned (0.2 mm), dehydrated, and embedded in paraffin by standard histological procedures. Sections were stained with resorcin fuchsin (for elastin) and subjected to morphometric analysis of intimal and medial area using an automated videomicroscopy system (Zeiss Instruments).

Data Analysis

Unless otherwise specified, all data are presented as mean±SEM. Vessel relaxation is expressed as the percent reduction in tension compared with that produced by 1 μmol/L U46619. 17β-Estradiol levels, lipoprotein levels, intimal proliferation, and LDL susceptibility to ex vivo oxidation were compared among treatment groups using ANOVA with a post hoc Newman-Keuls comparison. Dose-response relationships for bradykinin, substance P, A, 23187, and nitroglycerin were compared among treatment groups using ANOVA. The relation between vascular function and LD resistance to oxidation or plasma 17β-estradiol levels was examined by relating lag phase or the logarithm of plasma 17β-estradiol levels to vessel relaxation in response to 0.1 μmol/L bradykinin or 3 mmol/L substance P using linear regression (Spearman). Statistical significance was accepted if the null hypothesis was rejected at the .05 level.

Results

Plasma 17β-Estradiol and Lipoprotein Levels

Plasma 17β-estradiol levels were consistent with hormonal treatment. Animals in the ovariectomy group demonstrated plasma 17β-estradiol levels that were near the limits of detection (20±6 pmol/L). Animals in the sham group had an intermediate plasma 17β-estradiol level of 86±29 pmol/L (P<.05 versus ovariectomy), whereas animals in the implant group demonstrated a significantly elevated plasma 17β-estradiol level of 239±37 pmol/L (P<.05 versus ovariectomy and sham groups).

Plasma lipoprotein profiles from the study animals are given (Table). Before animals consumed an atherogenic diet, plasma TC, LDL-C plus VLDL-C, HDL-C, and TG levels were 101±7, 43±3, 58±4, and 67±11 mg/dL, respectively. After 16 weeks of dietary treatment, plasma TC, LDL-C plus VLDL-C, and HDL-C increased significantly (P<.05), whereas plasma TG levels were unchanged (Table). There were no significant differences in plasma lipoprotein profiles among the different treatment groups.

Estrogens and Vascular Function

Animals in the sham, ovariectomy, and implant groups all demonstrated similar coronary artery contractile responses to 1 μmol/L U46619 of (mean±SD) 8.7±2.6, 10.6±2.7, and 9.8±3.3 g, respectively (P=NS). In a similar fashion, the contractile responses to 10, 20, 40, and 80 mmol/L KCl were not significantly different on the basis of hormonal treatment. The EC50 for KCl-mediated contraction in the sham, ovariectomy, and implant groups was 22.3±0.4, 21.8±0.5, and 21.6±0.4 mmol/L, respectively (P=NS).

The coronary artery responses to bradykinin are contained in Fig 1. Intact coronary arteries from the sham and implant groups demonstrated significant dose-dependent arterial relaxation in response to bradykinin with maximal relaxations of 86±11% and 91±5%, respectively (both P<.001 versus baseline). In contrast, vessels derived from the ovariectomy group demonstrated significant impairment of endothelium-dependent arterial relaxation relative to vessels from
the implant and sham groups with a maximal relaxation of 39±8% (P < .001 versus both implant and sham). In the absence of endothelium, there was no significant relaxation to bradykinin in any of the treatment groups (Fig 1).

The coronary vessel response to substance P is shown in Fig 2. Intact coronary arteries from the implant and sham groups displayed significant endothelium-dependent arterial relaxation to substance P with maximal relaxations of 87±5% and 94±8%, respectively (P < .001 versus baseline; Fig 2). Vessels from animals in the ovariectomy group demonstrated significantly less endothelium-dependent arterial relaxation in response to substance P (maximal response, 43±12%) than vessels from either the sham or implant groups (P < .001; Fig 2). In the absence of endothelium, there was no significant relaxation in response to substance P (Fig 2).

The coronary vascular response to the receptor-independent calcium ionophore A23187 is presented in Fig 3. Vessels from all three treatment groups demonstrated significant dose-dependent relaxation in response to increasing doses of A23187 (P < .001 versus baseline). Maximal relaxations observed for the ovariectomy, sham, and implant groups were 82±6%, 95±6%, and 98±4%, respectively. In contrast to the responses seen with bradykinin and substance P, there was no significant difference in endothelium-dependent arterial relaxation on the basis of hormonal status (Fig 3). In vessels without endothelium, there was no significant relaxation in response to A23187 (Fig 3).

We investigated smooth muscle cell vasodilator function with the endothelium-independent vasodilator nitroglycerin (Fig 4). Denuded vessels from all three treatment groups demonstrated significant dose-dependent arterial relaxation in response to nitroglycerin with maximal relaxations of 103±4%, 101±3%, and 100±3% in the ovariectomy, sham, and implant groups, respectively (P < .001 versus baseline). There was no significant difference in nitroglycerin-induced arterial relaxation among the three treatment groups (Fig 4). The response to nitroglycerin was similar in vessels with endothelium (data not shown). Thus, smooth muscle cell vasodilator function was similar in all three hormonal treatment groups.

Histological Examination

Previous studies in cholesterol-fed animals have demonstrated diminished atherogenesis in cholesterol-fed animals receiving estrogen compared with animals without estrogen.32,33 In the present study, such an effect might explain group differences in endothelium-dependent vessel relaxation. To investigate this possibility, we compared the extent of intimal proliferation (expressed as the ratio of intimal to medial area) in the mid–left anterior descending coronary artery from all three
Fig 5. Plot demonstrating ex vivo low-density lipoprotein (LDL) susceptibility to oxidation by aqueous peroxyl radicals in swine after 16 weeks of an atherogenic diet. Animals were subjected to ovariec-tomy (Ovx), sham procedure (Sham), or ovarie-cotomy with 17β-estradiol implant (Implant) followed by an atherogenic diet. After 16 weeks, LDL was harvested as described in "Methods" and assayed for susceptibility to oxidation by incubation (0.05 mg/mL LDL protein) with 10 μmol/L 2,2′-azobis-(2-amidi-nopropene) hydrochloride and lipid peroxidation monitored by absorbance at 234 nm. Lag phase represents the time preceding the propagation of conjugated dienes as described by Esterbauer et al.19 Values represent mean±SEM of four animals per group. *P<.05 vs ovariec-tomy group.

LDL Susceptibility to Ex Vivo Oxidation

To test the hypothesis that estrogen may preserve endothelial vasodilator function by limiting oxidation of LDL, we examined LDL derived from all three treatment groups for its susceptibility to ex vivo oxidation by aqueous peroxyl radicals (Fig 5). The lag-phase duration preceding diene conjugation is inversely related to LDL susceptibility to oxidation.31 LDL isolated from the ovarie-cotomy group was the most susceptible to ex vivo oxidation with a lag phase of 35±12 minutes. LDL derived from animals with endogenous estrogens (sham group) was significantly more resistant to oxidation with a lag phase of 85±15 minutes (P<.05 versus ovarie-cotomy group). LDL from animals treated with 17β-estradiol implants were the most resistant to oxidation with a lag phase of 105±20 minutes (P<.05 versus ovariec-tomy), an effect that was not significantly different from the sham group. Thus, preserved endotheli-um-dependent arterial relaxation in these hypercholes-teremic swine was associated with enhanced LDL resistance to ex vivo oxidation.

Plasma 17β-Estradiol, LDL Resistance to Oxidation, and Endothelium-Dependent Arterial Relaxation

We investigated the relation between endothelial vasodilator function and plasma 17β-estradiol levels in all 15 study animals. Fig 6 contains the relation of plasma 17β-estradiol levels and the extent of arterial relaxation to maximal doses of bradykinin, substance P, and A23187. The degree of arterial relaxation to 0.1 μmol/L bradykinin positively correlated with the logarithm of plasma 17β-estradiol levels with an R value of .82 (P=.00015), and vessel relaxation to substance P (3 nmol/L) also positively correlated to the logarithm of plasma 17β-estradiol levels with a correlation coefficient of .64 (P=.0097). Vessel relaxation to the receptor-independent calcium ionophore A23187 also correlated with the logarithm of plasma 17β-estradiol levels (R=.65, P=.0086), although over a much narrower range of vessel relaxation. Analysis of the slopes for regression lines relating plasma 17β-estradiol levels to vessel relaxation suggests that 17β-estradiol influences vessel relaxation in a rank order of bradykinin> substance P>A23187 in this model (slopes, 41±8, 28±9, and 15±5, respectively).

We further examined the relation between endothe-lium-dependent arterial relaxation and LDL resistance to oxidation in the 12 animals for which data on LDL oxidative resistance were available, and these results are presented in Fig 7. Endothelium-dependent arterial relaxation in response to maximal doses of bradykinin (0.1 μmol/L) and substance P (3 nmol/L) correlated with LDL resistance to oxidation (lag phase) with correlation coefficients of .62 and .61, respectively (P<.03 for both). LDL resistance to oxidation was not significantly correlated with plasma 17β-estradiol levels (R=.47, P=.123). There was no significant correlation between endothelium-dependent arterial relaxation and plasma lipoproteins (TC, LDL-C plus VLDL-C, HDL-C) or coronary artery intimal proliferation.

Discussion

The data presented here demonstrate that endoge-nous and exogenous estrogens preserve normal endo-thelium-dependent vasodilation in hypercholes-teremic swine. This preservation of vascular function was unrelated to any alteration in smooth muscle cell function as evidenced by the similar response to both nitroglycerin and KCl among the treatment groups. In this study, estrogens delivered as 17β-estradiol via a subcutaneous implant or through intact ovarian function had no significant effects on plasma cholesterol or
lipoproteins. Likewise, differences in endothelial vaso-
motor function were not associated with significant
differences in the degree of intimal proliferation among
treatment groups. Preservation of endothelial function
was significantly related to both plasma 17β-estradiol
levels and enhanced LDL protection from ex vivo
oxidation.

Previous studies have examined the influence of estrogen
on vascular function in normocholesterolemic ani-
mal. Gisclard and colleagues demonstrated that 17β-
estadiol treatment enhanced endothelium-dependent
relaxation to acetylcholine in ovariectomized rabbits,
and in canine coronary arteries, 17β-estradiol and proges-
terone in combination improved vasorelaxation in response
to acetylcholine. Basal release of EDRF appears en-
hanced in female rabbits compared with male or ovari-
ectomized female rabbits. 17β-Estradiol also influences
smooth muscle cell function. Jiang and colleagues ob-
served impairment of endothelin-1 mediated con-
traction in rabbit coronary arteries treated with 17β-
estadiol. In this model, the coronary artery constrictor
response to BAY K 8644, a direct calcium channel
agonist, was also inhibited by 17β-estradiol, suggesting
that 17β-estradiol may act by preventing calcium channel
function.

Estrogen replacement also modulates vasomotor dys-
function in pathological states. In the spontaneously
hypertensive rat model, estrogen treatment lowers blood
pressure and improves endothelium-dependent relax-
ation. In ovariectomized monkeys consuming an athero-
genic diet, Williams and colleagues demonstrated that
17β-estradiol replacement abolished acetylcholine medi-
at coronary vasoconstriction and that the acute ad-
imistration of ethinyl estradiol was also associated with a
less marked contractile response to acetylcholine.

The results presented here are in general agreement
with the previous work of Williams and colleagues. Those
investigators found that subcutaneous 17β-estradiol
therapy limited the degree of pathological coronary artery
constriction to intracoronary acetylcholine infusion in
ovariectomized cynomolgus monkeys fed cholesterol for
30 months. The observations of Williams and colleagues
are consistent with an enhanced release of EDRF that
opposed the direct smooth muscle effect of acetylcholine;
however, these findings may also reflect 17β-estradiol-
mediated effects on vascular smooth muscle cell function.
This point is particularly germane in light of observations
demonstrating 17β-estradiol-mediated inhibition of coro-
ary artery constriction by Jiang and coworkers.

In some respects, the data presented here differ from
the previous work of Williams and coworkers. In that
report, study animals did not demonstrate significant
coronary artery vasodilation in response to either ace-
ylcholine or nitroglycerin. In contrast, coronary arte-
ries from our animal subjects did demonstrate enhanced
endothelium-dependent arterial relaxation with 17β-
estriadiol treatment. The present study examined vascu-
lar responses in precontracted coronary arteries ex vivo,
whereas Williams and coworkers studied coronary arte-
ries in vivo that were subject to autoregulation. It is
possible that the differences in experimental conditions
in these two studies may explain in part the differences
in vascular reactivity.

In the study by Williams and colleagues, 17β-estradiol
treatment was associated with a 33% reduction in
plasma cholesterol that may have contributed to the
observed effect on coronary vasomotor function. In
contrast, the present study demonstrated a significant
improvement in endothelium-dependent arterial relaxa-
tion without any effect on plasma lipoprotein levels. In
women, oral estrogen therapy lowers plasma LDL and
raises plasma HDL, whereas transdermal estrogen ther-
apy has no effect. Our animals received 17β-estradiol
via subcutaneous implant and thus may have been
spared any 17β-estradiol mediated effects on lipopro-
teins. Moreover, the similarity in lipoprotein profiles in
our implant and sham animals is consistent with obser-
vations of other investigators in cholesterol-fed rabbits
and monkeys treated with subcutaneous estrogen or
estrogen-progesterone combinations.

In this study, we observed no significant association
between 17β-estradiol levels and coronary artery inti-
mal proliferation, whereas Williams and colleagues
observed less intimal proliferation in estrogen-treated
animals. It is possible that our study did not contain
a sufficient number of animals to demonstrate such an
association. Alternatively, it is also possible that similar
lipoprotein levels among the treatment groups pro-
duced similar degrees of intimal proliferation with 16
weeks of cholesterol feeding.

In the present study, animals without endogenous or
exogenous estrogens demonstrated abnormal endothe-
lum-dependent arterial relaxation in response to the
EDRF agonist bradykinin. This finding is not consistent
with some previous studies using hypercholesterolemic
swine. Possible explanations for this discrepancy
may be related to differences in animal populations,
duration of treatment, and the presence or absence of

![Figure 7: Plots of endothelial-dependent arterial relaxation and low-density lipoprotein (LDL) resistance to ex vivo oxidation.](http://circ.ahajournals.org/doi/fig/10.1161/01.CIR.89.1.2256)}
atherosclerosis. In this study, we used only female swine, whereas other studies primarily have used males.37 Previous studies that failed to demonstrate abnormal bradykinin-mediated vasorelaxation used animals fed cholesterol for only 9 (Reference 37) or 10 (Reference 38) weeks, whereas animals in the present study received an atherogenic diet for 16 weeks. Moreover, we observed early coronary atherosclerotic lesions in our study animals, whereas others have not.37 In fact, in cholesterol-fed pigs, Shimokawa and Vanhoutte39 observed impaired bradykinin-mediated arterial relaxation in coronary arteries with atherosclerotic lesions, whereas in the same animals, coronary segments without lesions demonstrated normal responses to bradykinin.

We observed a significant association between plasma 17β-estradiol levels and the extent of endothelium-dependent arterial relaxation in response to bradykinin, substance P, and A23187. Vessel relaxations to bradykinin and substance P were more highly dependent on plasma 17β-estradiol than relaxations to A23187. This observation would suggest that in hypercholesterolemia, membrane-receptor interactions and/or signal transduction may be influenced by the presence of 17β-estradiol. Similar findings have been reported in ovarectomized rabbits17 and dogs.18 Mechanistic etiologies for the “facilitation” of EDRF action in the presence of 17β-estradiol might include an increased availability of membrane receptors, increased cellular levels of constitutive nitric oxide synthase, limited degradation of EDRF, or limitation of LDL oxidation in vivo, which attenuates LDL-mediated endothelial dysfunction.

Many forms of estrogen demonstrate antioxidant activity,14-16 and inhibition of LDL oxidation in vivo may serve several important functions that would explain in part the preserved endothelial vasomotor function demonstrated here. Normal arteries exposed to ox-LDL develop impaired endothelium-dependent relaxation.11,12 Oxidation of LDL is associated with the intraparticle conversion of lecithin to lysolecithin, presumably through phospholipase A2 activity intrinsic to apolipoprotein B,40 and the production of lysolecithin during oxidative modification of LDL is particularly important in the development of an abnormal vascular response.11,41,42 Depletion of lysolecithin from ox-LDL through incubation with defatted albumin11 or treatment with phospholipase B41 attenuates the development of abnormal vasomotion. Moreover, direct incubation of normal arteries with lysolecithin results in abnormal endothelium-dependent arterial relaxation.11,42

The impairment of EDRF action due to ox-LDL and lysolecithin is partly related to defective receptor-mediated EDRF release. Normal arteries exposed to ox-LDL at concentrations of 50 μg/mL or less demonstrate a deficit in response to receptor-dependent EDRF agonists, whereas the response to the calcium ionophore A23187 remains largely intact.11,42 Exposure of endothelial cells to lysolecithin results in diminished EDRF release, as determined by a vessel ring bioassay.43 Incubation of bovine aortic endothelial cells with lysolecithin leads to impaired intracellular phosphoinositid hydrolysis and calcium release from intracellular stores in response to bradykinin. Thus, 17β-estradiol-mediated limitation of LDL oxidation in vivo could result in diminished lysolecithin accumulation in the vascular wall and preserved receptor-dependent EDRF-mediated arterial relaxation. Our observation relating LDL susceptibility to oxidation by aqueous peroxyl radicals and vessel relaxation to substance P and bradykinin appears to support this contention.

Modified LDL may also affect EDRF action in atherosclerosis through its effects on leukocyte recruitment. Oxidized LDL is chemotactic for monocytes and prevents macrophage egress from atherosclerotic vessels.44 Vessel wall macrophages are a potential source of oxygen-derived free radicals45 that may serve as a source of continued LDL oxidation46 and EDRF inactivation.47 Moreover, the ox-LDL so formed may contribute to continued macrophage recruitment and may inactivate EDRF directly.13

Abnormalities in endothelium-dependent relaxation may also be related to the inflammatory response associated with atherosclerosis and hypercholesterolemia. Several cell types within atherosclerotic vessels are inflammatory in nature and capable of releasing oxygen-derived free radicals.45-48,50 Investigation into the chemical nature of EDRF suggests that EDRF is either nitric oxide41,52 or a related redox form53 that combines readily with a number of chemical species, including oxygen54 and superoxide anion,55 leading to a loss of biological activity.47 One must consider that the estrogen-mediated preservation of EDRF action presented here may be a consequence of the free radical-scavenging characteristics of estrogens vis-à-vis superoxide anion. Alternatively, estrogens may in some way inhibit superoxide production by endothelial cells. In fact, hypercholesterolemic vessels appear to produce excess superoxide anion,56 and enhanced degradation of superoxide anion in atherosclerotic rabbits improves the response to endothelium-dependent vasodilators.57

In summary, 17β-estradiol preserves receptor-mediated endothelium-dependent coronary arterial relaxation in hypercholesterolemia. In our experimental model, this effect is independent of 17β-estradiol-mediated changes in plasma lipoprotein levels, vascular morphology, and smooth muscle cell function. Because impairment of EDRF action may contribute to altered local control of vasomotor tone and platelet function, these results support the hypothesis that 17β-estradiol may limit the clinical expression of coronary artery disease by virtue of its effects on EDRF action and metabolism. With regard to the mechanisms responsible for our observations, the beneficial effects of 17β-estradiol treatment on vasomotor function were associated with marked group differences in the susceptibility of LDL to ex vivo oxidation. Furthermore, LDL susceptibility to oxidation correlated significantly with the extent of receptor-dependent EDRF-mediated arterial relaxation. These findings support the hypothesis that 17β-estradiol preserves endothelial function in hypercholesterolemia, in part by limiting LDL oxidation in vivo and thereby preventing the deleterious effects of ox-LDL on agonist-mediated EDRF release and EDRF degradation.

Acknowledgments

This work was supported by National Institutes of Health (NIH) grant 44492-01 (R.J.N.), USDA Hatch Act grant F285 (T.L.F.), a Grant-in-Aid from the American Heart Association (J.A.V.), and a Milton Fund Award from Harvard University (J.A.V.). John F. Keaney, Jr, is the recipient of a NIH National
Research Service Award (F32-HL-08635). Joseph Loscalzo is the recipient of a NIH Research Career Development Award (K04-HL-02273), and Joseph Vita is the recipient of a Clinical Investigator Award (K08-HL-02580) from the NIH. The authors acknowledge the assistance of James Carr and the technical staff of the West Roxbury VA Medical Center and University of New Hampshire animal research facilities.

References

10. Yeung AC, Vekstein VI, Krantz DS, VitaJA, Ryan TJ Jr, Ganz P, Selwyn AP. The effect of arterial modifi-
31. Jiang C, Sarrel PM, Poole-Wilson PA, Collins P. Acute effect of 17-beta estradiol on rabbit coronary artery contractile responses to endothe
36. Shimokawa H, Vanhouette PM. Impaired endothelium-dependent relaxation to aggregating platelets and related vascular sub-

17 beta-estradiol preserves endothelial vasodilator function and limits low-density lipoprotein oxidation in hypercholesterolemic swine.
J F Keaney, Jr, G T Shwaery, A Xu, R J Nicolosi, J Loscalzo, T L Foxall and J A Vita

Circulation. 1994;89:2251-2259
doi: 10.1161/01.CIR.89.5.2251
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/89/5/2251

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org//subscriptions/