course, significant and warrants careful clinical consideration because this technique could exacerbate hypoxemia in the child with transposition; but the potential advantage of this technique is the ability to eliminate the afterload rapidly. Further experimental work is necessary to determine the minimal afterload requirements to induce sufficient myocardial hypertrophy to sustain the increased ventricular work after arterial switch repair in a child with transposition and whether sufficient hemodynamic/metabolic stability can be maintained with the application of this method.

Hiroshi Katayama, MD
G. William Henry, MD
Department of Pediatrics
School of Medicine
University of North Carolina
Chapel Hill, North Carolina

Reference

Blunted Nocturnal Fall in Blood Pressure in Hypertensive Women

We have read with great interest the important study by Verdecchia et al,1 who found that a blunted nocturnal fall in hypertensive women may predict future morbid cardiovascular events.

However, these authors (and many others) fail to recognize a technical problem when calculating day-night blood pressure relations: the siesta, the afternoon nap, which is common practice in Mediterranean countries including Italy, where the above study took place. We have found that daytime sleep ambulatory blood pressure is reduced to levels similar to nighttime sleep ambulatory blood pressure in people taking siestas.2 When day and night are defined arbitrarily (as in the above study: 6:00 AM to 10:00 PM) and not according to actual sleeping time, the day-night blood pressure difference is diminished by about 50% of the difference when actual awake-asleep difference is considered. Consequently, had Verdecchia et al calculated the actual day-night blood pressure differences and not “diluted” them with daytime sleep blood pressure, their relation might have been stronger and perhaps could have been significant for men and not only for women.

Since the siesta may have a great impact on day-night ambulatory blood pressure difference, we suggest that actual asleep-awake status (as reported by the patient) be taken into account when attempting to draw conclusions on diurnal-nocturnal blood pressure variability.

Michael Bursztyn, MD
Hypertension Unit
Hadassah University Hospital – Mount Scopus
Jerusalem, Israel

References

Reply

We agree with Dr Bursztyn and coworkers1 that the blood pressure reduction associated with sleep may be similar during night and afternoon nap. Our first observation is that the time spent in bed should not be automatically identified with the actual sleeping time. Degaute and coworkers2 used electroencephalography to precisely assess the duration of sleep in 44 subjects and found that noninvasive ambulatory blood pressure monitoring is associated with a significant (P=0.005) increase in the time spent awake during night (66 minutes on average versus 43 to 52 minutes at night when the subjects did not wear the blood pressure recording apparatus). Hence, in the absence of electroencephalographic control we have no support apart from the patient’s diary to establish that a given blood pressure measurement during night or afternoon was actually taken while awake or asleep. Dr Bursztyn is certainly right when he suggests that the inclusion of blood pressure values recorded during the afternoon nap might lead to an underestimation (“dilution”) of average daytime blood pressure. However, in his study the mean duration of siesta was 1.8 hours (SD, 0.6), only 11% of the total daytime period as defined in our study3 (ie, between 6:00 AM and 10:00 PM). That may imply a negligible underestimation of mean daytime ambulatory blood pressure and, consequently, of the percent reduction of blood pressure from day to night; for the effect of inclusion of blood pressure during the afternoon nap. The possibility raised by Dr Bursztyn could be properly tested by assessing whether daytime blood pressure not including siesta is equally or differently predictive of target organ damage in hypertension from that including siesta. At present, we do not dispose of complete information concerning the afternoon siesta in all our patients. In our opinion, however, the definition of the daytime and nighttime subperiods should be preferentially expressed using fixed, albeit arbitrary, time intervals so as to improve comparability between studies from different laboratories and to reduce the possibility of inaccuracies in defining awake-asleep or activity-rest cycles.

Paolo Verdecchia, MD
Carlo Porcellati, MD
General Hospital “R. Silvestrini”
Division of Medicine
Perugia, Italy

References
Blunted nocturnal fall in blood pressure in hypertensive women.
M Bursztyn

Circulation. 1994;89:1912
doi: 10.1161/01.CIR.89.4.1912
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1994 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circ.ahajournals.org/content/89/4/1912.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/