Both ET\textsubscript{A} and ET\textsubscript{B} Receptors Mediate Contraction to Endothelin-1 in Human Blood Vessels

Bonggwan Seo, MD, PhD; Barry S. Oemar, MD; Robert Siebenmann, MD; Ludwig von Segesser, MD; Thomas F. Lüscher, MD

Background Endothelin (ET)-1 has potent vascular effects. Two endothelin receptors have been cloned, namely, the ET\textsubscript{A} receptor, which preferentially binds ET-1, and the ET\textsubscript{B} receptor, which equally binds ET-1 and ET-3 and preferentially sarafotoxin S6c. We characterized endothelin receptor subtypes on vascular smooth muscle and endothelium of isolated human internal mammary artery (IMA) and vein (IMV) and porcine coronary artery (PCA) using the ET\textsubscript{A} antagonists FR139317 and BQ-123, the ET\textsubscript{B} ligand sarafotoxin S6c, and the ET\textsubscript{A}/ET\textsubscript{B} antagonist Ro 47-0203 (bosentan).

Methods and Results In endothelium-denuded IMA and PCA and less so in IMV, FR139317 and BQ-123 (in PCA only) shifted the concentration-contraction curves to ET-1 parallel to the right. However, even at 10-5 mol/L, FR139317 did not inhibit a high-sensitivity portion of the concentration-contraction curve. Moreover, the ET\textsubscript{B} receptor agonist sarafotoxin S6c induced contraction in vessels preincubated with FR139317. IMV was significantly more sensitive to the contractile effect of ET-1 and sarafotoxin S6c than was IMA (P<.05). Prolonged incubation with sarafotoxin S6c (to downregulate ET\textsubscript{B} receptors) and FR139317 eliminated the contraction resistant to FR139317. The ET\textsubscript{A}/ET\textsubscript{B} receptor antagonist bosentan caused a parallel shift of the concentration-contraction curve to the right at all concentrations of endothelin. ET\textsubscript{B} receptor mRNA was detected by Northern blot analysis in IMA and aortic smooth muscle cells. In precontracted IMA and PCA with endothelin, sarafotoxin S6c did not cause endothelium-dependent relaxations, whereas transient responses occurred in IMV.

Conclusions Vascular smooth muscle cells of human IMA, IMV, and PCA contain both ET\textsubscript{A} and ET\textsubscript{B} receptors, whereas the endothelium of IMA and PCA does not express functional ET\textsubscript{B} receptors linked to nitric oxide and/or prostacyclin production. Hence, inhibition of endothelin-induced contraction in patients requires the use of combined ET\textsubscript{A}/ET\textsubscript{B} antagonists.

(Circulation. 1994;89:1203-1208.)

Key Words • arteries • veins • endothelin

Endothelin (ET)-1 is a 21-amino acid peptide that has strong vasoconstrictor1-3 as well as mitogenic activity.4 In addition, under certain conditions it can cause vasodilation:5 Its plasma levels are very low in normal subjects but are augmented in many disease states such as in certain patients with hypertension,6,7 atherosclerosis,8 acute myocardial infarction,9 and renal failure,10 suggesting that it may play a pathophysiological role in these situations.

Three isoforms of endothelin (ET-1, ET-2, ET-3) are known,11 but only ET-1 is produced by the vascular endothelium. Two endothelin receptors (ie, ET\textsubscript{A} and ET\textsubscript{B}) that mediate the vascular effects of ET-1 have been characterized and their cDNAs cloned.12,13 The ET\textsubscript{A} receptor has a much higher affinity for ET-1 than ET-3, whereas the ET\textsubscript{B} receptor has nearly the same affinity for all endothelin isoforms.13 ET\textsubscript{A} receptors appear to be present mainly on vascular smooth muscle cells, mediating the vasoconstrictor effects of ET-1, whereas ET\textsubscript{B} receptors on the vascular endothelium mediate the transient vasodilator response to ET-1 and ET-3 through release of nitric oxide and/or prostacyclin.5,14 Under certain conditions, however, ET\textsubscript{B} receptors may also mediate vasoconstrictor response to ET-1.15,16 For example, BQ-123, one of the specific antagonists for ET\textsubscript{A} receptors, is unable to fully antagonize the vasoconstriction to ET-1 in rats.16 Endothelin receptor antagonists are likely to be used more frequently both for elucidating the (patho)physiological role of endothelin in various cardiovascular diseases and possibly also for the treatment of these conditions. In this regard, it seems necessary to characterize receptor subtype(s) in various blood vessels and in particular those obtained from humans.

We pharmacologically characterized endothelin receptor subtypes on the endothelium and vascular smooth muscle of human internal mammary artery (IMA) and vein (IMV) as well as porcine coronary artery (PCA), using the ET\textsubscript{A}-selective antagonists FR139317 and BQ-123,18 the ET\textsubscript{B} ligand sarafotoxin S6c,19 and the combined ET\textsubscript{A}/ET\textsubscript{B} receptor antagonist Ro 47-0203 (bosentan).20

Methods

Blood Vessels and Experimental Setup

Internal mammary arteries and veins were harvested intraoperatively from patients undergoing bypass surgery.2,21 Vascular segments from 34 patients (31 men and 3 women; mean

Received October 12, 1993; revision accepted November 16, 1993.

From the Departments of Research (B.S.O., T.F.L.) and Medicine (T.F.L.), University Hospitals, Basel and Bern; the Heart Center (R.S.), Hirslanden; the Department of Surgery (L.v.S.), University Hospital, Zürich, Switzerland; and the Department of Medicine (B.S.), Gyeongsang National University Hospital, Chinju, Korea.

Correspondence to Thomas F. Lüscher, MD, Division of Cardiology, University Hospital/Inselspital, CH-3010 Bern, Switzerland.
age, 62 years; range, 31 to 77) were investigated. Twenty-six percent had hypertension (n=9), 15% had diabetes mellitus (n=5), 24% were smokers (n=8), and 38% had hypercholesterolemia defined as >5.2 mmol/L (n=13). The medication of the patients included calcium antagonists (53%, n=18), antiplatelet agents (47%, n=16), nitrates (35%, n=12), β-blockers (38%, n=13), and miscellaneous drugs. Porcine coronary arteries were obtained at a slaughterhouse within 30 minutes of death. Blood vessels were kept in cold modified Krebs-Ringer bicarbonate solution of the following composition (in mmol/L): 118 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 25.0 NaHCO3, 0.026 edetate calcium disodium, and 11.1 glucose (control solution). The IMA, IMV, and left anterior descending branch of PCA were dissected free and cleaned of adherent tissue under a dissecting microscope. The preparations were cut into rings (4 mm for IMA and IMV, 5 mm for PCA). The endothelium of IMA and PCA was removed mechanically except in protocols 4 and 5 (see below). The rings were suspended between two stirrups in an organ chamber filled with 12.5 mL of control solution (37°C) aerated with 95% O2–5% CO2, and isometric tension was measured. After equilibrium for 45 minutes under 4 g (IMA, References 2 and 21) or 8 g (PCA, Reference 22) of tension, the absence of endothelium was confirmed by the absence of a relaxation to acetylcholine (10−6 mol/L, IMA) or bradykinin (10−6 mol/L, PCA).22 Rings that relaxed less than 10% of contraction to norepinephrine (3×10−7 mol/L, IMA) or acetylcholine (3×10−7 mol/L, PCA) were considered without endothelium. Initial tension for IMV was 1.5 g.2

Protocols

After contraction of each vascular ring with 100 mmol/L KCl (control response), the following protocols were performed.

Effect of FR139317 on Contraction to ET-1 (Protocol 1)

To test the effect of the ETα receptor antagonist FR139317, IMA and PCA rings without endothelium were preincubated for 30 minutes with FR139317 (10−5, 10−6, 10−7 mol/L), and cumulative concentration-contraction curves to ET-1 were constructed. Vehicle (ethanol) did not cause significant effects (data not shown). BO-123 (10−7, 10−6, 10−5 mol/L) was tested in PCA in the same fashion.

Effect of Sarafotoxin S6c on FR139317-Resistant Portion of the Concentration-Contraction Curves to ET-1 (Protocol 2)

Concentration-contraction curves to ET-1 revealed a portion resistant to FR139317 in IMA, IMV, and PCA (see below). To examine whether this was due to ETα receptor activation, some vessels were preincubated with sarafotoxin S6c (3×10−7 mol/L) for 1 hour (to downregulate ETα receptors) and then with FR139317 (10−6 mol/L) for additional 30 minutes. Concentration-contraction curves to ET-1 were constructed for control vessels, vessels preincubated with FR139317, and those preincubated with sarafotoxin S6c and FR139317.

Contractions to Sarafotoxin S6c (Protocol 3)

To test the presence of ETα receptors, rings were preincubated with FR139317 (10−5 mol/L) for 30 minutes (to block ETα receptors), and cumulative concentration-contraction curves to sarafotoxin S6c were constructed.

Effect of a Combined ETα/ETβ Receptor Antagonist Bosentan on Contraction to ET-1 (Protocol 4)

In IMA rings preincubated with bosentan (10−7 mol/L, 10−6 mol/L, 10−5 mol/L, 30 minutes), concentration-contraction curves to ET-1 were constructed. Endothelium was not removed in this protocol because protocol 5 (below) showed that endothelium of IMA did not cause endothelium-dependent relaxation (see “Results”).

Effect of Sarafotoxin S6c in Rings With Endothelium (Protocol 5)

To examine whether ETα receptor stimulation causes endothelium-dependent relaxation, rings were precontracted with norepinephrine (3×10−6 mol/L in IMA, 10−7 mol/L in IMV) or acetylcholine (3×10−7 mol/L in PCA) and exposed to cumulative concentrations of acetylcholine (IMA) or bradykinin (IMV and PCA), respectively. Rings then were washed, preincubated with FR139317 (10−5 mol/L, 30 minutes), and cumulative concentration-response curves to sarafotoxin S6c were constructed under the same conditions as above.

Since sarafotoxin S6c did not relax in IMV or PCA (see “Results”), the same protocol was performed after preincubation of these vessels with indomethacin (10−5 mol/L, to inhibit possible release of cyclooxygenase-derived endothelium-derived contracting factor) and FR139317 for 30 minutes.

Detection of mRNA for ETα Receptor

Preparation of RNA

Total RNA was extracted from IMA or aorta by homogenizing the frozen tissue in 4 mol/L guanidine thiocyanate buffer, layering over a 5.6 mol/L CsCl–25 mmol/L sodium acetate cushion, and centrifuging at 175 000g for 24 to 36 hours23 or by phenol-chloroform extraction according to the single-step method described by Chomczynski and Sacchi.24 Poly(A)+ RNA was purified by two cycles of selection on an oligo(dT) cellulose column (Pharmacia).

Northern Blot Analysis

RNAs were prepared from aorta of organ donor patients or IMA of patients undergoing coronary bypass surgery. Approximately 5 μg of poly(A)+ RNA was subjected to electrophoresis on 1% formaldehyde-agarose gels and transferred to Hybond-N filters (Amersham). The filters were hybridized in 0.5 mol/L NaPO4, (pH 7.2), 1% bovine serum albumin, 7% SDS, and 10 mmol/L EDTA at 65°C with the 32P-labeled cDNA probe prepared by random prime labeling and washed in 2×SSC, 0.1% SDS–0.1×SSC, 0.1% SDS at 65°C. Filters were hybridized with a 0.4-kb ETα receptor cDNA probe or a 1.4-kb ETα receptor cDNA (both generous gifts of Dr T. Sakurai, University of Tsukuba, Japan) and control with a 1.9-kb EcoRI fragment of human β-actin cDNA probe. Membranes were exposed to Kodak XRP x-ray film using an intensifying screen at ~70°C for 24 hours.

Drugs

The following drugs were used (all from Sigma Chemical Co, St Louis, Mo, unless otherwise stated): ET-1 and FR139317 (Fujisawa Pharmaceutical Co, Ltd, Osaka, Japan); sarafotoxin S6c (Bachem, Bubendorf, Switzerland); acetylcholine, bradykinin, norepinephrine, indomethacin, and bosentan (F. Hoffmann-La Roche, Ltd, Basel, Switzerland). ET-1 and sarafotoxin S6c were dissolved in 0.1% bovine serum albumin. FR139317 was dissolved in 50% ethanol (stock solution, 10−5 mol/L) and diluted with distilled water. The final concentration of ethanol in the organ chamber was less than 0.5%. Indomethacin was dissolved in distilled water containing 5×10−3 mol/L carbonate. All other drugs were dissolved in distilled water.

Data Analysis and Statistics

Contractions are expressed as a percentage of the control response to 100 mmol/L KCl. In protocol 1, the concentration of ET-1 (expressed as negative log molar) exhibiting 50% of the response to 100 mmol/L KCl (pD2) was calculated separately for each ring. The area under the concentration-contraction curves (in arbitrary units) also was calculated in
The effect of 3. ANOVA protocol compare the pD2 mean±SEM. Under all and curves, patients of S6c Aments). FR139317 in all blood vessels of control (protocol 1) and bosentan (protocol 4), the area under the curves, and the maximal contractions in response to sarafotoxin S6c (protocol 3). The Student’s unpaired t test was used to compare the pD2 values for ET-1–induced contractions in control vessels of IMA and IMV. All values are expressed as mean±SEM. Under all circumstances, n refers to the number of patients studied (one ring per patient per series of experiments). A two-tailed value of P<.05 was considered statistically significant.

Results
Effect of FR139317 on ET-1–Induced Contraction
ET-1 caused concentration-dependent contractions in all blood vessels, but IMV was more sensitive than IMA (log shift, 2512-fold; Figs 1 and 2; P<.05). Incubation with FR139317 had no vascular effects on its own, but in IMA and PCA, it shifted the concentration-contraction curves to higher concentrations of ET-1 parallel to the right, whereas maximal contraction was not different (Fig 1). In IMA, the pD2 values were 8.2±0.1 in the absence and 8.1±0.1 (10−7 mol/L), 7.6±0.1 (10−6 mol/L), and 7.2±0.3 (10−5 mol/L, P<.05) in the presence of FR139317. In PCA, similar results were obtained using the ETA antagonists FR139317 or BQ-123 (n=5, data not shown).

However, FR139317 did not antagonize the effect of ET-1 completely; rather, a small contraction occurring at 10−10 to 3×10−8 mol/L of ET-1 was unmasked, particularly at 10−5 mol/L FR139317 in IMA and PCA (Fig 1). This

![Diagram](http://circ.ahajournals.org/cookie/anon/1205/Fig1.png)

Fig 1. Line plots show contractions to endothelin (ET)-1 in the human internal mammary artery (left) and porcine coronary artery (right). The effect of the ETa antagonist FR139317 (FR) is shown. Values are mean±SEM.

![Diagram](http://circ.ahajournals.org/cookie/anon/1205/Fig2.png)

Fig 2. Line plots show contractions to endothelin (ET)-1 in the human internal mammary artery (left panel) and internal mammary vein (right panel). The role of ETa and ETb receptors was investigated using the ETa antagonist FR139317 (FR) (10−5 mol/L) and sarafotoxin S6c (SRTX) preincubation (3×10−7 mol/L for 60 minutes to downregulate ETb receptors). Values are mean±SEM.
response was even more pronounced in the IMV at concentrations of 10^{-13} to 10^{-8} mol/L ET-1 (Fig 2).

Effect of Sarafotoxin S6c in Quiescent Vessels

Certain quiescent vessels were preincubated with sarafotoxin S6c (in the presence of 10^{-3} mol/L FR139317). Under these conditions, sarafotoxin S6c (3×10^{-7} mol/L) induced immediate contractions in all vessels (27±12% of KCl 100 mmol/L in IMV, 106±4% in IMV, 61±19% in PCA), which decreased spontaneously, and only a small contraction (2±1% in IMV, 4±2% in IMV, 21±5% in PCA) was left after 1 hour. Readdition of sarafotoxin S6c did not cause contraction after this incubation. If concentration-contraction curves to ET-1 were performed after preincubation of the vessels with sarafotoxin S6c, the portion of the endothelin-induced contraction resistant to FR139317 was suppressed in IMA and IMV (Fig 2). Similar results were obtained in PCA (n=6, data not shown).

In the presence of FR139317 (10^{-5} mol/L), sarafotoxin S6c evoked concentration-dependent contractions in IMA, IMV, and PCA (Fig 3). The maximal contraction was greater and the area under the curve larger in IMV than IMA (P<.05; pD2 in IMV, 9.0±0.3; IMA was not calculable). Maximal contraction of PCA to sarafotoxin S6c also was more pronounced than that of IMA (P<.05; Fig 3; pD2, 8.6±0.1).

Effects of Bosentan on Contraction to ET-1

In IMA, bosentan shifted the concentration-contraction curves to the right in a completely parallel fashion, contrary to the case of FR139317 (Fig 4). The pD2 values of ET-1 were 8.3±0.1 under control conditions and 8.3±0.1 (10^{-7} mol/L), 7.9±0.1 (10^{-6} mol/L, P<.05), and 7.2±0.1 (10^{-5} mol/L, P<.05) in the presence of bosentan.

Northern Blot Analysis

ETα receptor mRNA was detected in IMA as well as in aortic smooth muscle cells (Fig 5).
modest (6% to 33% of norepinephrine-induced contraction) and transient relaxations followed by sustained contractions.

Discussion

The major findings are that both ET_{A} and ET_{B} receptors contribute to ET-1-induced contraction in smooth muscle of human mammary artery and vein and PCA and that the endothelium of the arteries does not express functional ET_{B} receptors linked to release nitric oxide or prostacyclin, whereas modest transient responses occur in the vein.

Endothelins and sarafotoxins have a high degree of sequence homology. Sarafotoxins are toxins purified from the venom of the Middle Eastern burrowing asp, Atractaspis engaddensis. Endothelins and sarafotoxins have potent biological effects, eg, vasoconstriction, vasodilation, and potentiation of the effect of other vasoconstrictors and mitogenesis.1-4,6,27,28 Endothelin also has been implicated in atherosclerosis8,29 and in the extension of myocardial infarction.30

Two receptors, ET_{A} and ET_{B},12,13 mediate the action of endothelins. It is assumed that ET_{A} receptors are expressed in smooth muscle to mediate vasoconstriction and ET_{B} receptors on the endothelial. In our study, however, ET_{B} receptor activation by sarafotoxin S6c did not cause endothelium-dependent relaxation in the arteries. A concomitant release of cyclooxygenase-derived, endothelin-derived contracting factors can be excluded, as vessels preincubated with indomethacin (to block cyclooxygenase) did not show any relaxation. This contrasts with observations in experimental animals5,14,31 and suggests that depending on species and vascular bed, functional endothelial endothelin receptors are or are not expressed. An expression of endothelial ET_{B} receptors with no functional link to nitric oxide or prostacyclin production cannot be excluded, however. In contrast, the mammary vein modestly responded to endothelial ET_{B} activation with transient relaxation followed by sustained contraction. The fact that low-dose ET-1 increases flow in human forearm circulation indicates that in humans, endothelial endothelin receptors linked to nitric oxide and prostacyclin are expressed in small but not large arteries.

Endothelin antagonists are crucial tools to unravel the (patho)physiological role of endothelin.18,32 BQ-123 and FR139317 are highly selective competitive antagonists for ET_{A} receptors.17,18,33,34 FR139317 and BQ-123 (in PCA) shifted the concentration-contraction curves to ET-1 to the right, whereas maximal contractions remained similar. Remarkably, however, at low concentrations of ET-1, a contractile response resistant to FR139317 or BQ-123 remained, suggesting the presence of contractile receptor(s) other than ET_{A} on vascular smooth muscle.

To investigate ET_{B} receptors in smooth muscle, we used sarafotoxin S6c, which is a highly selective agonist for brain ET_{B} receptors.19 In the presence of FR139317, sarafotoxin S6c caused contractions in mammalian arteries and particularly in veins and PCA. Sarafotoxin S6c, on the other hand, can be used as an antagonist because endothelin receptors are downregulated after prolonged incubation with an agonist.35-37 Preincubation with sarafotoxin S6c induced an immediate contraction, but only a very small amount of tension was left after 1 hour, suggesting downregulation of ET_{B} receptors. Importantly, the portion of the ET-1-induced contractions resistant to FR139317 was suppressed by preincubation with sarafotoxin S6c. Therefore, the receptor involved is shared by sarafotoxin S6c and ET-1 and hence must be an ET_{B} receptor.15,16,18,31,38,39 The presence of ET_{B} receptors on vascular smooth muscle also was detected by Northern blot analysis. Furthermore, the use of the combined ET_{A}/ET_{B} receptor antagonist bosentan demonstrated a parallel shift of the concentration-response curve to ET-1.

The fact that vasoconstrictor ET_{B} receptors are present in human mammary arteries and veins as well as in PCA has important implications for drug development and therapeutic use of endothelin antagonists in patients. Indeed, to prevent endothelin-induced responses, a combined ET_{A}/ET_{B} receptor antagonist such as bosentan is required, particularly at lower concentrations of endothelin (which are more likely to be achieved in vivo). The results obtained in PCA, which was used as a model for the human coronary artery, suggest that ET_{B} receptors also contribute to contractile responses in the coronary circulation and that activation of these receptors may be involved in coronary spasm40 and extension of myocardial infarction.40 As the contraction to sarafotoxin S6c was much larger in mammalian veins than in arteries, ET_{B} receptors may be especially important in the venous system. The increased sensitivity of veins is related to a larger contribution of ET_{B} receptors. Circulating endothelin levels are higher in veins than in arterial blood40 and are increased in heart failure,41 a clinical syndrome with excess venous tone. If ET_{B} receptors—as suggested by our preliminary results with IMA resistance arteries—also contribute to peripheral vascular resistance, combined endothelin antagonists will give more insights into the role of endothelin in hypertension (see References 6 and 42). A potential disadvantage of combined ET_{A}/ET_{B} receptor antagonist may be blockade of nitric oxide or prostacyclin release in certain blood vessels.1,3,5 However, the fact that such molecules fully block the vasoconstrictor effect of ET-1 appears to be more important.

Acknowledgments

This work was supported by a grant of the Swiss National Research Foundation (32-32541.91) and an educational grant of F. Hoffmann-La Roche AG, Basel, Switzerland.

References

Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels.
B Seo, B S Ømar, R Siebenmann, L von Segesser and T F Lüscher

Circulation. 1994;89:1203-1208
doi: 10.1161/01.CIR.89.3.1203

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/89/3/1203

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/