Chronic Changes in Skeletal Muscle Histology and Function in Peripheral Arterial Disease

Judith G. Regensteiner, PhD; Eugene E. Wolfel, MD; Eric P. Brass, MD, PhD; Michael R. Carry, PhD; Steven P. Ringel, MD; Melanie E. Hargarten, MS; Elizabeth R. Stamm, MD; and William R. Hiatt, MD

Background. Peripheral arterial disease (PAD) is associated with an impairment in exercise performance and muscle function that is not fully explained by the reduced leg blood flow during exercise. This study characterized the effects of PAD on muscle function, histology, and metabolism.

Methods and Results. Twenty-six patients with PAD and six age-matched control subjects were studied. Ten of the PAD patients had unilateral disease, which permitted paired comparisons between their diseased and nonsymptomatic legs. All PAD patients had a lower peak treadmill walking time and peak oxygen consumption than controls. Vascular disease (diseased leg in unilateral patients and the most severely diseased leg in bilateral patients) was associated with decreased calf muscle strength compared with control values. In patients with unilateral disease, the diseased legs had a greater percentage of angular fibers (indicating chronic denervation) and a decreased type II fiber cross-sectional area (expressed as percent of total fiber area) compared with the nonsymptomatic, or control, legs. In diseased legs, gastrocnemius muscle strength was correlated with the total calf cross-sectional area (r=0.78, p<0.05) and type II fiber cross-sectional area (r=0.63, p<0.05). Activities of citrate synthase, phosphofructokinase, and lactate dehydrogenase in all 26 PAD patients (most diseased leg) did not differ from control values. Despite a wide range in citrate synthase activity in PAD patients, activity of this enzyme was not correlated with muscle strength or treadmill exercise performance.

Conclusions. In patients with PAD, gastrocnemius muscle weakness is associated with muscle fiber denervation and a decreased type II fiber cross-sectional area. In contrast, the PAD patients displayed substantial heterogeneity in muscle enzyme activities that was not associated with exercise performance. Denervation and type II fiber atrophy may contribute to the muscle dysfunction in patients with PAD and further confirm that the pathophysiology of chronic PAD extends beyond arterial obstruction. (Circulation 1993;87:413–421)

KEY WORDS • peripheral arterial disease • muscle, skeletal • exercise • claudication • enzymes • denervation, muscle • peripheral vascular diseases

Patients with peripheral arterial disease (PAD) develop intermittent claudication with walking exercise because extremity blood flow is limited and inadequate to meet the metabolic demands of the muscle.1 This results in an objective impairment in exercise performance, such that the peak oxygen consumption during treadmill testing is 50% lower than values in age-matched controls.2 The etiology of the exercise impairment in patients with PAD is multifactorial. Although muscle ischemia is a major contributor, the hemodynamic severity of the disease (assessed by measurements of peripheral blood flow or ankle pressure) is poorly correlated with exercise performance.3–5 Patients with severe ischemic disease develop structural changes in skeletal muscle consisting of denervation, fiber atrophy, and a selective loss of type II fibers relative to type I fibers that may contribute to the muscle dysfunction.5–7 Ambulatory patients with mild PAD also have muscle weakness and reduced muscle endurance,8 but it is not established whether denervation and fiber atrophy also contribute to their impairment in muscle function.

In patients with PAD, an increase in skeletal muscle oxidative enzyme activity may be an adaptive response to the reduced skeletal muscle blood flow.9–11 However, other investigators have observed a decrease in oxidative enzyme activity in PAD, particularly in more severe forms of the disease.12,13 Thus, changes in skeletal muscle enzyme activities in patients with PAD may be heterogeneous, and the functional significance of these changes is not well established.

To further define the structural and metabolic changes that occur in skeletal muscle of ambulatory
Ankle/brachial index controls.

Compared with muscle from diseased legs, patients had underperfused muscle. The right and left ABIs at rest were calculated from the highest arm and ankle pressures. One minute after the completion of the exercise test, systolic blood pressures were measured in the ankles and arm to determine the postexercise ABI. The criteria for vascular disease were a resting ratio of <0.94 that decreased to <0.73 after exercise. Data from both legs are presented for the unilateral patients, but only data from the most diseased leg of 16 patients with bilateral PAD were used (most diseased leg was determined from the lowest rest and postexercise ABIs).

Treadmill Testing

In patients with PAD, a graded treadmill protocol was performed to maximally tolerated claudication pain using previously described and validated methods. Controls exercised to exhaustion using the same protocol. Rates of oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured at rest and during treadmill exercise with an Ametek metabolic system (Ametek Thermox, Pittsburgh, Pa.). Arm blood pressure (by auscultation) and heart rate (by 12-lead ECG) were obtained every minute during exercise. Cardiac status was monitored throughout the treadmill test by 12-lead ECG. The exercise test began at 2 mph and 0% grade, and the grade was increased by 3.5% every 3 minutes to peak exertion. In all subjects, peak exercise performance was characterized by the longest walking time and the highest VO2 attained during the treadmill test.

Muscle Strength and Endurance Testing

Strength testing was performed in all subjects on a Cybex Dynamometer (Lumex Inc., Ronkonkoma, N.Y.). Testing of the gastrocnemius and anterior tibial muscles was performed with the subject in the supine position with the leg fully extended. Joints not being tested were stabilized to prevent recruitment of other muscle groups. Each subject flexed and extended the foot with maximal effort on a pedal at a regulated speed of 60° sec⁻¹ for a total of five repetitions. This sequence was performed a second time, and the single maximal value for each muscle group (expressed in foot-pounds of peak torque) was used for analysis. No patient experienced claudication during strength testing. After a 3-minute rest, muscle endurance was measured in the gastrocnemius muscles. The subjects were in the same positions as for strength testing, but each muscle contraction was performed at a rate of 240° sec⁻¹. Muscle endurance was recorded as the number of repetitions performed using a particular muscle group until a 50% decrement in peak torque was observed. Endurance
testing was performed twice, and the highest number of repetitions was reported. Claudication was experienced by five of 10 patients during muscle endurance testing, but in no case did a patient reach a severe level of claudication pain (as defined by a standard scale; Reference 17) before the exercise was terminated.

Calf Cross-sectional Area

To estimate the maximal calf muscle cross-sectional area, calf circumference (in centimeters) was measured at the largest part of the muscle and converted to cross-sectional area by the following formula: circumference²/4π (assuming the calf to be nearly circular). In addition, a subset of six unilateral PAD patients and three controls underwent computed tomography (CT) scanning (model CT-900S series, Toshiba Corporation, Nasu, Japan) of each calf. A single 1-cm scan was obtained simultaneously through both calves at the level of the biopsy sites with the legs parallel. The perimeter of the calf musculature was manually traced (excluding the tibia, fibula, and subcutaneous tissue), and the cross-sectional area (in centimeters squared) of the muscle was calculated.

Muscle Biopsy

Bilateral biopsies of the medial head of the gastrocnemius muscles were performed at rest in both legs of the patients and controls. After a subcutaneous injection of 3 ml lidocaine, a 5-mm biopsy needle (Bergstrom muscle biopsy cannula, DePuy Inc., Warsaw, Ind.) was used to remove approximately 40–50 mg of tissue. Samples to be analyzed for enzyme activities were immediately frozen in liquid nitrogen and stored at −80°C. For histological analyses, tissue was stored in saline-soaked gauze immediately after the biopsy for ≤30 minutes. Subsequently, muscle tissue was oriented in gum tragacanth on a wooden block and flash-frozen in liquid nitrogen–cooled isopentane. The muscle samples were stored at −70°C in closed containers. In patients with bilateral PAD, only data from the most diseased leg were used for analysis.

Histological Analysis

Serial 10-μm cryostat sections of muscle tissue were analyzed for both histopathological changes and fiber-type specific characteristics.18 Sections of tissue were stained for myosin ATPase (pH 9.4 and 4.6) and nicotinamide adenine nucleotide dehydrogenase-tetrazolium reductase (NADH-TR). These stains were used for qualitative analysis, which included a general histological description as well as evaluation for the presence of target or grouped fibers, which indicate denervation and reinnervation, respectively.19–21 In addition, oil-red O was used to stain for extracellular fat, periodic acid–Schiff for glycogen, Verhoeff–van Gieson for fiber

| Table 2. Muscle Strength, Endurance, and Calf Cross-sectional Area in Peripheral Arterial Disease Patients and Control Subjects |
|--|-----------|-----------|
| PAD | Unilateral | All PAD | Controls |
| **Muscle performance** | | |
| Gastrocnemius strength (foot-pounds) | | |
| Disease | 31±11† | 30±9* | 53±11 |
| Nonsymptomatic | 38±14* | |
| Gastrocnemius endurance (no. of repetitions) | 8±4‡ | 8±5* | 13±4 |
| Disease | 13±5 | |
| Nonsymptomatic | 12±7 | |
| Anterior tibial strength (foot-pounds) | | |
| Disease | 9±4* | 9±4* | 13±3 |
| Nonsymptomatic | 12±7 | |
| Muscle cross-sectional area | | |
| Calf measurement (cm²) | | |
| Disease | 94.5±18.4†| 95.2±16.2| 99.7±11.9|
| Nonsymptomatic | 99.5±20.2 | |
| Computed tomography (cm²) | | |
| Disease | 78.5±6.1† | 80.5±14.0|
| Nonsymptomatic | 82.6±4.3 | |

PAD, peripheral arterial disease. Muscle strength (peak torque at 60°/sec) and endurance (50% reduction in peak torque at 240°/sec) were measured on a Cybex isokinetic dynamometer. Muscle cross-sectional area was estimated from calf circumference and, in a subset of six unilateral patients and three controls, from computed tomography (excluding subcutaneous tissue and bone). Values are mean±SD.

*p<0.05 for the value in patients compared with control subjects.
†p<0.05 for the value in the diseased leg of unilateral patients compared with their nonsymptomatic leg.

FIGURE 1. Top panel: Gastrocnemius muscle strength in control subjects (○) and patients with unilateral peripheral arterial disease (PAD) (●). Each subject is shown as a point, and for the PAD patients the value in each individual’s diseased leg and nonsymptomatic leg is connected by a line.

*p<0.05 for the value in patients compared with control subjects, and +p<0.05 for the value in the nonsymptomatic leg of unilateral patients compared with their diseased leg. Bottom panel: Gastrocnemius muscle type II fiber area measured from cryostat sections stained for myosin ATPase at pH 9.4.
morphology and connective tissue, and acid phosphatase for necrosis.21

The diameter, number, and percent cross-sectional area of each fiber type were calculated using standard morphometric techniques from cryostat sections stained for myosin ATPase (pH 9.4) activity. The optimal number of fields that needed to be sampled was determined by an iterative process that minimized the within-subjects standard deviation of each measurement but without oversampling.22 To calculate fiber diameter and number, every eighth microscopic field (field size, 0.293 mm2) was photographed and projected to a final magnification of x364. The diameter of each fiber was determined as the maximum measure of the lesser fiber axis that would correct for any fibers cut at an oblique angle. The number of type I and II fibers were counted in the same fields and are expressed as a percent of the total number. The percent of angular fibers (indicating denervation) was also determined from these fields.

The cross-sectional area of each fiber type was estimated using the point-grid method.23 For cross-sectional area calculations, every fifth microscopic field (field size, 0.113 mm2) was photographed and projected onto a grid to a final magnification of x590. The points (line intersections) falling over type I and II fibers were recorded for each microscopic field. The total number of line intersections from all fields of a single cryostat section for each biopsy were then summed for each fiber type. The data are expressed as the percent of the total fiber cross-sectional area (sum of the number of points for both type I and II fibers) occupied by each fiber type.

\textbf{Biochemistry}

Samples for noncollagenous protein determinations were prepared as described by Lilienthal et al.24 Protein quantitation was performed by the method of Lowry et al,25 using bovine serum albumin as a standard. Lactate dehydrogenase,26 citrate synthase,27 and phosphofructokinase28 activities were quantified using established spectrophotometric methodologies. Enzyme activities were normalized to grams of wet weight and grams of noncollagen protein. Citrate synthase activity was also normalized to the lactate dehydrogenase activity. The variability of the assay methods in our laboratory was initially assessed in animal studies. For citrate synthase activity, four separate homogenates from two rats yielded a coefficient of variation (standard deviation divided by the mean) of 18\%.
Statistical Analysis

Student’s t test for paired data or a within-subjects ANOVA was used for within-subjects comparisons, and an unpaired t test was used for between-subjects comparisons. Linear regression was used for calculating correlations between variables. Categorical data were analyzed using the χ2 or Fisher’s exact probability tests. Values are given as mean±SD and considered significant when p<0.05 in a two-tailed test. In control subjects, the functional, histological, and biochemical data were similar between legs; therefore, the results were averaged from both legs.

Results

Patient Characteristics

Patients with PAD were well matched to the control subjects for age but had a reduced peak exercise performance as defined by treadmill walking time and peak oxygen consumption (Table 1). Patients reported symptoms of intermittent claudication for 6±8 years with a range of 1–45 years. In all patients with PAD (unilateral and bilateral subjects), the most diseased leg had an abnormal ABI at rest that decreased further after exercise (Table 1). The average resting and postexercise ABIs in the unilateral patient’s nonsymptomatic legs were in the normal range as previously defined and significantly greater than in their diseased legs (Table 1). However, postexercise ABIs in the nonsymptomatic legs were significantly lower than in control subjects, suggesting the possibility of mild arterial disease in the nonsymptomatic leg.

Muscle Strength and Endurance

In all 26 PAD patients, gastrocnemius muscle strength in their diseased legs was 43% less and anterior tibial strength was 31% less than the corresponding values in the control subjects (Table 2). Gastrocnemius muscle endurance in the diseased legs was 38% less than that observed in the control subjects. In the subset of patients with unilateral disease, gastrocnemius strength (Figure 1, top panel) and endurance were less in the diseased than in the nonsymptomatic legs, but strength in the anterior tibial muscles was not different between legs (Table 2).

Estimates of Muscle Cross-sectional Area

The maximal calf cross-sectional area was estimated by measurements of circumference and by CT scans of the calf muscles. In patients with unilateral PAD, their diseased legs had 5% reduction (p<0.05 using a paired analysis) in cross-sectional area compared with their nonsymptomatic legs (Table 2). In contrast, the calf cross-sectional area in diseased legs, measured by either method, was not different from control values due to the standard large deviation of the measurement in the PAD patients.

Muscle Histology

Histological analysis of the muscle samples was performed only in the unilateral PAD patients and in controls. Representative micrographs of gastrocnemius muscle are shown as follows: from a control subject using myosin ATPase stain (Figure 2A), from the diseased leg of a unilateral PAD subject using myosin ATPase stain (Figure 2B), and the diseased leg of a unilateral PAD subject stained with NADH-TR (Figure 2C). Qualitatively, the muscle samples from patients and controls showed no evidence of inflammation, fiber necrosis, or unusual accumulations of intercellular fat, connective tissue, or glycogen. However, all diseased legs of unilateral patients had histological evidence of denervation consisting of angular (Figure 2C), or target, fibers. In addition, fiber-type grouping, suggesting reinnervation, was seen in five of the 10 diseased legs (Figure 2B). Taken together, histological evidence of denervation or reinnervation was observed less often in the nonsymptomatic legs (40%, p<0.05) or in control legs (36%, p<0.05) than in the diseased legs (100%).

Fiber type distribution, diameter, and area were also determined in biopsies from the unilateral PAD patients and control subjects. Type I fiber diameter and the average number of type I fibers per field did not differ among diseased, nonsymptomatic, and control legs (Table 3). Type II diameter and the average number of type II fibers per field were also similar for the diseased and control legs. However, type II fiber area in the diseased leg (measured independently of diameter or number) was 38% of the total fiber area, which was less than the type II area in the nonsymptomatic (49%) and control (48%) legs (Figure 1, bottom panel). In the nonsymptomatic leg, type II fiber diameter was less, and type II fiber number was greater than in the diseased leg. However, type II fiber area in the nonsymptomatic leg was not different from type II fiber area in the control legs.

Muscle Biochemistry

The noncollagenous protein contents (expressed as grams per gram wet weight) were similar for all diseased legs, the nonsymptomatic legs of unilateral patients, and control subjects (Table 4). Activities of citrate synthase, lactate dehydrogenase, and phosphofructokinase in the diseased legs of unilateral patients did not differ from the values in their nonsymptomatic legs or from control values (Table 4), whether normalized to grams of noncollagenous protein or grams of wet weight (data not shown). However, there was a large variability in enzyme activities in the diseased legs of the unilateral patients. To determine if this heterogeneous response was characteristic of the PAD population, enzyme activities were also assessed in the most diseased leg of 16 additional patients with bilateral PAD. This analysis confirmed that there was no difference for citrate synthase, phosphofructokinase, and lactate dehydrogenase activities between diseased legs of PAD patients and control subjects. Finally, when citrate synthase activity was normalized to lactate dehydrogenase activity (to control for any changes in enzyme expression), there remained no difference between the diseased legs of all PAD patients and control subjects (data not shown).

Predictors of Muscle Strength and Exercise Performance

The ABI is a marker of the hemodynamic severity of the vascular disease. In the diseased legs of the unilateral PAD patients, the ABI was not correlated with any changes in muscle histology or enzyme activities. In all 26 PAD patients, there was no correlation of the ABI at rest or after exercise with gastrocnemius muscle strength or peak exercise performance on the
Compared correlations fibers these subjects. Type II fibers have a high mitochondrial content and are well adapted for prolonged work. Type II fibers, with their

<table>
<thead>
<tr>
<th>Type I fiber diameter (µm)</th>
<th>Unilateral peripheral arterial disease</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>71±11</td>
<td>76±5</td>
<td></td>
</tr>
<tr>
<td>Non symptomatic</td>
<td>63±11†</td>
<td></td>
</tr>
</tbody>
</table>

Type II no. of fibers/field

<table>
<thead>
<tr>
<th>Type II fiber area (% of total fiber area)</th>
<th>Unilateral peripheral arterial disease</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5±1.6</td>
<td>3.7±1.0</td>
<td></td>
</tr>
<tr>
<td>Non symptomatic</td>
<td>5.0±1.8†</td>
<td></td>
</tr>
</tbody>
</table>

Type I fiber diameter (µm)

<table>
<thead>
<tr>
<th>Type I fiber diameter (µm)</th>
<th>Unilateral peripheral arterial disease</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>72±12</td>
<td>76±9</td>
<td></td>
</tr>
<tr>
<td>Non symptomatic</td>
<td>74±7</td>
<td></td>
</tr>
</tbody>
</table>

Type I no. of fibers/field

<table>
<thead>
<tr>
<th>Type I no. of fibers/field</th>
<th>Unilateral peripheral arterial disease</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8±2.9</td>
<td>4.4±1.3</td>
<td></td>
</tr>
<tr>
<td>Non symptomatic</td>
<td>5.1±2.0</td>
<td></td>
</tr>
</tbody>
</table>

Angular fibers (% of total fiber number)

<table>
<thead>
<tr>
<th>Angular fibers (% of total fiber number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7±1.2†</td>
</tr>
<tr>
<td>1.3±1.6†</td>
</tr>
<tr>
<td>Non symptomatic</td>
</tr>
<tr>
<td>2.5±6.6</td>
</tr>
</tbody>
</table>

Muscle fiber histology determined from cryostat sections stained for myosin ATPase at pH 9.4, with the field size described in "Methods." Values are mean±SD.

*P<0.05 for the value in patients compared with control subjects.

PAD, peripheral arterial disease; NCP, noncollagen protein. Values are mean±SD. There were no significant differences in enzyme activities between patients and controls.

weakness in the diseased legs, and the muscle weakness contributed to the impairment in exercise performance. As another control, results from the nonsymptomatic legs confirmed that the histological and functional changes in the diseased legs were not the result of deconditioning, aging, or environmental factors.

Previous studies have shown that PAD is associated with alterations in skeletal muscle histology. Necrotic and regenerating fibers as well as inflammation have been seen in the diseased legs of patients with unilateral PAD hospitalized for surgical evaluation and in patients with severe ischemic disease. In this study, ambulatory patients with less severe symptoms of claudication had no findings of fiber necrosis, inflammation, or accumulations of glycogen, fat, or connective tissue in their diseased legs, and the muscle fibers appeared normal. Thus, milder forms of the disease are not associated with generalized morphological changes in skeletal muscle. In contrast, signs of denervation (angular fibers) and reinnervation (grouped fibers) occur both in ambulatory patients with claudication and, to a greater degree, in patients with ischemic rest pain or gangrene. In this study, histological evidence of denervation was found in all diseased legs of PAD patients. Another study, using electrophysiological techniques, has confirmed that the muscle denervation in patients with unilateral claudication was limited to the distal motor axons, and the degree of denervation was correlated with the severity of the vascular disease. Thus, skeletal muscle denervation in PAD may be due to ischemic damage of the distal motor nerves and may contribute to the muscle weakness and dysfunction observed in patients with claudication.

Type I and type II skeletal muscle fibers are distinguished by twitch characteristics (slow versus fast) and metabolic profiles (oxidative versus glycolytic). Type I fibers have a high mitochondrial content and are well adapted for prolonged work. Type II fibers, with their
Muscle weakness has been reported in PAD patients, but the decrease in strength was only weakly correlated with walking tolerance.8 In our study, gastrocnemius strength correlated with peak treadmill walking time, but the low correlation coefficient suggests that other factors are more important to walking ability than muscle strength in patients with PAD.

In the unilateral patients, the nonischemic histological state of the individual's muscle was determined in their nonsymptomatic legs. Although type II fiber diameter in patients' nonsymptomatic legs was less than in the diseased or control legs, the average number of type II fibers in the nonsymptomatic leg was increased compared with the diseased leg (Table 3). Therefore, type II fiber area was not different between the non-symptomatic and control legs. The cause of the decreased type II fiber diameter in the nonsymptomatic legs is not known but may reflect changes related to inactivity or other environmental factors distinct from the effects of ischemia.

In controls, the activity of skeletal muscle oxidative enzymes reflects the level of habitual physical activity. For example, exercise training results in an increase in several oxidative enzyme activities that is directly related to the improvement in exercise performance.35,36 In contrast, deconditioning is associated with decreased skeletal muscle oxidative enzyme activities.37 In patients with PAD, increased activities of skeletal muscle oxidative enzymes have been observed in some studies,10,11 and the amount of increase in citrate synthase activity was correlated with the hemodynamic severity of the occlusive disease.9 The increase in one oxidative enzyme, cytochrome oxidase, was only weakly correlated with treadmill exercise performance,11 but in other studies changes in oxidative enzyme activities were not correlated with exercise performance.9,12

Decreases in oxidative enzyme activity in PAD have also been reported.12,13 In these studies, the more severe the occlusive disease, the lower the oxidative enzyme activity.12 A decrease in oxidative enzyme activities with increasing disease severity may simply reflect loss of ambulation and immobility. Also, denervation of skeletal muscle (as observed in the patients in this study) is associated with a decrease in oxidative enzyme activities and loss of muscle function.5,18 Finally, the higher oxidative enzyme activities in the control group (compared with the PAD patients) could also reflect the level of fitness in the control group.

In the present study, nonsurgical, ambulatory patients with unilateral PAD were enrolled, with the nonsymptomatic leg providing a control for the effects of activity and other environmental factors on muscle metabolism. A healthy, sedentary control group allowed for the determination of any absolute differences between normal subjects and the patients with vascular disease. The results showed that citrate synthase activity in the diseased legs of unilateral patients was not different from values in their nonsymptomatic legs or in the control group. Furthermore, the citrate synthase activities were very heterogeneous in the unilateral PAD population, ranging from 25 to 115 μmol/min/g noncollagen protein. This variability could reflect the assay methods; however, when citrate synthase activity was normalized to grams of wet weight, grams of noncollagenous protein, or lactate dehydrogenase (as a

low aerobic capacity, fatigue more rapidly. Atrophy of both types of fibers has been observed in patients with PAD. Fiber loss and a reduced fiber area are correlated with disease severity12,21 and can become extensive in patients with severe limb ischemia.5 Furthermore, ischemia may result in a greater loss of type II fibers compared with type I fibers,5,7 but other studies have reported no difference in fiber distribution or diameter between diseased and nondiseased legs of unilateral patients.5,12,13 In our study, enrolling patients with unilateral disease controlled for the multiple factors that may affect fiber number and diameter, such as age, inactivity, and comorbidity. The results confirm that type I and II fiber diameter and number were similar for diseased and control legs (Table 3). However, with a separate measurement, type II fiber area (which reflects the net effect of fiber number and diameter on total fiber content) was reduced in the diseased legs compared with the unaffected and control legs. Consistent with the findings of decreased percent type II fiber area, it has previously been suggested that type II fibers may be more adversely affected by ischemia than type I fibers.33,34

Taken together, the findings of denervation and a selective atrophy of type II fibers may account for the decrease in skeletal muscle cross-sectional area and the muscle weakness in the diseased legs of unilateral PAD patients. The likelihood of these relations is strengthened by the correlations of type II fiber area and muscle cross-sectional area with muscle strength (Figure 3).
marker enzyme not expected to change$^{9-11}$, there remained no differences between diseased and non-
symptomatic or control legs. Finally, given the variability
in enzyme activities, additional patients with bilateral
PAD were enrolled. The results confirm that PAD
was not associated with either an increase or decrease in
enzyme activities but that the population displays sub-
stantial heterogeneity. This heterogeneity is not unex-
ered PAD were enrolled. The results confirm that PAD
was not associated with either an increase or decrease in
enzyme activities but that the population displays sub-
stantial heterogeneity. This heterogeneity is not unex-
pected in ambulatory PAD subjects given the multiple
influences of vascular disease severity, denervation, and
level of fitness on enzyme activities, as discussed above.
Finally, regardless of any absolute changes in oxidative
enzyme activities previously reported, the functional
significance has not been well established. The lack of
correlation between citrate synthase activity and muscle
strength or exercise performance in the PAD subjects
suggests that any adaptations in oxidative enzymes do
not compensate for their muscle dysfunction or de-
creased exercise performance. In contrast, the expected
correlation between citrate synthase activity and exer-
cise performance was observed in the control group.
Thus, the chronic response of skeletal muscle in PAD
is characterized by denervation and a decreased type II
fiber area. These changes are associated with muscle
atrophy and a loss of muscle strength that may con-
tribute to the functional impairment in this population.

Acknowledgments

We thank Laura Ruff, Kimberly Masterson, Diana Wolf,
Katherine Barriga, and Robert Ferril for excellent technical
support. Kenneth Schneider produced the figures in their final
form.

References

1. Holm S, Bylund-Fellenius AC: Continuous monitoring of oxygen
tension in human gastrocnemius muscle during exercise. Clin Phys-
iol 1981;1:541–552
2. Hiatt WR, Nawaz D, Brass EP: Carnitine metabolism during exer-
cise in patients with peripheral vascular disease. J Appl Physiol
1987;62:2383–2387
3. Pernow B, Zetterquist S: Metabolic evaluation of the leg blood
flow in claudicating patients with arterial obstructions at different
4. Hiatt WR, Nawaz D, Regensteiner JG, Hossack KP: The eval-
uation of exercise performance in patients with peripheral vascular
5. Hedberg B, Angquist KA, Henriksson-Larsen K, Sjostrom M: Fibre
loss and distribution in skeletal muscle from patients with severe
6. Makitie J: Peripheral neuromuscular system in peripheral arterial
7. Hedberg B, Angquist KA, Sjostrom M: Peripheral arterial insuf-
ciency and the fine structure of the gastrocnemius muscle. Int J Angiol
1988;7:50–59
strength and endurance in peripheral arterial insufficiency with intermit-
9. Jansson E, Johansson S, Sylen C, Kajser L: Calf muscle adapta-
tion in intermittent claudication: Side-differences in muscle meta-
bolic characteristics in patients with unilateral arterial disease. Clin Physiol
1988;8:17–29
10. Bylund AC, Hammarsten J, Holm J, Schersten T: Enzyme activi-
ties in skeletal muscles from patients with peripheral arterial insuf-
11. Lundgren F, Dahllof AG, Schersten T, Bylund-Fellenius AC: Mus-
cle enzyme adaptation in patients with peripheral arterial insuffi-
ciency: Spontaneous adaptation, effect of different treatments and con-
12. Clyne CAC, Mears H, Welser RO, O’Donnell TF: Calf muscle adapta-
tion to peripheral vascular disease. Cardiovasc Res 1985;19:
507–512
13. Henrikkson J, Nygaard E, Andersson J, Eklof B: Enzyme activities,
fibre types and capillarization in calf muscles of patients with intermit-
14. Rutherford RB, Lowenstein DH, Klein MF: Combining segmental
systolic pressures and plethysmography to diagnose arterial occlu-
15. Hiatt WR, Marshall JA, Baxter J, Sondov R, Hildebrandt W,
Kahn LR, Hamman RF: Diagnostic methods for peripheral arte-
rial disease in the San Luis Valley Diabetes Study. J Clin Epidemiol
1990;43:597–606
17. Hiatt WR, Regensteiner JG, Hargarten ME, Wolffeel EE, Brass EP:
Benefit of exercise conditioning for patients with peripheral arte-
18. Ringel SP, Wilson WB, Barden MT, Kaiser KK: Histochemistry of
19. Engel WK: Histochemistry of neuromuscular disease—Signifi-
cance of muscle fiber types. Proceedings of the VIII International
Congress of Neurology, Excerpta Medica, Amsterdam, 1965, pp 57–101
20. Morris CJ, Raybould JA: Fiber type grouping and end-plate diam-
21. Dubowitz V: Muscle Biopsy: A Practical Approach, ed 2. East Sus-
sex, UK, Bailliere Tindall, 1985, pp 1–73
22. Mellor W: Subsarcolemmal mitochondrial and capillarization of
soleus muscle fibers in young rats subjected to an endurance train-
1979, pp 63–159
base and system for analysis of muscle constituents. J Biol Chem
1950;182:501–508
25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measure-
26. Vassalli A: Lactate dehydrogenase, in Bergmeyer HV (ed): Meth-
ods of Enzymatic Analysis: Vol III. Weinheim, Germany, Verlag
Chemie, 1983, pp 118–125
28. Staal GEJ, Koster JF, Banziger CIM, van Milligen-Boersma L:
Human erythrocyte phosphofructokinase: Its purification and some
29. Kiekara O, Riekkinen H, Soinmakallio S, Lansimies E: Correlation
of angiographically determined reduction of vascular lumen with
30. Sjostrom M, Angquist KA, Rais O: Intermittent claudication and
muscle fiber fine structure: Correlation between clinical and mor-
31. Clyne CAC, Welser RO, Bradley WO, Silber Dl, O’Donnell TF,
Callow AD: Ultrastructural and capillary adaptation of gastrocne-
musius muscle to occlusive peripheral vascular disease. Surgery 1982;
92:434–440
32. England JD, Regensteiner JG, Ringel SP, Carry MR, Hiatt WR: Mus-
cle denervation in peripheral arterial disease. Neurology 1992;
42:994–999
33. Jennische A: Ischaemia-induced injury in glycogen-depleted skel-
1985;125:727–734
34. Sjostrom M, Neglen P, Friden J, Eklof B: Human skeletal muscle
metabolism and morphology after temporary incomplete ischemia.
35. Holloszy JO, Coyle EF: Adaptations of skeletal muscle to endur-
ance exercise and their metabolic consequences. J Appl Physiol
1984;56:831–838
36. Coggan AR, Spina RJ, Rogers MA, King DS, Brown M, Nemeth
PM, Holloszy JO: Histochemical and enzymatic characteristics of
37. Chi MMJ, Hintz CS, Coyle EF, Martin WH, Ivy JL, Nemeth PM,
Holloszy JO, Lowry OH: Effects of detraining on enzymes of
energy metabolism in individual human muscle fibers. Am J Physiol
1983;244:C276–C287
Chronic changes in skeletal muscle histology and function in peripheral arterial disease.
J G Regensteiner, E E Wolfel, E P Brass, M R Carry, S P Ringel, M E Hargarten, E R Stamm and W R Hiatt

Circulation. 1993;87:413-421
doi: 10.1161/01.CIR.87.2.413
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1993 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/87/2/413

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation is online at:
http://circ.ahajournals.org/subscriptions/