data of Movsesian et al, D’Agnolo et al, and Lederer et al are not in disagreement with our results.

Dirk J. Beuckelmann, MD
Michael Nähauer, MD
Erland Erdmann, MD
Department of Medicine I
University of Munich
Klinikum Grosshadern
Munich, FRG

References

1. Fabiato A: Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac purkinje cell. *J Gen Physiol* 1985;85:247-289

Plasma Viscosity as a Cardiovascular Risk Factor

We appreciate the extensive editorial comment on our recent article and fully underscore the statements made, particularly the need for longitudinal data from diverse populations.

We now have evidence from two different data sets that supports the prognostic importance of plasma viscosity for cardiovascular events as suggested by Yarnell et al and Lowe.

First, in the MONICA-Project Augsburg, 941 initially healthy men 45–64 years old were followed for 6 years. These subjects were part of a random sample of the general population (age, 25–64 years). During the follow-up period, 33 ischemic heart disease events (fatal and nonfatal myocardial infarction, cardiac death) occurred in this group. The age-adjusted relative risk of a major event in the top quintile of the plasma viscosity distribution compared with the bottom quintile was 3.65 (95% CI, 1.02-13.12). These data are remarkably consistent with those reported by Yarnell et al.

The second data set derives from a case-control study among a cohort of survivors of a first stroke followed for an average of 2 years. End points were second stroke, myocardial infarction, and cardiovascular death. Sixty pairs could be matched for conventional cardiovascular risk factors whereby one subject had and the other had not suffered an end point within the follow-up period. The relative odds of those with a second event compared with event-free controls was 2.86 (95% CI, 1.06–8.43) for plasma viscosity (cut-off point, 1.31 mPa·sec).

These data add to the growing body of evidence suggesting that rheological parameters, in particular plasma viscosity, which, of course, is strongly related to fibrinogen, may contribute to the atherothrombotic risk.

Wolfgang Koenig, MD
Vinzenz Hombach, MD
Department of Internal Medicine IV
Ulm University Medical Center
Ulm, FRG

Edzard Ernst, MD
Institute of Physical Medicine and Rehabilitation
University of Vienna
Vienna, Austria

Malte Sund, MS
GSF Research Center for Environment and Health
Medis Institute
Neuherberg, Germany

Wilfried Mraz, PhD
Department of Clinical Chemistry
Klinikum Großhadern
University of Munich
Munich, FRG

Ulrich Keil, MD, PhD
Department of Social Medicine and Epidemiology
Ruhr University and GSF Research Center for Environment and Health
Institute of Epidemiology
Bochum and Neuherberg, FRG

References

Plasma viscosity as a cardiovascular risk factor.
W Koenig, V Hombach, E Ernst, M Sund, W Mraz and U Keil

Circulation. 1992;86:1045
doi: 10.1161/01.CIR.86.3.1045

The online version of this article, along with updated information and services, is located on
the World Wide Web at:
http://circ.ahajournals.org/content/86/3/1045.citation