Myocardial β-Adrenergic Receptor Expression and Signal Transduction After Chronic Volume-Overload Hypertrophy and Circulatory Congestion

H. Kirk Hammond, MD; David A. Roth, PhD; Paul A. Insel, MD; Clifford E. Ford, BS; Francis C. White, MS; Alan S. Maisel, MD; Michael G. Ziegler, MD; and Colin M. Bloor, MD

Background. The volume-overload, high-output state induced by aortocaval fistula is unique because it is not generally associated with marked abnormalities of contractile function. Thus, changes in β-adrenergic receptor (βAR) expression should reflect more directly the influence of neurohumoral adrenergic tone, clarifying the manner in which peripheral (neurohumoral) versus primary myocardial factors are operative in decreased βAR-dependent signal transduction.

Methods and Results. We examined the β-adrenergic receptor–responsive adenylyl cyclase pathway in hearts from pigs subjected to volume-overload hypertrophy with circulatory congestion. Nine pigs underwent initial pharmacological and hemodynamic studies, and, 5 weeks after aortocaval fistula placement, when signs of circulatory congestion were evident, these measurements were repeated. Biochemical analyses of plasma and myocardium from these animals and seven normal animals were compared. Experimental animals showed signs of circulatory congestion (tachypnea, weight gain, pulmonary rales) within 3–4 weeks of fistula placement. Necropsy showed ascites and biventricular cardiac hypertrophy, but no fibrosis or inflammation was present on histological inspection. Heart rate responsiveness to βAR stimulation was blunted, with ED50 for isoproterenol increased 133% (p<0.001) after development of circulatory congestion. Biochemical analyses of the βAR-responsive adenylyl cyclase pathway showed uniform decreases in βAR number in right atrium, right ventricle, and left ventricle (36–41% decreases, p<0.005). Downregulation was selective for β1-receptors, and remaining receptors in the right and left ventricles showed low-affinity agonist binding, suggesting an uncoupling from Gs. All measures of adenylyl cyclase activity were diminished significantly in membrane homogenates from the right atrium (mean reduction, 50±10%) and left ventricle (mean reduction, 44±8%) after volume overload. Finally, we found that amounts of cardiac Gs, as measured in reconstitution assays, were decreased in both the right atrium (p<0.02) and the left ventricle (p<0.01) of volume-overloaded animals but that levels of pertussis toxin substrate were unchanged.

Conclusions. Biochemical findings occurred in the absence of myocardial inflammation or fibrosis and without pharmacological interventions, suggesting that circulatory congestion, with attendant elevation in plasma norepinephrine, may be a sufficient stimulus to induce such changes. The data are compatible with a catecholamine-driven βAR pathway desensitization. Thus, a primary defect in intrinsic contractile function is not a necessary component for abnormalities of the myocardial βAR-responsive adenylyl cyclase pathway. *(Circulation 1992;85:269–280)*

From the Veterans Administration Medical Center San Diego and Departments of Medicine, Pharmacology, and Pathology, University of California San Diego, La Jolla, Calif.

Supported in part by Merit and Research Career Development Awards from the Veterans Administration, grant S121-89 from the California Affiliate of the American Heart Association, and a grant from the Academic Senate of University of California San Diego (H.K.H.); Public Health grant HL-0477 (D.R.), a Specialized Center of Research (SCOR) on ischemic heart grant HL-17682 (P.I., C.B.), a Merit Award from the Veterans Administration (A.M.), grant HL-35924 (M.Z.), and MERIT Award HL-20190 (C.B.).

Address for correspondence: H. Kirk Hammond, MD, VAMC San Diego (V111-A), 3350 La Jolla Village Drive, San Diego, CA 92161.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by a guest editor. This procedure applies to all manuscripts with authors from the University of California San Diego or UCSD Medical Center.

Received April 9, 1991; revision accepted August 5, 1991.
O

ver two decades have passed since abnor-

malities in plasma and myocardial catechol-
amines in patients with congestive heart

failure were described.1 These observations now have

been confirmed in a variety of models of myocardial

hypertrophy and heart failure.2-4 However, the rela-
tions between myocardial β-adrenergic receptor
(βAR) number and physiological responsiveness in
these models are variable, depending on the species
studied, the stress used to produce myocardial hyper-

trophy and/or heart failure, and the time course of
the perturbation. Thus, exact molecular mechanisms
linking myocardial hypertrophy and heart failure
with altered βAR expression and signal transduction
remain elusive.

Another topic in which data are conflicting is how
stimulatory (Gs) and inhibitory (Gi) guanosine tri-

phosphate (GTP) binding proteins are altered in
myocardial hypertrophy and circulatory congestion.
Studies have demonstrated increased levels of per-
tussis toxin substrate, suggesting increased Gi in
myocardial membranes from hearts explanted from
patients with end-stage idiopathic dilated cardiomy-

opathy; no changes in cardiac Gs were found.3 In
contrast, decreased cardiac Gs was found in associa-
tion with pressure overload–induced circulatory con-
gestion in dogs.4

Although myocardial βAR expression has been
examined in humans with mitral valve disease,5 no
previous studies have examined the βAR-responsive
adenylyl cyclase pathway (βAR, G-proteins, and ade-

nyl cyclase) from hearts subjected to volume-over-
load hypertrophy with circulatory congestion. The
volume-overload, high-output state induced by aort-
caval fistula is unique because it has not generally
been associated with abnormalities of contractile
function.6-11 Thus, changes in βAR expression
should reflect more directly the influence of neuro-
humoral adrenergic activation, clarifying the manner
in which peripheral (neurohumoral) versus primary
myocardial factors are operative in decreased βAR-
dependent signal transduction. In the present study,
we determined the effects of chronic volume-over-
load hypertrophy with circulatory congestion on myo-
cardial βAR number and βAR-stimulated adenylyl
cyclase activity. Our hypotheses were 1) increased
adrenergic activation would promote βAR downreg-
ulation and desensitization of βAR-stimulated ade-

nyl cyclase activity, and 2) the amounts of Gs would
be decreased in myocardial membranes from animals
with circulatory congestion.

Methods

Animals and Surgical Procedures

Experimental animals included nine female pigs
(Sus scrofa) weighing 45±23 kg (mean±1 SD; range,
15–88 kg). After acclimatization to human handling,
animals received ketamine (50 mg/kg i.m.) and atro-
pine sulfate (0.1 mg/kg i.m.) followed by sodium
amytal (100 mg/kg i.v.). Animals underwent endotra-

cheal intubation and halothane (0.5–1.5%) was de-

livered by a pressure-cycled ventilator for the dura-
tion of the surgical procedure. Left thoracotomy was
performed and catheters were placed in the aorta
and pulmonary arteries and in some animals, in the
left ventricle (LV). In five animals, transmural biop-
sies of the right atrium (RA) and left ventricular free
wall were obtained as described previously12 to study
βAR expression serially in individual animals. After
recovery from thoracotomy, animals underwent ini-
tial pharmacological testing (see below). After com-
pletion of these tests, animals underwent a second
surgical procedure to create an aortocaval fistula.
Mean time between thoracotomy and fistula place-
ment was 24±10 days (range, 14–38 days). A side-
to-side anastomosis was performed between the ab-
dominal aorta and the inferior vena cava distal to the
renal arteries.8 The initial size of the anastomosis was
1–1.5 cm, depending on animal size. After signs of
circulatory congestion had developed, pharmacol-
ogical tests were repeated and animals were killed
37±18 days after fistula placement.

We have shown previously that chronotropic
responsiveness to isoproterenol and myocardial βAR
number are unaltered by thoracotomy,12 but the
effect of thoracotomy on adenylyl cyclase activity has
not been determined. Therefore, seven pigs (35±25
kg, p=NS versus experimental animals) were used to
determine the impact of thoracotomy and instrumen-
tation on left ventricular βAR number and adenylyl
cyclase activity. Three animals underwent thoracot-
omy and instrumentation and were killed 50±17 days
later (p=NS versus experimental animals); these
animals were compared in side-by-side assays to four
additional control animals.

Isoproterenol-Stimulated Chronotropic Response

After recovery from thoracotomy (7–14 days), an-
imals underwent pharmacological testing using
(−)isoproterenol.12 These tests were repeated again
after fistula placement when signs of circulatory
congestion (tachycardia, tachypnea) had developed.
Tests were conducted in early morning hours in a
quiet, dark laboratory (21°C). Response to isopro-
ter enol was assessed by graded bolus injections of
(−)isoproterenol (10–500 μg/kg i.v.) while recording
heart rate until there was no further increase (usually
30 seconds). The 12-second period showing the larg-
est increase in heart rate was taken as the maximal
response. This interval always included at least one
full respiratory cycle. Heart rate returned to baseline
between each dose of isoproterenol. Injections were
given until there was <5% increase in heart rate; the
preceding dose was chosen as the one that caused a
maximal response. The relation between change in
heart rate and the logarithm of the dose of (−)iso-
proterenol (μg/kg) was examined by linear regres-

sion analysis. Two or three tests conducted on sepa-
rate days were combined into a single linear regres-

sion in each animal. The dose of isoproterenol
yielding ED$_{50}$ was calculated from the linear regres-
sion equation. Two animals were studied after intravenous administration of hexamethonium bromide (100 mg/kg), atropine sulfate (0.075 mg/kg), and prazosin (0.1 mg/kg) to eliminate variations in reflex autonomic tone and peripheral vasoconstriction known to accompany the congested circulatory state.

Terminal Surgery
Forty-eight to 72 hours after completion of all pharmacological and physiological testing, animals were anesthetized and intubated with halothane and midline sternotomy were made. The heart was removed and placed in iced saline (4°C), and the RA, left atrium, and right ventricular free wall were removed. The right ventricle (RV), LV, and septum were weighed. RA samples were obtained from identical regions in all animals. Transmural samples of LV free wall were taken midway from base to apex near the midportion of the left anterior descending coronary artery. Myocardial samples were rinsed free of blood and frozen (−70°C). Time from heart removal to placing samples in liquid nitrogen was 10–15 minutes.

Membrane Preparation
Frozen (−70°C) transmural samples were powdered in a stainless steel mortar and pestle (also −70°C), placed in Tris buffer, glass-glass homogenized, and contractile proteins were extracted (0.5 mol/l KCl; 20 minutes, 4°C). The pellet of a 45,000 g centrifugation was resuspended in buffer, and radioligand binding experiments, adenylyl cyclase studies, and reconstitution studies were performed.

β-Adrenergic Receptor Binding Studies
β-Adrenergic receptors were identified using the radioligand [125]Iodocyanopindolol (ICYP; 5–700 pmol/l) in saturation isotherm experiments conducted on crude membrane preparations as previously described. Determinations of the Kₐ for isoproterenol and the proportion of β-receptors in high- or low-affinity states were performed in competition binding experiments by incubating 100 pmol/l ICYP with 10⁻¹⁰–10⁻⁶ mol/l (−)isoproterenol with and without 5’-guanylylimidodiphosphate (Gpp[NH]p; 100 μmol/l), a nonhydrolyzable guanosine triphosphate analogue. The proportions of β₁ and β₂ subtype receptors were determined in competition experiments with the highly selective β₁-adrenergic receptor antagonist bisoprolol (10⁻¹⁰–10⁻⁸ mol/l). Protein concentrations were determined by the method of Bradford, and assessment of membrane protein yield per milligram of crude membrane homogenate was performed using the cardiac sarclemmal membrane marker, K⁺-stimulated p-nitrophosphophatase (K⁺-pNPase), after the method of Bers. We performed assays on membranes from experimental animals and control animals side by side to minimize variation in cyclase activity caused by minor changes in assay conditions.

Experiments were conducted to establish that β-receptors were not lost to the supernatant. When LV membranes were prepared (as above), K⁺-pNPase activity, a marker for sarcolemmal membrane, was negligible in the supernatant. We therefore concluded that receptors, if present in the supernatant, must be unassociated with sarcolemmal membrane fragments. To detect solubilized receptors, we dialyzed 10 ml of supernatant from a 45,000g centrifugation with 1.0 l of potassium-deficient Tris buffer overnight at 4°C to reduce KCl concentration, to prevent interference with the receptor-radioligand interaction. Supernatants (0.3 mg/ml) then were used in saturation isotherm experiments (n=2; LV from control and volume-overloaded animals). GF/C filter paper was pretreated with 2% polyethyleneimine to trap solubilized receptors. There was no specifically bound ICYP in the supernatant fraction of control or volume-overloaded animals. Thus, we believe that data obtained from saturation isotherms conducted on the membrane preparation used accounts for all of the β-receptors.

Adenylyl Cyclase Assays
Methods were modified from Salomon. Adenylate cyclase activity was determined in a final volume of 100 μl and the assay mixture included final concentrations of 0.5 mmol/l ATP, 5 mmol/l creatine phosphate, 50 U/ml creatine phosphokinase, 0.1 mmol/l cAMP, 10 mmol/l HEPES buffer (pH 7.4), 2.5 mmol/l MgCl₂, 0.25 mmol/l EDTA, and 0.74 μmol/l [α-³²P]-ATP (800,000 cpm). The following agents were used to stimulate cAMP (cyclic adenosine monophosphate) production (final concentrations): manganese, 10 mmol/l; Gpp[NH]p, 100 μmol/l; isoproterenol, 10 μmol/l; and NaF, 10 mmol/l. Reactions were initiated by adding 120–140 μg of myocardial membrane homogenate to ice-cold reactants, then incubating at 37°C for 15 minutes. We found that CAMP production under these conditions was linear with respect to time and protein concentration, and that 3-isobutyl, 2-methylxanthine (1.0 mmol/l), adenosine deaminase (5 U/ml), or both, had no effect on basal or maximally stimulated CAMP production. Reactions were terminated by placing tubes in an ice-cold bath and adding 100 μl of stopping solution containing 40 mmol/l ATP, 1.4 mmol/l cAMP, [³²P]-cAMP (7,000 cpm), 50 mmol/l Tris-HCl (pH 7.5), and sodium dodecyl SO₄ (2%) to each tube, and heated to 100°C for 3 minutes. Volumes then were brought to 1 ml by adding 800 μl of water, and cAMP was fractionated using Dowex-alumina sequential column chromatography. Recovery was 75–92% using these methods with replicate variation less than 10%.

Experiments were conducted to establish that adenylyl cyclase activity is not lost in the supernatant of a 45,000g centrifugation. We found that forskolin-stimulated cAMP production was very low in the supernatant of a 45,000g centrifugation prepared from LV membranes (supernatant, 18 pmol/mg/min; pellet, 541 pmol/mg/min; n=2). Thus, a negligible amount of
adenyl cyclase activity is found in the supernatant fraction of routine membrane preparations.

Assessment of \(G_s\)

We modified a reconstitution assay for use with porcine myocardial membranes.\(^\text{18}\) The capacity of a cholate extract of myocardial membrane homogenate to reconstitute \(G_s\)-mediated production of cAMP in membranes of \(G_s\)-deficient (cyc⁻) murine S49 lymphoma cells served as a functional assay for \(G_s\). cyc⁻ cells (strain 94.15.1) were grown at 37°C in Dulbecco's modified Eagle's medium containing 25 mmol/l Na HEPES (pH 7.4) and 10% heat-inactivated horse serum. Plasma membranes were prepared after the methods of Ross,\(^\text{19} \) using a nitrogen cavitation apparatus to lyse cells by rapid decompression after equilibration for 10 minutes with \(N_2\) at 450 psi at 4°C. cyc⁻ membranes were suspended (3 mg/ml) in buffer (20 mmol/l Na HEPES (pH 8.0), 2 mmol/l MgCl₂, and 1 mmol/l EDTA). The preparation then was stored at −70°C.

Cardiac membrane homogenates (RA and LV) were suspended (3 mg/ml) in Tris buffer and solubilized in 1% Na cholate for 1 hour at 4°C. The supernatant from a 20,000g spin (4°C, 30 minutes) was heated (30°C, 10 minutes) to inactivate solubilized catalytic subunit of adenylyl cyclase. This extract then was diluted in 0.1% Lubrol PX (in the same buffer) to stabilize \(G_s\); 15 \(\mu\)l of extract or serially diluted extract was then added to 25 \(\mu\)l of lysed cyc⁻ membranes (75 \(\mug\) of cyc⁻ membrane protein) and agitated (30 minutes, 4°C). To maintain comparable concentrations of protein and detergent, diluted extract mixtures were supplemented with undiluted extract (heated at 100°C for 10 minutes to inactivate \(G_s\)). Preactivation was initiated by adding 10 \(\mu\)l of 1.0 mmol/l GTP, 10 \(\mu\)l of 100 mmol/l NaF, and 16.5 \(\mu\)l of reaction buffer, and incubating for 20 minutes at 30°C. Adenylate cyclase activity was assayed by adding [\(\alpha\-\text{32P}\)]-ATP (800,000 cpm) in 23.5 \(\mu\)l of water to each sample tube and incubating for 10 minutes at 30°C. The reaction then was terminated and cAMP production was measured as described above. Reconstitution assays were performed on undiluted extract and several serial dilutions, giving a wide range of protein content. We have found that intrinsic adenylyl cyclase activity in extract and cymembranes is negligible, and that NaF stimulation of cyc⁻ membranes yields no cAMP production. In preliminary studies, we found cAMP production to be proportional to the amount of extract added (from 1 to 120 \(\mug\)) and that the rate of cAMP synthesis remains linear with time for 40 minutes. We performed assays on extracts from experimental animals side by side with appropriate control extracts, using the same batch of cyc⁻ membranes to minimize the potential confounding influence of variation in catalytic subunit concentration in cyc⁻ membranes. Data are expressed as picomole of cAMP produced per 10 minutes as a function of membrane protein used for the detergent extraction.

Assessment of \(G_i\)

We used pertussis toxin–dependent ADP ribosylation to assess \(G_i\) in membrane homogenates from RA and LV. [\(\text{32P}\)]ADP ribose incorporation into \(G_i\) in the presence of pertussis toxin using [\(\text{32P}\)]NAD substrate (specific activity, 40 Ci/mmole) was modified from the method of Bokoch et al.\(^\text{20}\) Ten microliters of sarcolemmal membrane protein (1 mg/ml) was incubated for 60 minutes at 30°C with 28 \(\mu\)l of a solution containing 10 mmol/l DTT, 100 mmol/l Tris, 10 mmol/l thymidine, 100 \(\mu\)mol/l GTP, 1.0 mmol/l ATP, 2.5 mmol/l MgCl₂, 1.0 mmol/l EDTA, 0.5 mmol/l B-NADP, 1.0 \(\mu\)mol/l [\(\text{32P}\)]NAD, and 0.2 \(\mug\) pertussis toxin (pH 8.0). Preactivation of pertussis toxin was not necessary to achieve maximal ribosylation if toxin was added simultaneously with 10 mmol/l DTT. Optimal incubation time and protein and NAD concentrations were determined in preliminary experiments.

Plasma and Tissue Catecholamine Measurements

Blood samples were obtained from animals in the basal state 2–3 weeks after thoracotomy (before aortocaval fistula) and again just before they were killed. Levels of epinephrine and norepinephrine in plasma and myocardium were determined using a previously described sensitive radioenzymatic assay\(^\text{21}\) and were expressed as catecholamine per milligram of wet tissue.

Histological Examination

LV samples were prepared for light microscopy and stained with hematoxylin and eosin for general histological assessment or with Masson's trichrome stain to assess degree of fibrosis.

Data Analysis

Data are expressed as mean±1 SD. Specific measurements are compared before and after the volume-overloaded state in each animal using Student's \(t\) test for paired data. The null hypothesis was rejected when probability was less than 0.05 (two-tailed). The Pearson product-moment correlation coefficient (\(r\)) is reported as a measure of the strength of association between change in heart rate and logarithm of dose of isoproterenol determined by linear regression analysis. Saturation isotherm experiments underwent Scatchard analysis, and competition binding experiments were analyzed with the nonlinear regression program found in Graphpad (Harvey Motulsky, University of California San Diego). \(F\) ratios were used to test whether one- or two-component curves better fit the data, and when equivalent, the simpler model was selected.

Results

Characterization of the Model

Table 1 shows that 4–5 weeks after creation of aortocaval fistula, animals had increased basal heart rate: Control (CON) was 93±10 beats per minute, volume overload (VOL) was 130±20 beats per
minute (p = 0.005), and LV end-diastolic pressure for CON was 10±2 mm Hg and for VOL was 29±9 mm Hg (p = 0.005). Signs of circulatory congestion (tachypnea, abnormal weight gain, ascites) were evident in most experimental animals by this time. Pulse pressure was increased after creation of the fistula (CON, 47±10 mm Hg; VOL, 70±21 mm Hg; p < 0.05). The arterial–mixed venous oxygen content difference was decreased, as expected with high cardiac output in the presence of a left-to-right shunt. Indeed, this value decreased progressively during the study, indicating a sequential increase in cardiac output with CON, 4.1±1.1 vol/100 ml; VOL (1 day after shunt placement), 2.6±0.9 vol/100 ml (p < 0.05); and VOL (32±6 days after shunt placement), 1.3±0.5 vol/100 ml (p < 0.002). These data strongly suggest that cardiac function, as reflected by cardiac output, remained supranormal throughout the study despite the presence of circulatory congestion.

At necropsy (37±18 days after fistula), these animals had ascites (mean amount, 552 ml; range, 85–2,000 ml) and large hearts, with all four chambers appearing grossly enlarged. Both right and left ventricular/body weight ratios were increased, confirming biventricular hypertrophy (Table 1). Fistula size (maximal diameter) was 1.2±0.4 cm.

Table 1. Left Ventricular End-Diastolic Pressure, Basal Heart Rate, and Myocardial Hypertrophy

<table>
<thead>
<tr>
<th></th>
<th>LVEDP (mm Hg)</th>
<th>Basal HR (bpm)</th>
<th>LV/BW (g/kg)</th>
<th>RV/BW (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10±2</td>
<td>93±10</td>
<td>2.8±0.1</td>
<td>0.9±0.1</td>
</tr>
<tr>
<td>VOL</td>
<td>29±9†</td>
<td>130±20†</td>
<td>3.5±0.5§</td>
<td>1.6±0.8*</td>
</tr>
</tbody>
</table>

*p<0.02, †p<0.005, §p<0.001.

Values represent mean±SD (n=6–9). LVEDP, left ventricular end-diastolic pressure; HR, heart rate; bpm, beats per minute; LV/BW, (left ventricle+septum)/body weight; RV/BW, right ventricle/body weight; VOL, volume-overload hypertrophy.

Five to 6 weeks after aortocaval fistulas were created, striking increases in LVEDP and basal HR were observed in association with biventricular enlargement.

Plasma and Myocardial Catecholamine Content

Figure 1 shows that 4–5 weeks after creation of aortocaval fistula, animals had increased levels of both plasma epinephrine (CON, 36±30 pg/ml; VOL, 384±255 pg/ml; p < 0.05) and norepinephrine (CON, 191±133 pg/ml; VOL, 1,054±443 pg/ml; p < 0.01). In contrast, compared with the control state, myocardial levels of norepinephrine were reduced both in RA (CON, 5,165±1,834 pg/mg; VOL, 1,292±1,034 pg/mg; p < 0.01) and LV (CON, 2,549±847 pg/mg; VOL, 514±351 pg/mg; p < 0.001). Levels of myocardial epinephrine were unchanged by hypertrophy and circulatory congestion.

Isoproterenol-Stimulated Chronotropic Response

Figure 2 shows results of dose–response studies examining the ability of graded bolus doses of (-) isoproterenol to increase heart rate. These studies were performed before and after development of circulatory congestion in nine animals. Basal heart rate increased (Table 1), but maximal isoproterenol-stimulated heart rate tended to decrease (CON, 230±17 beats per minute; VOL, 207±34 beats per minute; p = 0.06) and maximal change in heart rate decreased (CON, 127±16 beats per minute; VOL, 70±38 beats per minute; p = 0.002). As shown in Figure 2, isoproterenol ED₅₀ for heart rate change was increased 133% after circulatory congestion developed (CON, 0.06±0.03 µg/kg; VOL, 0.14±0.07 µg/kg; p = 0.001). In addition, the slope relating the dose of isoproterenol with heart rate change (Figure 2) was decreased by 49% after volume overload (CON, 69±16; VOL, 35±20; p < 0.001). In addition, two pigs underwent studies with isoproterenol before and after pharmacological blockade of reflex modulation. Results of these tests were similar, with an increase in ED₅₀ (CON, 0.04 µg/kg; VOL, 0.07 µg/kg) and a decrease in slope (CON, 70; VOL, 53). From these data, we conclude that isoproterenol response is diminished in animals with volume-overload hypertrophy and circulatory congestion.

β-Adrenergic Receptor Binding Studies

Figure 3 shows the results of saturation isotherm experiments performed in seven animals; serial biopsies of RA and LV were available in five of these animals. The changes in βAR number were consistent among animals so that paired analyses and unpaired analyses were similar; we therefore report unpaired data. βAR number was decreased after aortocaval fistula. The extent of βAR downregulation was 36% in RA (CON, 55±11 fmol/mg; VOL,
TABLE 2. Results From Radioligand Binding Experiments Using Bisoprolol to Compete for 121I-Iodocyanopindolol Cyanopindolol Binding Sites in Right Atrial, Left Ventricular, and Right Ventricular Membranes

<table>
<thead>
<tr>
<th>Control (n=7)</th>
<th>VOL (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β1 (fmol/mg)</td>
<td>β1 (fmol/mg)</td>
</tr>
<tr>
<td>RA 29±7</td>
<td>14±5†</td>
</tr>
<tr>
<td>LV 40±7</td>
<td>17±7‡</td>
</tr>
<tr>
<td>RV 44±19</td>
<td>23±6*</td>
</tr>
<tr>
<td>Kd (nmol/l)</td>
<td>Kd (nmol/l)</td>
</tr>
<tr>
<td>RA 63±53</td>
<td>90±70</td>
</tr>
<tr>
<td>LV 90±91</td>
<td>103±63</td>
</tr>
<tr>
<td>RV 130±54</td>
<td>46±33</td>
</tr>
<tr>
<td>KI (μmol/l)</td>
<td>KI (μmol/l)</td>
</tr>
<tr>
<td>RA 15±13</td>
<td>47±80</td>
</tr>
<tr>
<td>LV 14±9</td>
<td>46±33</td>
</tr>
<tr>
<td>RV 27±26</td>
<td>106±176</td>
</tr>
</tbody>
</table>

*p<0.05, †p<0.01, ‡p<0.005 (vs. control).

VOL, Volume-overloaded animals; Kd, dissociation constant for high-affinity competition (β1-receptors); KI, dissociation constant for low-affinity competition (β2-receptors); RA, right atrium; LV, left ventricle; RV, right ventricle.

35±12 fmol/mg; p<0.005, 38% in RV (CON, 56±14 fmol/mg; VOL, 35±5 fmol/mg; p<0.005), and 41% in LV (CON, 51±12 fmol/mg; VOL, 30±9 fmol/mg; p<0.001). Data shown were obtained from a mean of two saturation isotherms per tissue per animal, performed with triplicate points for each of eight concentrations of ICYP. Kd for ICYP was invariant with volume-overload hypertrophy in membranes from RA (CON, 118±56 pmol/l; VOL, 76±16 pmol/l), RV (CON, 45±41 pmol/l; VOL, 62±23 pmol/l), and LV (CON, 62±22 pmol/l; VOL, 51±21 pmol/l). Mean r² values for the Scatchard analyses were 0.97±0.03.

Because heart weight/body weight ratios were increased in volume-overloaded animals (Table 1), we used the specific activity of K⁺-pNPPase as a marker for sarcolemmal membrane15 to confirm that expression of receptor binding per milligram of protein was an appropriate means to measure loss of receptors. There was no significant difference in specific activities of this marker between crude membrane homogenates from control and volume-overloaded animals either in RA (CON, 513±28 nmol/mg/hr; VOL, 497±24 nmol/mg/hr) or LV membranes (CON, 461±37 nmol/mg/hr; VOL, 453±33 nmol/mg/hr).

Competitive binding studies with bisoprolol, a selective β1-antagonist, demonstrated that BAR subtype proportions were different after development of myocardial hypertrophy (Table 2). After volume overload, animals showed a lower proportion of β1 subtype receptors in myocardial membranes from RA, RV, and LV. The number of β1 and β2 receptors was calculated using the proportion of BAR subtypes obtained from bisoprolol competition experiments. In RA, RV, and LV, downregulation for sarcolemmal membrane15 was similar between groups; histological analyses showed no fibrosis or inflammation in myocardial samples from volume-overloaded animals.

FIGURE 2. Graph shows isoproterenol-stimulated heart rate (HR) change as a function of dose. Data were obtained before and after aortocaval fistula placement in each of nine animals. The dose of isoproterenol required for a 50% maximal heart rate response (ED50; left side of figure) was increased 133%, and the slope of the line relating isoproterenol dose with heart rate change was reduced by 49% (right side of figure) after signs of circulatory congestion had developed. Open bars represent mean values before fistula placement (control); crosshatched bars represent mean values after fistula placement (volume overloaded); error bars denote 1 SD (n=9). Inset: Data from a representative animal, obtained before and after placement of aortocaval fistula. The entire curve was right-shifted after circulatory congestion, documenting decreased heart rate responsiveness to isoproterenol stimulation. Closed circles represent control values, open circles represent values after fistula placement. ISO, isoproterenol; LOG, logarithm (base 10); MCG, microgram; BPM, beats per minute.

FIGURE 3. Graph shows results of saturation isotherms performed on myocardial tissue. After volume overload and circulatory congestion, β-adrenergic receptor number was reduced in right atrium (RA), right ventricle (RV), and left ventricle (LV). Data are expressed in femtomole per milligram of protein. Open bars represent mean values from control animals, crosshatched bars represent mean values from volume-overloaded animals; error bars denote 1 SD (n=7, both groups). K⁺-stimulated p-nitrophenylphosphatase, a sarcolemmal membrane marker, was used to establish that sarcolemmal yield was similar between groups; histological analyses showed no fibrosis or inflammation in myocardial samples from volume-overloaded animals.
occurred among β₁-receptors only; β₂-receptors were unchanged (Table 2).

Table 3 and Figure 4 summarize data from competitive radioligand binding experiments using (-)-isoproterenol. The affinity of β-receptors for (-)-isoproterenol (with Gpp[NH]p) was similar in control and volume-overloaded pigs in RA (CON, Kᵣ=0.6±0.4 μmol/l; VOL, Kᵣ=0.6±0.3 μmol/l; p=NS); RV (CON, 0.3±0.2 μmol/l; VOL, 0.6±0.2 μmol/l; p<0.05), and LV membranes (CON, Kᵣ=0.5±0.4 μmol/l; VOL, Kᵣ=0.5±0.2 μmol/l; p=NS). However, the proportion of high-affinity binding sites in RV and LV membranes, determined by competitive binding with isoproterenol in the absence of Gpp(NH)₃, was decreased by volume overload. After circulatory congestion, there were 64% and 73% decreases in the proportion of β-receptors in the high-affinity state in LV and RV, respectively, demonstrating an uncoupling of βAR and Gₛ.

Adenylyl Cyclase Assays

βAR-dependent and Gₛ-dependent stimulation of adenylyl cyclase were diminished markedly in RA and LV membranes from pigs after volume-overload hypertrophy and circulatory congestion (Table 4). Mean reduction in cAMP production in RA membranes was 59±10% (range, 43–69%), and mean reduction in LV membranes was 44±8% (range, 34–57%). Stimulation by Mn²⁺, which is thought to reflect catalytic subunit activity,²² was reduced in volume-overloaded animals, suggesting that the decrement in cAMP production was due, in part, to decreased activity of the catalytic subunit.

Assessment of Gₛ

To determine if reduced function of Gₛ contributed to the diminution in adenylyl cyclase activity, we performed reconstitution assays using cholate extracts (Gₛ rich) from RA and LV membranes (Figures 5 and 6). Sodium fluoride stimulation (Gₛ-dependent) of sarcolemmal membrane extracts from volume-overloaded animals was decreased both in RA and in LV membranes, suggesting that Gₛ activity was decreased after the development of myocardial hypertrophy and circulatory congestion. For example, the amount of RA sarcolemmal protein required for 20 pmol/10 minutes of cAMP production (Figure 5) was quite different after the development of circulatory congestion: (CON, 30 μg; VOL, 50 μg). Similarly, the amount of LV sarcolemmal protein required for 60 pmol/10 minutes of cAMP production (Figure 6) was quite different after the development of circulatory congestion (CON, 90 μg; VOL, 120 μg).

Assessment of Gᵢ

To determine whether diminution in adenylyl cyclase activity in myocardial membranes from volume-overloaded animals was the result of increased Gᵢ, we performed pertussis toxin–mediated ADP-ribosylation studies to assess Gᵢ in sarcolemmal mem-

Table 3. Results From Radioligand Binding Experiments Using (-)Isoproterenol in the Absence of Guanine Nucleotides to Compete for [¹²⁵I]-Iodocyanopindolol Cyanopindolol Binding Sites

<table>
<thead>
<tr>
<th></th>
<th>Control (n=7)</th>
<th></th>
<th>VOL (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% High</td>
<td>Kᵣ (μmol/l)</td>
<td>Kᵢ (μmol/l)</td>
</tr>
<tr>
<td>RA</td>
<td>14±10</td>
<td>5±5</td>
<td>0.8±0.8</td>
</tr>
<tr>
<td>LV</td>
<td>22±5</td>
<td>2±1</td>
<td>0.4±0.4</td>
</tr>
<tr>
<td>RV</td>
<td>45±30</td>
<td>31±19</td>
<td>2.6±2.3</td>
</tr>
</tbody>
</table>

* p<0.01, † p<0.02 (vs. control).

VOL, volume-overloaded animals; Kᵣ, dissociation constant for high-affinity competition (coupled receptors); Kᵢ, dissociation constant for low-affinity competition (uncoupled receptors); RA, right atrium; LV, left ventricle; RV, right ventricle.

Table 4. Stimulation of Adenylyl Cyclase in Right Atrial and Left Ventricular Membranes

<table>
<thead>
<tr>
<th></th>
<th>Right atrium</th>
<th></th>
<th>Left ventricle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CON</td>
<td>VOL</td>
<td>p</td>
</tr>
<tr>
<td>Basal</td>
<td>36±4</td>
<td>24±11</td>
<td><0.10</td>
</tr>
<tr>
<td>ISO+Gpp</td>
<td>74±16</td>
<td>23±9</td>
<td><0.001</td>
</tr>
<tr>
<td>Gpp</td>
<td>64±7</td>
<td>25±7</td>
<td><0.0001</td>
</tr>
<tr>
<td>NaF</td>
<td>100±9</td>
<td>57±15</td>
<td><0.01</td>
</tr>
<tr>
<td>FORSK</td>
<td>219±22</td>
<td>88±18</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mn²⁺</td>
<td>64±28</td>
<td>20±10</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Membranes from control (n=7) and volume-overloaded animals (n=7) were studied simultaneously, stimulated with β-receptor–dependent and Gₛ-dependent agents, and cyclic adenosine monophosphate (cAMP) production was measured. In all cases, myocardium from volume-overloaded animals showed marked diminution in cAMP production. Data represent cAMP produced in pmol/min/mg protein±1 SD, and are net values (basal subtracted). p, control vs. volume overload, two-tailed t test; CON, control; VOL, volume overload; ISO, 10 μmol/l isoproterenol; Gpp, 100 μmol/l Gₛ; NaF, 10 mmol/l sodium fluoride; FORSK, 100 μmol/l forskolin; Mn²⁺, 10 mmol/l managanese ion.
branes from RA and LV (Figure 7). We found that pertussis toxin–catalyzed incorporation of [32P] into sarcolemmal membranes was similar in both RA (CON, 2,414±526 fmol/mg; VOL, 2,039±526 fmol/mg; p=NS) and LV (CON, 1,570±390 fmol/mg; VOL, 1,470±369 fmol/mg; p=NS). These data suggest that depressed cAMP production was not due to an enhanced inhibition of adenylate cyclase activity by Gs.

Specific Effects of Thoracotomy

We have shown previously that myocardial βAR number and heart rate responsiveness to isoproterenol stimulation are not affected by thoracotomy.12 In the present study, seven animals were used to determine whether adenyl cyclase activity was altered by thoracotomy and instrumentation independently from effects of aortocaval fistula. Three pigs underwent thoracotomy and instrumentation and were killed 50±10 days later (THOR). These animals were compared in side-by-side assays with four additional control animals that were killed without prior thoracotomy or instrumentation (CON). Adenyl cyclase activity in LV membrane homogenates from pigs that had undergone thoracotomy alone was not decreased; measurements were as follows: basal (CON-THOR, 87±8 pmol/min/mg; THOR, 87±12 pmol/min/mg); forskolin-stimulated (CON-THOR, 407±49 pmol/min/mg; THOR, 373±208 pmol/min/mg); forskolin-stimulated (CON-THOR, 344±18 pmol/min/mg; THOR, 315±141 pmol/min/mg); NaF-stimulated (CON-THOR, 245±29 pmol/min/mg; THOR, 216±82 pmol/min/mg); forskolin-stimulated (CON-THOR, 853±167 pmol/min/mg; THOR, 718±113 pmol/min/mg); Mn2+-stimulated (CON-THOR, 79±6 pmol/min/mg; THOR, 73±8 pmol/min/mg). Therefore, differences in βAR expression and adenyl cyclase activity in this study were not due to the effects of thoracotomy alone.

Histological Analyses

Histological analyses of myocardium from volume-overloaded animals did not show inflammatory infiltrates or fibrosis.

Discussion

There are four principal findings of this work. First, chronic volume-overload–induced cardiac hypertrophy with circulatory congestion is associated with multichamber myocardial desensitization affecting many elements of the βAR-dependent adenylate cyclase pathway from initial interaction of agonist with receptor to final physiological response in vivo. These data suggest a catecholamine-driven desensitization of cardiac β-adrenergic receptors, adenyl cyclase, and cardiac Gs. Second, our data imply that abnormalities in myocardial βAR-dependent signal transduction can occur despite normal contractile function, in the absence of myocardial fibrosis, and without associated pharmacological therapy. These findings indicate that activation of the sympathetic nervous system with enhanced release of endogenous catecholamines is associated with prominent changes in myocardial signal transduction and that these changes do not require precedent abnormalities in myocyte function. Third, downregulation of myocardial βAR number by volume-overload hypertrophy is selective for the β1-receptor subtype and is similar in magnitude in membranes from RA, RV, and LV. These data imply that norepinephrine, released from myocardial adrenergic nerves and abundant in plasma from volume-overloaded animals, may be of greater importance mechanistically in downregula-
tion than epinephrine because norepinephrine would be expected to preferentially downregulate β1-receptors. Alternatively, the β1-receptor may be inherently more susceptible to downregulation from either norepinephrine or epinephrine, both of which were significantly elevated. Finally, levels of cardiac Gs in RA and LV membranes are decreased after volume-overload–induced hypertrophy with circulatory congestion. In contrast, no change was observed in pertussis toxin–mediated labeling, suggesting that levels of cardiac Gi may not be a key component of decreased signal transduction in this model of circulatory congestion.

It is well known that congestive heart failure is associated with significant alterations in sympathetic nervous system function. βAR number and measures of βAR responsiveness are reduced in hearts of patients with severe congestive heart failure. βAR downregulation is associated with high levels of serum norepinephrine but with lower myocardial catecholamine levels. Norepinephrine levels are correlated with prognosis and severity of heart failure. Progressive heart failure is associated with increasing levels of plasma catecholamines and a decrease in myocardial βAR number, primarily due to selective β1-receptor downregulation. More recent studies have demonstrated increased levels of Gs in myocardial membranes from hearts explanted from patients with end-stage idiopathic dilated cardiomyopathy, suggesting that decremental contractile function may be due, in part, to inhibition of adenyl cyclase through Gi.

Although carefully performed, these clinical studies have certain inherent limitations. For example, they were conducted on patients with heart failure caused by cardiomyopathy or coronary heart disease, entities associated with myocardial fibrosis. Reduced βBAR number may have been due in part to fibrosis rather than to an actual decrease in βBAR number on cardiac myocytes. In addition, patients take medications that interact with β-receptors, so that changes in βAR expression may have been due in part to medical therapy. Animal models of myocardial hypertrophy and heart failure can complement clinical studies because they provide a means of circumventing some of these problems.

Several studies in animals have used aortic banding to study the effects of pressure-overload hypertrophy on βAR expression; these studies have yielded quite variable results. Karliner et al found increased myocardial βAR number in pressure-overload hypertrophy with associated heart failure in guinea pigs. Vahter et al also found upregulation of myocardial βAR number in dogs with pressure-overload hypertrophy from aortic banding. Later studies from their laboratory confirmed the finding of βAR upregulation even when animals showed signs of circulatory congestion. Recently, this same group reported that diminution of adenyl cyclase activity in myocardial membranes from dogs with pressure-overload hypertrophy may be due to decreased levels of Gs as assessed by cholera toxin labeling and by reconstitution studies using cells deficient in Gs. In contrast, other models of pressure-overload hypertrophy, including rats with genetic hypertension or renal artery clipping, are associated with myocardial βAR downregulation.

Thus, a cohesive picture linking myocardial hypertrophy and heart failure with βAR expression, G-proteins, and adenylate cyclase activity has not emerged. Pressure-overload hypertrophy can be associated with either βAR upregulation or downregulation, depending on the species used. Heart failure
in humans appears to be associated with increased G_α, whereas the congested circulatory state associated with long-term pressure overload in dogs is associated with decreased G_α. Reports of myocardial βAR upregulation in the presence of increased neurohumoral adrenergic activation contradicts the widely accepted dogma that receptor number varies inversely with agonist tone. Two conclusions derive from these observations: 1) There may not be a simple relation between myocardial cell surface receptor number and resultant signal transduction, and 2) the mechanisms by which myocardial hypertrophy and heart failure result in altered receptor expression have not yet precisely been determined.

We chose to study pigs because their hearts are sufficiently large to permit biochemical characterization of multiple cardiac chambers and because of the relative ease of obtaining physiological data from conscious animals. The current study shows that in this model, the magnitude of decreased myocardial βAR number (in multiple chambers), adenyl cyclase activity, and cardiac G_α are remarkably similar.

Although circulatory congestion resulting from volume-overload hypertrophy secondary to aortocaval fistula is fundamentally different from circulatory congestion seen in clinical dilated heart failure, there are striking similarities. For example, plasma catecholamines are elevated, and myocardial norepinephrine levels are decreased in both entities. In both circumstances, the symptoms and signs of circulatory congestion are dominant (tachypnea, ascites, tachycardia), and in both cases, cardiac dilation without striking concentric hypertrophy characterize the anatomic changes of the heart. There are important differences between the two models. First, plasma epinephrine levels are higher in the current model than in clinical dilated heart failure, a feature that may have contributed to changes in myocardial βAR expression. Second, dilated heart failure is usually irreversible; in contrast, in the aortocaval fistula model, after the fistula is closed, all signs of circulatory congestion disappear. Furthermore, despite circulatory congestion, papillary muscle taken from animals with circulatory congestion caused by aortocaval fistula show entirely normal or increased contraction characteristics in vitro. Thus, intrinsic cardiac function seems well preserved despite marked circulatory congestion. It is not until much longer after shunt placement, when cardiac output begins to fall, that small decreases in contractile function have been seen with this model. Although we did not measure contractile function per se, cardiac output, as reflected by the basal arterial–mixed venous oxygen content difference, remained high for the duration of the study. Furthermore, it was demonstrated recently that long-term substantial left-to-right shunt in pigs is not associated with abnormalities in left ventricular contractile function.

We found coordinate changes in biochemical and physiological measures of βAR function. We have used heart rate response to isoproterenol stimula-
tion, a reproducible and relatively easy measurement to obtain, as a means to correlate biochemical measures (particularly studies of RA membranes) with physiological responsiveness in vivo. In previous studies, we determined that directional changes of RA βAR number (and, by inference, sinoatrial node βAR number) and isoproterenol-stimulated heart rate responsiveness are not always similar. For example, in exercise-induced RA βAR downregulation, isoproterenol ED$_{50}$ is, paradoxically, decreased rather than increased. We found that this phenomenon was associated with a significant increase in cardiac G_α, suggesting that, under some circumstances, G_α may predict physiological responsiveness better than βAR number does. The diminution in heart rate responsiveness to isoproterenol stimulation in the current study is striking, affecting maximal response, ED$_{50}$, and slope of the dose–response relation. Biochemical correlates of blunted heart rate responsiveness include decreased βAR number, decreased CAMP production, and decreased cardiac G_α in RA membranes after volume-overload hypertrophy and circulatory congestion. Thus, in contrast to the exercise model, the current study shows coordinate decreases in both receptor number and cardiac G_α, and the physiological impact is a striking diminution in heart rate responsiveness.

Recent work in heart failure has focused on the stimulatory guanine nucleotide regulatory protein G_α. This transducing protein, which links βAR activation with CAMP production, may be a pivotal element in altered signal transduction in heart failure. A major area in which there is conflicting data is how stimulatory (G_s) and inhibitory (G_i) guanosine triphosphate (GTP) binding proteins are altered in heart failure. Studies have demonstrated increased levels of pertussis toxin substrate, suggesting increased G_i in myocardial membranes from hearts explanted from patients with end-stage idiopathic dilated cardiomyopathy; levels of G_s, as assessed by cholera toxin–mediated ADP ribosylation, were unchanged. These data suggest that decrements in contractile function may have been due in part to inhibition of adenylate cyclase through G_i. Horn et al described decreased cholera toxin substrate (G_s) in lymphocyte membranes prepared from patients with heart failure but found no change in pertussis toxin substrate (G_i). It is possible, because cholera toxin–mediated ADP ribosylation depends on many cofactors and is very sensitive to changes in assay conditions, that such methods may be less sensitive than other techniques in detecting altered levels of G_s, thus accounting for conflicting data regarding amounts of cardiac G_s in heart failure. In this regard, when G_s is assessed functionally by reconstituting cholate-extracted (G_s-rich) cardiac membranes into cells deficient in G_s (the cec mutant S49 lymphoma cell), decreased G_s is found in cardiac tissue from an animal model of circulatory congestion.

In the current study, we have used reconstitution assays to assess cardiac G_s. Our studies examined
cholate-extracted membranes from both RA and LV through a wide range of sarcolemmal protein amounts (Figures 5 and 6). Preliminary studies using an antibody technique to quantify cardiac G_5 indicate that levels of G_5 were decreased in ventricular membranes from volume-overloaded animals (18.2±1.4 versus 13.5±2.4 pmol/mg, p<0.05). Thus, both immunological and functional measurements of cardiac G_5 agree: There appears to be a 25–30% decrease in cardiac G_5 in myocardial membranes from volume-overloaded animals with circulatory congestion. In contrast, we found no change in pertussis toxin–mediated ADP ribosylation in RA or LV membranes from volume-overloaded animals, suggesting that cardiac G_5 was not altered in this model of circulatory congestion. However, pertussis toxin labeling was performed on tissue without cholate extraction. Recently it was shown that cholate unmasks pertussis toxin substrate, thereby resulting in increased labeling. We had insufficient tissue to repeat these studies using cholate. Nevertheless, we doubt that volume-overload hypertrophy per se would alter extractability of pertussis toxin substrate, so our conclusion regarding cardiac G_5 would not change. We had insufficient tissue to perform immunoblotting, perhaps a more precise means of quantifying cardiac G_5.

In summary, despite normal cardiac muscle function in vitro, volume-overload–induced myocardial hypertrophy is associated with physiological and biochemical abnormalities that mimic clinical dilated heart failure. These features include circulatory congestion, blunted heart rate responsiveness to adrenergic stimulation, elevated plasma norepinephrine, decreased myocardial norepinephrine, and uniform decreases in βAR number, cAMP production, and cardiac G_5. The biochemical findings occurred in the setting of normal cardiac histology and in the absence of pharmacological interventions, suggesting that circulatory congestion, with attendant elevation in plasma norepinephrine, may be a sufficient stimulus to induce such changes. The data are compatible with a catecholamine-driven βAR pathway desensitization. Thus, a primary defect in intrinsic contractile function is not a necessary component for abnormalities of the myocardial βAR-responsive adenyl cyclase pathway.

References

13. Minneman KP, Hegstrand LR, Molinoff PB: Simultaneous determination of β_1 and β_2 receptors in tissues containing both receptor subtypes. Mol Pharmacol 1979;16:34–46
25. Karliner JS, Barnes P, Brown M, Dollery C: Chronic heart failure in the guinea pig increases cardiac α_1 and β-adrenoceptors. Eur J Pharmacol 1980;76:115–118
26. Vatner DE, Homcy CJ, Sit SP, Manders WT, Vatner SF: Effects of pressure overload left ventricular hypertrophy on...

KEY WORDS • G-proteins • heart failure • aortocaval fistula • β-adrenergic receptor • adenylate cyclase • desensitization
Myocardial beta-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion.
H K Hammond, D A Roth, P A Insel, C E Ford, F C White, A S Maisel, M G Ziegler and C M Bloor

Circulation. 1992;85:269-280
doi: 10.1161/01.CIR.85.1.269

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1992 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/85/1/269

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/