dP/dt and Isovolumic Pressure Decline

I read with great interest the thoughtful article by Paulus et al.\(^1\) I take issue, however, with their use of dP/dt (20/60) as an index of nonexponentiality of isovolumic pressure decline, as suggested by Kumada et al.\(^2\) For a pure monoeponential pressure decline,\(^3\)

\[
P = P_0 e^{-t/T} + P_B
\]

\[
dP/dt = -1/T [P_0 e^{-t/T}]
\]

Thus

\[
dP/dt (20/60) = e^{-(20/60)} T\]

\[
e^{-(20/60)} T \approx 0.837 T
\]

dP/dt (20/60) is greater for smaller values of T. Thus, it is affected by T itself independent of nonexponentiality of pressure decline.

Inspection of the data of Paulus et al.\(^4\) shows that this inverse relation holds true for all T and dP/dt (20/60). The group mean values of their four measurements of T were 47, 53, 42, and 73 msec. For exponential pressure decline, the corresponding values for dP/dt (20/60) predicted by the last equation above are 2.4, 2.1, 2.6, and 1.7, respectively. The actual values of dP/dt (20/60) reported by the authors are 2.8, 2.8, 2.7, and 1.7. Because the fall in dP/dt (20/60) to 1.7 on nitroprusside after balloon aortic valvuloplasty could be predicted from the associated increase in T to 73 msec itself, the conclusion that it demonstrates nonexponentiality of isovolumic pressure decline is not justified.

Michael A. Fifer, MD
Cardiac Unit
Department of Medicine
Massachusetts General Hospital
Boston

References

Reply

Inversion of the negative dP/dt upstroke pattern from convex upward to convex downward was first reported by Kumada et al\(^1\) during the initial stages of brief coronary occlusion. Such inversion implies a deviation of isovolumic left ventricular (LV) pressure decline from a monoeponential decay.\(^1\) The same investigators subsequently reported this phenomenon in patients with coronary artery disease and proposed the dP/dt (20/60) ratio as an index for the morphology of the negative dP/dt upstroke pattern.\(^2\) In their study, a deviation from a monoeponential decay was accompanied by a lower dP/dt (20/60) ratio.

Dr. Fifer points out nicely that for a monoeponential decay, the dP/dt (20/60) ratio is also affected by a prolongation of T and therefore provides no unique measure of the morphology of the negative dP/dt upstroke pattern. Assessment of the morphology of the negative dP/dt upstroke pattern should consist of a comparison between the measured value of the dP/dt (20/60) ratio and the value predicted by the corresponding T assuming a monoeponential pressure decline (=e\(^{-t/T}\)). When the measured value is significantly different from the predicted one, the conclusion of deviation from a monoeponential pressure decline seems justified.

After sequential balloon aortic valvuloplasty with arterial vasodilation,\(^3\) a significant prolongation of T was observed for the entire study group, but a bimodal negative dP/dt waveform and a convex downward negative dP/dt upstroke pattern was observed in only 10 of the 14 patients. As shown by Dr. Fifer, the mean dP/dt (20/60) ratio for the entire study group was equal to the predicted one (1.7), but 11 of the 14 individual dP/dt (20/60) ratios were lower than their predicted counterparts. For these patients, in whom a convex downward negative dP/dt upstroke pattern was observed after sequential balloon aortic valvuloplasty-arterial vasodilation, the mean measured dP/dt (20/60) ratio (1.5±0.4) was significantly lower than the mean predicted dP/dt (20/60) ratio (1.7±0.2; p<0.05). Hence, comparison of measured dP/dt (20/60) ratio to predicted dP/dt (20/60) ratio failed to show a significant deviation from monoeponential LV pressure decay for the entire study group but revealed a significant change in the patient subgroup, in whom an actual inversion of the negative dP/dt upstroke pattern had occurred after sequential balloon aortic valvuloplasty-arterial vasodilation.

We agree with Dr. Fifer that the dP/dt (20/60) ratio is affected not only by the morphology of the negative dP/dt upstroke pattern but also by T itself. This dependence on T should be accounted for in future studies by comparing actually measured dP/dt (20/60) ratios to dP/dt (20/60) ratios predicted from corresponding T values and the e\(^{-t/T}\) formula. Moreover, deviation from a monoeponential LV pressure decay should be deduced not only from a dP/dt (20/60) ratio but also from a phase-plane plot\(^4\) of LV pressure decay (dP/dt versus P plot; Figure 4 in Reference 3). Such phase-plane plots offer the advantage of comparing isovolumic relaxation rates at similar isovolumic relaxation pressures irrespective of the presence or absence of a monoeponential LV pressure decay.

Walter J. Paulus, MD, PhD
Stanislas U. Sys, PhD
Cardiovascular Center
Aalst, Belgium

References

dP/dt and isovolumic pressure decline.
M A Fifer

Circulation. 1990;82:1077
doi: 10.1161/01.CIR.82.3.1077

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1990 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/82/3/1077.citation

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation* is online at:
http://circ.ahajournals.org//subscriptions/